Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

2

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

3

Fossil Fuel-Generated Energy Consumption Reduction for New Federal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverviewPlansBuildings and Major

4

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

5

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

6

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings  

Broader source: Energy.gov [DOE]

Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

7

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | Department ofEnergy Reduction

8

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

9

Optimization of Water Consumption in Second Generation Bioethanol Plants  

E-Print Network [OSTI]

1 Optimization of Water Consumption in Second Generation Bioethanol Plants Mariano Martína optimization of second generation bioethanol production plants from lignocellulosic switchgrass when using/gal and with no or low water discharge. Keywords: Energy, Biofuels, Alternative fuels, Water, Ethanol

Grossmann, Ignacio E.

10

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

11

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

12

Natural Gas Plant Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3

13

Fuel consumption analyses for urban traffic management  

SciTech Connect (OSTI)

A primary output from the fuel consumption research conducted by the Australian Road Research Board (ARRB) is the ARRB Special Report, Guide to Fuel Consumption Analyses. This article briefly summarizes the background of the guide, describes its major features, and considers its relevance to urban traffic management decision. The guide was a result of a technical audit of studies relating to energy consumption in traffic and transport systems. A brief summary of the audit process and findings is given. The guide is intended primarily as an aid to effective use of fuel consumption models in the design of traffic management schemes. The forms of four interrelated fuel consumption models of the guide are described and their likely transferability to various situations is indicated. Each traffic and fuel consumption model is appropriate to a particular scale of traffic system. This link is shown for several selected traffic models. As an example, a discussion of the importance of accurate fuel consumption estimates for the case of priority control at a particular intersection is given.

Bowyer, D.P.; Akcelik, R.; Biggs, D.C.

1986-12-01T23:59:59.000Z

14

Natural Gas Lease Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 41-2015864,113

15

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Energy Savers [EERE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

16

Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...  

Energy Savers [EERE]

1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles...

17

Fuel cell generator  

DOE Patents [OSTI]

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

18

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

19

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

20

Fuel cell generator energy dissipator  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel dissipater for pressurized fuel cell generators  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

Basel, Richard A.; King, John E.

2003-11-04T23:59:59.000Z

22

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

23

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear Jan Feb

24

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Broader source: Energy.gov (indexed) [DOE]

recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

25

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

26

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

27

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

28

Natural Gas Lease and Plant Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week

29

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31 199323

30

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research Jump

31

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, R.; George, R.A.; Shockling, L.A.

1993-04-06T23:59:59.000Z

32

Table 3.3 Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel3 Fuel

33

Table 3.2 Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel

34

,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"2262015 9:38:10 AM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

35

,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"2262015 9:38:09 AM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

36

Table 3.1 Fuel Consumption, 2010;  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: ReportedEnergyChanges to3.1

37

Vehicle Fuel Consumption of Natural Gas (Summary)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead PriceDay) Process: Vacuum2,700

38

Fuel Consumption per Vehicle.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0ThousandFeet)Cubic621 611 559 548

39

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522

40

Vehicle Fuel Consumption of Natural Gas (Summary)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 235

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Natural Gas Lease and Plant Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History

42

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

43

Reducing fuel consumption on the field, by continuously measuring fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof

44

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel Consumption

45

Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.FuelFuel Consumption (Million

46

New Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecade Year-0 Year-1Fuel Consumption

47

North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0Feet)Elements)Fuel Consumption

48

Oregon Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 Year-3Fuel Consumption

49

Pennsylvania Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (BillionDecadeFuel Consumption

50

Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)Fuel Consumption

51

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May JunFuel Consumption

52

South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18Decade Year-0Fuel Consumption

53

Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S.YearYearFuel Consumption

54

Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuel Consumption

55

Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel Consumption (Million

56

Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0 Year-1Fuel Consumption

57

Michigan Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb MarFuel Consumption

58

Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption (Million Cubic

59

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)Fuel Consumption

60

Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel Consumption (Million

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.6 54,346.75.12 Consumption

62

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption Ratios of

63

Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.Fuel Consumption (Million Cubic

64

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

SciTech Connect (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

65

Tennessee Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24.Total ConsumptionDecadeDecade

66

Rhode Island Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia"Total Consumption (MillionDecade Year-0

67

Rhode Island Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia"Total Consumption (MillionDecade Year-0Year

68

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumption (Million

69

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumption (MillionVermont

70

Demonstrating Fuel Consumption and Emissions Reductions with Next  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release Notes Dekkerbegins onGeneration

71

Models for estimation of car fuel consumption in urban traffic  

SciTech Connect (OSTI)

This article describes four fuel-consumption models. The models are interrelated and form part of the same modeling framework. A simpler model is derived from a more complicated model keeping the vehicle characteristic such as mass, drag function, and energy efficiency as explicit parameters at all model levels. Because vehicle characteristics are likely to change over time and from country to country, this is a particularly useful model property. For simplicity here, only the instantaneous fuel-consumption model is described in any detail. However, because of the derivation procedure, many of the features and properties of this model are present in the more aggregate models. Easy-to-use functions and graphs are given for the more aggregate models based on a ''default car'' in urban driving conditions. All parameters related to the speed profile and driving environment were calibrated using on-road data collected in Sydney, Australia. Use of the models is illustrated by estimating the fuel consumption for the microtrip.

Biggs, D.C.; Akcelik

1986-07-01T23:59:59.000Z

72

Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint  

SciTech Connect (OSTI)

This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

2007-05-01T23:59:59.000Z

73

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation...

74

Fuel consumption prediction methodology for early stages of naval ship design  

E-Print Network [OSTI]

In recent years, fuel consumption has increased in importance as a design parameter in Navy ships. Economical fuel consumption is important not only for operating cost measures but also for ship endurance tankage requirements. ...

Gheriani, Eran (Eran Y.)

2012-01-01T23:59:59.000Z

75

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

76

Virginia Tech Comprehensive Power-Based Fuel Consumption Model: Modeling Diesel1 and Hybrid Buses2  

E-Print Network [OSTI]

Virginia Tech Comprehensive Power-Based Fuel Consumption Model: Modeling Diesel1 and Hybrid Buses2 is to extend the Virginia Tech Comprehensive Power-Based9 Fuel Consumption Model (VT-CPFM) to include diesel There are currently very few models for estimating diesel and hybrid bus fuel consumption and2 CO2 emission levels

Rakha, Hesham A.

