Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Renewable Generation and Interconnection to the Electrical Grid...  

Broader source: Energy.gov (indexed) [DOE]

Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

2

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

3

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

Birman, Kenneth

2012-01-01T23:59:59.000Z

4

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

the  computing  needs for building this smart grid,  and using the cloud for building the smart grid.   4.1 The requirements  for  building  successful  smart  electric 

Birman, Kenneth

2012-01-01T23:59:59.000Z

5

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

Pedram, Massoud

6

Performance of solar electric generating systems on the utility grid  

SciTech Connect (OSTI)

The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

Roland, J.R.

1986-01-01T23:59:59.000Z

7

Computational Needs for the Next Generation Electric Grid Proceedings  

SciTech Connect (OSTI)

The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

2011-10-05T23:59:59.000Z

8

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Broader source: Energy.gov [DOE]

Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

9

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

system planning, renewable energy, smart grids, storage planning projects will become even more critical as the smart grid planning  models.   Some  of  these  objectives  are  not  well  defined,  like  smart?grid 

Birman, Kenneth

2012-01-01T23:59:59.000Z

10

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

technologies such as diesel, electric, hybrid, and hydrogen mode  (e.g. ,  diesel  trains  or  electric  trains).  

Birman, Kenneth

2012-01-01T23:59:59.000Z

11

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

power systems.  Electric Power Systems Research, 80(6):627?system”, Electric Power Systems Research, 20 (1990), pp.  1?Measurements”,  Electric  Power Systems Research, Vol.  79 

Birman, Kenneth

2012-01-01T23:59:59.000Z

12

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

Birman, Kenneth

2012-01-01T23:59:59.000Z

13

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

transmission vision for wind integration.   www.aep.com/Corporation.  Eastern wind integration and transmission a recent study on wind integration (American Electric 

Birman, Kenneth

2012-01-01T23:59:59.000Z

14

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

component  (such  as  a  line  transmission,  generator,  or  transformer)  is  out  of  service,  the  power 

Birman, Kenneth

2012-01-01T23:59:59.000Z

15

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid  

E-Print Network [OSTI]

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid March 2011 voltages are nominally 4.5kv and 13 2kv The solar system must maintain voltageand 13.2kv. The solar system) or multiple sites (multiple leases, interconnect points, construction forces) Ground based, roof top (weight

Homes, Christopher C.

16

Method of grid generation  

DOE Patents [OSTI]

The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

Barnette, Daniel W. (Veguita, NM)

2002-01-01T23:59:59.000Z

17

Method for protecting an electric generator  

DOE Patents [OSTI]

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

18

ARPA-E: Advancing the Electric Grid  

SciTech Connect (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-02-24T23:59:59.000Z

19

ARPA-E: Advancing the Electric Grid  

ScienceCinema (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-03-13T23:59:59.000Z

20

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

GROWDERS Demonstration of Grid Connected Electricity Systems...  

Open Energy Info (EERE)

GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

22

South Mississippi Electric Power Association Smart Grid Project (Mississippi)  

Broader source: Energy.gov [DOE]

South Mississippi Electric Power Association’s (SMEPA) smart grid project involves the deployment of advanced metering infrastructure (AMI) and covers the Generation and Transmission (G&T)...

23

Smoothing the Eects of Renewable Generation on the Distribution Grid  

E-Print Network [OSTI]

to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

Naud, Paul S.

2014-01-01T23:59:59.000Z

24

Electricity Advisory Committee Smart Grid Subcommittee  

Broader source: Energy.gov (indexed) [DOE]

Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011...

25

Introduction The electric power grid and electric power  

E-Print Network [OSTI]

inefficiencies in energy delivery, lowering generation requirements; · facilitate efficient and cost-effective charging of electric vehicles; · integrate the sustainable resources of wind and solar energy more fully, manufacturers, and utilities are already seeing new benefits from the emerging "smart grid version 1.0." As work

26

Convectively cooled electrical grid structure  

DOE Patents [OSTI]

Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

Paterson, J.A.; Koehler, G.W.

1980-11-10T23:59:59.000Z

27

Parametrization-independent elliptic surface grid generation  

E-Print Network [OSTI]

The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

Rasmussen, Britt Bille

2009-01-01T23:59:59.000Z

28

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network [OSTI]

in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

29

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

30

Energy storage for frequency regulation on the electric grid  

E-Print Network [OSTI]

Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

Leitermann, Olivia

2012-01-01T23:59:59.000Z

31

Exemption from Electric Generation Tax (Connecticut)  

Broader source: Energy.gov [DOE]

In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

32

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

SciTech Connect (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

33

Chapter III: Modernizing the Electric Grid  

Office of Environmental Management (EM)

34 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter III: Modernizing the Electric Grid QER Report: Energy Transmission, Storage, and...

34

"Artificial" brains, electrical grids, and disease modeling:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science discoveries unveiled "Artificial" brains, electrical grids, and disease modeling: Los Alamos science discoveries unveiled September 15 The event is an opportunity for...

35

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect (OSTI)

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

36

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications MANAGEMENT The Next Generation Network Simulator is a framework for the partitioning, distribution, and run Grid Initiative (FPGI) will deliver next-generation concepts and tools for grid operation and planning

37

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network [OSTI]

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

38

A planning scheme for penetrating embedded generation in power distribution grids  

E-Print Network [OSTI]

Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

39

Electric Springs A new Smart Grid Technology Department of Electrical & Electronic Engineering  

E-Print Network [OSTI]

-scale wind and solar power generation · . 7 #12;Future power systems adopt "distributed" power generation electronics system. · · It can be embedded in an electric appliance such as electric water heater or refrigerator. · ( ) · Electric springs can therefore be `distributed" over the power grid to stablize the mains

Leung, Ka-Cheong

40

Secretary Chu to Discuss Importance of Electric Grid Modernization...  

Energy Savers [EERE]

Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S....

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

42

Electricity Grid Basics Webinar Presentation Slides and Text...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Grid Basics Webinar Presentation Slides and Text Version Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text...

43

A National Grid Energy Storage Strategy - Electricity Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

44

Transdisciplinary electric power grid science Charles D. Brummitta,b,1  

E-Print Network [OSTI]

storm damage or build distributed generation?). The "smart grid," which monitors and controls electrical to cities couples distant regions. Connections among regions of a power grid spread risk, like in otherOPINION Transdisciplinary electric power grid science Charles D. Brummitta,b,1 , Paul D. H. Hinesc

D'Souza, Raissa

45

Energy Storage Activities in the United States Electricity Grid...  

