Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Supporting Renewable Generation Through Green Power Certification: The Green-e Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2485 2485 Supporting Renewable Generation Through Green Power Certification: The Green-e Program Ryan Wiser Environmental Energy Technologies Division September 1998 The work described in this study was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Utility Technologies of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. -i- TABLE OF CONTENTS Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Green Power: A New Market Opportunity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Why Certify? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 The Green-e Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

3

Green Power Network: Green Power Markets Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Markets Green Markets Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Green Pricing Green Power Marketing Green Certificates Carbon Offsets State Policies Overview The essence of green power marketing is to provide market-based choices for electricity consumers to purchase power from environmentally preferred sources. The term "green power" is used to define power generated from renewable energy sources, such as wind and solar power, geothermal, hydropower and various forms of biomass. Green power marketing has the potential to expand domestic markets for renewable energy technologies by fostering greater availability of renewable electric service options in retail markets. Although renewable energy development has traditionally been limited by cost considerations, customer choice allows consumer preferences for cleaner energy sources to be reflected in market transactions. In survey after survey, customers have expressed a preference and willingness to pay more, if necessary, for cleaner energy sources. You can find more information about purchase options on our "Buying Green Power" page.

4

Green Power Network: Green Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

5

Green Power Network: Green Power Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing Green Certificates Carbon Offsets State Policies govern_purch Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Green Power Policies A number of state and local governments have policies in place that encourage the development of green power markets. Government green power purchasing mandates or goals have been established by the federal government, as well as state and local governments to procure renewable energy for the electricity used by government facilities or operations. Community choice aggregation allows communities to determine their electricity generation sources by aggregating the community load and purchasing electricity from an alternate electricity supplier while still receiving transmission and distribution service from their existing provider.

6

Incorporating oligopoly, CO2 emissions trading and green certificates into a power generation expansion model  

Science Conference Proceedings (OSTI)

This paper presents a generation expansion model for the power sector which incorporates several features that make it very interesting for application to current electricity markets: it considers the possible oligopolistic behavior of firms, and incorporates ... Keywords: Carbon emissions trading, Generation-expansion modeling, Green certificates, Oligopoly

Pedro Linares; Francisco Javier Santos; Mariano Ventosa; Luis Lapiedra

2008-06-01T23:59:59.000Z

7

Green Power Network: Green Pricing  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Utility Programs by State Table of Utility Programs by State List of Utilities Offering Green Power Top Ten Utility Green Power Programs Green Power Marketing Green Certificates Carbon Offsets State Policies Green Pricing Green pricing is an optional utility service that allows customers an opportunity to support a greater level of utility company investment in renewable energy technologies. Participating customers pay a premium on their electric bills to cover the incremental cost of the additional renewable energy. To date, more than 860 utilities, including investor-owned, municipal utilities, and cooperatives, offer a green pricing option. Table of Utility Programs by State List of Utilities Offering Green Power Top Ten Utility Green Power Programs National Green Pricing Map

8

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

9

Green Power Network: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports News Archive Subscribe to Green Power News TVA Seeks 126 MW of Renewables in 2014 The Tennessee Valley Authority (TVA) is increasing the capacity of its renewable energy power purchase programs by 7 peercent over 2013, with a total capacity of 126 megawatts (MW) being offered. The increase in capacity is being spread across two of TVA's three power purchase programs - Green Power Providers, Solar Solutions Initiative, and the Renewable Standard Offer. The Green Power Providers program has 10 MW of available capacity for the development of small-scale solar, wind, biomass and hydro generation systems that are 50 kilowatts (kW) or less. Within the Green Power Providers program TVA has doubled the residential capacity from 2 MW to 4 MW and will be paying all power providers a total of 14¢ per kilowatt-hour (kWh). The Solar Solutions Initiative program, which focuses on installations between 50 kW and 1 MW, has been expanded from 10 MW of capacity to 16 MW and now pays a premium of 6¢/kWh. TVA's third power purchase program, the Renewable Standard Offer continues to have 100 MW of available capacity for projects between 1 MW and 20 MW. Prior to these program expansions TVA's renewables portfolio consisted of 128 MW of operating or committed solar, 1,500 MW of wind, and 60 MW of biomass.

10

Green Power Network: Green Power Leadership Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards will highlight the accomplishments of green power suppliers (utilities, retail suppliers, REC marketers, and renewable energy project developers) that are innovators and...

11

Green Power Network: News Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

12

Green Power Network: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Publications Alphabetical Listing Categorical Listing Chronological Listing Featured Reports The Green Power Network library contains articles and reports on green power, green pricing, and related topics. Whenever possible, we provide a link to publications available online. The publications are grouped by the following topics to help you in your search. If you are aware of other documents that should be added to this list, please notify our Webmaster.

13

Green Power Network: Events Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Search Search Help More Search Options Search Site Map RFP Archive Events Archive We post these past events regarding renewable energy generation, renewable energy certificates, and green power as a courtesy to our web site visitors. Unless otherwise noted, the following events and accompanying presentations are neither supported nor endorsed by the U.S. Department of Energy, Green Power Network. Date and Location Event August 20, 2013 Webinar - Including Solar Resources in Green Pricing Programs: Lessons from Leading Programs This webinar explored green pricing programs. Utility product managers Wade Hughes from Sacramento Municipal Utility District and Jennifer Lynn Wright from Tennessee Valley Authority spoke about the rational for modifying the product mix, the process for including more solar, and challenges they faced. SMUD and TVA were recently recognized as the top two programs incorporating solar into their green power supply, using 14.5% and 5.9% solar in 2012, respectively.

14

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

15

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

green-power program. A "significant portion" of the electricity sold by a utility as green power must be generated using qualifying renewables, including wind energy,...

16

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

First DOE/EPRI Green Pricing Workshop First DOE/EPRI Green Pricing Workshop April 11-12, 1996 Golden, Colorado Prepared by Blair G. Swezey, National Renewable Energy Laboratory Terry M. Peterson, Electric Power Research Institute I. Overview Green pricing is an evolving utility service that responds to utility customers' preferences for electricity derived from renewable energy sources such as solar, wind, or biomass. Under green pricing, utilities offer customers a voluntary program or service to support electricity generated from renewable energy systems. Customers are asked to pay a rate premium, which is meant to cover the costs that the utility incurs above those paid today for electricity from conventional fuels. Utilities are considering green pricing as a way to build customer loyalty, deploy popular renewable technologies, expand business lines and expertise, and improve understanding of customer response to unbundled pricing and services.

17

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Fifth National Green Power Marketing Conference: Fifth National Green Power Marketing Conference: Powering the New Millennium Held August 7-8, 2000 in Denver, Colorado Fifth National Green Power Marketing Conference Summary (PDF 95.1 MB) Download Adobe Reader As the preeminent conference addressing green power marketing in the United States, the fifth annual conference provided an update of domestic green power marketing activities and address such topics as evolving perceptions of green power, why businesses and government agencies are buying green power, how to build demand for green power, what is working well in utility green pricing programs, and international green power markets. The conference was co-sponsored by the U.S. Department of Energy, U.S. Environmental Protection Agency, Electric Power Research Institute, and Edison Electric Institute

18

Green Power Network: DOE/EPA Green Tags Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

19

Green Power Network - RSS Feed  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Network (GPN) provides news and information on green power Green Power Network (GPN) provides news and information on green power markets and related activities. The site provides up-to-date information on green power providers, product offerings, consumer protection issues, and policies affecting green power markets. http://apps3.eere.energy.gov/greenpower/index.shtml en-us green power green pricing green marketing REC Renewable Energy Certificates TVA Seeks 126 MW of Renewables in 2014 TVA Expands Power Purchase Programs by 7%http://apps3.eere.energy.gov/greenpower/news/news_template.shtml?id=1886 Mon, 30 Dec 2013 00:00:00 -0700 Duke Energy Carolinas Approved to Launch New Green Power Program North Carolina PUC Approves Green Source Riderhttp://apps3.eere.energy.gov/greenpower/news/news_template.shtml?id=1885

20

Green Power Network: Green Power Network Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports GPN Home Events Events Archive Featured Reports News News Archive Subscribe to Monthly Update About the Green Power Network Green Power Markets Green Pricing Green Power Marketing Renewable Energy Certificates Greenhouse Gas Offsets Green Power Policies Buying Green Power Can I Buy Green Power in my State? Community Renewable Energy Development

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Green Power Network: Government Purchasing  

NLE Websites -- All DOE Office Websites (Extended Search)

Government Purchasing Government Purchasing Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Government Purchasing A number of governments, at both the federal, state, and local level, have established targets or goals for the amount of green power that their facilities should use. At the federal level, the Energy Policy Act of 2005 requires that federal government purchase 3% renewable energy in fiscal years 2007-2009, 5% in fiscal years 2010-2012, and 7.5% in fiscal year 2013 and thereafter. In January 2007, Executive Order 13423 established that at least half of the mandated renewable energy come from generation built after January 1, 1999. State governments, including Connecticut, Illinois, Indiana, Maine, Maryland, Massachusetts, New York, Pennsylvania, and Wisconsin, have committed to purchasing green power.

22

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

23

Green Power Network - Green Power News RSS Feed  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power News RSS Feed Green Power News RSS Feed Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Green Power News RSS Feed RSS, or Really Simple Syndication, is an easy way for Web site owners to post green power news onto their site, using such scripting languages as JavaScript, Perl, and PHP. Newshounds can also use an RSS reader to track green power news automatically. How do I use RSS?

24

Green Power Network: About the Green Power Network  

NLE Websites -- All DOE Office Websites (Extended Search)

About the GPN About the GPN Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Welcome! The Green Power Network (GPN) provides news and information on green power markets and related activities. The site provides up-to-date information on green power providers, product offerings, consumer protection issues, and policies affecting green power markets. It also includes a reference library of relevant papers, articles and reports. The Green Power Network is operated and maintained by the National Renewable Energy Laboratory for the U.S. Department of Energy.

25

Green Power Network: More Search Options  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

26

Green Power Network: Publications: Alphabetical Listing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

27

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Third National Green Power Conference: Selling Green Power in Competitive Markets Third National Green Power Conference: Selling Green Power in Competitive Markets Prepared by Blair Swezey Ashley Houston National Renewable Energy Laboratory Terry Peterson Electric Power Research Institute December 1998 Proceedings (PDF 84 KB) Download Adobe Reader Overview Green power is a market-driven product developed to meet expressed customer preference for electricity derived from renewable sources such as solar, wind, biomass, and geothermal. Over the last several years, more than 30 electric utility companies have designed green power service options for their customers as differentiated from the standard utility service. And now, as state electricity markets start to open to competition, a new industry is emerging to sell competitively priced green power products and services to discriminating consumers.

28

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Fourth National Green Power Marketing Conference Fourth National Green Power Marketing Conference Key Ingredients for Successful Markets Held May 10-11, 1999 in Philadelphia, Pennsylvania The Fourth National Green Power Marketing Conference was organized to examine the current state of green-power marketing and to explore opportunities to improve on the success of green-power sales in both regulated and deregulated markets. The conference was co-sponsored by the U.S. Department of Energy, Electric Power Research Institute, Renewable Energy Alliance, and Edison Electric Institute. View all of the Conference Presentations in Microsoft PowerPoint 95 (PPT) or Adobe Acrobat PDF format. Format is noted with file sizes. REPORT SUMMARY Today, in regulated monopoly markets, more than 50 utilities offer "green pricing" to their customers, but competitive green power marketing is still in early evolution. After a year of competitive market activity, it has become clear that the rules and mechanisms established for electric industry restructuring are critical to the success of green power marketing. The Fourth National Green Power Conference examined the current state of green power marketing, identified key market and policy needs under electric industry restructuring, and explored opportunities to improve on the success of green power sales in both regulated and deregulated markets.

29

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Carolina North Carolina Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable generation systems from the following qualifying resources: PV, wind, hydropower, and biomass. The long term Green Power Providers program replaces the Generation Partners* pilot program. The energy generated from these renewable generation systems will count towards TVA's green power pricing program, Green Power Switch. The Green Power Providers program contract term is 20 years. For years

30

Green Power Purchasing Commitment (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Green Power Purchasing Commitment Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

31

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Sixth National Green Power Marketing Conference Sixth National Green Power Marketing Conference Opportunity in the Midst of Uncertainty Held July 30 - August 1, 2001 in Portland, OR Please visit EPRI to download your copy of Sixth National Green Power Marketing Conference Summary (PDF 8.8 MB) Conference speakers reviewed the past year's green power highlights, analyzed utility green pricing programs, presented insights into how to target green power demand, examined green certificate trading and tracking mechanisms, and described the best ways to market and sell green power. In addition, First Annual Green Power Leadership Awards were presented to recognize those who are significantly advancing the development of renewable electricity sources in the marketplace. We thank the following conference sponsors: the Center for Resource Solutions, Enron Power Marketing, Inc., E Source, Green Mountain Energy Company, and PacifiCorp Power Marketing, Inc. Event sponsors included PG&E National Energy Group, Portland General Electric, Batdorf & Bronson Coffee Roasters, Fetzer Vineyards, and New Belgium Brewing Company

32

Lessons Learned: Designing Successful Green Power Services: Phase I - Assessment of Green Power Service Providers  

Science Conference Proceedings (OSTI)

Electric sector restructuring has been accompanied by the development of green power markets, where electricity generated, at least partially, from renewable energy sources is offered as an option to customers wanting to take advantage of retail choice. This report focuses on green power marketing in those states where a green power market has begun to evolve, with a particular emphasis on two states where such markets have had more time to develop: California and Pennsylvania.

2000-12-05T23:59:59.000Z

33

Green Power Marketing | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Green Power Marketing Jump to: navigation, search Gearbox installation at Xcel Energy's Ponnequin Wind Farm in Colorado. Photo from Jeroen van Dam, NREL 19257 Green power marketing provides market-based choices for electricity consumers to purchase power from environmentally preferred sources. The term "green power" defines power generated from renewable energy sources, such as wind power. Green power marketing has the potential to expand domestic markets for renewable energy technologies by fostering greater availability of renewable electric service options in retail markets.

34

Green Mountain Power Corp | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Power Corp Green Mountain Power Corp Jump to: navigation, search Name Green Mountain Power Corp Place Vermont Service Territory Vermont Website www.greenmountainpower.co Green Button Landing Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 7601 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

35

Green Power Network: News Release  

NLE Websites -- All DOE Office Websites (Extended Search)

Markets Markets Search Search Help More Search Options Search Site Map Green Pricing Utility Programs Utilities Offering Green Power Top Ten Utility Green Power Programs Green Pricing Map Green Marketing Green Certificates State Policies International Back to News Environmental and Market-Based Options for Portland General Electric and Pacific Power Customers PORTLAND, OR - January 7, 2002 - If you're a homeowner, renter or small business served by Portland General Electric or Pacific Power, you can now choose from a number of new power options. Some options provide electricity from wind, geothermal and other resources that are better for the environment than coal or nuclear. Other options can save you money if you significantly reduce the electricity you use during on-peak hours or during months of the year when electricity use is highest.

36

Green Power Network - Green Power Monthly E-Mail Update: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

37

Austin - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Austin - Green Power Purchasing Austin - Green Power Purchasing Eligibility Local Government Savings...

38

Green Power Purchase Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Purchase Plan Green Power Purchase Plan Green Power Purchase Plan < Back Eligibility State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Buying & Making Electricity Home Weatherization Wind Program Info State Connecticut Program Type Green Power Purchasing Provider Department of Energy and Environmental Protection In April 2004, Connecticut's governor signed an executive order directing state-government agencies and universities to purchase an increasing amount of electricity generated by renewable resources. Under terms of the order, the state government has a goal to increase "Class I" renewable energy purchases to 20% of electricity used in 2010, 50% in 2020 and 100% in 2050. The order also authorizes the use of savings generated by state energy

39

Green Power Network: Mandatory Utility Green Power Option  

NLE Websites -- All DOE Office Websites (Extended Search)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option A number of states have adopted policies requiring or encouraging electricity suppliers to offer green power options to consumers. This section provides summaries of these policies and links to the full text of the legislation or public utility commission rules. Connecticut Iowa Maine Minnesota Montana New Jersey New Mexico Oregon Vermont Virginia Washington Connecticut June 2003—On June 26, Connecticut Governor John G. Rowland signed a bill (SB 733) amending the state's Electric Restructuring Act and granting authority to the Department of Public Utility Control (DPUC) to require electric distribution companies to offer green power options. The legislation enables the DPUC to determine the terms and conditions of renewable energy or energy efficiency options, including the contract terms and the minimum percentage of electricity to be derived from renewable energy sources. The green energy options will be developed and implemented by third-party companies selected through a competitive bidding process.

40

Green Power Network: Top Ten Utility Green Power Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Top Ten Utility Green Power Programs (as of December 2012) Which utilities are having the greatest success with their green power programs? NREL has compiled extensive data on utility green power programs and produced the following "Top Ten" lists of program characteristics and results: total sales of renewable energy to program participants; total number of customer participants; customer participation rates; percentage of renewable energy in total retail sales; the lowest premium charged to support new renewables development; and utilities using at least two percent solar to supply their green pricing programs. Download Information Release: NREL Highlights 2012 Utility Green Power Leaders Previous Top Ten Lists - December 2010, December 2009, December 2008, December 2007, December 2006, December 2005, December 2004, December 2003, December 2002, December 2001, June 2001, November 2000, April 2000

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Green Power: Make Your Plug-in Vehicle Even Greener  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power: Make Your Plug-in Vehicle Even Greener Green Power: Make Your Plug-in Vehicle Even Greener Your plug-in hybrid or all-electric vehicle can help reduce oil dependence. It can also reduce emissions of greenhouse gases (GHGs) that lead to climate change if the electricity you use is produced by renewable energy. Even if most of the electricity in your area is generated by coal or other fossil fuels, you may be able to purchase green power for your vehicle. What Is Green Power? Green Power is electricity generated wholly or in part from renewable energy sources, such as wind and solar power, geothermal, hydropower, and various forms of biomass. The actual electricity delivered to your outlet may not be green, but your purchase of green power ensures that the power company generates that amount of power from renewable energy or purchases it from another provider

42

Nagarjuna Green Power | Open Energy Information  

Open Energy Info (EERE)

"Nagarjuna Green Power" Retrieved from "http:en.openei.orgwindex.php?titleNagarjunaGreenPower&oldid348991" Categories: Clean Energy Organizations Companies Organizations...

43

Green Power Network: Renewable Energy RFPs  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports RFP Archive The Department of Energy will no longer post RFP...

44

Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Purchasing Green Power Purchasing Eligibility State Government Savings For Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water...

45

Trans Tech Green Power | Open Energy Information  

Open Energy Info (EERE)

Tech Green Power" Retrieved from "http:en.openei.orgwindex.php?titleTransTechGreenPower&oldid352369" Categories: Clean Energy Organizations Companies Organizations...