77

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

78

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

79

Hybrid solar-fossil fuel power generation  

E-Print Network [OSTI]

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

80

Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing  

E-Print Network [OSTI]

The transportation sector consumes approximately 30% of the total energy in the United States, which is mostlyVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

Rakha, Hesham A.

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Generator configuration for solid oxide fuel cells  

DOE Patents [OSTI]

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

82

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

83

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect (OSTI)

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

84

Complex System Method to Assess Commercial Vehicle Fuel Consumption |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment14,Complex Flow

85

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply for

86

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31 19932335

87

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity:73.02.4.23

88

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "

89

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20,

90

Tradeoff between Fuel Consumption and Emissions for PHEV's | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top ValueEnergy between Fuel

91

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsatin the

92

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel3 Fuel5

93

Impact of Driving Behavior on PHEV Fuel Consumption for Different  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITof EnergyFuelClean

94

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents [OSTI]

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

95

West Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1 1 1CubicFuel

96

West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1Feet)Fuel

97

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million CubicFuel

98

New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecade Year-0Industrial ConsumersFuel

99

North Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0Feet) Decade Year-0DecadeInputFuel

100

Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million Cubic Feet) Ohio NaturalFuel

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million CubicFuel

102

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (BillionDecadeFuel

103

Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0SalesElements) IndustrialFuel

104

Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet) Year Jan FebFuel

105

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug SepFuel

106

Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00 0 0Fuel

107

Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(MillionSalesDecadeWithdrawalsFuel

108

Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number ofFuel

109

South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0 Year-1YearVehicle Fuel

110

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14DecadeDecadeFuel

111

Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number ofFuel

112

Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (MillionFuel

113

Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb MarFeet) DecadeFuel

114

Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million CubicFuel

115

Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousandFeet) YearFuel

116

Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear Jan FebYear Jan Feb

117

Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear Jan FebYear Jan

118

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,676

119

Florida Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel2009 2010TotalDecade

120

Florida Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel2009 2010TotalDecadeYear

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hawaii Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219Thousand CubicVehicle Fuel

122

Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant Fuel

123

Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidential Buildings » ZeroWins R&D 100

124

Fact #705: December 12, 2011 Fuel Consumption Standards for Combination  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?

125

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?| Department of

126

California Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643Elements) GasFuel

127

Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601DecadeDecade Year-0Fuel

128

Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (Million Cubic Feet)Fuel

129

Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear Jan FebWithdrawalsFuel

130

Table 4.3 Offsite-Produced Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13 Offsite-Produced Fuel

131

Table 5.4 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel

132

Table 5.5 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5 End

133

Table 5.6 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5 End6

134

Table 5.7 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5

135

Table 5.8 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel58 End

136

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research Jump to:InformationCampus

137

North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 73 9Sep-14 Oct-14Vehicle Fuel

138

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption1.

139

E-Print Network 3.0 - automobile fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile fuel consumption Page: << < 1 2 3 4 5 > >> 1 1. Report No. SWUTC98467312-1...

140

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel cell using a hydrogen generation system  

DOE Patents [OSTI]

A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-10-19T23:59:59.000Z

142

Fuel cell generator with fuel electrodes that control on-cell fuel reformation  

DOE Patents [OSTI]

A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

2011-10-25T23:59:59.000Z

143

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Broader source: Energy.gov (indexed) [DOE]

testing does not in any way reflect the properties of the vehicle itself (weight, aerodynamic drag, design of the driveline etc.) - no requirements to report fuel economy VTT...

144

West Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011Feet) Year Jan

145

West Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011Feet) Year

146

Wisconsin Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 201060(MillionDecade

147

Wisconsin Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009

148

Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan FebFeet)

149

Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear JanDecade Year-0

150

Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear JanDecade

151

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas plays:4.1

152

Nevada Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYearDecade Year-0Decade

153

Nevada Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYearDecade

154

New Hampshire Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecade Year-0 Year-1Decade

155

New Hampshire Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecade Year-0 Year-1DecadeYear

156

New Jersey Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecade Year-0 Year-1WithdrawalsDecade

157

New Jersey Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecade Year-0

158

New Mexico Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear Jan Feb Mar Apr MayYearYear

159

New Mexico Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear Jan Feb Mar Apr MayYearYearYear

160

New York Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecade

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New York Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeandTotalFeet)Year

162

New York Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeandTotalFeet)YearYear

163

North Carolina Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.4156.09 5.50Decade Year-0

164

North Carolina Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.4156.09 5.50Decade Year-0Year

165

North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0 Year-1 Year-2 Year-3DecadeVehicle

166

Ohio Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSalesDecadeInput

167

Ohio Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million CubicDecade Year-0YearYear

168

Ohio Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million CubicDecade Year-0YearYearYear

169

Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feb

170

Oklahoma Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade Year-0 Year-1

171

Oklahoma Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade Year-0

172

Oregon Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (MillionDecadeYear Jan

173

Oregon Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (MillionDecadeYear JanYear

174

Pennsylvania Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade

175

Pennsylvania Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

176

Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14 Nov-14Year Jan Feb Mar

177

Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14 Nov-14Year Jan Feb MarYear

178

Alaska Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar AprCubicDecade Year-0Decade

179

Alaska Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar AprCubicDecade

180

Arizona Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecadeDecade Year-0Decade

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Arizona Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecadeDecade

182

Arkansas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers2009Decade

183

Arkansas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers2009DecadeYear Jan

184

South Carolina Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69 5.07Decade Year-0

185

South Carolina Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69 5.07Decade Year-0Year

186

South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18DecadeElements)South

187

South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0 Year-1Year

188

Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic

189

Tennessee Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24.Total

190

Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (Million Cubic Feet)

191

Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14Year JanYear

192

Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14Year JanYearYear

193

Indiana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar AprYear Jan

194

Indiana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar AprYear JanYear

195

Iowa Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0YearDecade Year-0 Year-1Year

196

Iowa Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0YearDecade Year-0 Year-1YearIowa

197

Kansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan FebYear Jan

198

Kansas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYearSep-14Year JanYear

199

Kansas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYearSep-14Year JanYearYear

200

Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreasesFeet)Feet)

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Kentucky Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers2009Feet)Year

202

Kentucky Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial

203

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After898 701200973

204

Louisiana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 011,816 20,970Decade

205

Louisiana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 011,816 20,970DecadeYear Jan