Broader source: Energy.gov (indexed) [DOE]

Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior...

46

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

Wong, Vincent

47

National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs  

Broader source: Energy.gov [DOE]

National Grid offers electric energy efficiency programs for large commercial and industrial customers.

48

Smart Grid: Transforming the Electric System  

SciTech Connect (OSTI)

This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

Widergren, Steven E.

2010-04-13T23:59:59.000Z

49

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-11-16T23:59:59.000Z

50

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

51

Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid  

E-Print Network [OSTI]

Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot Boronowski Committee Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot, Canada that relies heavily on diesel fuel for energy generation. An investigation is done

Victoria, University of

52

Generating electricity from viruses  

SciTech Connect (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2013-10-31T23:59:59.000Z

53

Generating electricity from viruses  

ScienceCinema (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2014-06-23T23:59:59.000Z

54

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

Optimal Planning and Operation of Smart Grids with ElectricOptimal Planning and Operation of Smart Grids with Electric

Stadler, Michael

2012-01-01T23:59:59.000Z

55

Sandia National Laboratories: national electricity grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile testnational electricity grid Sandia, Los

56

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

57

Randomized Auction Design for Electricity Markets between Grids and Microgrids  

E-Print Network [OSTI]

Randomized Auction Design for Electricity Markets between Grids and Microgrids Linquan Zhang Dept power markets with grid-to-microgrid and microgrid-to-grid energy sales are studied, with an auction of algorithms General Terms Algorithms, Design, Economics Keywords Power Grid; Microgrids; Unit Commitment

Li, Zongpeng

58

Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise  

SciTech Connect (OSTI)

This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

Not Available

2008-10-01T23:59:59.000Z

59

Electric Grid Investment Under a Contract Network Regime  

E-Print Network [OSTI]

PWP-034 Electric Grid Investment Under a Contract Network Regime James Bushnell and Steven Stoft Channing Way Berkeley, California 94720-5180 www.ucei.berkeley.edu/ucei #12;Electric Grid Investment Under's transmission sector. This paper analyzes the incentives for grid investment which result from various proposed

California at Berkeley. University of

60

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)  

SciTech Connect (OSTI)

This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

Simpson, M.

2011-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Resilient Electric Distribution Grid R&D Workshop - June 11,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. The four presentations from the opening plenary session are...

62

Resilient Electric Distribution Grid R&D Workshop - June 11,...  

Energy Savers [EERE]

- Breakout Sessions Notes and Reports Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Breakout Sessions Notes and Reports On June 11, 2014, the Department of...

63

Electric Grid State Estimators for Distribution Systems with Microgrids  

E-Print Network [OSTI]

46556 Emails: {jhuang6,vgupta2,huang}@nd.edu Abstract--In the development of smart grid, state] into the distribution systems of the power grid. Such integration complicates the operation of distribution systemsElectric Grid State Estimators for Distribution Systems with Microgrids Jing Huang, Vijay Gupta

Gupta, Vijay

64

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

65

Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid  

SciTech Connect (OSTI)

Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

66

Electricity Generation by Rhodopseudomonas palustris  

E-Print Network [OSTI]

,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

67

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

68

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share of sustainable distributed generation in Europe  

E-Print Network [OSTI]

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share-generation of electricity and heat (CHP). This drives the growth of distributed generation (DG) ­ generators connected to the distribution network ­ to significant levels. The DG-GRID project1 carried out by nine European universities

69

Graphical Contingency Analysis for the Nation's Electric Grid  

ScienceCinema (OSTI)

PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

Zhenyu (Henry) Huang

2012-12-31T23:59:59.000Z

70

Graphical Contingency Analysis for the Nation's Electric Grid  

SciTech Connect (OSTI)

PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

Zhenyu (Henry) Huang [Henry

2011-04-01T23:59:59.000Z

71

The Smart Grid's Data Generating Potentials Marco Aiello  

E-Print Network [OSTI]

The Smart Grid's Data Generating Potentials Marco Aiello Johann Bernoulli Institute for Mathematics, The Netherlands Email: g.a.pagani@rug.nl Abstract--The Smart Grid is the vision underlying the evo- lution of such data put the smart grid in the category of Big Data applications, followed by the natural question

Aiello, Marco

72

Control Mechanisms for Residential Electricity Demand in SmartGrids  

E-Print Network [OSTI]

Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

Snyder, Larry

73

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

74

National Rural Electric Cooperative Association Smart Grid Demonstrati...  

Open Energy Info (EERE)

Projects1 This article is a stub. You can help OpenEI by expanding it. The National Rural Electric Cooperative Association Smart Grid Demonstration Project is a U.S....

75

Registration of Electric Generators (Connecticut)  

Broader source: Energy.gov [DOE]

All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

76

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

77

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

Stadler, Michael

2012-01-01T23:59:59.000Z

78

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

79

MESH2D GRID GENERATOR DESIGN AND USE  

SciTech Connect (OSTI)

Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

Flach, G.; Smith, F.

2012-01-20T23:59:59.000Z

80

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate… (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network [OSTI]

Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

California at Davis, University of

82

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

83

Delocalization of Phase Fluctuations and the Stability of AC Electricity Grids  

E-Print Network [OSTI]

The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase fluctuations affect the AC grid stability. To this end, we start from a model of nonlinear dynamic power balance equations. We map them to complex linear wave equations and find stationary solutions for the distribution of phases $\\varphi_i$ at the generator and consumer sites $i$. Next, we derive differential equations for deviations from these stationary solutions. Next, we derive differential equations for deviations from these stationary solutions. Starting with an initially localized phase perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We derive the parametric dependence of diffusion constant $D$. We apply the same solution strategy to general grid topologies and analyse their stability against local fluctuations. The fluctuation remains either localized or becomes delocalized, depending on grid topology and distribution of consumers and generators $P_i$. Delocalization is found to increase the lifetime of phase fluctuations and thereby their influence on grid stability, while localization results in an exponentially fast decay of phase fluctuations at all grid sites.