46

Tilbury Green Power | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Tilbury Green Power Jump to: navigation, search Name Tilbury Green Power Place United Kingdom Sector...

47

Green Power Purchasing (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Fuel Cells using Renewable...

48

Green Power Purchasing (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells using Renewable Fuels,...

49

PREMIUMS PAID FOR GREEN GENERATION IN THE APX  

NLE Websites -- All DOE Office Websites (Extended Search)

PREMIUMS PAID FOR GREEN GENERATION PREMIUMS PAID FOR GREEN GENERATION IN THE APX GREEN POWER MARKET Janis C. Pepper Enertron Consultants / APX pepper@enertroncons.com 650-949-5719 Presented at Windpower 2000 May 1, 2000 Abstract Automated Power Exchange (APX) operates markets that allow buyers and sellers of electricity to do business with each other easily, efficiently, and directly. The APX Green Power Market opened on March 30, 1998 with the start of the restructured electricity market in California, providing a wholesale marketplace for buyers and sellers of renewable power to transact. Those renewable energy plants that are no longer under utility contracts, and new merchant renewable plants, are selling through this market. The overwhelming majority of green buyers and green sellers operating in the California market use the APX Green Power Market. APX

50

Green Power Network: International  

NLE Websites -- All DOE Office Websites (Extended Search)

a Canadian firm engaged in the world-wide marketing of green energy products derived from hydro and wind energy projects located in Canada. Currently, Vision Quest offers several...

51

Green Power Network: Featured Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

any questions to Karlynn Cory. Printable Version Skip footer navigation to end of page. Green Power Network Home | EERE Home | U.S. Department of Energy Webmaster | Web Site...

52

Green Mountain Power - Solar GMP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of electricity generated by the system. This credit is available to all customers of Green Mountain Power. The incentive does not have a specified duration or expiration date....

53

Mandatory Utility Green Power Option | Open Energy Information  

Open Energy Info (EERE)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Jump to: navigation, search Several states require certain electric utilities to offer customers the option of buying electricity generated from renewable resources, commonly known as “green power.” Typically, utilities offer green power generated using renewable resources that the utilities own (or for which they contract), or they buy renewable energy credits (RECs) from a renewable energy provider certified by a state public utilities commission [1] Mandatory Utility Green Power Option Incentives CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active DEMEC - Green Power Program (Delaware) Mandatory Utility Green Power Option Delaware Municipal Utility Solar Water Heat

54

Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009; Appendix D: Power Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Appendix D: Power Generation Page D.1 Electricity Supply for Greensburg, Kansas, as of December 2007 ......... 244 D.2 Community Wind Options ....................................................................... 246 D.3 Examples of Community Owned Wind Projects ..................................... 260 D.4 Analysis of Wind Generation Options for Greensburg, Kansas .............. 276 D.5 Analysis of Greensburg Municipal Utility Business Strategies to Become Green ..................................................................................................... 292 D.6 Refined Wind Speed Maps for Greensburg............................................ 362 D.7 Only Very Small Wind Turbines Should be Building Mounted and Primarily for Architectural Purposes, not Primarily for Energy-generation

55

Green Power Network: News Release  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports News Archive Subscribe to Green Power News Back to News Green pricing opens new markets for renewables by Kevin Eber September 1995 — Renewable energy is now expanding into new markets across the country. Reduced costs for wind power have led to new projects in Texas, Minnesota, and New England, and utilities continually find new applications for photovoltaics (PV), including small systems for telecommunications and larger systems for T&D support. But despite these strides, the cost of renewables is restricting their growth in regions with low power costs.

56

Green Power Network: Publications: Categorical Listing  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure & Certification Green Power Marketing Green Pricing Greenhouse Gas Offsets Market Research Net Metering Renewable Energy Certificates Technology-Specific All Categories...

57

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

58

Voluntary Green Power Market Forecast through 2015  

SciTech Connect

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

59

LED Green Power Inc | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon LED Green Power Inc Jump to: navigation, search Name LED Green Power Inc Place Santa Cruz,...

60

Green Power Network: RFP Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

10 megawatts. Eligible generation technologies include wind, geothermal, biomass, biogas, solar and hydroelectric power. PGE anticipates that the acquired resources will be...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Status of the U.S. Market for Green Power  

NLE Websites -- All DOE Office Websites (Extended Search)

the the U.S. Market for Green Power Glenn Reed, XENERGY Inc. Ashley H. Houston, XENERGY Inc. ABSTRACT The advent of electric utility deregulation has created a market for green power; electricity generated in whole or in part from renewable resources. Green power satisfies both the environmental yearnings of its purchasers and the need of its sellers to differentiate their product offerings. While green power has captured a significant percentage of those residential and small commercial customers that have left their host utility, the percentage of all eligible customers in competitive markets that have chosen green power is still very small. This paper examines the development of competitive markets for green power in four states that have deregulated their electric utilities - California, Pennsylvania, New Jersey, and Massachusetts. The attributes of each of these state markets

62

NC GreenPower Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NC GreenPower Production Incentive NC GreenPower Production Incentive NC GreenPower Production Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State North Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and system size PV up to 5 kW: $0.06/kWh PV larger than 5 kW: must enter bid process Wind up to 10 kW: $0.09/kWh Wind larger than 10 kW: must enter bid process Provider NC GreenPower NC GreenPower, a statewide green power program designed to encourage the use of renewable energy in North Carolina, offers production payments for grid-tied electricity generated by solar, wind, small hydro (10 megawatts

63

Green Power Network: Featured Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Alphabetical Listing Alphabetical Listing Categorical Listing Chronological Listing Featured Reports Featured Reports Selected from from our Library of Green Power Publications Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Feature Report Heeter, J., T. Nicholas, 2013. Status and Trends in the U.S. Voluntary Green Power Market (2012 Data). NREL Report No. TP-6A20-60210. (PDF 1.2 MB) Heeter, J., 2013. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation). NREL/PR-6A20-60640. (PDF 517 KB) Heeter, J., P. Armstrong, L. Bird, 2012. Market Brief: Status of the Voluntary Renewable Energy Certificate Market (2011 Data). NREL/TP-6A20-52925 (PDF 974 KB) Bird, L., A. Reger, and J. Heeter, 2012. Distributed Solar Incentive

64

Selling green power in California: Product, industry, and market trends  

SciTech Connect

As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

Wiser, R.H.; Pickle, S.J.

1998-05-01T23:59:59.000Z

65

Hainan Green Islands Power | Open Energy Information  

Open Energy Info (EERE)

Islands Power Jump to: navigation, search Name Hainan Green Islands Power Place Hainan Province, China Sector Solar Product China-based JV developing on-grid solar projects....

66

Green Power Purchasing | Open Energy Information  

Open Energy Info (EERE)

Purchasing Purchasing Jump to: navigation, search Government entities, businesses, residents, schools, non-profits and others can play a significant role in supporting renewable energy by buying electricity from renewable resources, or by buying renewable energy credits (RECs). Many state and local governments, as well as the federal government, have committed to buying green power to account for a certain percentage of their electricity consumption. Green power purchases are typically executed through contracts with green power marketers or project developers, through utility green power programs, or through community aggregation. [1] Green Power Purchasing Incentives CSV (rows 1 - 77) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

67

Green Power Network: Consumer Protection  

NLE Websites -- All DOE Office Websites (Extended Search)

with a basis for choosing environmentally preferable hydro resources. The Low Impact Hydro standard is used by Green-e Energy and other certifying organizations to determine...

68

Energy Department Wins EPA Green Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Wins EPA Green Power Award Energy Department Wins EPA Green Power Award Energy Department Wins EPA Green Power Award September 27, 2013 - 10:54am Addthis The Energy Department has won the Environmental Protection Agency's Green Power Leadership Award. | Energy Department photo, credit Quentin Kruger The Energy Department has won the Environmental Protection Agency's Green Power Leadership Award. | Energy Department photo, credit Quentin Kruger Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy For the Energy Department (DOE), a major focus of our mission involves supporting scientific research in renewable energy technologies. In fact, DOE is so committed to the scientific advances being made every day by the Department, that we even use electricity generated by renewable energy

69

Energy Department Wins EPA Green Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Wins EPA Green Power Award Energy Department Wins EPA Green Power Award Energy Department Wins EPA Green Power Award September 27, 2013 - 10:54am Addthis The Energy Department has won the Environmental Protection Agency's Green Power Leadership Award. | Energy Department photo, credit Quentin Kruger The Energy Department has won the Environmental Protection Agency's Green Power Leadership Award. | Energy Department photo, credit Quentin Kruger Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy For the Energy Department (DOE), a major focus of our mission involves supporting scientific research in renewable energy technologies. In fact, DOE is so committed to the scientific advances being made every day by the Department, that we even use electricity generated by renewable energy

70

Green Power Purchasing Commitment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Purchasing Commitment Green Power Purchasing Commitment Green Power Purchasing Commitment < Back Eligibility State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Massachusetts Program Type Green Power Purchasing Provider Massachusetts Department of Energy Resources (DOER) In April 2007, Massachusetts Gov. Deval Patrick signed Executive Order 484, titled "Leading by Example: Clean Energy and Efficient Buildings." This order establishes numerous energy targets and mandates for state government buildings under control of the executive office. The order directed state government agencies to procure 15% of annual electricity consumption from

71

Green Power Offer (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

requirements, standards and procedures and a competitive bidding process to implement the green power offer program. The program is designed to make renewable energy credits...

72

Austin - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Solar Buying & Making Electricity Wind Program Information Texas Program Type Green Power Purchasing Under the Austin Climate Protection Plan, the City Council has set...

73

THE GREEN POWER MARKET DEVELOPMENT GROUP  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2005 REQUEST FOR PROPOSALS RENEWABLE ENERGY CERTIFICATES Issued by: World Resources Institute on behalf its "Green Power Affiliate" partner WHOLE FOODS MARKET OVERVIEW The World...

74

GreenPower International | Open Energy Information  

Open Energy Info (EERE)

Name GreenPower International Place Alloa, Scotland, United Kingdom Zip FK10 3LP Sector Hydro, Renewable Energy, Wind energy Product Renewable energy project developer focused on...

75

Green Power Network: Renewable Energy Certificates (RECs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Retail Products Table of Retail Products Table of Commercial Certificate Marketers List of REC Marketers REC Prices National Renewable Energy Certificate Tracking Systems Map Carbon Offsets State Policies Renewable Energy Certificates (RECs) Renewable energy certificates (RECs), also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers. Table of Retail Products

76

Free Green Energy GreenWell Power JV | Open Energy Information  

Open Energy Info (EERE)

Free Green Energy GreenWell Power JV Jump to: navigation, search Name Free Green Energy & GreenWell Power JV Place Texas Sector Geothermal energy Product US-based geothermal...

77

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at the 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic...

78

Green Power Network: Environmental Disclosure Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

govern_purch govern_purch Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Environmental Disclosure Policies A number of states have adopted environmental disclosure policies, requiring electricity suppliers to provide information on fuel sources and, in some cases, emissions associated with electricity generation. The policies have been adopted in states with retail competition as well as in states with traditionally regulated electricity markets. Summaries of state environmental disclosure policies are provided below under the categories full, partial, or proposed. The term partial disclosure requirements refers to policies that are not mandatory, do not apply to all retail electricity suppliers, or do not result in direct disclosure to consumers.

79

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Island Power Authority Transmission Voltage Support System Project Green Island Power Authority Transmission Voltage Support System Project Power point presentation...

80

Radioisotope Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioisotope Power Generation Long lived power sources are needed for equipment that is too remote or inaccessible for replacement. By choosing a radioactive element with a long...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to purchase green power from any licensed retail supplier. For information about the green power utilities and suppliers in Virginia, see the Department of Energy, Energy...

82

Green Power Marketing in Retail Competition: An Early Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing in Retail Competition: An Early Assessment Title Green Power Marketing in Retail Competition: An Early Assessment Publication Type Report Year of Publication...

83

Burbank Water & Power - Green Building Incentive Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Burbank Water & Power - Green Building Incentive Program Burbank Water & Power - Green Building Incentive Program...

84

City of Bellingham - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Bellingham - Green Power Purchasing City of Bellingham - Green Power Purchasing Eligibility Local...

85

Green Power Purchase Plan (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Name Green Power Purchase Plan Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Landfill Gas, Ocean Thermal,...

86

Green Power Group Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Product A company under Nixon International Group specilized in solar technology R&D. References Green Power Group Ltd1 LinkedIn Connections CrunchBase Profile No...

87

City of Bellingham- Green Power Purchasing  

Energy.gov (U.S. Department of Energy (DOE))

In July 2006, the Bellingham City Council adopted a policy to begin purchasing 100% green power for all facilities owned by the city -- one of the most aggressive such goals in the United States....

88

Seventh National Green Power Marketing Conference: Expanding Markets Through Innovation  

Science Conference Proceedings (OSTI)

More than 300 electric utility companies offer green pricing, a practice that allows customers to purchase electricity generated from renewable energy sources, generally at a premium to the standard electricity rate. In a number of states that have deregulated the energy marketplace, consumers can choose green power products from alternative suppliers. Consumers nationwide also can purchase renewable energy certificates (RECs), which represent proof that a unit of electricityfor example, one megaw...

2003-09-29T23:59:59.000Z

89

Orcas Power & Light - MORE Green Power Program (Washington) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orcas Power & Light - MORE Green Power Program (Washington) Orcas Power & Light - MORE Green Power Program (Washington) Orcas Power & Light - MORE Green Power Program (Washington) < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Other Program Info Funding Source Member Contributions Start Date 07/01/2011 State District of Columbia Program Type Performance-Based Incentive Rebate Amount Varies Provider Orcas Power and Light Cooperative Orcas Power and Light (OPALCO), an electric cooperative serving Washington's San Juan Islands, provides a production-based incentive for residential and commercial members who generate energy from photovoltaics, wind, micro-hydroelectric and other small-scale renewable energy sources. The Member Owned Renewable Energy (MORE) Program is OPALCO's new green

90

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TVA - Green Power Providers TVA - Green Power Providers TVA - Green Power Providers < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate None specified Program Info Start Date 10/01/2012 State Alabama Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting

91

Green Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Power Wind Farm Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer GE Energy Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Information Brief on Green Power Marketing, 2nd Edition  

SciTech Connect

This document is the second in a series of information briefs on green power marketing activity in the United States. It includes descriptions of utility green pricing programs, green power marketing activity, retail access legislation and pilot programs, and other data and information supporting the development of green power markets.

Sweezey, B.; Houston, A.

1998-02-01T23:59:59.000Z

93

Lessons Learned: Designing Successful Green Power Services: Phase II - Assessment of Green Power Products and Services in the United States  

Science Conference Proceedings (OSTI)

"Green power" -- electricity produced from renewable resources -- has emerged as a key product in the restructuring of electricity markets around the world. Residential and commercial end-use customers have been able to purchase green-power products everywhere that retail competition is allowed, and the "greenness" of power products is universally recognized as a unique product differentiator in competitive markets. This report focuses on green-power marketing and green-power products in states where a c...

2002-04-11T23:59:59.000Z

94

Green Power Network: On-site Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports On-site Renewable Energy Third-Party Solar Financing For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water.

95

Mandatory Utility Green Power Option  

Energy.gov (U.S. Department of Energy (DOE))

In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

96

Green Power Network: Can I Buy Green Power in My State?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can I Buy Green Power in my State? Community Renewable Energy Development Consumer Protection Large Purchasers of Green Power Can I Buy Green Power in My State? Click on your state below to find out which organizations offer green power in your state. The results will include utility green pricing programs, retail green power products offered in competitive electricity markets, and renewable energy certificate (REC) products sold separate from electricity. For additional information about these distinct products, see our Overview of Green Power Markets. Map of the United States. AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Alabama Alaska Arizona Arkansas California Colorado Connecticut Connecticut Delaware Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Maryland Massachusetts Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Hampshire New Jersey New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Virginia Washington West Virginia Wisconsin Wyoming Washington, DC

97

South Carolina Municipalities - Green Power Purchasing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State South Carolina Program Type Green Power Purchasing Provider Santee Cooper Santee Cooper's Green Power Program was launched in September of 2001. All of the state's 20 electric cooperatives and the City of Georgetown participate in the Green Power Program, which is Green-e accredited. The renewable resources sold under the Green Power Program are comprised of 99% landfill gas (methane) and less than 1% solar energy. Santee Cooper is currently using landfill gas (methane) to produce electricity at six facilities in South Carolina: Horry Solid Waste

98

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

99

The Green Power Network - EERE - U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigation to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite...

100

DOE Recognizes Green Power Network Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognizes Green Power Network Leaders Recognizes Green Power Network Leaders DOE Recognizes Green Power Network Leaders September 14, 2009 - 12:00am Addthis ATLANTA, GA - U.S. Department of Energy Secretary Steven Chu today recognized five leading organizations for advancing the development and use of green energy. The five organizations are being recognized for their exceptional achievements in supporting increased market deployment of renewable energy technologies through green power programs. These organizations underscore the Obama Administration's efforts to develop domestic supplies of clean, renewable energy while creating jobs. "The Department of Energy applauds these organizations for taking a leading role in advancing markets for renewable energy," said Secretary Chu. "Green

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Green Power Network: Events - EERE - U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Search Search Help More Search Options Search Site Map Events Archive Events We post these events regarding renewable energy generation, renewable energy certificates, and green power as a courtesy to our web site visitors. Unless otherwise noted, the following events and accompanying presentations are neither supported nor endorsed by the U.S. Department of Energy, Green Power Network. Date and Location Event January 15, 2014 1:00-2:00 p.m. ET Gaining a Green Marketing Advantage: Data-Driven Insights into Today's Green Consumer The U.S. Environmental Protection Agency's Green Power Partnership (GPP) will host a webinar to examine what today's green consumers and potential employees care about and how they engage in sustainability decision-making, organizations can influence brand perception, impact sales and attract and retain top talent. Retail companies, green power suppliers and utilities, and any organization looking to reach environmentally-oriented consumers will benefit from this webinar.

102

Voluntary Green Power Market Forecast through 2015  

NLE Websites -- All DOE Office Websites (Extended Search)

158 158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory

103

Green Power Labs Inc | Open Energy Information  

Open Energy Info (EERE)

Green Power Labs Inc. Green Power Labs Inc. Place Dartmouth, Nova Scotia, Canada Zip B2Y4M9 Sector Services, Solar Product Provides solar energy assessment and consulting services. Coordinates 43.697361°, -72.289879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.697361,"lon":-72.289879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Green Power Developers | Open Energy Information  

Open Energy Info (EERE)

Developers Developers Jump to: navigation, search Logo: Green Power Developers LLC. Name Green Power Developers LLC. Address 366 Ramtown Greenville Rd. Place Howell,NJ Zip 07731 Sector Solar Year founded 2010 Number of employees 1-10 Company Type For Profit Phone number 7328060096 Website http://Greenpowerdevelopers.co Coordinates 40.110812°, -74.160439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.110812,"lon":-74.160439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Quantification of Regional Green House Gas Emission Impacts and Benefits for Distributed Generation  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb green house gas emissions, all options in the electric power value chain must be considered and evaluated. More effective use of distributed photovoltaic (PV) systems and efficient use of natural gas via use in distributed combined heat, power (CHP), and cooling systems in the end-use sector may be options to mitigating GHG emissions. This research project quantitatively e...