206

Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14Decade

207

Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14DecadeMaine Natural

208

Maryland Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYear Jan FebYear

209

Maryland Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYear Jan FebYearYear

210

Massachusetts Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet)Total(MillionDecade

211

Massachusetts Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81

212

Michigan Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year JanDecade Year-0 Year-1

213

Michigan Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year JanDecade Year-0 Year-1Year

214

Minnesota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear Jan Feb Mar

215

Minnesota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear Jan Feb MarYear

216

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb MarFeet)

217

Mississippi Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan FebFeet) Year Jan Feb

218

Mississippi Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan FebFeet) Year Jan

219

Missouri Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand CubicTotalDecade

220

Missouri Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand CubicTotalDecadeYear Jan

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet)Feet) Year

222

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYearWithdrawals

223

Colorado Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic2009Feet)Year

224

Colorado Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic2009Feet)YearYear

225

Connecticut Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (MillionDecade Year-0 Year-1

226

Connecticut Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (MillionDecade Year-0

227

Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year

228

Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural Gas Vehicle

229

District of Columbia Natural Gas Vehicle Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic--

230

District of Columbia Natural Gas Vehicle Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic--Feet)

231

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy for allExpenditures1998 and

232

Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYear

233

Georgia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1Cubic Feet)WithdrawalsDecade

234

Georgia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1Cubic

235

Hawaii Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219Thousand CubicVehicle

236

Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million CubicDecade Year-0 Year-1

237

Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million CubicDecade Year-0

238

Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (Million Cubic Feet)Lease

239

Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade Year-0Year Jan

240

Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade Year-0Year JanYear

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Indiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0Withdrawals (Million Cubic

242

California Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998Withdrawals

243

California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)Year Jan

244

Utah Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (MillionDecadeYear Jan

245

Utah Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (MillionDecadeYear JanYear

246

Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear7.14 6.59YearDecade

247

Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear7.14 6.59YearDecadeYear

248

Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (Million CubicFeet)

249

Washington Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38Year Jan

250

Washington Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38Year JanYear

251

Table 4.2 Offsite-Produced Fuel Consumption, 2010  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1

252

Table 5.1 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13 Offsite-ProducedPer5.1

253

Table 5.2 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13 Offsite-ProducedPer5.12

254

Table 5.3 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13

255

Nebraska Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar Apr May Jun Jul Aug

256

Nebraska Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar Apr May Jun Jul AugYear

257

Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb

258

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

259

California Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998WithdrawalsFeet)

260

California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)Year JanYear

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant Emissions  

E-Print Network [OSTI]

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant, Schneider, Lee, Bubbosh 2 ABSTRACT Extended truck idling is a very large source of fuel wastage, greenhouse, most long-haul truck drivers idle their vehicles for close to 10 hours per day to operate heating

262

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings” and 10 CFR Part 435, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings”.

263

Fuel processor and method for generating hydrogen for fuel cells  

DOE Patents [OSTI]

A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

2009-07-21T23:59:59.000Z

264

New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeand Plant Fuel Consumption

265

Table 5.14. U.S. Vehicle Fuel Consumption by Vehicle Type, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel Consumption

266

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel Consumption (Millionand

267

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption1. Selected

268

Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.Fuel Consumption (Million

269

Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feband Plant Fuel Consumption

270

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

271

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms  

E-Print Network [OSTI]

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The conditions of SLAC's air quality permits specify that all subject hazardous

Wechsler, Risa H.

272

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014

273

Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with  

E-Print Network [OSTI]

to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

Rollins, Andrew M.

274

The Impact of Using Derived Fuel Consumption Maps to Predict Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11, 2008 ThePerformancePM and HC

275

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

276

Thermoelectric Generator (TEG) Fuel Displacement Potential using  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |

277

Estimating Monthly 1989-2000 Data for Generation, Consumption, and Stocks  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel pricesArkansas56,4/15/2015ConsumptionReview,

278

Single module pressurized fuel cell turbine generator system  

DOE Patents [OSTI]

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

279

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

280

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain DEER, August...

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

Nagurney, Anna

282

Neutron Generators for Spent Fuel Assay  

E-Print Network [OSTI]

of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

283

Water value in power generation: Experts distinguish water use and consumption  

E-Print Network [OSTI]

Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

Kalisek, D

2013-01-01T23:59:59.000Z

284

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

285

Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while  

E-Print Network [OSTI]

is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper consumption and engine out emissions. If catalysts or other after treatments are used, minimization of engine sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically

Peng, Huei

286

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

287

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363  

E-Print Network [OSTI]

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363 Fuel Consumption During Prescribed Fires in Big Sage Ecosystems1 Clinton S. Wright2 and Roger D. Ottmar2 Introduction Fuel consumption was evaluated for a series

Standiford, Richard B.

288

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

289

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

290

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

291

Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass  

SciTech Connect (OSTI)

This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

2014-10-01T23:59:59.000Z

292

Effects of Village Power Quality on Fuel Consumption and Operating Expenses  

SciTech Connect (OSTI)

Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

Richard Wies; Ron Johnson

2008-12-31T23:59:59.000Z

293

Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector  

SciTech Connect (OSTI)

Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

Stephen C. Yborra

2007-04-30T23:59:59.000Z

294

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

Makiel, J.M.

1987-02-03T23:59:59.000Z

295

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

Makiel, Joseph M. (Monroeville, PA)

1987-01-01T23:59:59.000Z

296

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

SciTech Connect (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

297

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

298

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network [OSTI]

) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

299

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

27% of the total US energy consumption and 72% of theof Figures Figure 2-1 U.S. energy consumption by source andU.S. (FHWA, Figure 2-1 U.S. energy consumption by source and

Scora, George Alexander

2011-01-01T23:59:59.000Z

300

Next Generation Bipolar Plates for Automotive PEM Fuel Cells | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |MillionNext Generation Attics and Roofof

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

302

Sustainable Power Generation in Microbial Fuel Cells Using  

E-Print Network [OSTI]

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer applications, especially for wastewater treatment. Introduction Microbial fuel cell (MFC) technology has drawn of electrodes (6­9), (iii) selection and treatment of membranes (10­12), and (iv) optimization of the MFC design

Tullos, Desiree

303

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network [OSTI]

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

304

Hydrogen Operated Internal Combustion Engines – A New Generation Fuel  

E-Print Network [OSTI]

Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

305

Proposed strontium radiosotope thermoelectric generator fuel encapsulation facility  

SciTech Connect (OSTI)

The proposed Fuel Encapsulation Facility is a fully equipped facility for processing and encapsulating strontium Radioisotope Thermoelectric Generator (RTG) fuel from presently available Waste Encapsulation and Storage Facility (WESF) capsules. The facility location is on the second building level below ground of the Fuels and Materials Examination Facility (FMEF), Cells 142, 143, and 145. Capsules containing strontium fluoride (SrF[sub 2]) would be received from the WESF in Cell 145 and transferred to the three adjacent cells for processing and encapsulation into the final RTG fuel configuration.