S. Kettemann

2015-04-21T23:59:59.000Z

84

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

85

Generating Electricity with your Steam System: Keys to Long Term Savings  

E-Print Network [OSTI]

The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

Bullock, B.; Downing, A.

2010-01-01T23:59:59.000Z

86

Defining CPS Challenges in a Sustainable Electricity Grid Jay Taneja, Randy Katz, and David Culler  

E-Print Network [OSTI]

, and that grid balancing requires integrated management of supply and demand resources. Keywords-electricity; cyber-physical systems; smart grid; renewable energy I. INTRODUCTION Modern electric grids serve to augment the physical planes of classic electric grids [24]. However, the integration o

Culler, David E.

87

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

Hill, Steven Craig

2013-01-01T23:59:59.000Z

88

Electrical Generation for More-Electric Aircraft using Solid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

89

Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output  

SciTech Connect (OSTI)

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

Diana K. Grauer; Michael E. Reed

2011-11-01T23:59:59.000Z

90

Wide-area situation awareness in electric power grid  

SciTech Connect (OSTI)

Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

Greitzer, Frank L.

2010-04-28T23:59:59.000Z

91

Clean Electric Power Generation (Canada)  

Broader source: Energy.gov [DOE]

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

92

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network [OSTI]

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

93

EIA - Electricity Generating Capacity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel prices increaseAEO2014 EarlyElectricity

94

A mean field game analysis of electric vehicles in the smart grid  

E-Print Network [OSTI]

1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market to the smart grid and sell their energy surpluses, when needed. It is therefore an important economical

Paris-Sud XI, Université de

95

Dynamic Line Rating Oncor Electric Delivery Smart Grid Program  

SciTech Connect (OSTI)

Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar radiation on the stringing section, transmits the data to the Transmission Energy Management System, validates its integrity and passes it on to Oncor and ERCOT (Electric Reliability Council of Texas) respective system operations. The iDLR system is automatic and transparent to ERCOT System Operations, i.e., it operates in parallel with all other system status telemetry collected through Supervisory Control and Data Acquisition (SCADA) employed across the company.

Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

2013-05-04T23:59:59.000Z

96

MULTILEVEL FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC GRID GENERATION  

E-Print Network [OSTI]

to the elliptic grid generation (EGG) equations. Grid generation is usually based on a map between a relatively grid generation using the Winslow generator [12], which allows us to specify the boundary maps generator tends to create smooth grids, with good aspect ratios. The map also tends to control variations

McCormick, Steve

97

Grid Reliability- An Electric Utility Company's Perspective  

Broader source: Energy.gov [DOE]

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

98

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof EnergyNapaInformationandLaboratoryGrid

99

Update to Large Power Transformers and the U.S. Electric Grid...  

Broader source: Energy.gov (indexed) [DOE]

Update to Large Power Transformers and the U.S. Electric Grid Report Now Available Update to Large Power Transformers and the U.S. Electric Grid Report Now Available April 25, 2014...

100

Large Power Transformers and the U.S. Electric Grid Report Update...  

Broader source: Energy.gov (indexed) [DOE]

Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) The Office of...

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

102

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network [OSTI]

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter… (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

103

Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid  

SciTech Connect (OSTI)

The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

Lyle G. Roybal; Robert F Jeffers

2013-07-01T23:59:59.000Z

104

Sizing the Electrical Grid Omid Ardakanian, S. Keshav, and Catherine Rosenberg  

E-Print Network [OSTI]

1 Sizing the Electrical Grid Omid Ardakanian, S. Keshav, and Catherine Rosenberg University of Waterloo Technical Report CS-2011-18 Abstract--Transformers and storage batteries in the electrical grid the electrical grid, obtaining the capacity region corresponding to a given transformer and storage size

Waterloo, University of

105

Triangle geometry processing for surface modeling and cartesian grid generation  

DOE Patents [OSTI]

Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

Aftosmis, Michael J. (San Mateo, CA) [San Mateo, CA; Melton, John E. (Hollister, CA) [Hollister, CA; Berger, Marsha J. (New York, NY) [New York, NY

2002-09-03T23:59:59.000Z

106

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*,  

E-Print Network [OSTI]

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*, , Student Member, IEEE.edu Abstract--Electric vehicles create a demand for additional electrical power. As the popularity of electric power to electric vehicles on a smart grid. We simulate the mechanisms using published data

Maxemchuk, Nicholas F.

107

Apparatuses and methods for generating electric fields  

DOE Patents [OSTI]

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

108

An Electricity Trade Model for Microgrid Communities in Smart Grid  

E-Print Network [OSTI]

, Shahin Nazarian and Massoud Pedram University of Southern California Department of Electrical Engineering of being generated by a few far-off high-capacity generators and transmitted to end users, electrical will also vary as a function of time and weather factors, e.g., for a solar energy center, the power

Pedram, Massoud

109

AVTA: ARRA EV Project Electric Grid Impact Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

110

Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms  

E-Print Network [OSTI]

Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

Tan, Chee Wei

111

Towards a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid  

E-Print Network [OSTI]

Towards a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid Deepa Kundur analysis of a smart grid. We focus on the model synthesis stage in which both cyber and physical grid-effect relationships can be conveniently expressed for both analysis and extension to large-scale smart grid systems. I

Kundur, Deepa

112

Methodology for combined Integration of electric vehicles and distributed resources into the electric grid  

E-Print Network [OSTI]

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

Gunter, Samantha Joellyn

2011-01-01T23:59:59.000Z

113

The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions  

E-Print Network [OSTI]

electric vehicles (PHEVs) that can be powered by grid electricity for an initial distance, say 60 km, but are otherwise powered by gasoline until the battery is recharged (e.g. the Chevrolet Volt) and Electric vehiclesThe Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid

114

Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.  

SciTech Connect (OSTI)

The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints on hydro-electric resources, and production cost simulations aimed at quantifying the increased role of hydro.

Loose, Verne W.

2011-01-01T23:59:59.000Z

115

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

116

National Grid (Electric)- Non-Residential Energy Efficiency Program (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid’s Non-Residential Program is for electric business customers in upstate New York. Incentives are available for both small commercial and large commercial customers in the Upstate New...

117

Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications  

E-Print Network [OSTI]

Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

Fernandez, Ted (Ted A.)