2007-12-14T23:59:59.000Z

106

Photovoltaic Power Generation  

E-Print Network (OSTI)

This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Gridconnected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use. Furthermore, as technological advances narrow the cost gap, more applications are becoming economically feasible at an accelerating rate. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES ...................................................................................v

Tom Penick; Gale Greenleaf Instructor; Thomas Penick; Bill Louk; Bill Louk

1998-01-01T23:59:59.000Z

107

Section 5.8 Electric Power Systems: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency on site and pro- curing green power. UTILIZATION EFFICIENCY Electric utility bills include both energy charges in kilowatt-hours and power demand charges in...

108

Opportunities for Wind in the APX Green Power Market  

NLE Websites -- All DOE Office Websites (Extended Search)

For Wind In The APX Green For Wind In The APX Green Power Market(tm) Janis C. Pepper Automated Power Exchange, Inc. 10455 Bandley Drive Cupertino, CA 95014 USA Presented at Windpower '98 April 30, 1998 Table of Contents ABSTRACT INTRODUCTION HOW THE APX GREEN POWER MARKET OPERATES PRICES IN THE GREEN POWER MARKET SCHEDULE COORDINATION THE PROPOSED APX GREEN TICKET MARKET OPPORTUNITIES FOR WIND POWER PLANTS IN THE APX GREEN POWER MARKET ABSTRACT The restructured electricity market began in California at 12:01 am on April 1, 1998. Automated Power Exchange (APX) opened the APX Electricity and Green Power Markets at noon on March 30, 1998, allowing suppliers and buyers of renewable energy to do business with each other cheaply, easily, and directly. Based on surveys indicating consumers are willing to pay a premium price for certified renewable energy, the APX

109

China Wind Systems formerly Green Power Malex | Open Energy Information  

Open Energy Info (EERE)

Green Power Malex Green Power Malex Jump to: navigation, search Name China Wind Systems (formerly Green Power/Malex) Place Wuxi, Jiangsu Province, China Sector Wind energy Product Manufacturer of precision-forged rolled rings and machinery with applications for the wind power industry. References China Wind Systems (formerly Green Power/Malex)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Wind Systems (formerly Green Power/Malex) is a company located in Wuxi, Jiangsu Province, China . References ↑ "China Wind Systems (formerly Green Power/Malex)" Retrieved from "http://en.openei.org/w/index.php?title=China_Wind_Systems_formerly_Green_Power_Malex&oldid=343554

110

Energy Department Receives EPA Award for Top Green Power Purchase |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Receives EPA Award for Top Green Power Purchase Energy Department Receives EPA Award for Top Green Power Purchase Energy Department Receives EPA Award for Top Green Power Purchase September 24, 2013 - 12:19pm Addthis The Energy Department announced today that it has received a 2013 Green Power Leadership Award from the U.S. Environmental Protection Agency (EPA). The annual awards recognize the country's leading green power consumers for their commitment and contribution to helping advance the development of the nation's voluntary green power market. EPA presented the Energy Department with the award at an event held in conjunction with the 2013 Renewable Energy Markets Conference in Austin, Texas, on September 23, 2013. The Department was one of only eight organizations nationwide to receive a Leadership Award for utilization of green power. The award recognizes EPA

111

Energy Department Receives EPA Award for Top Green Power Purchase |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Receives EPA Award for Top Green Power Purchase Energy Department Receives EPA Award for Top Green Power Purchase Energy Department Receives EPA Award for Top Green Power Purchase September 24, 2013 - 12:19pm Addthis The Energy Department announced today that it has received a 2013 Green Power Leadership Award from the U.S. Environmental Protection Agency (EPA). The annual awards recognize the country's leading green power consumers for their commitment and contribution to helping advance the development of the nation's voluntary green power market. EPA presented the Energy Department with the award at an event held in conjunction with the 2013 Renewable Energy Markets Conference in Austin, Texas, on September 23, 2013. The Department was one of only eight organizations nationwide to receive a Leadership Award for utilization of green power. The award recognizes EPA

112

Singaraya Hills Green Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Singaraya Hills Green Power Pvt Ltd Singaraya Hills Green Power Pvt Ltd Jump to: navigation, search Name Singaraya Hills Green Power Pvt. Ltd. Place Vijayawada, Andhra Pradesh, India Zip 520 010 Sector Biomass Product Vijayawada based biomass project developers. References Singaraya Hills Green Power Pvt. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Singaraya Hills Green Power Pvt. Ltd. is a company located in Vijayawada, Andhra Pradesh, India . References ↑ "Singaraya Hills Green Power Pvt. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Singaraya_Hills_Green_Power_Pvt_Ltd&oldid=351110" Categories: Clean Energy Organizations Companies Organizations Stubs

113

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

114

Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Water Buying & Making Electricity Solar Wind Program Info State Maine Program Type Green Power Purchasing In 2003, Maine's governor established a goal for the state government to buy at least 50% of its electricity from "reasonably priced" renewable-power sources, paid for by energy conservation improvements in all state buildings. The goal was contained in the governor's "Vision" for meeting Maine's environmental needs. As of March 2007, Maine's state government was purchasing 100% of its power from renewable energy resources. The state's existing renewable energy portfolio standard accounts for 30% of this total. For the remaining 70%, the state is purchasing renewable-energy credits (RECs) from the Rumford Falls hydropower project in Rumford, Maine.

115

Montgomery County - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Buying & Making Electricity Solar Water Wind Program Info State Maryland Program Type Green Power Purchasing Provider Montgomery County In October 2000, a group six county agencies, consisting of Montgomery County, Montgomery County Public Schools, Montgomery County Housing Opportunities Commission, Montgomery College, the Washington Suburban Sanitary Commission, and the Maryland-National Capital Park and Planning Commission, began purchasing power on a competitive basis. In March 2003, the county's energy policy was amended to incorporate the purchase of renewable energy and to expand energy-efficiency efforts. This resolution

116

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

117

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, Carl A. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

118

Green Power Network: Community Choice Aggregation (CCA)  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Choice Aggregation (CCA) Community Choice Aggregation (CCA) Community choice aggregation (CCA) is a state policy that enables local governments to aggregate electricity demand within their jurisdictions in order to procure alternative energy supplies while maintaining the existing electricity provider for transmission and distribution services. Many states passed CCA laws as part of electric restructuring legislation in the late 1990s and early 2000s. States that have passed CCA laws include California (2002), Illinois (2009), Massachusetts (1997), New Jersey (2003), Ohio (1999), and Rhode Island (1997). There are many reasons that a community may choose to develop a CCA, including the option to purchase more green power, reduce electricity cost, and provide power from more local sources.

119

Green Power Network: Top Ten Utility Green Pricing Programs,...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Palo Alto Utilitiesa Palo Alto Greenb 21.5% 2003 2 Portland General Electricc Clean Wind, Green Source, Renewable Future 12.6% 2002 3 Farmers Electric Cooperative of Kalona...

120

Energy Department Recognizes Nation's Top Green Power Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognizes Nation's Top Green Power Programs Recognizes Nation's Top Green Power Programs Energy Department Recognizes Nation's Top Green Power Programs November 16, 2011 - 1:08pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today recognized four leading organizations for expanding the market for electricity produced from renewable energy sources during the 11th annual Green Power Leadership Awards in San Francisco, Calif. These organizations' innovative "green power" programs provide consumers with the opportunity to purchase clean energy from environmentally-preferred sources, such as wind and solar energy. Organizations that offer and promote green power programs support an industry that creates thousands of jobs each year, making clean, renewable energy accessible and affordable to the homeowners and businesses they

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Wind Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Maine Public Utilities Commission Legislation enacted in 2009 directed the Maine Public Utilities Commission (PUC) to develop a program offering green power as an option to residential and small commercial customers in the state. The PUC issued rules in October 2010 and issued an RFP. The PUC selected a company, 3 Degrees, to manage the statewide green power program for Maine's transmission and distribution territories. The program includes community-based renewable

122

City of Philadelphia - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia - Green Power Purchasing Philadelphia - Green Power Purchasing City of Philadelphia - Green Power Purchasing < Back Eligibility Local Government Savings Category Water Buying & Making Electricity Solar Home Weatherization Wind Bioenergy Program Info State Pennsylvania Program Type Green Power Purchasing Provider Mayor's Office of Sustainability Philadelphia has committed to purchasing green power to supply 20% of the city's electricity by 2015.* In doing so, the city is exceeding the Pennsylvania Alternative Energy Portfolio Standard, which requires 11.2% renewables and "alternative" energy resources by 2015. Philadelphia also has a goal of producing 57.7 megawatts (MW) of solar power by 2021, of which 3.8 MW is currently on-line. The city's [http://www.phila.gov/green/pdfs/GW2012Report.pdf 2012 Greenworks Progress

123

City of Boston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boston - Green Power Purchasing Boston - Green Power Purchasing City of Boston - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Wind Program Info State Massachusetts Program Type Green Power Purchasing Provider City of Boston Environment Department In April 2007, Boston Mayor Thomas Menino issued an executive order that established a green power purchasing goal of 11% for the city government, effective immediately, and a goal of 15% by 2012. The executive order also requires all existing municipal properties to be evaluated for the feasibility of installing solar, wind, bio-energy, combined heat and power (CHP), and green roofs. (The executive order updated an announcement by

124

Green Power Marketing in the United States: A Status Report ...  

NLE Websites -- All DOE Office Websites (Extended Search)

some REC products blend other renewable energy sources, such as biomass (typically biogas) and solar. Green Power Sales According to data provided by marketers, about 6,000...

125

DOE Recognizes Green Power Network Leaders | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

energy," said Secretary Chu. "Green power is an effective way for businesses and households to reduce their carbon footprint, while creating jobs and cutting pollution. Through...

126

City of Boston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

properties to be evaluated for the feasibility of installing solar, wind, bio-energy, combined heat and power (CHP), and green roofs. (The executive order updated an...

127

Green Button Data: More Power to You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Button Data: More Power to You Green Button Data: More Power to You Green Button Data: More Power to You May 18, 2012 - 2:18pm Addthis The Green Button initiative provides residential and business customers access to their electricity consumption information, in a consumer-friendly and computer-friendly format. | Image courtesy of the National Institute of Standards and Technology. The Green Button initiative provides residential and business customers access to their electricity consumption information, in a consumer-friendly and computer-friendly format. | Image courtesy of the National Institute of Standards and Technology. Christopher Irwin Program Analyst, Office of Electricity Delivery and Energy Reliability What is the Green Button initiative? Green Button provides millions of utility customers with easy access

128

International Green Power IGP | Open Energy Information  

Open Energy Info (EERE)

IGP IGP Jump to: navigation, search Name International Green Power (IGP) Place Minneapolis, Minnesota Zip 55432 Product Minneapolis-based energy development company. IGP have an additional office in Beijing. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

City of Santa Monica - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Purchasing Green Power Purchasing City of Santa Monica - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Buying & Making Electricity Program Info State California Program Type Green Power Purchasing Provider City of Santa Monica The City of Santa Monica made history June 1, 1999, as green electricity began powering all municipal facilities -- including the Santa Monica Airport, City Hall and the Santa Monica Pier -- making it the first city in the world to switch to 100% renewable resources to meet the power needs of city facilities. Under the contract, the city purchases approximately 5MW of renewables. The proposed purchase is equivalent to the amount of electricity used by 5,000 to 6,000 homes. Commerce Energy (formerly "Commonwealth Energy") currently provides the

130

Second Generation Renewable Fuels Blue-Green Seminar  

E-Print Network (OSTI)

Abstract Second Generation Renewable Fuels Blue-Green Seminar at University of Michigan by Michael Ladisch Laboratory of Renewable Resources Engineering Purdue University Potter Engineering Center 500 footprint will require commercialization of industrial processes that transform renewable lignocellulosic

Eustice, Ryan

131

Green Power Marketing Abroad: Recent Experience and Trends  

E-Print Network (OSTI)

.............................................................................................................. 51 Italy power markets in the United States. Key findings include: · While market penetration rates for green power have typically been about 1%, the most successful markets have achieved penetration rates

132

Conway - Green Power Purchasing (South Carolina) | Open Energy...  

Open Energy Info (EERE)

blocks for a premium of 3.00. The price for businesses is based on overall power consumption. "Green Power Partners" are commercial customers who have agreed to purchase a...

133

Generation of electrical power  

DOE Patents (OSTI)

A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

Hursen, Thomas F. (Monroeville, PA); Kolenik, Steven A. (Leechburg, PA); Purdy, David L. (Indiana, PA)

1976-01-01T23:59:59.000Z

134

China Power International Shanghai Green CLP JV | Open Energy Information  

Open Energy Info (EERE)

CLP JV CLP JV Jump to: navigation, search Name China Power International, Shanghai Green & CLP JV Place Shanghai, Shanghai Municipality, China Sector Wind energy Product China-based JV for projects development and wind turbine maintenance. References China Power International, Shanghai Green & CLP JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Power International, Shanghai Green & CLP JV is a company located in Shanghai, Shanghai Municipality, China . References ↑ "China Power International, Shanghai Green & CLP JV" Retrieved from "http://en.openei.org/w/index.php?title=China_Power_International_Shanghai_Green_CLP_JV&oldid=34352

135

Mandatory Green Power Option for Large Municipal Utilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Option for Large Municipal Utilities Green Power Option for Large Municipal Utilities Mandatory Green Power Option for Large Municipal Utilities < Back Eligibility Municipal Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Colorado Program Type Mandatory Utility Green Power Option Provider Colorado Public Utilities Commission Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable technologies. This policy complements Colorado's renewable portfolio standard (RPS), which requires municipal utilities serving more than 40,000 customers to use renewable energy and energy recycling to account for 10% of retail sales by 2020.

136

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Mandatory Utility Green Power Option Provider Iowa Utilities Board All electric utilities operating in Iowa, including those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow customers to make voluntary contributions to support the development of renewable energy sources in Iowa. Utilities must file their program plans and tariff schedules with the IUB; however, the filings for non-rate-regulated utilities are intended to be for informational purposes only. This policy

137

Burbank Water and Power - Green Building Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program < Back Eligibility Commercial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider Rebates The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and work. The Green Building Council developed the Leadership in Energy and Environmental

138

City of Madison - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison - Green Power Purchasing Madison - Green Power Purchasing City of Madison - Green Power Purchasing < Back Eligibility Local Government Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Solar Buying & Making Electricity Wind Program Info State Wisconsin Program Type Green Power Purchasing Provider City of Madison In 1999, Madison's Metro Maintenance and Administration Facility began purchasing 25% of its electricity from Madison Gas and Electric's wind power program. The additional cost to purchase the wind power is approximately $26,000 per year. Metro officials estimate that their wind power purchase is equivalent to running ten buses per year with no carbon monoxide emissions. In 2005, the city established a goal to increase the entire city's electricity purchases to 10% renewable energy by 2006 and

139

Green Power Transmission Line Given New Life | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Transmission Line Given New Life Green Power Transmission Line Given New Life Green Power Transmission Line Given New Life March 11, 2010 - 4:34pm Addthis Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Stephen Graff Former Writer & editor for Energy Empowers, EERE Thanks to funds from the American Recovery and Reinvestment Act, construction of a green power transmission line stretching from Lethbridge, Alberta in Canada, down to Great Falls, Mont., was put back on track after a bank failure. Currently under construction, the Montana-Alberta Tie Line, which is owned by Toronto-based Tonbridge Power, will connect the electricity markets of

140

City of Ann Arbor - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor - Green Power Purchasing Ann Arbor - Green Power Purchasing City of Ann Arbor - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Program Info State Michigan Program Type Green Power Purchasing Provider City of Ann Arbor In May 2006, the Ann Arbor City Council adopted a resolution that established a goal of 30% renewable energy for all municipal operations by 2010, with an associated 20% reduction in greenhouse gases. The resolution also established a goal of 20% renewable energy for the entire Ann Arbor community by 2015. In July 2009, the EPA [http://www.a2gov.org/news/Documents/2009_News_Releases/EPA-On-site_Green... announced] that the city of Ann Arbor was among the top-20 users of on-site

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Green Power Network: Top Ten Utility Green Pricing Programs, December 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2001 December 2001 Customer Participants (as of December 2001) Rank Utility Program # of Participants 1 Los Angeles Department of Water and Power Green Power for a Green L.A. 87,0001 2 Xcel Energy (Colorado) WindSource 18,600 3 Sacramento Municipal Utility District Greenergy - All Renewables 14,200 4 Xcel Energy (Colorado) Renewable Energy Trust 10,900 5 Wisconsin Electric Power Company Energy for Tomorrow 10,700 6 PacifiCorp Blue Sky 7,300 7 Austin Energy GreenChoice 6,600 8 Portland General Electric Company Salmon Friendly Clean Wind Power 5,700 9 Wisconsin Public Service SolarWise for Schools 5,200 10 Tennessee Valley Authority Green Power Switch 4,9002 Source: NREL Notes: 1 About half of the total are low-income customers that receive existing renewables at no extra cost.

142

Green Power Network: Community Renewable Energy Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Renewable Energy Development Community Renewable Energy Development Community renewable energy development can take many forms, including offering a community renewable energy program, developing a community green power challenge, or developing local renewable projects. Some communities are installing renewable energy on local government facilities. For example, the City of Boulder installed a biomass burner to heat its county jail. Other local governments are installing solar on school buildings or community centers. For more information, see examples of state and local governments that have installed on-site renewable energy systems. Community Renewable Energy Programs Community renewable energy programs allow customers to purchase a share of a renewable system developed in the local community and receive the benefits of the energy that is produced by their share. For example, the Holy Cross Energy solar project in El Jebel, Colorado is an 80 kilowatt (kW) photovoltaic system supported by 18 community participants that purchase shares at an upfront cost of $3.15 per watt ($3,150 per kW) and then receive a credit on their bill each month at a rate of $0.11 per kilowatt-hour.