Adkins, H.E. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-10T23:59:59.000Z

306

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect (OSTI)

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

307

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

308

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

309

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

310

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

Barnitt, R.; Gonder, J.

2011-04-01T23:59:59.000Z

311

1 Control Challenges of Fuel Cell-Driven Distributed Generation  

E-Print Network [OSTI]

Abstract — This paper discusses the load following capability of fuel cell-driven power plants. A linear model of a Solid Oxide Fuel Cell power plant is obtained and utilized for the design of robust controllers which enhance tracking response of the plant and reject disturbances originating from the distribution grid. Two robust controllers are synthesized applying the H? mixed-sensitivity optimization and their performance is validated by means of nonlinear time-domain simulations. The obtained results indicate that the disturbances can be successfully attenuated; however, the tracking response cannot be significantly improved without a modification of the design of the fuel cell power plant. The paper is concluded by a brief discussion on the physical limitations on the fuel cell output power ramp and possible solutions are outlined. Index Terms — Distributed generation, Solid Oxide Fuel Cells, robust control, H ? controller design, disturbance rejection.

Valery Knyazkin; Lennart Söder; Claudio Canizares

312

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...  

Broader source: Energy.gov (indexed) [DOE]

Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

313

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

314

Environmental impact of fossil fuel combustion in power generation  

SciTech Connect (OSTI)

All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1996-12-31T23:59:59.000Z

315

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

316

The next generation of oxy-fuel boiler systems  

SciTech Connect (OSTI)

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

317

Water consumption footprint and land requirements of alternative diesel and jet fuel  

E-Print Network [OSTI]

The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

Staples, Mark Douglas

2013-01-01T23:59:59.000Z

318

A Bio-Based Fuel Cell for Distributed Energy Generation  

SciTech Connect (OSTI)

The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

Anthony Terrinoni; Sean Gifford

2008-06-30T23:59:59.000Z

319

Fuel Optimal Thrust Allocation in Dynamic Positioning  

E-Print Network [OSTI]

vessels with diesel-electric power system. In this paper the focus is on using the thrust allocation to make the diesel generators on board the vessel work more fuel efficiently, by reducing the total fuel consumption of all online diesel generators. A static model for the fuel consumption of a diesel generator

Johansen, Tor Arne

320

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total

322

"Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1.6.7..

323

A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel  

SciTech Connect (OSTI)

The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

1996-10-01T23:59:59.000Z

324

Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplicationsEmployees

325

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applications |

326

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31

327

Generation of hydrogen peroxide in a shorted fuel cell  

SciTech Connect (OSTI)

Hydrogen peroxide is a {open_quotes}green{close_quotes} chemical with a well-assured future. As such, significant growth in demand is predicted for this material. To meet this growth, new technologies of manufacture are being contemplated to compete with the established Anthraquinone process. Some of these new methods seek the niche market of on-site generation of hydrogen peroxide. One good example of this is Dow`s caustic/peroxide generation scheme for the bleaching of paper pulp. Others rely on externally-supplied electrical power in an electrochemical reactor scheme, where peroxide may be generated additionally in neutral or acidic solution. It has long been realized that the chemical potential of the reactants themselves can be used in a controlled manner in an electrolytic cell. This is the basis of fuel cells (to generate electrical power) and has been extended to the synthesis of useful chemical species, either using solid polymer electrolytes or active oxygen transporting membranes. Use has also been made of the inherent chemical potential in H{sub 2}/O{sub 2} reactions to produce hydrogen peroxide. This reactor utilized a liquid phase cathode with dissolved air or oxygen to produce small concentrations of peroxide in a fixed volume. In fact, most schemes for the direct, electrochemical production of peroxide from hydrogen and oxygen yield low, millimolar peroxide concentrations. This paper describes the development of a scalable, segmented-flow, shorted fuel cell for the generation of greater than 1 w/o hydrogen peroxide. Three areas are of major importance in the development of a continuous, peroxide-forming reactor: the reactor design, catalyst choice and application, and the operating parameters for the reactor. The cathode catalyst is probably the single most important part. Operating parameters include such basics as temperature, pressure, gas flow rate, and liquid flow rate. Each of these topics will be discussed.

Webb, S.P.; McIntyre, J.A. [Dow Chemical Company, Midland, MI (United States)

1996-12-31T23:59:59.000Z

328

Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

Whyatt, Greg A.; Chick, Lawrence A.

2012-04-01T23:59:59.000Z

329

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

330

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

331

,"U.S. Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (DollarsLiquids LeaseAnnual",2014

332

Diesel Generator Fuel Oil, Diesel Generator Lubricating Oil, and Diesel Generator Starting Air Requirements"  

E-Print Network [OSTI]

(ISTS) and adds requirements for DG Lubricating Oil, and DG Starting Air. The proposed changes will assure that required quality and quantity of DG Fuel Oil is maintained and also will assure that sufficient DG Lubricating Oil and DG Starting Air is maintained. This proposed amendment imposes limits on DG support system parameters to ensure the DGs will be able to perform their design function. This proposed amendment also brings the current TS on DG Fuel Oil into alignment with the ISTS. This amendment is modeled after the ISTS, Section 3.8.3. This amendment also incorporates into the FCS TS improvements to ISTS Sections 3.8.3 and 5.5 consistent with those provided in Technical Specification Task Force (TSTF) travelers TSTF-254, Rev. 2 and TSTF-374, Rev. 0. FCS also requests approval of reduction in commitments with respect to the FCS Quality Assurance (QA) Program associated with this License Amendment Request. This License Amendment Request adds a Surveillance [Table 3-5, Item 9c] stating that the DG Fuel Oil Properties are required to be verified within limits in accordance with the Diesel Fuel Oil Testing Program. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days.