2010-01-01T23:59:59.000Z

118

Electric Grid - Forecasting system licensed | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric Grid - Forecasting system

119

Electric Power Board of Chattanooga Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric Fuel

120

Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and...

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

National Grid (Electric)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid residential electric customers in Upstate New York are eligible for several incentives offerings. Rebates are available for properly recycling inefficient refrigerators and for the...

122

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

123

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

124

Body Fitted Grid Generation Method with Moving Boundaries and Its Application for analysis of MEMS  

E-Print Network [OSTI]

Body Fitted Grid Generation Method with Moving Boundaries and Its Application for analysis of MEMS these MEMS devices using body fitted grid generation method with moving boundaries is proposed. This technique is based on the finite-difference time-domain (FD-TD) method and a kind of grid generation

Tentzeris, Manos

125

Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output  

SciTech Connect (OSTI)

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

Diana K. Grauer

2011-10-01T23:59:59.000Z

126

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research  

E-Print Network [OSTI]

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

Mohsenian-Rad, Hamed

127

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals  

E-Print Network [OSTI]

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals Contents Detection and Generation of Electric Signals in Fishes: An Introduction Morphology of Electroreceptive Sensory Organs Electrolocation Electric Organs Generation of Electric Signals Development of Electroreceptors and Electric

128

Electrical Generation Tax Reform Act (Montana)  

Broader source: Energy.gov [DOE]

This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

129

Grid-Based Renewable Electricity and Hydrogen Integration  

E-Print Network [OSTI]

) ­ Lower capital cost · No net increase in carbon emissions ­ Improve efficiency of current generation mix NumberofVehicles Mature Hydrogen- Electric Economy · Coal (with Carbon sequestration) · Nuclear 2000 2010 2020 2030 2040 2050 Year GWe Wind nuclear o-g-s Coal-IGCC Coal-new Coal-old- noscrub Coal

130

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

131

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the… (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

132

Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis  

E-Print Network [OSTI]

1 Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis Romain Couillet, Samir M that a way to improve reliability is to allow EV and PHEV to buy and sell energy to or from the smart grid) have been recognized as natural components of future electricity distribution networks, known as smart

Paris-Sud XI, Université de

133

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

134

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network [OSTI]

In theory, competitive electricity markets can provide incentives for efficient investment in generating capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generating capacity can sign...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

135

Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory  

SciTech Connect (OSTI)

The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

2008-08-01T23:59:59.000Z

136

Statistical Analysis of Abnormal Electric Power Grid Behavior  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory is developing a technique to analyze Phasor Measurement Unit data to identify typical patterns, atypical events and precursors to a blackout or other undesirable event. The approach combines a data-driven multivariate analysis with an engineering-model approach. The method identifies atypical events, provides a plane English description of the event, and the capability to use drill-down graphics for detailed investigations. The tool can be applied to the entire grid, individual organizations (e.g. TVA, BPA), or specific substations (e.g., TVA_CUMB). The tool is envisioned for (1) event investigations, (2) overnight processing to generate a Morning Report that characterizes the previous days activity with respect to previous activity over the previous 10-30 days, and (3) potentially near-real-time operation to support the grid operators. This paper presents the current status of the tool and illustrations of its application to real world PMU data collected in three 10-day periods in 2007.

Ferryman, Thomas A.; Amidan, Brett G.

2010-10-30T23:59:59.000Z

137

Impact of Plug-in Hybrid Vehicles on the Electric Grid  

SciTech Connect (OSTI)

Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

Hadley, Stanton W [ORNL

2006-11-01T23:59:59.000Z

138

Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features  

SciTech Connect (OSTI)

Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

Toole, Gasper L. [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

139

Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology  

SciTech Connect (OSTI)

Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

2011-11-30T23:59:59.000Z

140

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The transformation of modern electricity grids at the local and global scale into smart grids is at the core of sustainable economic, environmental and societal growth worldwide. This migration to more intelligent, user-friendly and responsive grids aroun  

E-Print Network [OSTI]

The transformation of modern electricity grids at the local and global scale into smart grids and deployment of appropriate communication and information technologies. Such Smart Grid Communication systems with C3 technologies - Communication, Control and Computing - playing key roles. Smart Grid

Fang, Yuguang "Michael"

142

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

143

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

SciTech Connect (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

144

Security Games and Risk Minimization for Automatic Generation Control in Smart Grid  

E-Print Network [OSTI]

Security Games and Risk Minimization for Automatic Generation Control in Smart Grid Yee Wei Law be protected against potential threats. Advanced monitoring technologies at the center of smart grid evolution injection. This paper develops a game-theoretic approach to smart grid security by combining quantitative

Alpcan, Tansu

145

Distributed Generation Dispatch Optimization under VariousElectricity Tariffs  

SciTech Connect (OSTI)

The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

146

Modeling Electric Vehicle Benefits Connected to Smart Grids  

SciTech Connect (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

147

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

148

Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya  

E-Print Network [OSTI]

an ability to charge and enforce cost-reflective tariffs and when electricity consumption is closely linked and distribute electricity in rural areas (Government of Kenya, 2006). As an incentive measure, systems below 3Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya

Kammen, Daniel M.

149

Renewable Electricity Generation in the United States  

E-Print Network [OSTI]

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

150

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

151

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Zahra Ebadi; Behrouz Mirza

2014-10-12T23:59:59.000Z

152

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Ebadi, Zahra

2014-01-01T23:59:59.000Z

153

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

154

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network [OSTI]

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

155

Dynamic pricing and stabilization of supply and demand in modern electric power grids  

E-Print Network [OSTI]

The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

Roozbehani, Mardavij

156

CyberPhysical System Security for the Electric Power Grid  

E-Print Network [OSTI]

systems that may be vulnerable to security attacks is discussed in this paper as are control loop successful cyber attacks. Estimating feasible attack impact requires an evaluation of the grid's dependency of the cyber­physical relationships within the smart grid and a specific review of possible attack vectors

Manimaran, Govindarasu

157

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

158

A mathematical basis for automated structured grid generation with close coupling to the flow solver  

SciTech Connect (OSTI)

The first two truncation error terms resulting from finite differencing the convection terms in the two-dimensional Navier-Stokes equations are examined for the purpose of constructing two-dimensional grid generation schemes. These schemes are constructed such that the resulting grid distributions drive the error terms to zero. Two sets of equations result, one for each error term, that show promise in generating grids that provide more accurate flow solutions and possibly faster convergence. One set results in an algebraic scheme that drives the first truncation term to zero, and the other a hyperbolic scheme that drives the second term to zero. Also discussed is the possibility of using the schemes in sequentially constructing a grid in an iterative algorithm involving the flow solver. In essence, the process is envisioned to generate not only a flow field solution but the grid as well, rendering the approach a hands-off method for grid generation

Barnette, D.W.