143

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

Energy Certificates, Emissions Allowances, and Green PowerEnergy Certificates, Emissions Allowances, and Green PowerIn a green power product with 50% renewable energy, for

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

144

City of Boulder - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder - Green Power Purchasing City of Boulder - Green Power Purchasing City of Boulder - Green Power Purchasing < Back Eligibility Local Government Savings Category Wind Buying & Making Electricity Program Info State Colorado Program Type Green Power Purchasing Provider City of Boulder The City of Boulder purchases a portion of its electricity supply from wind power through Xcel Energy's Windsource program and Renewable Choice Energy, headquartered in Colorado. Boulder purchases approximately 470,000 kWh annually to provide clean power for its municipal buildings. Boulder also installed a solar water heating system with 128 thermal panels on one of its city-owned pools. The city now has 1,955 kilowatts (kW) of photovoltaics installed with an additional 349 kW planned. These efforts

145

Green Power Marketing in Retail Competition: An Early Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

5939 5939 LBNL-42286 February 1999 Green Power Marketing in Retail Competition: An Early Assessment Ryan Wiser, Ernest Orlando Lawrence Berkeley National Laboratory Jeff Fang, Kevin Porter, and Ashley Houston, National Renewable Energy Laboratory National Renewable Energy Laboratory A national laboratory of the U.S. Department of Energy The Topical Issues Brief series is sponsored by DOE's Office of Energy Efficiency and Renewable Energy Office of Power Technologies Green Power Marketing in Retail Competition i Contents Abstract ........................................................................................................................................ ii Acknowledgments ..........................................................................................................................

146

City of Aspen - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Aspen - Green Power Purchasing City of Aspen - Green Power Purchasing City of Aspen - Green Power Purchasing < Back Eligibility Local Government Savings Category Water Buying & Making Electricity Wind Program Info State Colorado Program Type Green Power Purchasing Provider City of Aspen In 2005, the City of Aspen set a goal to purchase 75% of the city government's energy from renewable sources by 2010. As of December 2006, Aspen had accomplished its goal to provide 75% non-carbon electricity. The city has a new goal of powering 100% of the city-owned buildings with renewable sources by 2020. 27% of the electricity used by the City of Aspen comes from wind turbines located in Kimball, Nebraska. An additional 45% of the City's electricity comes from hydroelectric plants, with an additional plant, the Castle Creek

147

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

Electrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.for electrokinetic power generation. By creating a jet of

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

148

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey  

E-Print Network (OSTI)

kW* 1997 17.6¢/kWh Austin Energy GreenChoice 153 kW 1997 1.08¢/kWh Salt River Project EarthSUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey Lori Bird Christy Herig National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 blair

149

Green Power Network: Financial Opportunities: RFP Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Austin Energy Green RFP Austin Energy, the City of Austin's municipally owned electric utility, has issued a request for proposals (RFP) for the purchase of up to 100 megawatts...

150

Burbank Water & Power- Green Building Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and...

151

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Mexico Program Type Mandatory Utility Green Power Option Provider New Mexico Public Regulation Commission In addition to meeting the requirements of the state [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... renewables portfolio standard], New Mexico investor-owned utilities (IOUs) are required to offer a voluntary program for purchasing renewable energy to customers. The voluntary renewable tariff may also allow consumers to purchase renewable energy within certain energy blocks and by source of

152

NREL: News - NREL Highlights 2012 Utility Green Power Leaders  

NLE Websites -- All DOE Office Websites (Extended Search)

213 213 NREL Highlights 2012 Utility Green Power Leaders Top 10 programs support more than 4.2 million MWh of voluntary green power June 5, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) today released its assessment of leading utility green power programs. Under these voluntary programs, residential and commercial consumers can choose to help support additional electricity production from renewable resources - such as wind and solar - that diversify our nation's energy portfolio and protect our air and water. "Participating in utility green power programs allows consumers to support renewable energy above and beyond what utilities are procuring to comply with state renewable portfolio standards," NREL Analyst Jenny Heeter said. "These utilities are offering first-rate programs that give

153

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

154

City of Chicago - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

program listings, visit the http:apps3.eere.energy.govgreenpower U.S. Department of Energy Green Power Network. http:www.dsireusa.orgincentivesincentive.cfm?IncentiveCo...

155

Green Power Purchase Commitment (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

commitment will begin in the first quarter of 2005. The incremental cost of green power for the State House will be covered by the Rhode Island Renewable Energy Fund....

156

Renewable Energy Price-Stability Benefits in Utility Green Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report NRELTP-670-43532 August 2008 Renewable Energy Price-Stability Benefits in Utility Green Power Programs Lori A. Bird and Karlynn S. Cory National Renewable Energy Laboratory...

157

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

158

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

electrokinetic energy to electrical power. Previous studiescurrents to generate electrical power have employed twodetermine the electrical power that can be generated from

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

159

Electric Power Generation Expansion in Deregulated Markets.  

E-Print Network (OSTI)

??The generation expansion problem involves increasing electric power generation capacity in an existing power network. In competitive environment, power producers, distributors, and consumers all make (more)

KAYMAZ, PINAR

2007-01-01T23:59:59.000Z

160

Fifth National Green Power Marketing Conference: Powering the New Millennium, August 7-8, 2000, Denver, Colorado  

Science Conference Proceedings (OSTI)

Radical changes in the electricity industry have dramatically opened the marketplace to renewable energy development. In fact, by the end of 2000, more than one-third of all U.S. electricity consumers had option to purchase green power. The Fifth National Conference on Green Power Marketing -- attended by some 160 green power professionals -- examined various strategies for growing the green power market, successful utility approaches to green power pricing programs, and the cost of renewable energy syst...

2001-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transtech Green Power P Ltd | Open Energy Information  

Open Energy Info (EERE)

Transtech Green Power P Ltd Transtech Green Power P Ltd Jump to: navigation, search Name Transtech Green Power (P) Ltd Place Jaipur, Rajasthan, India Zip 302001 Sector Biomass, Solar Product Rajasthan-based producer of biomass and solar thermal power projects. Coordinates 26.89876°, 75.79636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.89876,"lon":75.79636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Green Scheduling: Scheduling of Control Systems for Peak Power Reduction  

E-Print Network (OSTI)

approaches for load shifting and model predictive control have been proposed, we present an alternative approach to reduce the peak power for a set of control systems. The proposed model is intuitive, scalableGreen Scheduling: Scheduling of Control Systems for Peak Power Reduction Truong Nghiem, Madhur Behl

Pappas, George J.

163

Parasol and GreenSwitch: Managing Datacenters Powered by Renewable Energy  

E-Print Network (OSTI)

Parasol and GreenSwitch: Managing Datacenters Powered by Renewable Energy ´I~nigo Goiri, William- newable energy. These datacenters will either generate their own renewable energy or draw it directly from an existing nearby plant. Besides reducing carbon footprints, renewable energy can poten- tially reduce energy

Parashar, Manish

164

Parasol and GreenSwitch: managing datacenters powered by renewable energy  

Science Conference Proceedings (OSTI)

Several companies have recently announced plans to build "green" datacenters, i.e. datacenters partially or completely powered by renewable energy. These datacenters will either generate their own renewable energy or draw it directly from an existing ... Keywords: batteries, datacenters, renewable energy, scheduling

igo Goiri; William Katsak; Kien Le; Thu D. Nguyen; Ricardo Bianchini

2013-04-01T23:59:59.000Z

165

Green Power Network: Greenhouse Gas (GHG) Offsets  

NLE Websites -- All DOE Office Websites (Extended Search)

projects include renewable electricity generation, energy efficiency measures, methane capture at landfill sites, soil carbon sequestration, and reforestation projects....

166

Sri Swarna Green Power SSGP | Open Energy Information  

Open Energy Info (EERE)

Swarna Green Power SSGP Swarna Green Power SSGP Jump to: navigation, search Name Sri Swarna Green Power (SSGP) Place Hyderabad, Andhra Pradesh, India Zip 500033 Sector Wind energy Product Hyderabad-based wind project developer. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Indur Green Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Indur Green Power Pvt Ltd Indur Green Power Pvt Ltd Jump to: navigation, search Name Indur Green Power Pvt. Ltd. Place Hyderabad, Andhra Pradesh, India Zip 500 029 Sector Biomass Product Hyderabad-based biomass project developer. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Beijing LN Green Power Company | Open Energy Information  

Open Energy Info (EERE)

LN Green Power Company LN Green Power Company Jump to: navigation, search Name Beijing LN Green Power Company Place Beijing, Beijing Municipality, China Zip 100000 Sector Vehicles Product Attempting to transfer their experience in electric vehicles to fuel cells. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Delmarva Power - Green Energy Program Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delmarva Power - Green Energy Program Incentives Delmarva Power - Green Energy Program Incentives Delmarva Power - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: 15,000 for residential, 24,000 for non-residential, 48,000 for non-profits Solar Thermal (domestic hot water): 5,000 for residential, 10,000 for non-residential Solar Thermal (radiant heating): 5,000 for residential, 10,000 for non-residential Wind: 15,000 for residential, 24,000 for non-residential, 48,000 for non-profits Fuel Cells: Under review Geothermal Heat Pumps: 5,000 for residential, 30,000 for non-residential

170

Multi GreenPower Spa | Open Energy Information  

Open Energy Info (EERE)

GreenPower Spa GreenPower Spa Jump to: navigation, search Name Multi GreenPower Spa Place Verona, Italy Zip 37135 Sector Solar Product Italy-based solar installation, construction and project development firm. Coordinates 45.438113°, 10.991505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.438113,"lon":10.991505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

NREL: Energy Analysis - Renewable Energy Certificate and Green Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Certificate and Green Power Markets Renewable Energy Certificate and Green Power Markets NREL's market analysis group examines the implications of customer choice on the market demand for renewable energy as well as renewable energy certificate (REC) markets that have emerged for compliance with state renewable energy standards. They have tracked the status of voluntary markets for renewable energy and conducted analyses of regional REC market demand. Key Analyses for 2012 Cover of Market Brief: Status of the Voluntary Renewable Energy Certificate Market (2011 Data) report Status of Green Power Marketing SEAC analysts Jenny Heeter, Philip Armstrong, and Lori Bird published "Market Brief: Status of the Voluntary Renewable Energy Certificate Market (2011 Data)." This report documents the status and trends of U.S. 'compliance' markets

172

Green Power Network: Financial Opportunities: RFP Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

RFP for Solar Power Announced BOULDER CITY, NV August 2001 In an effort to help communicate items of interest to the photovoltaics industry, Sandia is forwarding the...

173

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

174

Portfolio Manager Technical Reference: Green Power | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Green Power Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

175

Green Power Marketing in the United States: A Status Report (11th Edition)  

Science Conference Proceedings (OSTI)

This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

Bird, L.; Kreycik, C.; Friedman, B.

2008-10-01T23:59:59.000Z

176

Seventh National Green Power Marketing Conference: Sept. 30-Oct. 2, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview for the Seventh National Green Power Conference Overview for the Seventh National Green Power Conference The Seventh National Green Power Marketing Conference was held in Washington D.C. on September 30 - October 2. Conference speakers reviewed the past year's green power highlights, analyzed utility green pricing programs, presented insights into how to target green power demand, examined green certificate trading and tracking mechanisms, and described the best ways to market and sell green power. In addition, Green Power Leadership Awards were presented to recognize those who are significantly advancing the development of renewable electricity sources in the marketplace. We thank the following conference sponsors: E Source, Green Mountain Energy Company, and Xenergy. Event sponsors included ComEd, Fetzer Vineyards, and Uinta Brewing Company.

177

Colorado Green Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Colorado Green Wind Power Project Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables/Shell WindEnergy Energy Purchaser Xcel Energy Location Prowers County CO Coordinates 37.725264°, -102.592406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.725264,"lon":-102.592406,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Changes related to "Environmentally Protective Power Generation...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Changes related to "Environmentally Protective Power Generation EPPG" Environmentally Protective Power Generation EPPG Jump to:...

179

Electric Power Generation and Transmission (Iowa) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generation and Transmission (Iowa) Electric Power Generation and Transmission (Iowa) < Back Eligibility Agricultural Industrial Investor-Owned Utility MunicipalPublic...

180

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Mississippi Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting their six-month completion deadline. Of this total, 0.5 MW will be reserved for Fast Track projects less than 10 kW. Applications will be accepted starting August 1, 2013. ''''' Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Tennessee Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate Provider Tennessee Valley Authority '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting their six-month completion deadline. Of this total, 0.5 MW will be reserved for Fast Track projects less than 10 kW. Applications will be accepted starting August 1, 2013. ''''' Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and

182

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting their six-month completion deadline. Of this total, 0.5 MW will be reserved for Fast Track projects less than 10 kW. Applications will be accepted starting August 1, 2013. ''''' Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and

183

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Kentucky Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting their six-month completion deadline. Of this total, 0.5 MW will be reserved for Fast Track projects less than 10 kW. Applications will be accepted starting August 1, 2013. ''''' Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and

184

TVA - Green Power Providers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia Program Type Performance-Based Incentive Rebate Amount $1,000 upon installation Years 1-10: retail electric rate + premium payment Years 11-20: retail electric rate '''''Note: TVA has approved enough applications to meet the MW goals for this program for 2013, and is no longer accepting applications. However, based on current project completion rates, TVA expects 2.5 MW of reserved capacity to come available in August due to reserved projects not meeting their six-month completion deadline. Of this total, 0.5 MW will be reserved for Fast Track projects less than 10 kW. Applications will be accepted starting August 1, 2013. ''''' Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and

185

Green Power Network: Financial Opportunities: RFP Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

March 17,1998 March 17,1998 Project Overview: Wisconsin Electric plans to solicit bids for contracts (5 years or 10 years) for 5 mw of capacity from renewable energy sources to meet the energy needs of WE's Energy for Tomorrow® Renewable Energy Program. Renewable energy purchases through the EFT program are subsidized by EFT customers.This is an open-ended RFP with regularly scheduled reviews of all proposals. The first scheduled review begins on May 15, 1998. This request is only for renewable energy purchases through the Energy for Tomorrow® Program and NOT part of WE's RFP for 250 mw of new generation capacity to be built by June 1, 1999. For More Information or To Request an RFP: All bid related information including the RFP will be available through WE's internet site. In addition, a dedicated hotline phone number and e-mail address are listed below.

186

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

187

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

188

Solar energy power generation system  

SciTech Connect

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

189

Green Power Marketing in the United States: A Status Report ...  

NLE Websites -- All DOE Office Websites (Extended Search)

entities include a certain percentage of renewable energy within their power generation mix; the percentages required and eligibility requirements vary among the states. Eligible...

190

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(2009?) Potential 2nd generation HTSC link to 100 MW hydro Control and quality Industrial load expansion requires high power quality Emergency islanding capability Transmission...

191

Recovering heat when generating power  

Science Conference Proceedings (OSTI)

Intelligent use of heat-recovery stream generators (HRSGs) is vital for the efficient operation of cogeneration plants, which furnish both thermal energy (usually in the form of steam) and electric energy. HRSGs are similarly important in combined-cycle power plants, in which the thermal energy rejected from the primary electric-power-generation step is harnessed (as discussed below) to produce additional electrical energy. In these facilities, the HRSG is typically heated by gas-turbine exhaust. Natural gas is the fuel most widely used for gas turbines in the U.S., whereas fuel oil is the main fuel in other countries. Depending on the amount of steam to be produced, HRSGs for gas-turbine-exhaust applications may be unfired, supplementary-fired or furnace fired. The paper describes these three options; the pressure drop encountered in all three systems; the Cheng cycle; catalytic reduction of nitrogen oxides and CO; and performance testing.

Ganapathy, V.

1993-02-01T23:59:59.000Z

192

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

193

Magma energy for power generation  

DOE Green Energy (OSTI)

Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

Dunn, J.C.

1987-01-01T23:59:59.000Z

194

Solar-powered aroma generator  

SciTech Connect

In combination with a switch-controlled electric light bulb having a threaded plug and a threaded socket disposed in a room which is also subject to natural ambient light, a switchless aroma generator is installed in the room which is automatically activated only when the electric light bulb is switched on. The activated generator functions to discharge an air current into the room which conveys an aromatic vapor to modify the atmosphere. The generator described in this patent consists of: A.) an air-permeable cartridge containing an aroma supply which is exuded into the atmosphere at a relatively rapid rate as an air current is forced through the cartridge; B.) a fan driven by a low-voltage, direct-current motor having predetermined power requirements, the fan being arranged to force an air current through the cartridge; C.) a housing incorporating the cartridge and the motordriven fan, the housing containing an apparatus for mounting it on a wall in the room; and D.) a solar cell assembly producing a direct-current output placed in close proximity to the bulb in the room and irradiated when the bulb is switched on. The assembly is connected to the motor to supply power, the electrical relationship of the assembly to the motor being such that the cell output is sufficient to power the motor only when the bulb is switched on to irradiate the assembly, and is insufficient when the bulb is switched off. The cell output then depends on ambient light in the room, and the operation of the generator is coordinated with that of the bulb despite the absence of a wired connection between and an aroma is generated only when the bulb is switched on.

Spector, D.

1986-02-04T23:59:59.000Z

195

Implications of Carbon Regulation for Green Power Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Carbon Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Technical Report NREL/TP-640-41076 April 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Prepared under Task No. ASG6.1005 Technical Report NREL/TP-640-41076 April 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

196

Implications of Carbon Regulation for Green Power Markets  

Wind Powering America (EERE)

Implications of Carbon Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Technical Report NREL/TP-640-41076 April 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Implications of Carbon Regulation for Green Power Markets Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates Inc. Ghita Carroll, Research Participant National Renewable Energy Laboratory Prepared under Task No. ASG6.1005 Technical Report NREL/TP-640-41076 April 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

197

Orient Green Power Company Ltd OGPL | Open Energy Information  

Open Energy Info (EERE)

Orient Green Power Company Ltd OGPL Orient Green Power Company Ltd OGPL Jump to: navigation, search Name Orient Green Power Company Ltd (OGPL) Place Chennai, Tamil Nadu, India Zip 600 095 Sector Biomass, Hydro, Wind energy Product Chennai-based firm involved in the development of biomass, wind and small hydro project. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Design Intern: New York, NY Global Green USA's Coalition for Resource Recovery is an industry working group dedicated to generating  

E-Print Network (OSTI)

, and locally recover wasted food to power the city with green energy. For more information visit thecorr working group dedicated to generating business value through turning waste into assets. The Coalition identifies and promotes effective waste diversion technologies and programs through conducting pilot programs

Colorado at Boulder, University of

199

Reliability Assessment of Power Systems with Wind Power Generation.  