Omaha Public; Power Distrct

1979-01-01T23:59:59.000Z

333

Messiah College Biodiesel Fuel Generation Project Final Technical Report  

SciTech Connect (OSTI)

Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

2012-03-30T23:59:59.000Z

334

Role of solid oxide fuel cell distributed generation for stationary power application.  

E-Print Network [OSTI]

??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve… (more)

Li, Yonghui.

2008-01-01T23:59:59.000Z

335

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecade Year-0 Year-1Fuel

336

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSalesDecadeInputand Plant Fuel

337

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband Plant Fuel

338

Oregon Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 Year-3Fuel Consumptionand

339

South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18Decade Year-0Fuel

340

Table 5.2. U.S. per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7. U.S.8..

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 5.3. U.S. per Vehicle Miles Traveled, Vehicle Fuel Consumption and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7. U.S.8...

342

Table 5.6. U.S. Average Vehicle Fuel Consumption by Model Year, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7.

343

Table 5.8. U.S. Vehicle Fuel Consumption by Family Income, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7.8. U.S.

344

Tennessee Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S.YearYearFuel

345

Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0 Year-1Fuel Consumptionand

346

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb MarFuel

347

Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19, 2010 The Costs of

348

Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle? |Department

349

Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide EmissionEconomy thanNewVehicleCrudeDiesel

350

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear(MillionDecadeFuel

351

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruitPumping

352

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel3

353

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department- -

354

,"U.S. Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information AdministrationMonthly","2/2015"Monthly","2/2015" ,"Release

355

A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION  

SciTech Connect (OSTI)

Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

Hwang, HL

2003-08-11T23:59:59.000Z

356

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

Scora, George Alexander

2011-01-01T23:59:59.000Z

357

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive Cycle

358

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1 1

359

Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year Jan FebFeet)and

360

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0Feet) Decade

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet) Year Jan FebFueland

362

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug

363

Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00 0 0Fueland

364

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(MillionSalesDecadeWithdrawalsFueland

365

Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8

366

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective

367

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective

368

Table 5.10. U.S. Average Vehicle Fuel Consumption by Family Income, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective0.

369

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14DecadeDecadeFueland Plant

370

U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan FebNoyes, MNLease

371

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan FebYear Janand

372

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreasesFeet)Feet)and

373

Missouri Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousandFeet) YearFueland

374

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet)Feet) Yearand

375

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979. Light Usage Energy

376

U.S. Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (Million Cubic Feet)Decade

377

U.S. Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr May Jun JulFeet)Decade

378

U.S. Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYearYear Jan Feb Mar Apr

379

U.S. Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks255,035Year JanYear Jan

380

Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia" "EmissionDecade Year-0Feet) Lease

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYearWithdrawalsand Plant

382

Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year JanWithdrawals

383

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary

384

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelected Industries,

385

Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705 740

386

Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705 740(Million Cubic

387

Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYearand Plant

388

Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0Feet)Withdrawals

389

Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0Withdrawals (Million Cubicand

390

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601DecadeDecade Year-0Fueland

391

Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear Jan

392

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

393

Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell  

E-Print Network [OSTI]

Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

2005-01-01T23:59:59.000Z

394

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

SciTech Connect (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

395

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

396

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

397

Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel Cell  

E-Print Network [OSTI]

and the exoelectrogen Geobacter sulfurreducens generated electricity, and the power generated using soluble celluloseARTICLE Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel.interscience.wiley.com). DOI 10.1002/bit.22015 ABSTRACT: Electricity can be directly generated by bacteria in microbial fuel

398

Catalysts and materials development for fuel cell power generation  

E-Print Network [OSTI]

Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

Weiss, Steven E

2005-01-01T23:59:59.000Z

399

Fuel Cell Comparison of Distributed Power Generation Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks4 Fuel Cycle

400

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect (OSTI)

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis of technology options to reduce the fuel consumption of idling trucks  

SciTech Connect (OSTI)

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000--3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

Stodolsky, F.; Gaines, L.; Vyas, A.

2000-08-22T23:59:59.000Z

402

Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035  

E-Print Network [OSTI]

This thesis examines the vehicle design and sales mix changes necessary to double the average fuel economy of new U.S. cars and light-trucks by model year 2035. To achieve this factor of two target, three technology options ...

Cheah, Lynette W

2008-01-01T23:59:59.000Z

403

Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarter Jump to:sourceStub Jumpcontent has been

404

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

405

Benchmark the Fuel Cost of Steam Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | Department

406

Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)  

SciTech Connect (OSTI)

This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

Lammert, M.; Gonder, J.

2014-07-01T23:59:59.000Z

407

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

SciTech Connect (OSTI)

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL? resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

2010-04-15T23:59:59.000Z

408

Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India  

SciTech Connect (OSTI)

Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

2007-01-01T23:59:59.000Z

409

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect (OSTI)

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

410

Fueling the Next Generation of Vehicle Technology | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle BasicsValentineson

411

Fuel Cell Comparison of Distributed Power Generation Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCase Study Fuel Cell Case

412

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

413

Overview of Options to Integrate Stationary Power Generation from Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining ActivitiesNEMS-H2, Version

414

Proton Exchange Membrane Fuel Cells for Electrical Power Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOEProtocol forSite Leads -On-Board

415

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network [OSTI]

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

416

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network [OSTI]

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

Payne, Stephen Ellis

1993-01-01T23:59:59.000Z

417

Next-Generation Catalysts for Fuel Cells - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewport News Business55NewsNext Jefferson Lab

418

Next-generation nuclear fuel withstands high-temperature accident  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewport News Business55NewsNext

419

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMapsHeavy

420

Designer Catalysts for Next Generation Fuel Synthesis - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andaging effectsOfficePortal Biomass

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling Water Withdrawal and Consumption for Electricity Generation in the United States  

E-Print Network [OSTI]

Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

Strzepek, Kenneth M.

2012-06-15T23:59:59.000Z

422

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Bipolar Plates for Automotive PEM Fuel Cells (Topic 4) GrafTech International, Ltd. * Funding DOE Cost Share Recipient Cost Share TOTAL 2,325,943 581,486 2,907,429 80% 20% 100%...