1998-02-01T23:59:59.000Z

159

The generation of oscillations in networks of electrically coupled cells  

E-Print Network [OSTI]

The generation of oscillations in networks of electrically coupled cells Y. Loewenstein* , Y. Yarom systems, the electrical coupling of nonoscil- lating cells generates synchronized membrane potential dynam- ics. We show that strong electrical coupling in this network generates multiple oscillatory

Loewenstein, Yonatan

160

Email To Friend Steam Electricity Generator  

E-Print Network [OSTI]

. keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshopping can make electricity directly." Logan's process uses a microbial fuel cell to convert organic material - that consume the sugars and other organic material and release electrons. These electrons travel to the anode

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being conducted by the campus-wide Electricity Industry  

E-Print Network [OSTI]

THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being seems to have decided that a "smart grid" is what we need to solve the problems of our electric power system. But, what exactly is a "smart grid"? The answer is that it is many different things. Some

McGaughey, Alan

162

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network [OSTI]

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

163

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for...

164

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

165

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

166

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

167

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

168

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

SciTech Connect (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

169

Finite element decomposition and grid generation for brain modeling and visualization  

E-Print Network [OSTI]

Numerical grid generation is used to provide a framework for brain and neuron visualization. Smoothing spline surfaces are fit to contour data to generate 3D solid model reconstruction of brain tissues. Finite element methods are then used...

Batte, David Allan

1997-01-01T23:59:59.000Z

170

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Smart Grid Smart Grid Overview Smart Grid refers to electrical grids that automatically gather and communicate information on usage,...

171

Eastern Seaboard Electric Grid Fragility Maps Supporting Persistent Availability  

SciTech Connect (OSTI)

Persistently available power transmission can be disrupted by weather causing power outages with economic and social consequences. This research investigated the effects on the national power grid from a specific weather event, Hurricane Irene, that caused approximately 5.7 million customer power outages along the Eastern Seaboard in August of 2011. The objective was to describe the geographic differences in the grid s vulnerability to these events. Individual factors, such as wind speed or precipitation, were correlated with the number of outages to determine the greatest mechanism of power failure in hopes of strengthening the future power grid. The resulting fragility maps not only depicted 18 counties that were less robust than the design-standard robustness model and three counties that were more robust, but also drew new damage contours with correlated wind speeds and county features.

Walker, Kimberly A [ORNL; Weigand, Gilbert G [ORNL; Fernandez, Steven J [ORNL

2012-11-01T23:59:59.000Z

172

The Economics of Steam Electric Generation  

E-Print Network [OSTI]

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

173

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

174

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network [OSTI]

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

175

INFOGRAPHIC: Understanding the Grid | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Grid November 17, 2014 - 2:05pm Addthis Our GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by

176

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

SciTech Connect (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

177

Towards High Performance Discrete-Event Simulations of Smart Electric Grids  

SciTech Connect (OSTI)

Future electric grid technology is envisioned on the notion of a smart grid in which responsive end-user devices play an integral part of the transmission and distribution control systems. Detailed simulation is often the primary choice in analyzing small network designs, and the only choice in analyzing large-scale electric network designs. Here, we identify and articulate the high-performance computing needs underlying high-resolution discrete event simulation of smart electric grid operation large network scenarios such as the entire Eastern Interconnect. We focus on the simulator's most computationally intensive operation, namely, the dynamic numerical solution for the electric grid state, for both time-integration as well as event-detection. We explore solution approaches using general-purpose dense and sparse solvers, and propose a scalable solver specialized for the sparse structures of actual electric networks. Based on experiments with an implementation in the THYME simulator, we identify performance issues and possible solution approaches for smart grid experimentation in the large.

Perumalla, Kalyan S [ORNL; Nutaro, James J [ORNL; Yoginath, Srikanth B [ORNL

2011-01-01T23:59:59.000Z

178

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

179

Towards Effective Clustering Techniques for the Analysis of Electric Power Grids  

SciTech Connect (OSTI)

Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques on two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.

Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh; Wang, Shaobu; Mackey, Patrick S.; Hines, Paul; Huang, Zhenyu

2013-11-30T23:59:59.000Z

180

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

costs EV battery degradation costs electricity sales fixedand sales, DER capital costs, fuel costs, demand response measures and EV

Stadler, Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Smart-grid Electricity Allocation via Strip Packing with Slicing  

E-Print Network [OSTI]

,biedl,tmchan,alubiw,keshav,vpathak}@uwaterloo.ca 2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu 3 University of Guelph, Guelph in Massachusetts was used less than 88 hours per year [7]. Reducing the infrastructure size is not practical since that future smart grids would obtain (at each substation) daily "demand schedules" for appliance use from

Chan, Timothy M.

182

ANALYSIS OF ELECTRIC GRID SECURITY UNDER TERRORIST THREAT Javier Salmeron  

E-Print Network [OSTI]

with physical attacks on the power grid and neglect the issue of "cyber-attacks" on the controlling Supervisory to have limited offensive resources. We report results for standard reliability test networks to show report results for our techniques applied to reliability-benchmark networks. We search for optimal

Baldick, Ross

183

LANL physicists discuss electrical grid in journal article  

E-Print Network [OSTI]

for image below: Satellite view of the United States mainland at night. Operated by Los Alamos National of which are required to solve the problems of tomorrow's grid. The DOE, National Science Foundation and Defense Threat Reduction Agency funded this work, which supports the Laboratory's Energy Security

184

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

185

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 ÂŁ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

186

Researchers use corn waste to generate electricity  

E-Print Network [OSTI]

directly. "People are looking at using cellulose to make ethanol," said Bruce E. Logan, the Kappe professor researchers thinks corn stover can be used not only to manufacture ethanol, but to generate electricity of environmental engineering. "You can make ethanol from exploded corn stover, but once you have the sugars, you