E-Print Network (OSTI)

??Wind power generation, the most promising renewable energy, is increasingly attractive to power industry and the whole society and becomes more significant in the portfolio (more)

Wang, Shu

2008-01-01T23:59:59.000Z

200

North American Green Power,LLC | Open Energy Information  

Open Energy Info (EERE)

Power,LLC Power,LLC Jump to: navigation, search Logo: North American Green Power,LLC Name North American Green Power,LLC Address 1605 J.P Wright Loop Rd Place Jacksonville, Arkansas Zip 72076 Sector Wind energy Product Wind and Solar Turbines Year founded 2010 Number of employees 11-50 Phone number 6315233149 Website http://www.greenpowersol.com Coordinates 34.8834599°, -92.1046054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8834599,"lon":-92.1046054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Green Ridge Power Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Power Wind Farm II Power Wind Farm II Jump to: navigation, search Name Green Ridge Power Wind Farm II Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Kenetech Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Green Ridge Power Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Ridge Power Wind Farm I Ridge Power Wind Farm I Jump to: navigation, search Name Green Ridge Power Wind Farm I Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Kenetech Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Green Power Marketing in the United States: A Status Report (2009 Data)  

Science Conference Proceedings (OSTI)

This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

Bird, L.; Sumner, J.

2010-09-01T23:59:59.000Z

204

Review of Potential Federal and State Green House Gas Policy Drivers for Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb the reduction of green house gas emissions, all options in the electric power value chain must be considered and evaluated. The more efficient utilization of natural gas fuel via use of distributed combined cooling, heating, and power (CHP) systems in the end-use sector may be one option to mitigating GHG emissions. This research project was undertaken to assess the extent...

2007-12-19T23:59:59.000Z

205

Georgia Green Power Electric Member Cooperative EMC | Open Energy  

Open Energy Info (EERE)

Cooperative EMC Cooperative EMC Jump to: navigation, search Name Georgia Green Power Electric Member Cooperative (EMC) Place Tucker, Georgia Zip 30084 Sector Hydro Product A partnership of Georgian electricity cooperatives, which produces power by low-impact hydro projects and landfill gas-to-electricity projects and sells it through the coops to customer who opt for green power. Coordinates 33.854351°, -84.212033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.854351,"lon":-84.212033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Green Power Network: Top Ten Utility Green Pricing Programs, December 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Green Pricing Program Renewable Energy Sales (as of December 2007) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MW)a 1 Austin Energy Wind, landfill gas 577,636,840 65.9 2 Portland General Electricb Geothermal, biomass, wind 553,677,903 63.2 3 PacifiCorpcde Wind, biomass, landfill gas, solar 383,618,885 43.8 4 Florida Power & Lightb Biomass, wind, landfill gas, solar 373,596,000 42.6 5 Xcel Energyef Wind 326,553,866 37.3 6 Sacramento Municipal Utility Districte Wind, landfill gas, small hydro, solar 275,481,584 31.4 7 Puget Sound Energye Wind, solar, biomass, landfill gas 246,406,200 28.1 8 Basin Electric Power Cooperative Wind 226,474,000 25.9 9 National Gridgh Biomass, wind, small hydro, solar 180,209,571 20.6

207

Eighth National Green Power Marketing Conference: Increasing Access, Appeal, and Awareness  

Science Conference Proceedings (OSTI)

The Eighth National Green Power Marketing Conference -- Increasing Access, Appeal, and Awareness -- reviewed the status of the green power marketing industry and explored innovative ways of designing and marketing green power products. The conference, held in Chicago, Illinois, November 35, 2003, was organized by the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), EPRI, and Center for Resource Solutions. The conference was cosponsored by EPRI; the Office of Power Techn...

2004-06-30T23:59:59.000Z

208

Conditions on Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

209

Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Geotherm Power Fonds GmbH Co KG Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name Green Energy Geotherm Power Fonds GmbH & Co. KG Place Hannover, Lower Saxony, Germany Zip 30559 Sector Geothermal energy Product German-based fund that will invest in geothermal projects to be developed by Green Energy Group. References Green Energy Geotherm Power Fonds GmbH & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Geotherm Power Fonds GmbH & Co. KG is a company located in Hannover, Lower Saxony, Germany . References ↑ "Green Energy Geotherm Power Fonds GmbH & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Geotherm_Power_Fonds_GmbH_Co_KG&oldid=346014"

210

Green Button Data: More Power to You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Technology. Christopher Irwin Program Analyst, Office of Electricity Delivery and Energy Reliability What is the Green Button initiative? Green Button provides millions of...

211

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

DOE Green Energy (OSTI)

for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

212

Green Power Network: On-site Renewable Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Renewable Energy Systems On-site Renewable Energy Systems For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water. Wind turbines convert the kinetic energy in wind into mechanical power that runs a generator to produce electricity. Geothermal heat pumps use the constant temperature of the upper 10 feet of the Earth to heat and cool buildings. Fuel cells produce electricity from hydrogen and oxygen and can be powered by a number of sources, including renewables. Biomass power systems use biomass feedstocks such as wood waste or methane from animal waste or other sources to generate electricity. Biomass resources can also be used in direct heat and combined heat and power applications.

213

Implications of Carbon Regulation for Green Power Markets  

Science Conference Proceedings (OSTI)

This paper examines the potential effects that emerging mandatory carbon markets have for voluntary markets for renewable energy, or green power markets. In an era of carbon regulation, green power markets will continue to play an important role because many consumers may be interested in supporting renewable energy development beyond what is supported through mandates or other types of policy support. The paper examines the extent to which GHG benefits motivate consumers to make voluntary renewable energy purchases and summarizes key issues emerging as a result of these overlapping markets, such as the implications of carbon regulation for renewable energy marketing claims, the demand for and price of renewable energy certificates (RECs), and the use of RECs in multiple markets (disaggregation of attributes). It describes carbon regulation programs under development in the Northeast and California, and how these might affect renewable energy markets in these regions, as well as the potential interaction between voluntary renewable energy markets and voluntary carbon markets, such as the Chicago Climate Exchange (CCX). It also briefly summarizes the experience in the European Union, where carbon is already regulated. Finally, the paper presents policy options for policymakers and regulators to consider in designing carbon policies to enable carbon markets and voluntary renewable energy markets to work together.

Bird, L.; Holt, E.; Carroll, G.

2007-04-01T23:59:59.000Z

214

Sixth National Green Power Marketing Conference: Opportunity in the Midst of Uncertainty, July 30 - August 1, 2001  

Science Conference Proceedings (OSTI)

Over the last several years, a green power marketing industry has evolved, with companies offering green power service choices to retail customers. The reverberations of the recent California energy shortage have dampened the steady growth trend of green power markets. The Sixth National Conference on Green Power Marketing, held in Portland, Oregon, July 30 - August 1, 2001, examined the state of green power marketing in this critical period while exploring opportunities to improve on the success of gree...

2002-03-26T23:59:59.000Z

215

Green Power Network: Top Ten Utility Green Pricing Programs, December 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2009 December 2009 Green Pricing Program Renewable Energy Sales (as of December 2009) Rank Utility Resources Used Sales (kWh/year) Sales (aMW)a 1 Austin Energy Wind, landfill gas 764,895,830 87.3 2 Portland General Electricb Wind, biomass, geothermal 740,880,487 84.6 3 PacifiCorpcde Wind, biomass, landfill gas, solar 578,744,080 66.1 4 Sacramento Municipal Utility Districtc Wind, hydro, biomass, solar 377,535,530 43.1 5 Xcel Energycf Wind, solar 374,296,375 42.7 6 Puget Sound Energycg Wind, landfill gas, biomass, small hydro, solar 303,046,167 34.6 7 Connecticut Light and Power/ United Illuminating Wind, hydro 197,458,734 22.5 8 National Gridh Biomass, wind, small hydro, solar 174,536,130 19.9 9 Public Service Company of New Mexico Wind 173,863,751 19.8

216

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

217

Estimates of Renewable Energy Capacity Serving U.S. Green Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimates of Renewable Energy Capacity Serving U.S. Green Power Markets (as of December 2004) Lori Bird and Blair Swezey National Renewable Energy Laboratory September 2005 This...

218

Green Power Network: Top Ten Utility Green Pricing Programs, December 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Green Power Program Renewable Energy Sales (as of December 2005) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas 435,140,739 49.7 2 Portland General Electricb Existing geothermal and hydro, wind 339,577,170 38.8 3 PacifiCorpcd Wind, biomass, solar 234,163,591 26.7 4 Florida Power & Light Biomass, wind, solar 224,574,530 25.6 5 Sacramento Municipal Utility Districte Wind, landfill gas, small hydro, solar 195,081,504 22.3 6 Xcel Energyef Wind 147,674,000 16.9 7 National Gridghi Biomass, wind, small hydro, solar 127,872,457 14.6 8 Basin Electric Power Cooperative Wind 113,957,000 13.0 9 Puget Sound Energy Wind, solar, biogas 71,341,000 8.1 10 OG&E Electric Services Wind 63,591,526 7.3

219

Green Power Network: Top Ten Utility Green Pricing Programs, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Green Power Program Renewable Energy Sales (as of December 2006) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas 580,580,401 66.3 2 Portland General Electricb Existing geothermal and hydro, wind 432,826,408 49.4 3 Florida Power & Light Landfill gas, biomass, wind, solar 302,792,000 34.6 4 PacifiCorpcd Wind, biomass, solar 299,862,690 34.2 5 Xcel Energyef Wind 236,505,718 27.0 6 Basin Electric Power Cooperative Wind 217,427,000 24.8 7 Sacramento Municipal Utility Districte Wind, landfill gas,small hydro 216,476,278 24.7 8 National Gridghi Biomass, wind,small hydro, solar 156,447,869 17.9 9 OG&E Electric Services Wind 134,553,920 15.4 10 Puget Sound Energy Wind, solar, biogas 131,742,000 15.0

220

Distributed Generation and Resilience in Power Grids  

E-Print Network (OSTI)

We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

222

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics....

223

Long Term Power Generation Planning Under Uncertainty.  

E-Print Network (OSTI)

??Generation expansion planning concerns investment and operation decisions for different types of power plants over a multi-decade horizon under various uncertainties. The goal of this (more)

Jin, Shan

2009-01-01T23:59:59.000Z

224

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

225

Rotordynamics in alternative energy power generation.  

E-Print Network (OSTI)

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal, (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

226

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years recent venture capital investments

227

Safe Operation of Backup Power Generators (Spanish)  

E-Print Network (OSTI)

It is important to know how to operate backup power generators safely. The tips in this publication can prevent problems with CO poisoning, electrocution, fire and other hazards.

Smith, David

2006-04-19T23:59:59.000Z

228

Safe Operation of Backup Power Generators  

E-Print Network (OSTI)

It is important to know how to operate backup power generators safely. The tips in this publication can prevent problems with CO poisoning, electrocution, fire and other hazards.

Smith, David

2006-04-19T23:59:59.000Z

229

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

230

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

231

Performance of the Latest Generation Powerline Networking for Green Building Applications  

Science Conference Proceedings (OSTI)

Green building applications need to efficiently communicate fine-grained power consumption patterns of a wide variety of consumer-grade appliances for an effective adaptation and percolation of demand response models in the home environment. A key hurdle ... Keywords: Green Building, PLC, Powerline Communications, Smart Grid

Nirmalya Roy, David Kleinschmidt, Joseph Taylor, Behrooz Shirazi

2013-11-01T23:59:59.000Z

232

Green Power Network: Top Ten Utility Green Pricing Programs, December 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Green Power Program Renewable Energy Sales (as of December 2004) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MWa) 1 Austin Energy Wind, landfill gas, small hydro 334,446,101 38.2 2 Portland General Electricb Existing geothermal, wind, small hydro 262,142,564 29.9 3 PacifiCorpcd Wind, biomass,solar 191,838,079 21.9 4 Sacramento Municipal Utility Districte Landfill gas, wind, small hydro, solar 176,774,804 20.2 5 Xcel Energy Wind 137,946,000 15.7 6 National Gridfgh Biomass, wind, small hydro, solar 88,204,988 10.1 7 Los Angeles Department of Power & Water Wind and landfill gas 75,528,746 8.6 8 OG&E Electric Services Wind 56,672,568 6.5 9 Puget Sound Energy Wind, solar, biogas 46,110,000 5.3 10 We Energiese Landfill gas, wind, small hydro 40,906,410 4.7

233

City of Grand Rapids - Green Power Purchasing Policy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

three-year renewable with http:www.consumersenergy.comcontent.aspx?ID1458 Consumers Energy to purchase Green-e Certified blocks of renewable energy valued at a reduced rate....

234

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

Science Conference Proceedings (OSTI)

The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

235

Conditions on Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

and California (CAL). We pay special attention to interdependencies among hydropower and thermal power plant operations because hydropower plants may provide up to 40% of the WECC...

236

Turbine-generator set development for power generation  

DOE Green Energy (OSTI)

The goal of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for the power generation requirements of a hybrid automotive propulsion system. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Engine Company. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort could lead to extensive knowledge and design capability in the most efficient generator design for hybrid electric vehicle power generation and potentially to commercialization of these advanced technologies. Through the use of the high-speed turbines as a power source for the hybrid-electric vehicles, a significant reduction in nitrous oxides emissions would be achieved when compared to those of conventional gas powered vehicles.

Adams, D.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Berenyi, S.G. [Allison Engine Co., Indianapolis, IN (United States)

1997-04-15T23:59:59.000Z

237

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

238

The role of public policy in emerging green power markets: An analysis of marketer preferences  

SciTech Connect

Green power marketing has been heralded by some as a means to create a private market for renewable energy that is driven by customer demand for green products. This report challenges the premise--sometimes proffered in debates over green markets--that profitable, sizable, credible markets for green products will evolve naturally without supportive public policies. Relying primarily on surveys and interviews of US green power marketers, the article examines the role of specific regulatory and legislative policies in enabling the green market, and searches for those policies that are believed by marketers to be the most conducive or detrimental to the expansion of the green market. The authors find that marketers: (1) believe that profitable green power markets will only develop if a solid foundation of supportive policies exists; (2) believe that establishing overall price competition and encouraging customer switching are the top priorities; (3) are somewhat leery of government-sponsored or mandated public information programs; and (4) oppose three specific renewable energy policies that are frequently advocated by renewable energy enthusiasts, but that may have negative impacts on the green marketers' profitability. The stated preferences of green marketers shed light on ways to foster renewables by means of the green market. Because the interests of marketers do not coincide perfectly with those of society, however, the study also recognizes other normative perspectives and highlights policy tensions at the heart of current debates related to green markets. By examining these conflicts, they identify three key policy questions that should direct future research: (1) to what extent should price competition and customer switching be encouraged at the expense of cost shifting; (2) what requirements should be imposed to ensure credibility in green products and marketing; and (3) how should the green power market and broader renewable energy policies interact?

Wiser, R.

1999-08-01T23:59:59.000Z

239

The generative powers of demolition  

E-Print Network (OSTI)

When examining the factory within the urban fabric, especially those cases that are abandoned and considered obsolete, it may be possible to see the first generative act as one of un-building. Considering demolition as an ...

Muskopf, Christopher Jon Dalton, 1975-

2005-01-01T23:59:59.000Z

240

Clean Electric Power Generation (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Green Power Network: Top Ten Utility Green Pricing Programs, December 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Green Pricing Program Renewable Energy Sales (as of December 2002) Rank Utility Resources Sales (kWh/year) Sales (Avg. MW)1 1 Austin Energy Wind, landfill gas, solar 251,520,000 28.7 2 Sacramento Municipal Utility District Landfill gas, wind, solar 104,344,0002 11.9 3 Xcel Energy Wind and solar 103,739,0003 11.8 4 Los Angeles Department of Power and Water Wind and landfill gas 66,666,0004 7.6 5 Portland General Electric5 Wind and geothermal 57,989,000 6.6 6 PacifiCorp5 Wind and geothermal 55,615,000 6.3 7 Tennessee Valley Authority Wind, biomass, landfill gas, solar 35,955,000 4.1 8 We Energies Landfill gas, wind, hydro 35,161,000 4.0 9 Puget Sound Energy Wind and solar 20,334,000 2.3 10 Madison Gas and Electric Wind 15,593,000 1.8

242

Green Power Network: Third-Party Solar Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Renewable Energy Third-Party Solar Financing Third-Party Solar Financing Third-Party Ownership of Distributed Solar Power Systems Historically, the up-front cost of solar has discouraged many residential and commercial customers who may otherwise wish to generate their electricity with solar power. The provision of this initial investment through traditional financing arrangements can often lead to prohibitively high interest rates on loans for a solar system rendering the economics of the investment unfavorable. In the late 2000s, solar installers and developers began to develop the concept of providing solar electricity to a customer - or, the service of generating electricity from solar panels - without requiring that the customer own a solar electric system.

243

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

244

City of Houston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2009 and December 2012, Houston has captured the second spot on the EPA's list of green energy purchases by local governments. http:www.dsireusa.orgincentives...

245

EA-345 New Brunswick Power Generation Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home EA-345 New Brunswick Power Generation Corporation EA-345 New Brunswick Power Generation Corporation Order...

246

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290-A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario...

247

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290 Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario...

248

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290-B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario...

249

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network (OSTI)

amount of wind power generation that can be accommodated.ramping of generation Power and Frequency Control as itfrequency to loss of generation Power and Frequency Control

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

250

M.Nagrial, Switched reluctance generator for wind power applications  

E-Print Network (OSTI)

AbstractGreen house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.

M. Nassereddine; J. Rizk; M. Nagrial

2008-01-01T23:59:59.000Z

251

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

WOW operates in the energy efficiency field- one of the fastest growing energy sectors in the world today. The two key products - WOWGen and WOWClean provide more energy at cheaper cost and lower emissions. WOWGen - Power Generation from Industrial Waste Heat WOWClean - Multi Pollutant emission control system. Current power generation technology uses only 35% of the energy in a fossil fuel and converts it to useful output. The remaining 65% is discharged into the environment as waste heat at temperatures ranging from 300F to 1,200F. This waste heat can be captured using the WOWGen technology and turned into electricity. This efficiency is up to twice the rate of competing technologies. Compelling economics and current environmental policy are stimulating industry interest. WOWGen power plants can generate between 1 - 25 MW of electricity. Project payback is between two to five years with IRR of 15% 30%. Nearly anywhere industrial waste heat is present, the WOW products can be applied. Beneficial applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas (pipeline compression stations, processing plants). Sources such as stack flue gases, steam, diesel exhaust, hot oil or combinations of sources can be used to generate power. WOWGen can also be used with stand alone power plants burning fossil fuels or using renewable energy sources such as solar and biomass.

Romero, M.

2009-05-01T23:59:59.000Z

252

Green Power Marketing in the United States: A Status Report (Eighth Edition)  

SciTech Connect

Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering "green power" options to their customers. Since then, these products have become more prevalent, both from utilities and in states that have introduced competition into their retail electricity markets. Today, more than 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. This report provides an overview of green power marketing activity in the United States. The first section provides an overview of green power markets, consumer response, and recent industry trends. The second section provides brief descriptions of utility green pricing programs. The third section describes companies that actively market green power in competitive markets and those that market renewable energy certificates nationally or regionally. The final section provides information on a select number of large, nonresidential green power purchasers, including businesses, universities, and government agencies.