423

Chemical simulation of hydrogen generation in a plasma fuel reformer  

E-Print Network [OSTI]

A model for a plasma fuel reformer or plasmatron has been developed. The model was based in a series of experiments realized at the Plasma Science and Fusion Center with such a plasmatron. The device is set up to produce ...

Margarit Bel, Nuria, 1977-

2004-01-01T23:59:59.000Z

424

Power Generation in Fed-Batch Microbial Fuel Cells as a Function  

E-Print Network [OSTI]

as capable of making electricity in fuel cells include a wealth of genera of Geobacter (3, 6), Shewanella (2-chamber, air-cathode MFCs. Introduction Electricity generation using microbial fuel cells (MFCs) has drawn much,7), Pseudomonas (4), and others (1, 8-9). Electricity can be generated in MFCs using mixed cultures enriched from

425

Web-Based Method to Generate Specific Energy Consumption Data for the Evaluation and Optimization of Building Operation  

E-Print Network [OSTI]

about energy consumptionand specific data especially in large building stocks?user complaints and energy consumption arerarely considered in building operation?reduction of energy consumption and operation costsas well as ensuring a high work space... consumption specific heating energy consumption buildings with additional technical usage (control room)without arithmetic mean consumption related to the heated net floor area; data measured one full year: 02-2001 to 02-2002 specific yearly energy...

Wagner, A.; Wambsgan, M.; Froehlich, S.

2004-01-01T23:59:59.000Z

426

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

427

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study  

E-Print Network [OSTI]

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

Li, Baochun

428

Electricity generation from a floating microbial fuel cell Yuelong Huang a  

E-Print Network [OSTI]

Electricity generation from a floating microbial fuel cell Yuelong Huang a , Zhen He b , Jinjun Kan February 2012 Accepted 29 February 2012 Available online 7 March 2012 Keywords: Microbial fuel cell t A floating microbial fuel cell (FMFC) has been designed and its performance has been evaluated for 153 days

429

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1  

E-Print Network [OSTI]

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Ghosh3 , Huei Peng2 Abstract A fuel processor that reforms natural gas to hydrogen-rich mixture to feed of the hydrogen in the fuel processor is based on catalytic partial oxidation of the methane in the natural gas

Peng, Huei

430

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY  

E-Print Network [OSTI]

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY AND MOTOR VEHICLE PEM FUEL CELL SYSTEMS UCD-ITS-RP-04-21 April 2004 by Timothy Lipman University of California: itspublications@ucdavis.edu #12;Energy Policy 32 (2004) 101­125 Fuel cell system economics: comparing the costs

Kammen, Daniel M.

431

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

432

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

433

Second Generation Renewable Fuels Blue-Green Seminar  

E-Print Network [OSTI]

will help to bridge the gap between current energy usage and a more sustainable energy future footprint will require commercialization of industrial processes that transform renewable lignocellulosic. In the meantime, technology for renewable fuels must be made ready to facilitate build-out of a new industry

Eustice, Ryan

434

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshop on

435

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

K. Payette; D. Tillman

2001-10-01T23:59:59.000Z

436

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

437

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

438

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

439

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect (OSTI)

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

440

Stress and Diffusion in Stored Pu ZPPR Fuel from Alpha Generation  

SciTech Connect (OSTI)

ZPPR (Zero Power Physics Reactor) is a research reactor that has been used to investigate breeder reactor fuel designs. The reactor has been dismantled but its fuel is still stored there. Of concern are its plutonium containing metal fuel elements which are enclosed in stainless steel cladding with gas space filled with helium–argon gas and welded air tight. The fuel elements which are 5.08 cm by 0.508 cm up to 20.32 cm long (2 in × 0.2 in × 8 in) were manufactured in 1968. A few of these fuel elements have failed releasing contamination raising concern about the general state of the large number of other fuel elements. Inspection of the large number of fuel elements could lead to contamination release so analytical studies have been conducted to estimate the probability of failed fuel elements. This paper investigates the possible fuel failures due to generation of helium in the metal fuel from the decay of Pu and its possible damage to the fuel cladding from metal fuel expansion or from diffusion of helium into the fuel gas space. This paper (1) calculates the initial gas loading in a fuel element and its internal free volume after it has been brought into the atmosphere at ZPPR, (2) shows that the amount of helium generated by decay of Pu over 46 years since manufacture is significantly greater than this initial loading, (3) determines the amount of fuel swelling if the helium stays fixed in the fuel plate and estimates the amount of helium which diffuses out of the fuel plate into the fuel plenum assuming the helium does not remain fixed in the fuel plate but can diffuse to the plenum and possibly through the cladding. Since the literature is not clear as to which possibility occurs, as with Schroedinger’s cat, both possibilities are analyzed. The paper concludes that (1) if the gas generated is fixed in the fuel, then the fuel swelling it can cause would not cause any fuel failure and (2) if the helium does diffuse out of the fuel (in accordance diffusivities estimated from the literature), then it is unlikely that fuel element bulging will occur.

Charles W. Solbrig; Chad L. Pope; Jason P. Andrus

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...  

Office of Environmental Management (EM)

to heat and electricity-in Fountain Valley. The system runs on natural gas and biogas generated by the Orange County Sanitation District's wastewater treatment facility....

442

The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations  

SciTech Connect (OSTI)

In this study, the potential of important biomass energy sources and animal solid wastes of Turkey were determined and the potential of these as a source of fuel in thermal generating stations to produce electricity was studied. The effects of biomass and lignite coal usage on the environment were reported comparatively. Considering total cereal products and fatty seed plants, approximately 50--65 million tons per year of biomass and 11,051 million tons of solid matter animal waste are produced, and 60% of biomass is seen as possible to use for energy. The primary energy of applicable biomass was evaluated as 467--623 Peta Joule (PJ) and the energy of animal residues as 50,172 PJ. This amount of energy is equal to 22--27% of Turkey`s annual primary energy consumption, (6,308 million tons of oil equivalent).