187

Load control in low voltage level of the electricity grid using CHP appliances  

E-Print Network [OSTI]

1 Load control in low voltage level of the electricity grid using ”CHP appliances M.G.C. Bosman, V.g.c.bosman@utwente.nl Abstract--The introduction of ”CHP (Combined Heat and Power) appliances and other means of distributed on the transformers and, thus, on the grid. In this work we study the influence of introducing ”CHP appliances

Al Hanbali, Ahmad

188

Implementation of optimum solar electricity generating system  

SciTech Connect (OSTI)

Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

2014-10-24T23:59:59.000Z

189

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network [OSTI]

Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

Mendes, Goncalo

2013-01-01T23:59:59.000Z

190

Electric current generation in distorted graphene  

E-Print Network [OSTI]

Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

2014-09-23T23:59:59.000Z

191

Two-stage electric generator system  

SciTech Connect (OSTI)

The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy output from the stator winding.

Leroux, A.

1981-09-29T23:59:59.000Z

192

Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid  

E-Print Network [OSTI]

vehicles and its meaning of research An electric vehicle refers to the vehicle powered from batteries that are only powered from internal batteries, called Battery Electric Vehicle (BEV); those that can be powered the fuel cell as its power, called Fuel Cell Electric Vehicle (FCEV). BEV achieves the "zero-release" goal

Lavaei, Javad

193

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

194

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

tariff-driven demand response in these buildings. By usingbuilding electricity costs distributed energy resources costs fuel costs demand responsebuilding energy systems. Local storage will enable demand response.

Stadler, Michael

2012-01-01T23:59:59.000Z

195

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric  

E-Print Network [OSTI]

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric Vehicle-Grid Interactions David P. Tuttle and Ross Baldick Abstract--Over the past decade key technologies the first of many major vehicle markets by 2011. PEV-grid interactions comprise a mix of in- dustries

Baldick, Ross

196

A Nested Game-Based Optimization Framework for Electricity Retailers in the Smart Grid with Residential Users and PEVs  

E-Print Network [OSTI]

A Nested Game-Based Optimization Framework for Electricity Retailers in the Smart Grid California Los Angeles, CA USA {yli760, yanzhiwa, shahin, pedram}@usc.edu Abstract--In the smart grid, real to the smart grid with distributed control mechanism in order to reduce the amount of communication overhead

Pedram, Massoud

197

Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads  

E-Print Network [OSTI]

Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

Zeineldin, H. H.

198

Development of renewable energy Challenges for the electrical grids  

E-Print Network [OSTI]

, Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

Canet, LĂ©onie

199

The Economics and Feasibility of Electricity Generation using  

E-Print Network [OSTI]

benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwiseThe Economics and Feasibility of Electricity Generation using Manure Digesters on Small and Mid of electricity generation using methane from manure digesters on dairy farms under different electricity rate

Laughlin, Robert B.

200

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect (OSTI)

SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Conformal Mapping Grid Generation Method for Modeling High-Fidelity Aeroelastic Simulations  

E-Print Network [OSTI]

A CONFORMAL MAPPING GRID GENERATION METHOD FOR MODELING HIGH-FIDELITY AEROELASTIC SIMULATIONS A Thesis by GREGORY DORWAY WORLEY Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE May 2010 Major Subject: Aerospace Engineering A CONFORMAL MAPPING GRID GENERATION METHOD FOR MODELING HIGH-FIDELITY AEROELASTIC SIMULATIONS A Thesis by GREGORY DORWAY WORLEY Submitted to the O ce of Graduate Studies of Texas A...

Worley, Gregory

2010-07-14T23:59:59.000Z

202

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

T. Pähtz; H. J. Herrmann; T. Shinbrot

2015-03-16T23:59:59.000Z

203

Protecting the Electric Grid from Increasingly Severe Weather Due to  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3of Energy Protecting

204

El Paso Electric Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty, SouthEggEl686206°,TechnologiesEl

205

Electricity demand as frequency controlled reserves, ENS (Smart Grid  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | Open Energy Information ENS (Smart Grid

206

Coal based electric generation comparative technologies report  

SciTech Connect (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

207

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy  

E-Print Network [OSTI]

With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta) that are currently under development for future smart grid systems can enable load aggregators to have bidirectional commu- nications with both the grid and Electric Vehicles (EVs) to obtain real-time price and load

Tang, Jian "Neil"

208

Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in  

E-Print Network [OSTI]

Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG generation (DG) technology [1-3]. DG units may be located in distribution network or on the local load side), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy

Chen, Zhe

209

Solar Storm Risks for Maine and the New England Electric Grid,  

E-Print Network [OSTI]

Solar Storm Risks for Maine and the New England Electric Grid, and Potential Protective Measures.resilientsocieties.org #12;1 EXECUTIVE SUMMARY A severe solar storm--a historical example being the Carrington Event of 1859 of the eastern United States. Severe solar storms--of the intensity of the 1921 New York Central Storm

Schrijver, Karel

210

Life Cycle Assessment and Grid Electricity: What Do We Know and  

E-Print Network [OSTI]

explore the limits of current knowledge about grid electricity in LCA and carbon footprinting for the U cycle assessment and policy analyses in a world with incomplete and uncertain information. Introduction drivers in regional greenhouse gas intensity and in region-specific life cycle inventories (4). However

Jaramillo, Paulina

211

Experimental Evaluation of Electric Power Grid Visualization Tools in the EIOC  

SciTech Connect (OSTI)

The present study follows an initial human factors evaluation of four electric power grid visualization tools and reports on an empirical evaluation of two of the four tools: Graphical Contingency Analysis, and Phasor State Estimator. The evaluation was conducted within specific experimental studies designed to measure the impact on decision making performance.

Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin; Dalton, Angela C.