Bird, L.; Swezey, B.

2005-10-01T23:59:59.000Z

253

Analysis of power generation processes using petcoke  

E-Print Network (OSTI)

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has higher carbon content than other hydrocarbons like coal, biomass and sewage residue. This gives petcoke a great edge over other feedstocks to generate power. Models for the two most common processes for power generation, namely combustion and gasification, were developed using Aspen Plus steady state chemical process simulator. Overall plant layouts for both processes were developed by calculating the heat and mass balance of the unit operations. After conducting wide sensitivity analysis, results indicate that one ton of petcoke feedstock can generate up to 4 MW of net available power. Both processes have rates of return greater than 30%, although gasification offers a slightly more attractive opportunity than combustion.

Jayakumar, Ramkumar

2008-05-01T23:59:59.000Z

254

Solar thermoelectrics for small scale power generation  

E-Print Network (OSTI)

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

255

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

256

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

257

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce Operating Costs of Small Producers  

E-Print Network (OSTI)

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce produced water to create "green" electricity usable on site or for transmission off site . The goal the environmental impact by creating green electricity using produced water and no additional fossil fuel. Approach

258

Apparatus and method for thermal power generation  

DOE Patents (OSTI)

An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

Cohen, Paul (Pittsburgh, PA); Redding, Arnold H. (Export, PA)

1978-01-01T23:59:59.000Z

259

Power Quality Impacts of Distributed Generation: Guidelines  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. This report addresses the issue of integrating DG into the electric power system in a way that assures power quality in the grid and at end-use customer facilities.

2000-12-06T23:59:59.000Z

260

Information Brief on Green Power Marketing: Fourth Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

project, but plans to add PV and wind to the mix. Boston Oil Consumers Alliance-BOCA, a heating oil cooperative serving Eastern and Central Massachusetts, is purchasing green...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

262

Cascading Closed Loop Cycle Power Generation  

E-Print Network (OSTI)

WOW Energies was issued Patent 6,857,268 B2 on Feb 22, 2005 titled CASCADING CLOSED LOOP CYCLE (CCLC) and Patent 7,096,665 B2 on August 29, 2006 titled CASCADING CLOSED LOOP CYCLE POWER GENERATION. These patented technologies are collectively marketed as WOWGen. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat sources. Waste heat sources can be in the form of exhaust stack flue gases; waste heat from vented steam or steam discharged from steam turbines; hot water; hot oils or combined waste heat sources. A major advantage of the WOWGen power plant is the ability to produce power without the use, consumption or contamination of valuable water resources. Production of power from waste heat and renewable energy sources is the most viable path to energy independence from foreign oil and reduced emissions from the combustion of fossil fuels. The WOWGen power plant inherently reduces emissions and Greenhouse Gases (GHG) by producing power from waste heat without consuming fuel, thus increasing the overall energy efficiency of any industrial plant or power generation facility. The presentation will focus on the technology and provide case studies of its application.

Romero, M.

2008-01-01T23:59:59.000Z

263

U.S. Federal Government - Green Power Purchasing Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Federal Government - Green Power Purchasing Goal U.S. Federal Government - Green Power Purchasing Goal U.S. Federal Government - Green Power Purchasing Goal < Back Eligibility Fed. Government Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info Program Type Green Power Purchasing Provider U.S. Department of Energy The federal Energy Policy Act of 2005 (EPAct 2005) extended and expanded several previous goals and standards to reduce energy use in existing and new federal buildings. Section 203 of EPAct 2005 requires that, to the extent it is economically feasible and technically practicable, the total amount of renewable electric energy consumed by the federal government during any fiscal year shall not be less than the following: * 3% in fiscal years 2007-2009 * 5% in fiscal years 2010-2012

264

A Certificate-Based Approach to Marketing Green Power and Constructing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Certificate-Based Approach to Marketing Green Power and Constructing New Wind Energy Facilities Preprint May 2002 * NRELCP-620-32430 E. Blank Community Energy, Inc. L. Bird and B....

265

ORNL team uses lignin to power green battery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fred Strohl Communications 865.574.4165 ORNL team uses lignin to power green battery Listen to the audio OAK RIDGE, Tenn., Aug. 16, 2013 -- Lignin is a waste material that is...

266

Advanced Power and Energy Program, 2011 1/10 Green Innovation Panel  

E-Print Network (OSTI)

;© Advanced Power and Energy Program, 2011 3/10 Smart Power & Energy Technologies Examples: · Building Energy, ... · Utility Grid Network Management · Dispatchable green power, wind intermittency mgmt., synchro-phasors Deployment Model Results - 33% Wind Penetration With "Deep Grid Situational Awareness" we can automatically

Loudon, Catherine

267

Green Power Marketing in the United States: A Status Report (2008 Data)  

Science Conference Proceedings (OSTI)

Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricity provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.

Bird, L.; Kreycik, C.; Friedman, B.

2009-09-01T23:59:59.000Z

268

Enel Green Power North America | Open Energy Information  

Open Energy Info (EERE)

America (formerly CHI Energy Inc) America (formerly CHI Energy Inc) Place Andover, Massachusetts Zip 18100 Sector Biomass, Geothermal energy, Wind energy Product Massachusetts-based subsidiary of Enel S.p.A, generating electric power from wind, water, biomass and geothermal resources. Coordinates 43.277577°, -72.697487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.277577,"lon":-72.697487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Customer Choice and Green Power Marketing: A Critical Review and Analysis of Experience to Date  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Customer Choice and Green Power Marketing: A Critical Review and Analysis of Experience to Date Ryan Wiser, Lawrence Berkeley National Laboratory Mark Bolinger, Lawrence Berkeley National Laboratory Edward Holt, Ed Holt & Associates, Inc. ABSTRACT This article explores whether and to what extent individuals are willing to voluntarily pay a premium for products that provide public environmental benefits. In particular, we critically review and analyze the status and impacts of U.S. green power marketing to date. Green power marketing-the business of selling electricity products distinguished by their environmental attributes-seeks to develop a private market for renewable energy driven by consumer demand for green products. Debate has centered on the ability of such a market to provide a significant level of support for renewable energy sources. This paper examines

270

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

Science Conference Proceedings (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as â??â?¦a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilitiesâ?¦â?. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

271

Power Quality Impacts of Distributed Generation  

Science Conference Proceedings (OSTI)

Distribution systems are designed for one-way power flow and can accommodate only a limited amount of distributed generation (DG) without alterations. This project focused on the economics associated with upgrading and designing distribution systems to support widespread integration of distributed resources, especially distributed generation. Costs were determined in the area of protection requirements and voltage regulation requirements, two of the main areas where changes are required to accommodate DG.

2005-03-22T23:59:59.000Z

272

A Numerical Investigation of a Thermodielectric Power Generation System .  

E-Print Network (OSTI)

??The performance of a novel micro-thermodielectric power generation device (MTDPG) was investigated in order to determine if thermodielectric power generation can compete with current portable (more)

Sklar, Akiva A.

2005-01-01T23:59:59.000Z

273

Application Filing Requirements for Wind-Powered Electric Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Eligibility Commercial Developer Utility...

274

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

275

Changes related to "Datang Jilin Power Generation Co Ltd" | Open...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Datang Jilin Power Generation Co Ltd" Datang Jilin Power Generation Co Ltd Jump to: navigation,...

276

Pages that link to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

277

Changes related to "Ningxia Yinyi Wind Power Generation Co Ltd...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Changes related to "Ningxia Yinyi Wind Power Generation Co Ltd" Ningxia Yinyi Wind Power Generation Co Ltd Jump to:...

278

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Datang Jilin Power Generation Co Ltd Jump to: navigation, search Name Datang Jilin Power Generation Co...

279

Pages that link to "Environmentally Protective Power Generation...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Pages that link to "Environmentally Protective Power Generation EPPG" Environmentally Protective Power Generation EPPG Jump to:...

280

Changes related to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

282

Pages that link to "Qingdao Hengfeng Wind Power Generator Co...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Qingdao Hengfeng Wind Power Generator Co Ltd" Qingdao Hengfeng Wind Power Generator Co Ltd Jump to:...

283

Changes related to "Qingdao Hengfeng Wind Power Generator Co...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Qingdao Hengfeng Wind Power Generator Co Ltd" Qingdao Hengfeng Wind Power Generator Co Ltd Jump to:...

284

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS...  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Arizona Public Service Solar Partners 616 kW* 1997 17.6kWh Austin Energy GreenChoice 153 kW 1997 1.08kWh Salt River Project EarthWise Energy 400 kW 1998...

285

Microelectromechanical power generator and vibration sensor  

DOE Patents (OSTI)

A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

2006-11-28T23:59:59.000Z

286

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

Hammer, J.H.

1993-08-10T23:59:59.000Z

287

Method and apparatus for thermal power generation  

DOE Patents (OSTI)

A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

Mangus, James D. (Hempfield Township, Westmoreland County, PA)

1979-01-01T23:59:59.000Z

288

Solid Oxide Fuel Cell Power Generation Systems  

Science Conference Proceedings (OSTI)

An increasing worldwide demand for premium power, emerging trend towards electric utility deregulation and distributed power generation, global environmental concerns and regulatory controls have accelerated the development of advanced fuel cell based power generation systems. Fuel cells convert chemical energy to electrical energy through electrochemical oxidation of gaseous and/or liquid fuels ranging from hydrogen to hydrocarbons. Electrochemical oxidation of fuels prevents the formation of Nox, while the higher efficiency of the systems reduces carbon dioxide emissions (kg/kWh). Among various fuel cell power generation systems currently being developed for stationary and mobile applications, solid oxide fuel cells (SOFC) offer higher efficiency (up to 80% overall efficiency in hybrid configurations), fuel flexibility, tolerance to CO poisoning, modularity, and use of non-noble construction materials of low strategic value. Tubular, planar, and monolithic cell and stack configurations are currently being developed for stationary and military applications. The current generation of fuel cells uses doped zirconia electrolyte, nickel cermet anode, doped Perovskite cathode electrodes and predominantly ceramic interconnection materials. Fuel cells and cell stacks operate in a temperature range of 800-1000 *C. Low cost ($400/kWe), modular (3-10kWe) SOFC technology development approach of the Solid State Energy Conversion Alliance (SECA) initiative of the USDOE will be presented and discussed. SOFC technology will be reviewed and future technology development needs will be addressed.

Singh, Prabhakar; Pederson, Larry R.; Simner, Steve P.; Stevenson, Jeffry W.; Viswanathan, Vish V.

2001-05-12T23:59:59.000Z

289

Water Use for Electric Power Generation  

Science Conference Proceedings (OSTI)

This report analyzes how thermoelectric plants use water and the strengths, limitations, and costs of available technologies for increasing water use efficiency (gal/MWh). The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2008-02-25T23:59:59.000Z

290

The Impact of Wind Power Generation on Wholesale Electricity Price ...  

Science Conference Proceedings (OSTI)

price for power generation are examined to forecast LNG price for power genera- tion. Information on future power plant's construction and decommission plan...

291

Recent advances in RF power generation  

SciTech Connect

This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

Tallerico, P.J.

1990-01-01T23:59:59.000Z

292

Green Power Marketing in the United States: A Status Report (Ninth Edition)  

SciTech Connect

Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% of utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.

Bird, L.; Swezey, B.

2006-11-01T23:59:59.000Z

293

Green Power Marketing in the United States: A Status Report (Ninth Edition)  

SciTech Connect

Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% of utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.

Bird, L.; Swezey, B.

2006-11-01T23:59:59.000Z

294

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network (OSTI)

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

Girish, T E

2010-01-01T23:59:59.000Z

296

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network (OSTI)

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

T. E. Girish; S. Aranya

2010-12-03T23:59:59.000Z

297

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS  

SciTech Connect

The second quarter of the project was dedicated to convert the conceptual designs for the wireless tool and power generator into mechanical and electrical drawings as well as software code to create the new system. The tasks accomplished during this report period were: (1) Basic mechanical design for the wireless communications system was created and the detailed drawings were started. (2) Basic design for the power generator system was created and the detailed machining drawings were started. The generator design was modified to provide a direct action between the wellbore fluid flow and the piezoelectric stack to generate energy. The new design eliminates the inefficiencies related to picking up outside the tubing wall the pressure fluctuations occurring inside the tubing walls. (3) The new piezoelectric acoustic generator design was created and ordered from the manufacturer. The system will be composed of 40 ceramic wafers electrically connected in parallel and compressed into a single generator assembly. (4) The acoustic two-way communications requirements were also defined and the software and hardware development were started. (5) The electrical hardware development required to transmit information to the surface and to receive commands from the surface was started.

Paul Tubel

2003-04-24T23:59:59.000Z

298

Thermal energy storage for power generation  

SciTech Connect

Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s, with most regions of the country experiencing capacity shortages by the year 2000. In many cases, the demand for increased power will occur during intermediate and peak demand periods. Much of this demand is expected to be met by oil- and natural gas-fired Brayton cycle turbines and combined-cycle plants. While natural gas is currently plentiful and reasonably priced, the availability of an economical long-term coal-fired option for peak and intermediate load power generation will give electric power utilities an option in case either the availability or cost of natural gas should deteriorate. 54 refs., 5 figs., 17 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Sathyanarayana, K.

1989-10-01T23:59:59.000Z

299

Green Power Management with Dynamic Resource Allocation for Cloud Virtual Machines  

Science Conference Proceedings (OSTI)

With the development of electronics in governments and business, the implementation of these services are increasing demand for servers. Continued expansion of servers represents our need for more space, power, air conditioning, network, human resources ... Keywords: cloud computing, Virtual Machine, Green Power Management (GPM), Dynamic Resource Allocation (DRA)

Chao-Tung Yang; Kuan-Chieh Wang; Hsiang-Yao Cheng; Cheng-Ta Kuo; William Cheng C. Chu

2011-09-01T23:59:59.000Z

300

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in the U.S. have been low in comparison to global averages in some measure do to an extended tolerance for externalized costs related to environmental degradation. Consequently, awareness, innovation & implementation of technologies focused on energy efficiency and reduced environmental impact have not kept pace with other industrialized nations. The U.S. is confronted with looming tipping points with respect to energy supply and GHG emissions that represent very tangible constraints on future economic growth and quality of life. A recent 2008 article in Forbes Magazine highlights the top ten most energy efficient economies in the world. The U.S. is conspicuously absent from the list. The U.S. economy, with an estimated energy intensity of 9,000 Btu's/$GDP, is only half as energy efficient as Japan (holding the top spot on the list with an EI of 4,500 Btu's / US$ GDP). The U.S. Department of Energy has initiated the Save Energy Now program to address this by supporting reductions in U.S. industrial energy intensity by 25% by 2020. A recent 2005 survey conducted by Energy & Environmental Analysis, Inc. (EEA) for Oak Ridge National Laboratory indicates that the current U.S. inventory of commercial/industrial boilers stands at around 163,000 units and 2.7 million MMBtu/hr. total fuel input capacity. These boilers consume nearly 8,100 Tbtu per year, representing about 40% of all energy consumed in the commercial/industrial sectors. Moreover, this same survey indicates that 47% of all commercial/industrial boilers in the U.S. are 40+ years old while as many as 76% are 30+ years old. Boilers account for nearly half of commercial / industrial energy consumption and represent some of the most energy intensive systems comprising these sectors. Given the preponderance of aged, obsolete boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank-less / instantaneous water heating systems are eschewing a new era in energy efficiency in the residential sector, compact modular on-demand steam generation systems are poised to support the same kind of transformation in the commercial / industrial sector. This paper will illustrate how emerging on-demand steam generation technologies will play a part in addressing the energy and environmental challenges facing the country's commercial/ industrial sectors and in doing so help to transform the U.S. economy.

Smith, J. P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

302

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

303

2nd Nat'l Green Pricing & Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

depicting renewable technologies Co-Sponsored by: Electric Power Research Institute Edison Electric Institute Office of Utility Technologies Energy Efficiency and Renewable...

304

Coal Gasification for Power Generation, 3. edition  

SciTech Connect

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

2007-11-15T23:59:59.000Z

305

For Safer Emergencies, Give Your Power Generator Some ...  

Science Conference Proceedings (OSTI)

For Safer Emergencies, Give Your Power Generator Some Space. For Immediate Release: October 6, 2009. ...

2013-11-26T23:59:59.000Z

306

Market Appeal of Green Power Technologies: An Analysis of Residential Early Adopters  

Science Conference Proceedings (OSTI)

This EPRI-sponsored study examines preferences and opinions of consumers who buy green energy distributed over a utility's grid as it relates to their desire to extend this purchase decision into other aspects of the green-energy proposition. The study also investigates motivations of decision-making factors of individuals who have purchased renewable self-generation systems, such as photovoltaic modules, and had them installed in their homes.

1999-12-08T23:59:59.000Z

307

Electrokinetic Power Generation from Liquid Water Microjets  

DOE Green Energy (OSTI)

Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

Duffin, Andrew M.; Saykally, Richard J.

2008-02-15T23:59:59.000Z

308

Federal Energy Management Program: New and Underutilized Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

New and New and Underutilized Power Generation Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Power Generation Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Power Generation Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Power Generation Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Power Generation Technologies on AddThis.com... Energy-Efficient Products Technology Deployment

309

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

310

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

311

Control system for wind-powered generators  

DOE Green Energy (OSTI)

In a system of wind-powered generators, a reliable yet inexpensive control system is desirable. Such a system would be completely automatic so it could be left unattended for long periods. It would respond to electrical representations of data such as bearing temperature, vibration, wind velocity, turbine velocity, torque, or any other pertinent data. It would respond by starting or stopping the turbine, controlling the loading, or sounding an alarm. A microprocessor-based controller capable of these functions is described.

Kroth, G.J.

1977-05-01T23:59:59.000Z

312

The Fourth Generation of Nuclear Power  

SciTech Connect

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: Nuclear power must remain economically competitive, The public must remain confident in the safety of the plants and the fuel cycle. Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

313

Green Power Marketing in the United States: A Status Report (2009 Data)  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing in the Green Power Marketing in the United States: A Status Report (2009 Data) Lori Bird and Jenny Sumner Technical Report NREL/TP-6A20-49403 September 2010 ERRATA SHEET NREL REPORT/PROJECT NUMBER: TP-6A20-49403 TITLE: Green Power Marketing in the United States: A Status Report (2009 Data) AUTHOR(S): Lori Bird, Jenny Sumner ORIGINAL PUBLICATION DATE: September 2010 DATE OF CORRECTIONS: April 2011 The following corrections were made to this report: On page 36, reference to 2010 vintage WECC wind was removed. In Table 18, data on 2010 vintage WECC wind was removed. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

314

IEP - Water-Energy Interface: Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

315

Cummins Power Generation SECA Phase 1  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

316

City of Madison - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1999, Madison's Metro Maintenance & Administration Facility began purchasing 25% of its electricity from Madison Gas & Electric's wind power program. The additional cost to...