Acaroglu, M. [Selcuk Univ. Technical Coll., Konya (Turkey). Dept. of Agricultural Machinery; Aksoy, A.S. [Ege Univ. Solar Energy Inst., Izmir (Turkey). Dept. of Energy Sources; Oeguet, H. [Selcuk Univ. Faculty of Agriculture, Konya (Turkey). Dept. of Agricultural Machinery

1999-05-01T23:59:59.000Z

443

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2004-01-01T23:59:59.000Z

444

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

1998-05-12T23:59:59.000Z

445

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

446

Thermodynamic analysis and comparison on oxy-fuel power generation process - article no. 053001  

SciTech Connect (OSTI)

In this paper, pressurized oxy-fuel combustion power generation processes are modeled and analyzed based on a 350 MW subcritical reheat boiler associated with a condensing steam turbine. The performance results are obtained. Furthermore, the influences of slurry concentration and coal properties on power plant performance are investigated. An oxy-fuel configuration operating at ambient pressure is studied to compare the performance with pressurized oxy-fuel configuration. Thermodynamic analysis reveals the true potentials of the pressurized oxy-fuel process. Based on the system integration, an improved configuration is proposed in which plant efficiency of pressurized oxy-fuel process is increased by 1.36%.

Deng, S.M.; Hynes, R. [Hatch Energy, Oakville, ON (Canada)

2009-09-15T23:59:59.000Z

447

A decision-support model for managing the fuel inventory of a Panamanian generating company  

E-Print Network [OSTI]

Bahia Las Minas Corp (BLM) is a fuelpowered generating company in the Panamanian power system. The purpose of this thesis is to design and evaluate a decision-support model for managing the fuel inventory of this company. ...

Perez-Franco, Roberto, 1976-

2004-01-01T23:59:59.000Z

448

Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations  

E-Print Network [OSTI]

The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known...

Jeraputra, Chuttchaval

2006-04-12T23:59:59.000Z

449

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents [OSTI]

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

450

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with  

E-Print Network [OSTI]

;3 Alternate Fuel Infrastructure Lessons Learned Project ·Project with NREL ·Workshop held in April 2008 Municipalities and Local government agencies Fire and Rescue facilities Policy stations Data centers Universities1 Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand

451

OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,  

E-Print Network [OSTI]

combustion turbine, and wind generation. Energy park com- ponents are modeled using energy and mass balances with daily electricity price variability and mean wind generation. Taken in total, this study quantifies components to maximize operating profit given fuel prices, hourly electricity price, and hourly wind

Stanford University

452

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-12-01T23:59:59.000Z

453

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-01-01T23:59:59.000Z

454

Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana  

SciTech Connect (OSTI)

The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

Kevin Peavey; Norm Bessette

2007-09-30T23:59:59.000Z

455

Air feed tube support system for a solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

2002-01-01T23:59:59.000Z

456

A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels  

E-Print Network [OSTI]

), and directly affects cost and sizing of fuel cell subsystems. Within several regions of PEMFC operating Fuel Cell Gas Channels E. J. See and S. G. Kandlikar Department of Mechanical Engineering, Rochester in proton exchange membrane fuel cells (PEMFCs). The ability to model two-phase flow and pressure drop

Kandlikar, Satish

457

Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum  

SciTech Connect (OSTI)

The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

F. Delage; J. Carmack; C. B. Lee; T. Mizuno; M. Pelletier; J. Somers

2013-10-01T23:59:59.000Z

458

Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 WinnersEdEducation6Patents -Vehicle

459

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

SciTech Connect (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

460

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

462

Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal  

SciTech Connect (OSTI)

Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

Williamson, D.A.

1991-12-31T23:59:59.000Z

463

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

464

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

465

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

466

Supporting Information Power generation by packed-bed air-cathode microbial fuel cells  

E-Print Network [OSTI]

1 Supporting Information Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan b a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU­ VEOLIA Informatics, China University of Mining and Technology, Xuzhou 221116, PR China * Corresponding author: E

467

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells  

E-Print Network [OSTI]

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel), Faculty of Advanced Technology, University of Glamorgan, Pontypridd RCT CF37 1DL, UK Oxygen intrusion chamber MFCs at the end of a cycle when the substrate is depleted. A slight increase in dissolved oxygen

468

StreetSmart : modeling vehicle fuel consumption with mobile phone sensor data through a participatory sensing framework  

E-Print Network [OSTI]

Vehicle energy efficiency has become a priority of governments, researchers, and consumers in the wake of rising fuels costs over the last decade. Traditional Internal Combustion Engine (ICE) vehicles are particularly ...

Oehlerking, Austin Louis

2011-01-01T23:59:59.000Z

469

Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

470

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ã?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

471

New generation nuclear fuel structures: dense particles in selectively soluble matrix  

SciTech Connect (OSTI)

We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.

Sickafus, Kurt E [Los Alamos National Laboratory; Devlin, David J [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Pattillo, Steve G [Los Alamos National Laboratory; Valdez, James [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

472

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

473

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

K. Payette; D. Tillman

2002-01-01T23:59:59.000Z

474

DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

K. Payette; D. Tillman

2004-06-01T23:59:59.000Z

475

IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION  

E-Print Network [OSTI]

Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

unknown authors

476

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

477

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

478

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

SciTech Connect (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

479

Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing  

SciTech Connect (OSTI)

The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer (''blanket'') on the uranium metal corrosion rates were also evaluated.

Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2003-08-01T23:59:59.000Z

480

High conversion Th-U{sup 233} fuel assembly for current generation of PWRs  

SciTech Connect (OSTI)

This paper presents a preliminary design of a high conversion Th-U{sup 233} fuel assembly applicable for current generation of Pressurized Water Reactor (PWRs). The considered fuel assembly has a typical 17 x 17 PWR lattice. However in order to increase the conversion of Th{sup 232} to U{sup 233}, the assembly was subdivided into the two regions called seed and blanket. The central seed region has a higher than blanket U{sup 233} content and acts as a neutron source for the peripheral blanket region. The latest acts as a U{sup 233} breeder. While the seed fuel pins have a standard dimensions the blanket fuel radius was increased in order to reduce the moderation and to facilitate the resonance neutron absorption in blanket Th{sup 232}. The U{sup 233} content in the seed and blanket regions was optimized to achieve maximal initial to discharged fissile inventory ratio (FIR) taking into account the target fuel cycle length of 12 months with 3-batch reloading scheme. In this study the neutronic calculations were performed on the fuel assembly level using Helios deterministic lattice transport code. The fuel cycle length and the core k{sub eff} were estimated by applying the Non Linear Reactivity Model. The applicability of the HELIOS code for the analysis of the Th-based high conversion designs was confirmed with the help of continuous-energy Monte-Carlo code SERPENT. The results of optimization studies show that for the heterogeneous seed and blanket (SB) fuel assembly the FIR of about 0.95 can be achieved. (authors)

Baldova, D.; Fridman, E. [Reactor Safety Div., Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, Dresden, 01314 (Germany)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development of a hydrogen generator for fuel cells based on the partial oxidation of methane  

SciTech Connect (OSTI)

As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, it is a common practice that the process`s fuel economy is highly sensitive to proper heat fluxes and reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest of {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells, amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore at higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). A valid alternative could be a process based on catalytic partial oxidation of CH{sub 4} (CSPOM), since the process is mildly exothermic ({Delta}H{sub 298}= -35.6 kJ/mole) and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed.