2009-12-01T23:59:59.000Z

212

False Data Injection Attacks against State Estimation in Electric Power Grids  

E-Print Network [OSTI]

the measurements of meters at physically protected locations such as substations, such attacks can introduce13 False Data Injection Attacks against State Estimation in Electric Power Grids YAO LIU and PENG also defeat malicious measurements injected by attackers. In this article, we expose an unknown

Reiter, Michael

213

False Data Injection Attacks against State Estimation in Electric Power Grids  

E-Print Network [OSTI]

the measurements of meters at physically protected locations such as substations, such attacks can introduceFalse Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu and Peng Ning also defeat malicious measurements injected by attackers. In this paper, we expose an unknown

Ning, Peng

214

Battery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash  

E-Print Network [OSTI]

at an incipient stage. A market share of about 25% is projected in the United States by year 2020, resulting in nearly five million PHEV sales per year [2]. The energy requirements of PHEVs depend significantlyBattery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash

Krstic, Miroslav

215

Implementation of battery energy storage system for the electricity grid in Singapore  

E-Print Network [OSTI]

The market of grid-level electricity storage is growing rapidly, with a predicted market value of 1.6 billion in 2012 and 8.3 billion in 2016. Electrochemical storages such as lead-acid, nickel-cadmium, sodium-sulfur and ...

Wu, Zhenqi, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

216

Coming Full Circle in Florida: Improving Electric Grid Reliability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama...

217

US Recovery Act Smart Grid Projects - Electric Transmission Systems | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:DevelopmentEnergy Information Electric

218

Wellsboro Electric Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural Electric Co Place:

219

Woodruff Electric Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWood Fuel LP Name:Electric

220

Message passing for integrating and assessing renewable generation in a redundant power grid  

SciTech Connect (OSTI)

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Proceedings of the Computational Needs for the Next Generation...  

Office of Environmental Management (EM)

Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011 Proceedings of the Computational Needs for the Next Generation Electric...

222

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network [OSTI]

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

223

Establishing Thermo-Electric Generator (TEG) Design Targets for...  

Broader source: Energy.gov (indexed) [DOE]

of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Automotive Thermoelectric Generators and HVAC...

224

Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks  

SciTech Connect (OSTI)

This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

2009-01-31T23:59:59.000Z

225

Talquin Electric Cooperative, Inc. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWac

226

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump

227

Tri State Electric Membership Corporation Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformation

228

Electrical faults modeling of the photovoltaic generator Wail Rezgui1  

E-Print Network [OSTI]

Electrical faults modeling of the photovoltaic generator Wail Rezgui1 , LeĂŻla-Hayet Mouss1 , Kinza is captured by the generator and direct electrical energy resulting from the conversion of the solar radiation of a problem at the generator. Practically, the existence of electrical defects on this type of systems can

Boyer, Edmond

229

Commitment of Electric Power Generators under Stochastic Market Prices  

E-Print Network [OSTI]

Commitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market Prices Abstract A formulation for the commitment of electric power generators under a deregulated

Mazumdar, Mainak

230

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires  

E-Print Network [OSTI]

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires K. Momeni, G. M October 2010; published online 1 December 2010 A nanocomposite electrical generator composed of an array system and loading configuration can generate up to 160% more electric potential than the values reported

Endres. William J.

231

International Coal Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation for Selected

232

Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration  

E-Print Network [OSTI]

Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

He, Miao; Zhang, Junshan

2010-01-01T23:59:59.000Z

233

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug, and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, for it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. In this paper, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains, and we confirm the model's predictions using discrete element simulations and a tabletop granular experiment.

T. Pähtz; H. J. Herrmann; T. Shinbrot

2010-03-26T23:59:59.000Z

234

Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)  

SciTech Connect (OSTI)

The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

Richard Barney Carlson; Don Scoffield; Brion Bennett

2013-12-01T23:59:59.000Z

235

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors  

E-Print Network [OSTI]

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors to reduce the fluctuation of generator power. In the second step, Supercapacitor (SC) Energy Storage System fluctuation, swell effect, power smoothing control, supercapacitor. I. [NTRODUCTION [n the recent years

Paris-Sud XI, Université de

236

Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components  

SciTech Connect (OSTI)

The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

2012-03-26T23:59:59.000Z

237

NSTAR Electric Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus Jump to:NSTAR Electric Company Country United

238

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAddSRML Map FilesEnergy

239

Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County RuralInformation

240

Secure Information Exchange Gateway for Electric Grid Operations  

SciTech Connect (OSTI)

The major objectives of the SIEGate project were to improve the security posture and minimize the cyber-attack surface of electric utility control centers and to reduce the cost of maintaining control-room-to-control-room information exchange. Major project goals included the design, development, testing, and commercialization of a single security-hardened appliance that could meet industry needs for resisting cyber-attacks while protecting the confidentiality and integrity of a growing volume of real-time information needed to ensure the reliability of the bulk electric system and interoperating with existing data formats and networking technologies. The SIEGate project has achieved its goals and objectives. The SIEGate Design Document, issued in March 2012, presented SIEGate use cases, provided SIEGate requirements, established SIEGate design principles, and prescribed design functionality of SIEGate as well as the components that make up SIEGate. SIEGate Release Version 1.0 was posted in January 2014. Release Version 1.0.83, which was posted on March 28, 2014, fixed many issues discovered by early adopters and added several new features. Release Candidate 1.1, which added additional improvements and bug fixes, was posted in June 2014. SIEGate executables have been downloaded more than 300 times. SIEGate has been tested at PJM, Entergy, TVA, and Southern. Security testing and analysis of SIEGate has been conducted at PNNL and PJM. Alstom has provided a summary of recommended steps for commercialization of the SIEGate Appliance and identified two deployment models with immediate commercial application.

Robertson, F.; Carroll, J.; Sanders, William; Yardley, Timothy; Heine, Erich; Hadley, Mark; McKinnon, David; Motteler, Barbara; Giri, Jay; Walker, William; McCartha, Esrick

2014-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

e.g. , sizing transmission towers), it makes sense to to  transmission  (HVDC  or  HVAC,  voltage  level,  tower 

Birman, Kenneth

2012-01-01T23:59:59.000Z

242

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

A.P. ,  “Market?based  prosumer  participation in the smart approach, where the “prosumer” becomes a Nash player at the 

Birman, Kenneth

2012-01-01T23:59:59.000Z

243

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Ott, “Unit commitment in PJM”, Technical Conference on Unit The long? term planning at PJM and MISO in terms of wind as two  exceptions.  In the Midwest, PJM and MISO, and in 

Birman, Kenneth

2012-01-01T23:59:59.000Z

244

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

distribution  system  design:  Automatic  reconfiguration  for  improved  reliability”, distribution  system  in  order  to  enhance  reliability 