317

Fairfax County - Green Power Purchase (Virginia) | Open Energy...  

Open Energy Info (EERE)

2010), wind power accounted for 10% of the general county's annual electricity consumption (and hence, the county met their stated goal of 10% by 2010). Fairfax County does...

318

ASEM Green Independent Power Producers Network | Open Energy...  

Open Energy Info (EERE)

A market-drive network independent of power producers that focus on renewable energy projects, linking researchers, industry representatives, policy makers and NGOs from Europe...

319

Green Living, Green Technologies: Things to Be Thankful For ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Green Living, Green Technologies: Things to Be Thankful For Green Living, Green...

320

Certificate-Based Approach to Marketing Green Power and Constructing New Wind Energy Facilities: Preprint  

DOE Green Energy (OSTI)

The availability of wind energy certificates in Pennsylvania's retail electricity market has made a critical difference in the economic feasibility of developing 140 MW of new wind energy projects in the region. Certificates offer important benefits to both green power suppliers and buyers by reducing transaction barriers and thus lowering the cost of renewable energy. Buyers also benefit through the increased flexibility offered by certificate products. The experience described in this paper offers important insights for selling green power certificates and achieving new wind energy development in other areas of the country.

Blank, E.; Bird, L.; Swezey, B.

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated from a subset of renewable resources, including solar, wind, geothermal, biogas, biomass, and low-impact hydroelectric sources. These electricity sources are derived...

322

Green Power Network: Top Ten Utility Green Pricing Programs, December 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Green Pricing Program Renewable Energy Sales (as of December 2008) Rank Utility Resources Used Sales (kWh/year) Sales (Avg. MW)a 1 Austin Energy Wind, landfill gas 723,824,901 82.6 2 Portland General Electricb Wind, biomass 681,943,576 77.9 3 PacifiCorpcde Wind, biomass, landfill gas, solar 492,892,222 56.3 4 Xcel Energyef Wind 362,040,082 41.3 5 Sacramento Municipal Utility Districte Wind, solar, biomass, landfill gas, hydro 325,275,628 37.1 6 Puget Sound Energye Wind, solar, biomass, landfill gas, hydro 291,166,600 33.2 7 Public Service Company of New Mexico Wind 176,497,697 20.1 8 We Energiese Wind, landfill gas, solar 176,242,630 20.1 9 National Gridgh Biomass, wind, small hydro, solar 174,612,444 19.9 10 PECOi Wind 172,782,490 19.7

323

'Green energy' an option; PSC plan calls for costly wind power  

NLE Websites -- All DOE Office Websites (Extended Search)

'Green energy' an option; PSC plan calls 'Green energy' an option; PSC plan calls for costly wind power Denver Post Staff Writer Colorado residents could choose between coal plants and windmills for their home electricity source under a plan by Public Service Company of Colorado, the state's largest utility. If enough people want "green energy," PSC will erect small wind plants in eastern Colorado within two years, company president Wayne Brunetti pledged yesterday. The hitch is that the renewable energy could cost up to 40 percent more, he said. The company may offer several pricing levels that would include a portion of renewable energy. The idea will be submitted to the state Public Utilities Commission in 90 days. Green pricing is PSC's first major commitment to promoting renewable energy since

324

Green Mountain Power Wind Power Project Third-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Veri fication Program  

Science Conference Proceedings (OSTI)

The 6.05-MW Green Mountain Power (GMP) wind power project is located on top of a wooded ridge in the Green Mountains of southern Vermont near the town of Searsburg. This report describes the third-year operating experience at the GMP wind project. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2000-12-07T23:59:59.000Z

325

Ali Ipakchi VP, Smart Grid and Green Power  

E-Print Network (OSTI)

Access Residential + - Electric Storage Forecasting Market Clearing Settlements Adequacy Assessment Flexible Resources will be Essential to Meeting the Net Load Demand Curve · Flexible Generation · Demand Response (DR), Storage (electric & thermal), Distributed Generation · Flexible Ramp-Up and Flexible Ramp

Greer, Julia R.

326

Design of Thermal Power Generation Device for Vehicle Recharging  

Science Conference Proceedings (OSTI)

With thermal power generation as the basis, vehicle heat sources (such as engine and exhaust pipe) as the carrier, and AT89C52 as the control center, this paper has designed a thermal power generation device for vehicle recharging. This device consists ... Keywords: thermal power generation, power supply for recharging, vehicle devices, design

Hong Fang

2012-07-01T23:59:59.000Z

327

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION  

E-Print Network (OSTI)

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation by storing excess power to a battery during excess generation, and then releasing the energy when power

328

Benchmarking Distributed Generation Cost of Electricity and Characterization of Green House Gas Emission  

Science Conference Proceedings (OSTI)

Understanding the economic competitiveness and green house gas (GHG) footprint of all energy supply-side options has been identified by EPRI advisors as a key priority. This project benchmarks the cost of electricity and characterizes the GHG footprint of distributed generation (DG) options in various applications. DG technologies include small gas turbines, spark-ignited and diesel internal combustion engines, micro turbines, several types of fuel cells, Stirling engines, and photovoltaic systems.

2009-03-26T23:59:59.000Z

329

City of Evanston - Green Power Purchase (Illinois) | Open Energy...  

Open Energy Info (EERE)

(kWh) of electricity. The RECs purchased are derived from electricity generated by wind turbines. The city has issued a Climate Change Action Plan to chart a path towards...

330

City of Houston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a 5-year contract with Reliant Energy for up to 80 MW or 700 million kilowatt-hours (kWh) annually of renewable energy credits (RECs). These RECs will be generated almost...

331

Neutron generator power supply modeling in EMMA  

SciTech Connect

Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia`s ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described.

Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S; Merewether, K.O.

1996-12-01T23:59:59.000Z

332

SaskPower Geothermal and Self-Generated Renewable Power Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings SaskPower Geothermal and Self-Generated Renewable Power Loan Program (Saskatchewan, Canada) SaskPower...

333

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Ningxia Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name Ningxia Yinyi Wind Power...

334

AWMA 97th Annual Conference & Exhibition Mercury and Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Coal-Fired Power Plants AWMA 97 th Annual Conference & Exhibition Mercury and Power Generation Panel June 23, 2003 Indianapolis, IN Thomas J. Feeley, III...

335

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

336

Voltage Support in Distributed Generation by Power Electronics.  

E-Print Network (OSTI)

?? There is an increasing amount of power processed through power electronics in the areas of generation interface, energy storage and loads. This increment enables (more)

Strand, Bjrn Erik

2008-01-01T23:59:59.000Z

337

New optimization techniques for power system generation scheduling.  

E-Print Network (OSTI)

??Generation scheduling in restructured electric power systems is critical to maintain the stability and security of a power system and economical operation of the electricity (more)

Sun, Wei

2011-01-01T23:59:59.000Z

338

Status and Trends in the U.S. Voluntary Green Power Market (2012 Data)  

SciTech Connect

Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. Voluntary action provides a revenue stream for renewable energy projects and raises consumer awareness of the benefits of renewable energy. These markets continued to exhibit growth and stimulate renewable energy development in 2012. This paper reviews the voluntary market and identifies market trends.

Heeter, J.; Nicholas, T.

2013-10-01T23:59:59.000Z

339

Customer Choice and Green Power Marketing: A Critical Review and Analysis of Experience to Date  

E-Print Network (OSTI)

. Green power marketing--the business of selling electricity products distinguished by their environmental or convenience. Getting commuters out of their single passenger cars and into mass Deregulation of the Utility attitudes and individual behaviors. -- With the advent of customer choice in the U.S. electricity sector

340

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Center at Syracuse University Speaker(s): Dustin W. Demetriou Date: October 28, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: William Tschudi In the near future, nearly 30 percent of data centers will run out of space, power or cooling capacity. The demand for these resources has brought energy efficiency to the forefront and driven creative thinking when considering data center construction. Syracuse University, IBM and GEM Energy opened a state-of-the-art data center composed of several innovative features that promised to reduce primary energy consumption by as much as 50 percent compared to a conventional utility-powered data center. Much of the advantage stems from the use of an on-site natural gas

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Most recently, a number of factors have led to a continuing electric power industry trend of substituting coal-fired generation with natural gas-fired generation: ...

342

How Stochastic Network Calculus Concepts Help Green the Power Grid  

E-Print Network (OSTI)

and build a stochastic model for the power supply reliability with different renewable energy configurations the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid. To deal. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources

Low, Steven H.

343

Overview of M-C Power`s MCFC power generation system  

SciTech Connect

The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

Benjamin, T.G.; Woods, R.R.

1993-11-01T23:59:59.000Z

344

NIST Processes to Help Build Next-Generation Nuclear Power ...  

Science Conference Proceedings (OSTI)

NIST Processes to Help Build Next-Generation Nuclear Power Plants. From NIST Tech Beat: June 2, 2009. ...

2011-04-04T23:59:59.000Z

345

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor Operational Status Tables (Information and data on nuclear power reactors Generation: by State and Reactor. Annual Energy Review, ...

346

Next-Generation Power Electronics: Reducing Energy Waste and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Power Electronics Manufacturing Innovation Institute President Obama Announces New Public-Private Manufacturing Innovation Institute Photovoltaic Cell Material Basics...

347

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

348

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

349

New power politics will determine generation's path  

Science Conference Proceedings (OSTI)

The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

Maize, K.; Neville, A.; Peltier, R.

2009-01-15T23:59:59.000Z

350

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

351

Diagnostics on the COBRA pulsed power generator  

Science Conference Proceedings (OSTI)

The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180 ns rise time, up to 1 MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A. [Laboratory of Plasma Studies, Cornell University, Rhodes Hall, Ithaca, New York 14853 (United States)

2006-10-15T23:59:59.000Z

352

IEEE Power Engineering Society, papers from the joint power generation conference, 1979  

SciTech Connect

This volume contains 33 IEEE papers presented at the 1979 Joint Power Generation Conference. These papers were presented at the following sessions: Current Limiting Devices; Shutdown Capability for Nuclear Generating Stations; Decentralized Generation; Generator Circuit Breakers for Generating Stations; Application of Solid State Logic Controls for Generating Plants; Power Plant Response; Recent Nuclear Development; Power System Relaying; New Generation Methods and Problems; Batteries. All 33 papers have been indexed previously.

1979-01-01T23:59:59.000Z

353

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

354

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

355

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

356

Transacting generation attributes across market boundaries: Compatible information systems and the treatment of imports and exports  

E-Print Network (OSTI)

and green power marketing: increased investment ininvestment in renewable generation sources the underlying goal of market mandates, disclosure requirements, and green

Grace, Robert; Wiser, Ryan

2002-01-01T23:59:59.000Z

357

Green Power Marketing in the United States: A Status Report (Ninth Edition)  

NLE Websites -- All DOE Office Websites (Extended Search)

of of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Green Power Marketing in the United States: A Status Report (Ninth Edition) Lori Bird and Blair Swezey Technical Report NREL/TP-640-40904 November 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Green Power Marketing in the United States: A Status Report (Ninth Edition) Lori Bird and Blair Swezey Prepared under Task No. ASG6.1003 Technical Report NREL/TP-640-40904 November 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

358

Status and Trends in the U.S. Voluntary Green Power Market (2012 Data)  

NLE Websites -- All DOE Office Websites (Extended Search)

Status and Trends in the U.S. Status and Trends in the U.S. Voluntary Green Power Market (2012 Data) J. Heeter and T. Nicholas National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60210 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Status and Trends in the U.S. Voluntary Green Power Market (2012 Data) J. Heeter and T. Nicholas National Renewable Energy Laboratory

359

Using Backup Generators: Alternative Backup Power Options | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Backup Power Options Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an emergency. You can also recharge many of these battery systems with diesel generators. The length of time you will be able to draw electricity from your batteries will depend on the size of your

360

Enel Green Power SpA formerly Erga SpA | Open Energy Information  

Open Energy Info (EERE)

Enel Green Power SpA formerly Erga SpA Enel Green Power SpA formerly Erga SpA Jump to: navigation, search Name Enel Green Power SpA (formerly Erga SpA) Place Pisa, Italy Zip 56122 Sector Geothermal energy, Hydro, Renewable Energy, Solar, Wind energy Product Rome-based renewable energy division of Enel S.p.A, developing and managing operations in wind, solar, geothermal mini-hydro. Coordinates 43.70996°, 10.39946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.70996,"lon":10.39946,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

362

DOE/EA-1633: Environmental Assessment for Green Mountain Reservoir Substitution and Power Interference Agreements (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Mountain Reservoir Green Mountain Reservoir Substitution and Power Interference Agreements Final EA i Table of Contents Acronyms ...................................................................................................................................... vi 1.0 Purpose and Need .......................................................................................................... 1-1 1.1 Introduction.......................................................................................................... 1-1 1.2 Project Purpose and Need .................................................................................... 1-1 1.3 Study Area ........................................................................................................... 1-2 1.4 Background

363

Development of high power green light emitting diode dies in piezoelectric GaInN/GaN  

E-Print Network (OSTI)

Development of high power green light emitting diode dies in piezoelectric GaInN/GaN Christian in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

Detchprohm, Theeradetch

364

Direct charge radioisotope activation and power generation  

DOE Patents (OSTI)

An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

2002-01-01T23:59:59.000Z

365

Generation Scheduling in Microgrids under Uncertainties in Power Generation.  

E-Print Network (OSTI)

??Recently, the concept of Microgrids (MG) has been introduced in the distribution network. Microgrids are defined as small power systems that consist of various distributed (more)

Zein Alabedin, Ayman

2012-01-01T23:59:59.000Z

366

2012 SG Peer Review - Recovery Act: KCP&L Green Impact Zone Smart Grid Demonstration - Edward Hedges, Kansas City Power & Light  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Peer Review Meeting KCP&L Green Impact Zone SmartGrid Demonstration Project Edward T. Hedges, P.E. Manager SmartGrid Technology Planning Kansas City Power & Light Company June 8, 2012 December 2008 KCP&L Green Impact Zone SmartGrid Demonstration Project Objective Life-cycle Funding ($K) 2010 - 2014 $23,940,112 Technical Scope First, Create a complete, end-to-end Smart Grid Second, Introduce new technologies, applications, protocols, communications and business models Third, Incorporates a best-in-class approach to technology integration through use of Smart Grid interoperability standards Finally, Support a targeted urban revitalization effort in Kansas City's Green Impact Zone 2 - SmartSubstation - SmartDistribution - SmartGeneration - SmartDR/DER

367

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

369

High Frequency High Power RF Generation using a Relativistic...  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENCY HIGH POWER RF GENERATION USING A RELATIVISTIC ELECTRON BEAM C. Jing , S. Antipov, P. Schoessow, and A. Kanareykin, Euclid Techlabs LLC, Solon, OH-44139 J.G. Power, M....

370

Combined Heat and Power in Biofuels Production and Use of Biofuels for Power Generation  

Science Conference Proceedings (OSTI)

The rise of the biofuels industry presents electric utilities with two types of opportunities: combined heat and power (CHP) applications in biofuel production facilities using topping and bottoming power generation cycles and the use of the biofuels as a fuel in electric power generation. This report reviews production processes for ethanol and biodiesel, including the prospects for CHP applications, and describes power generation opportunities for the use of biofuels in power production, especially in ...

2007-12-17T23:59:59.000Z

371

Figure 79. Electricity sales and power sector generating ...  

U.S. Energy Information Administration (EIA)

Title: Figure 79. Electricity sales and power sector generating capacity, 1949-2040 (index, 1949 = 1.0) Subject: Annual Energy Outlook 2013 Author

372

Combined desalination and power generation using solar energy.  

E-Print Network (OSTI)

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while (more)

Zhao, Y

2009-01-01T23:59:59.000Z

373

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm.  

E-Print Network (OSTI)

??Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation (more)

Therien, Scott G.M.

2010-01-01T23:59:59.000Z

374

Integrative Power Supply Solution for Future Generation Vehicles.  

E-Print Network (OSTI)

?? Abstract: How to secure the power supply for future generation vehicles is an open question. This thesis uses Web-HIPRE as a tool of Decision (more)

Zhou, Qinsheng

2012-01-01T23:59:59.000Z

375

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

376

The Feasibility of Thermoelectric Power Generation: Linking Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Department Contacts Media Contacts The Feasibility of Thermoelectric Power Generation: Linking Materials, Systems, and Cost Speaker(s): Saniya LeBlanc Date:...

377

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

378

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT...

379

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

380

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation,...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

382

REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER...

383

Power conversion effectiveness and generation | Open Energy Informatio...  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Power conversion effectiveness and generation Jump to: navigation, search Retrieved from...

384

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

385

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

386

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

387

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

388

Next-Generation Distributed Power Management for Photovoltaic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth...

389

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

390

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

391

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

392

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

393

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

394

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Sector Services Product KWU is a provider of components and services to the commercial nuclear utility industry. References Kraftwerk Union (KWU) - Siemens Power Generation.1...

395

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

396

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network (OSTI)

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

397

North Brawley Power Plant Placed in Service; Currently Generating...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW;...

398

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

399

Figure 29. Power sector electricity generation capacity by fuel in ...  

U.S. Energy Information Administration (EIA)

Power sector electricity generation capacity by fuel in five cases, 2011 ... Natural gas combined cycle Natural gas combustion turbine Nuclear Renewable/other Reference

400

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Fossil fuelscoal, natural gas, and petroleumsupplied 70% of total electric power generation in 1950, with that share rising to 82% in 1970, ...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

402

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

403

NANODEVICES FOR GENERATING POWER FROM MOLECULES AND ...  

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are ...

404

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

405

Analysis of hybrid power system incorporating squirrel cage induction generators  

Science Conference Proceedings (OSTI)

This paper presents generic model of hybrid power system consisting in a combined solution one wind turbine with asynchronous generator and on hydro generator with synchronous machine. This technology was developed by to reduce the cost of supplying ... Keywords: asynchronous generator, homer, optimal design, renewable energy, variable speed generation, voltage and frequency controller, water flow

Sorin Ioan Deaconu; Marcel Topor; Gabriel Nicolae Popa; Diana Bistrian

2009-07-01T23:59:59.000Z

406

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Free Flow Power Corporation (generators mounted on poles placed in the river bottom) * Hydro Green Energy (barge mounted generators) * MarMC Enterprises (generators submerged in...

407

C. Wetzel et al MRS Internet J. Nitride Semicond. Res. 10, 2 (2005) 1 Development of High Power Green Light Emitting Diode Chips  

E-Print Network (OSTI)

Power Green Light Emitting Diode Chips C. Wetzel and T. Detchprohm Future Chips Constellation Abstract The development of high emission power green light emitting diodes chips using GaInN/GaN multi production-scale implementation of this green LED die process. Keywords: nitrides, light emitting diode

Wetzel, Christian M.