Recupero, V.; Torre, T.; Saija, G.; Fiordano, N. [Institute CNR-TAE, Lucia, Messina (Italy)

1996-12-31T23:59:59.000Z

482

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

483

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

484

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

485

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

486

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

487

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

488

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

489

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

490

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

491

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

492

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

493

Opportunities to reduce consumption of natural uranium in reactor SVBR-75/100 when changing over to the closed fuel cycle  

SciTech Connect (OSTI)

The design of reactor SVBR-75/100 allows it to operate using different types of fuel and in different fuel cycles without changing its design and deteriorating its safety characteristics. Fuel-at-once refueling adopted in the design (lack of partial refueling) makes it possible to change the core content at each refueling by using the type of fuel that is the most economically effective at the current stage of nuclear power (NP) development. In the nearest future use of mastered oxide uranium fuel and operating in the opened fuel cycle with postponed reprocessing will be the most economically effective. Changeover to the mixed uranium-plutonium fuel and closed nuclear fuel cycle (NFC) will be economically effective in an event of increase of natural uranium costs when the expenditures for construction of the enterprises on reprocessing the spent nuclear fuel (SNF), re-fabrication of new fuel with plutonium and their operating are less than the corresponding costs of natural uranium, its enrichment costs, the costs of manufacturing fresh uranium fuel and long temporary storage of SNF. At this, it is possible to use both MOX fuel with weapon or reactor plutonium and mixed nitride fuel in case its usage is more profitable. As fast reactors (FR) using uranium fuel and operating in the opened NFC consume much more natural uranium in comparison with thermal reactors (TR), and at the expected high paces of NP development the cheap resources of natural uranium will be exhausted prior to the middle of the century that will cause increase in the uranium cost, the period of FRs operating in the opened NFC must be maximally reduced. However, it should be mentioned that it is difficult to forecast reliably the date when because of the increased cost of natural uranium the NP will lose its competitiveness with electric power using fossil fuel. This is conditioned by the fact that the cost of the NPP produced electricity is less sensitive to the cost of natural uranium in contrast to the cost of electricity produced by thermal power plants using fossil fuel. At the same time, the available resources of natural uranium are increasing progressively with increase of its cost. The expenditure caused by changeover to the closed NFC will be less, if plutonium extracted from the own SNF of uranium loads is used in fabrication of the first MOX fuel loads. If the oxide uranium fuel is used, by the end of the lifetime a comparatively high breeding ratio (BR) ({approx}0.84) provides a sufficiently high content of plutonium in the SNF that may be used in the next fuel lifetimes when organizing the closed fuel cycle. Moreover, the own SNF of starting loads from oxide uranium fuel contains large quantity of unburned uranium-235 that is expedient to use for forming load for the next lifetime. From the very beginning of realization of the extended program on implementation of reactors SVBR-75/100 in the NP, use of plutonium extracted from the TRs' SNF for forming the starting loads of those reactors for the purpose of total elimination of natural uranium consumption will be more expensive as compared with the considered variant of changeover from the opened NFC to the closed NFC. This is conditioned by the fact that for the plutonium extracted from the TRs' SNF, the plutonium cost determined by a volume of SNF reprocessing per ton of plutonium will be several times higher as compared with its cost in case of using the own SNF because of considerably less content of plutonium in the TRs' SNF. It should be taken into account that the organization of the enterprise on large-scale reprocessing of TRs' SNF and MOX fuel fabrication must precede the construction of NPPs with FRs. Thus, the demands in investments are increased. At the same time, for the proposed changeover from the opened NFC to the closed one the construction of the closed NFC enterprise may be long postponed from FR launching that reduces the investment demands. At this, as the assessments have revealed, the investment fund for construction of such enterprise could be formed during abo ut t

Toshinsky, G.I.; Komlev, O.G.; Mel'nikov, K.G.; Novikova, N.N. [FSUE SSC RF-IPPE, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

2007-07-01T23:59:59.000Z

494

Mechanism Reduction and Generation Using Analysis of Major Fuel Consumption Pathways for n-Heptane in Premixed and Diffusion  

E-Print Network [OSTI]

of Chemical Engineering, UniVersity of Utah, Salt Lake City, Utah 84112 Charles K. Westbrook Chemical

Utah, University of

495

Oxy-fuel combustion systems for pollution free coal fired power generation  

SciTech Connect (OSTI)

Jupiter Oxygen's patented oxy-fuel combustion systems1 are capable of economically generating power from coal with ultra-low emissions and increased boiler efficiency. Jupiter's system uses pure oxygen as the combustion agent, excluding air and thus nitrogen, concentrating CO2 and pollutants for efficient capture with near zero NOx production, reducing exhaust mass flow, and increasing radiant heat transfer. Flue-gas recirculation rates can be varied to add flexibility to new boiler designs using this technology. Computer modeling and thermal analysis have identified important design considerations in retrofit applications.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Gross, Dietrich (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Gross, Alex (Jupiter Oxygen Corp.); Dogan, Cindy; Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfeld, Mark (Jupiter Oxygen Corp.)

2004-01-01T23:59:59.000Z

496

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

SciTech Connect (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

497

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

498

CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS  

SciTech Connect (OSTI)

The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

2004-10-03T23:59:59.000Z

499

Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report  

SciTech Connect (OSTI)

This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

2010-04-30T23:59:59.000Z

500

Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses  

E-Print Network [OSTI]

5] Logan, Bruce. ”Microbial Fuel Cells: Methodology andin a flat plate microbial fuel cell. Environ. Sci. Technol.Korneel, et al. ”Microbial fuel cells: performances and

Reynolds, Mark

2014-01-01T23:59:59.000Z