408

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

409

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

410

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRANT NO. GRANT NO. DE-FG21-94MC32071; DOE WAIVER DOCKET W(A)-98-005 [ORO-736] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Grantee"), has requested an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Grant No. DE-FG21-94MC32071. The goal of the grant was to perform system analysis, selection and optimization to develop the next generation of gas-fired advanced turbine systems (ATS's) for green field and repowered electricity generation applications. The goal of the ATS program is to develop and commercialize ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base- load applications in the utility, independent power producer, and industrial markets. This work

411

Impact of Dynamic Ratings, Major Power Flow Upgrades, and Green Power Integration on System Planning  

Science Conference Proceedings (OSTI)

Electric power utilities around the world are undergoing a major transformation, which is redefining the utilization of existing power equipment in the electric transmission network due to limited financial incentives and lengthy licensing process for new construction. Under these circumstances, the utilities are forced to find new ways of increasing power flow quickly through existing transmission corridors with minimal investments. Increased power flows of transmission circuits can be achieved by contr...

2009-12-14T23:59:59.000Z

412

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

A privately held Texas corporation, which provides a direct-fired, biomass-fueled cogeneration system that generates electricity and process heat while consuming on-site...

413

Pipelines to Power Lines: Gas Transportation for Electricity Generation  

Science Conference Proceedings (OSTI)

Gas-fired power generation represents a major growth market for the natural gas industry; but the large, high pressure, highly variable loads required for individual power generators can be difficult to serve. This report, cosponsored by the Gas Research Institute and EPRI, is a design stage assessment of the engineering and costs of the pipelines needed to handle these types of loads.

1995-03-10T23:59:59.000Z

414

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

415

A learning control of unused energy power generation  

Science Conference Proceedings (OSTI)

In recent years, the development of new clean energy without dependence on fossil fuel has become urgent. This article proposes a learning control system for power generation using a low-temperature gap which has been designed to maintain the speed of ... Keywords: BP neural network, Evaporator, Learning control, Low thermal gap, Power generator, Turbine

Satomi Shikasho; Kun-Young Han; Ji-Sun Shin; Chui Chengyou; Hee-Hyol Lee

2010-12-01T23:59:59.000Z

416

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

417

Power and Voltage Smooth Control of Doubly Fed Induction Generator  

Science Conference Proceedings (OSTI)

Doubly-fed induction generator (DFIG) is the leading in wind power technology currently. In this paper, decoupling control of DFIG is studied and a new energy storage device is used in the smooth control of DFIG system's power and voltage. This new method ... Keywords: Doubly fed induction generator, Energy storage device, Decoupling control

An-Ren Ma, Cai-Xia Wang, Zhi-Wen Zhou, Tao Wu

2012-07-01T23:59:59.000Z

418

Power-Optimal Scheduling for a Green Base Station with Delay Constraints  

E-Print Network (OSTI)

renewable energy such as solar or wind energy as well as conventional sources like diesel generators by renewable energy sources, e.g. solar/wind energy and may also be connected to the power grid or diesel

Sharma, Vinod

419

Market concentration and marketing power among electricity generators in Texas  

SciTech Connect

Policy initiatives designed to foster competition among electricity generators in Texas face a special challenge due to the relative isolation of that system. This isolation contributes to high levels of market concentration and market power that could hinder the development of a truly competitive market. This paper examines market concentration and market power in the ERCOT market for electricity generation by calculating the Herfindahl-Hirschman index (HHI) under various assumptions to gauge the degree of market concentration among generators in ERCOT. In addition, some ongoing studies of market power in ERCOT are discussed. The distinction between market concentration and market power is highlighted.

Zarnikau, J.; Lam, A. [Planergy Inc., Austin, TX (United States)

1998-11-01T23:59:59.000Z

420

Self-Powered Signal Processing Using Vibration-Based Power Generation  

E-Print Network (OSTI)

Low power design trends raise the possibility of using ambient energy to power future digital systems. A chip has been designed and tested to demonstrate the feasibility of operating a digital system from power generated by vibrations in its environment. A moving coil electromagnetic transducer was used as a power generator. Calculations show that power on the order of 400 W can be generated. The test chip integrates an ultra-low power controller to regulate the generator voltage using delay feedback techniques, and a low power subband filter DSP load circuit. Tests verify 500 kHz self-powered operation of the subband filter, a level of performance suitable for sensor applications. The entire system, including the DSP load, consumes 18 W of power. The chip is implemented in a standard 0.8 m CMOS process. A single generator excitation produced 23 ms of valid DSP operation at a 500 kHz clock frequency, corresponding to 11 700 cycles.

Rajeevan Amirtharajah; Anantha P. Chandrakasan

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

Siemens Westinghouse Power Generation SWPG Siemens Westinghouse Power Generation SWPG Jump to: navigation, search Name Siemens Westinghouse Power Generation (SWPG) Place Pittsburgh, Pennsylvania Zip PA 15235-5 Product Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary solide oxide fuel cells. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Nuclear power generation and fuel cycle report 1997  

SciTech Connect

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

1997-09-01T23:59:59.000Z

423

Emergency Power Generation in Healthcare Facilities  

Science Conference Proceedings (OSTI)

The effectiveness of a hospital or other healthcare facility's emergency power supply system can literally mean the difference between life and death, especially for patients connected to life support systems and other critical medical devices.

1999-10-27T23:59:59.000Z

424

Application Filing Requirements for Wind-Powered Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

425

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

426

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

427

Sustainable Power Generation in Microbial Fuel Cells Using  

E-Print Network (OSTI)

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer) isolation and selection of electricity- generating bacteria (3­5), (ii) selection and modification studies (11­21) to maintain a suitable pH for electricity- generating bacteria and/or to increase

Tullos, Desiree

428

Modeling of Doubly Fed Induction Generators for Distribution System Power Flow Analysis.  

E-Print Network (OSTI)

??Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed (more)

Dadhania, Amitkumar

2010-01-01T23:59:59.000Z

429

Protection and Control for Grid Connected Photovoltaic Power Generation System Based on Instantaneous Power Theory  

Science Conference Proceedings (OSTI)

Reliable protection and reasonable control run an important role in grid connected PV power generation system. The detection and calculation of real and reactive power are the bases of many inverter resident passive and active islanding detection method ... Keywords: Distributed generation, photovoltaic system, grid connected, protection and control, power theory

Fei Wang; Chengcheng Zhang

2009-05-01T23:59:59.000Z

430

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network (OSTI)

designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

431

Protective, Modular Wave Power Generation System  

Science Conference Proceedings (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

432

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

433

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

434

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network (OSTI)

Technological breakthroughs in recent years have allowed the homopolar generator to be developed to a point where it can now be considered a highly reliable industrial pulsed power supply. These power supplies are capable of producing repetitive high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic electrical and mechanical nature of the homopolar generator is described, and a brief discussion of the recent technological advances that have led to its development as a pulsed power supply is given. The homopolar generator is then discussed as a pulsed power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each of these application areas is discussed in detail including, technical advantages of the pulsed homopolar generator power, supply, as well as economic advantages of the system based on time and energy savings as compared with conventional power and heat sources. Each application discussion includes analytical and empirical data on the performance of an actual homopolar generator used for tests on that particular application. Information on current availability of various size homopolar generators is also presented.

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

435

Wind-powered generator. Final report  

DOE Green Energy (OSTI)

Completion of a wind energy conversion system for a private home is reported. The system included three blades constructed of an aluminum center with marine plywood sandwiched between the aluminum center and the fiberglass outer covering. The wind turbine drives a 1800 rpm generator by a chain drive mechanism. Battery storage is included. (LEW)

Whitesides, R E

436

Generating power with drained coal mine methane  

SciTech Connect

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

437

Cascade Failures from Distributed Generation in Power Grids  

E-Print Network (OSTI)

Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

Scala, Antonio; Scoglio, Caterina

2012-01-01T23:59:59.000Z

438

Power generating system and method utilizing hydropyrolysis  

DOE Patents (OSTI)

A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

Tolman, R.

1986-12-30T23:59:59.000Z

439

Power production, generating capacity data for 1972--1977  

SciTech Connect

Statistics on trends in electric power production, generating capacity, and consumption of fossil fuels over the past six-year period are reported. Included are monthly production by fuel, fuel consumption and stocks for the past six years, installed capacity, and net generation by type of prime mover and class of ownership. Most data are by State for the past year. A narrative section discusses the highlights and trends supported by the tables. This document continues the annual series on power production and generating capacity previously published by the Federal Power Commission. This publication was discontinued with this issue. 8 tables.

1978-06-01T23:59:59.000Z

440

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

442

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

443

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

444

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-Print Network (OSTI)

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

445

Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)  

E-Print Network (OSTI)

A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

Xia, YuXin, M.B.A. Sloan School of Management.

2006-01-01T23:59:59.000Z

446

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network (OSTI)

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter-junction solar cells. Prof. Khan is the founder of the Power Engineering and Automation Research Lab (PEARL

Ellis, Randy

447

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

448

Safety of next generation power reactors  

Science Conference Proceedings (OSTI)

This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address.

Not Available

1988-01-01T23:59:59.000Z

449

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

450

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Optimization Online - Robust mid-term power generation management  

E-Print Network (OSTI)

Feb 23, 2011 ... Robust mid-term power generation management. Vincent Guigues(vguigues *** at*** puc-rio.br) Ren Aid(rene.aid ***at*** edf.fr) Papa Momar...

453

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council NYC-Westchester This dataset comes...

454

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool South This dataset comes from the Energy Information...

455

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

456

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Northeast This dataset comes from...

457

ORC Scroll Turbine and its Applications for Micro Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts ORC Scroll Turbine and its Applications for Micro Power Generation Speaker(s): Malick Kane Date: October 17, 2002 - 12:00pm Location: Bldg....

458

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

459

Clean Electric Power Generation (Canada) | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Clean Electric Power Generation (Canada) This is the approved revision of this page, as well as being the...

460

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

462

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Long Island This dataset comes from...

463

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE CH 630 252 2779 TO AGCP-HQ P.0203 * * STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE...

464

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Upstate New York This dataset comes...

465

Microsoft Word - Power Generation in Pipeline Report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

correctness. LA-UR-05-6354 Approved for public release; distribution is unlimited. Title: Power Generation in Pipeline: Report Author(s): Dipen N. Sinha Submitted to: Gas...

466

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool North This dataset comes from the Energy Information...

467

Integration of decentralized generators with the electric power grid  

E-Print Network (OSTI)

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

468

Doing better with less energy [fuel-efficient power generation  

Science Conference Proceedings (OSTI)

The authors describe how many fuel-efficient coal-fired power generation technologies can be adopted at reduced net cost, but argue that, unless barriers to innovation are removed, their adoption will be far from automatic

J. Sathbye; J. Sinton; T. Heller

1999-12-01T23:59:59.000Z

469

A thermally efficient micro-reactor for thermophotovoltaic power generation  

E-Print Network (OSTI)

Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

Nielsen, Ole Mattis, 1977-

2006-01-01T23:59:59.000Z

470

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

471

Power Generation from Solid Fuels in Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Gorte vohs@seas.upenn.edu, 215-898-6318 Abstract In this study we demonstrate the generation of electricity at high power densities, >300 mWcm 2 at 973 K, from a solid...

472

Evaluation of renewable energy development in power generation in Finland  

Science Conference Proceedings (OSTI)

Renewable energy resources have historically played an important role for heat/electricity generation in Finland. Although diffusion costs of renewable energy utilization are higher than fossil fuels and nuclear power plants

2013-01-01T23:59:59.000Z

473

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG)Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in power generation and energy storage infrastructure. The 2009 TAG has been significantly enhanced. The following topics are among those that are new or enhanced: several options on CO2 capture controls and costs for existing retrofits and for new Pulverized Coal and Combustion Turbine Combined Cycle plants; several options on hybrid and dry cooling f...

2009-12-11T23:59:59.000Z

474

Selection of Alloys for Power Generation Applications  

Science Conference Proceedings (OSTI)

Table 16   Soft magnetic materials used for transformers...thickness Material mm in. Continuous duty (a) Distribution 0.27 0.011 M-3, M-4 0.30 0.012 M-5 0.35 0.014 M-6 Power 0.30 0.012 M-5 0.35 0.014 M-6 Voltage regulator 0.30 0.012 M-5 0.35 0.014 M-15 0.63 0.025 M-22 Welding transformer 0.30 0.012 M-5 0.35 0.014 M-6 0.63 0.025 M-43, M-36, M-27 Application...

475

HOM Power Generation and Propagation in the PEP II Rings  

SciTech Connect

Most of the HOM power that propagates in the PEP-II rings is generated in the RF cavities but its content in terms of TE and TM components has not been accurately determined. For purpose of estimating power deposition at the cavity HOM loads, and also of shielding beamline components such as bellows from TE power penetration, this HOM power content and its distribution profile around the rings are needed. We calculate the TE and TM contributions of the RF cavity to the circulating HOM power and their transmission properties at another cavity downstream. By taking into account the generation in, and scattering by the cavities, as well as the attenuation along the vacuum chamber, a realistic estimate of the HOM power propagating out of a RF station is obtained. The formulation can include the HOM contributions of other beamline components such as collimators.

Lin, Xintian; Ng, Cho-Kuen; Ko, Kwok; /SLAC

2011-08-26T23:59:59.000Z

476

Generator of pumping pulses for powerful semiconductor lasers  

Science Conference Proceedings (OSTI)

The generator of electric and optic pulses are built using powerful MOS transistors and an ILPI-103 semiconductor laser generates pumping pulses with an amplitude of 15 A and optic pulses with a duration of 9 to 30 nsec at a repetition rate of up to 90 kHz. The output signal is TTL. The device is designed for open optic communication lines.

An, V.I.; Kolesnikov, Yu.Yu. [Voronezh Scientific Research Institute of Communications, Voronezh (Russian Federation)

1995-06-01T23:59:59.000Z

477

Hybrid distributed generation for power distribution systems planning  

Science Conference Proceedings (OSTI)

This paper presents planning models for hybrid distributed generation systems, as well as the results corresponding to a distribution systems planning problem obtained using a new computational tool based on a Geographic Information System, GIS. This ... Keywords: distributed generation (DG), geographical information systems (GIS), hybrid power systems, optimal planning

I. J. Ramrez-Rosado; P. J. Zorzano-Santamara; L. A. Fernndez-Jimnez; E. Garca-Garrido; P. Lara-Santilln; E. Zorzano-Alba; M. Mendoza-Villena

2006-02-01T23:59:59.000Z

478

On Low-Frequency Electric Power Generation With PZT Ceramics  

E-Print Network (OSTI)

Piezoelectric materials have long been used as sensors and actuators, however their use as electrical generators is less established. A piezoelectric power generator has great potential for some remote applications such as in vivo sensors, embedded MEMS devices, and distributed networking. Such materials are capable of converting mechanical energy into electrical energy, but developing piezoelectric generators is challenging because of their poor source characteristics (high voltage, low current, high impedance) and relatively low power output. In the past these challenges have limited the development and application of piezoelectric generators, but the recent advent of extremely low power electrical and mechanical devices (e.g., MEMS) make such generators attractive. This paper presents a theoretical analysis of piezoelectric power generation that is verified with simulation and experimental results. Several important considerations in designing such generators are explored, including parameter identification, load matching, form factors, efficiency, longevity, energy conversion and energy storage. Finally, an application of this analysis is presented where electrical energy is generated inside a prototype Total Knee Replacement (TKR) implant.

Stephen R. Platt; et al.

2005-01-01T23:59:59.000Z

479

Experimental power reactor dc generator energy storage study  

DOE Green Energy (OSTI)

This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection.

Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

1978-08-25T23:59:59.000Z

480

Green Power Marketing in the United States: A Status Report ; Fifth Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

in the in the United States: A Status Report Fifth Edition August 2000 * NREL/TP-620-28738 Blair Swezey and Lori Bird National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 August 2000 * NREL/TP-620-28738 Green Power Marketing in the United States: A Status Report Fifth Edition Blair Swezey and Lori Bird Prepared under Task No. AS65.3010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States

Note: This page contains sample records for the topic "generation green power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

482

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

483

Flux compression generators as plasma compression power sources  

SciTech Connect

A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches.

Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

1979-01-01T23:59:59.000Z

484

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

485

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

486

Power Quality and Harmonic Impacts of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

The PQ TechWatch report series builds on EPRI's broad expertise and power quality testing and evaluation work to provide a vital flow of data, including important information on emerging trends powering ebusinesses and developments in next-generation power quality mitigation and energy storage technologies.This PQ TechWatch aims to present an overview of power quality impacts resulting from operation of DG technologies on the grid. An emphasis on harmonic effects is included here. Concerns in this area a...

2010-12-14T23:59:59.000Z

487

Optimization of Piezoelectric Electrical Generators Powered by Random Vibrations  

E-Print Network (OSTI)

This paper compares the performances of a vibrationpowered electrical generators using PZT piezoelectric ceramic associated to two different power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented and implemented with a particular power conditioning circuit topology. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor up to 4 compared to the Standard optimization technique. Properties of this new technique are analyzed in particular in the case of broadband, random vibrations, and compared to those of the Standard interface.

Lefeuvre, E; Richard, C; Petit, L; Guyomar, D

2007-01-01T23:59:59.000Z

488

NIST Tests Underscore Potential Hazards of Green Laser ...  

Science Conference Proceedings (OSTI)

NIST Tests Underscore Potential Hazards of Green Laser Pointers. ... Green lasers generate green light from infrared light. ...

2013-03-20T23:59:59.000Z

489

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

490

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup power, and stationary power are expected to generate a range of new jobs in the  

E-Print Network (OSTI)

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup engineers · Power plant operators · Power plant maintenance staff · Bus, truck and other fleet drivers power, and stationary power are expected to generate a range of new jobs in the near term

491

D0 Experimental Area Emergency Backup Power and Generator Test  

SciTech Connect

The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic control and ODH system continued to function properly throughout the entire test due to the UPS responding correctly to each power situation. The cryogenic control system isolated both the Utility(UV) and insulating(IV) vacuum systems as to preserve their vacua while the pumps were off. Once the vacuum pumps were reestablished the IV and UV vacua were put back on line to their respective pumps by the cryogenic control system. The instrument air is backed up by a high pressure trailer, regulated down to instrument air pressure and switches automatically on line through a check valve. During the time that the instrument air compressor was off, instrument air never went below 80 psig (high pressure regulator setting).

Markley, D.; /Fermilab

1991-01-24T23:59:59.000Z

492

D0 Experimental Area Emergency Backup Power and Generator Test  

SciTech Connect

The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic contr