Birman, Kenneth

2012-01-01T23:59:59.000Z

245

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

the energy  output of wind turbines and solar  panels is energy  management  systems  of  customers  equipped  with  a  solar  panel 

Birman, Kenneth

2012-01-01T23:59:59.000Z

246

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

and  Software.   Rajit Gadh, Guest ? Professor, UCLA ? Center,  gadh@ucla.edu  Rajit  Gadh  is  a  Professor  at 

Birman, Kenneth

2012-01-01T23:59:59.000Z

247

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Classification of energy models.  Tilburg University and W. W. Hogan. Energy policy models for Project Independence.and J.  McCalley.  A US energy system model for disruption 

Birman, Kenneth

2012-01-01T23:59:59.000Z

248

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

al. ,  “Privacy  for  Smart  Meters:  Towards  Undetectable algorithms.   PMU  and  smart  meters  require  data control and  scheduling.  Smart meter data may be leveraged 

Birman, Kenneth

2012-01-01T23:59:59.000Z

249

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Normark.  EHV AC and  HVDC transmission working together to also  to  transmission  (HVDC  or  HVAC,  voltage  level, necessary to  integrate  HVDC  and  EHVAC  technologies 

Birman, Kenneth

2012-01-01T23:59:59.000Z

250

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

and  solar panels or solar farms, which have fluctuating to hydroelectric, solar, and wind  farms,  and  small 

Birman, Kenneth

2012-01-01T23:59:59.000Z

251

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

system based on  PMU  data”,  CRIS  2009  ?  Fourth singular value methods for PMU data  interpretation”, PSERC Furthermore,  the  PMU  data  collected  by  the  Tennessee 

Birman, Kenneth

2012-01-01T23:59:59.000Z

252

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

model  and  formulated  a  game  among  different technology options such as nuclear, coal, or gas turbine.  gas turbines, storage, and load control, but this increased value will  be difficult to capture within production cost models 

Birman, Kenneth

2012-01-01T23:59:59.000Z

253

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

technologies,  particularly  wind,  solar  (both  photovoltaic  and  concentrated  solar  power),  geothermal,  biomass,  nuclear,  clean?coal, 

Birman, Kenneth

2012-01-01T23:59:59.000Z

254

Electricity storage for grid-connected household dwellings with PV panels  

SciTech Connect (OSTI)

Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

2010-07-15T23:59:59.000Z

255

Smart Grid The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant Misra, Member, IEEE, Guoliang Xue, Fellow, IEEE,  

E-Print Network [OSTI]

Smart Grid ­ The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant--The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely

Misra, Satyajayant

256

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

257

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

258

A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project  

SciTech Connect (OSTI)

ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

Stephen L. Schey; John G. Smart; Don R. Scoffield

2012-05-01T23:59:59.000Z

259

Design of Micro-grid System Based on Renewable Power Generation Units  

E-Print Network [OSTI]

Abstract- Micro-grid system is currently a conceptual solution to fulfill the commitment of reliable power delivery for future power systems. Renewable power sources such as wind and hydro offer the best potential for emission free power for future micro-grid systems. This paper presents a micro-grid system based on wind and hydro power sources and addresses issues related to operation, control, and stability of the system. The micro-grid system investigated in this paper represents a case study in Newfoundland, Canada. It consists of a small hydro generation unit and a wind farm that contains nine variable- speed, double-fed induction generator based wind turbines. Using Matlab/Simulink, the system is modeled and simulated to identify the technical issues involved in the operation of a micro-grid system based on renewable power generation units. The operational modes, technical challenges and a brief outline of conceptual approaches to addressing some of the technical issues are presented for further investigation.

Dr. K. Ravich; M. Manasa; Mr. P. Yohan Babu; G. V. P. Anjaneyulu

260

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network [OSTI]

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MEng Electrical Engineering student Mayure Daby is spending one year of his degree programme on placement working for National Grid.  

E-Print Network [OSTI]

on placement working for National Grid. I applied for a placement at National Grid for various reasons juggling tasks. I am currently involved in an innovative project that aims at recovering heat from transformers used on the UK electricity network to heat buildings, in a bid to reduce the carbon footprint

Stevenson, Mark

262

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

263

Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...  

Open Energy Info (EERE)

cyber security, reduces electricity demand and peak energy use, and increases reliability and energy efficiency. The system will include renewable energy generation, grid...

264

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and...

265

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

266

Multiblock Grid Generation for Simulations in Geological Formations  

E-Print Network [OSTI]

Simulating fluid flow in geological formations requires mesh generation, lithology mapping to the cells, and computing geometric properties such as normal vectors and volume of cells. The purpose of this research work is to compute and process the geometrical information required for performing numerical simulations in geological formations. We present algebraic techniques, named Transfinite Interpolation, for mesh generation. Various transfinite interpolation techniques are derived from 1D projection operators. Many geological formations such as the Utsira formation (Torp and Gale, 2004; Khattri, Hellevang, Fladmark and Kvamme, 2006) and the Snohvit gas field (Maldal and Tappel, 2004) can be divided into layers or blocks based on the geometrical or lithological properties of the layers. We present the concept of block structured mesh generation for handling such formations.

Sanjay Kumar Khattri

2006-07-17T23:59:59.000Z

267

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies  

E-Print Network [OSTI]

Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

Joskow, Paul L.

268

Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re nement.  

E-Print Network [OSTI]

Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re#28;nement. Ph Hamilton-Jacobi equations on a manifold, typically on the graph of some previously computed function z method. Keywords: Hamilton-Jacobi equations, viscosity solutions, level set method, adaptative meshes

269

Edison Electric Institute State Generation and Transmission Siting...  

Open Energy Info (EERE)

LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting DirectoryPermittingRegulatory...

270

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

271

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus...

272

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network [OSTI]

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

273

Farmers Electric Cooperative (Kalona)- Renewable Energy Purchase Rate  

Broader source: Energy.gov [DOE]

Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are...

274

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets » Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

275

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

276

IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION  

E-Print Network [OSTI]

Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

unknown authors

277

Electricity generation with looped transmission networks: Bidding to an ISO  

E-Print Network [OSTI]

on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

Ferris, Michael C.

278

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them?  

E-Print Network [OSTI]

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready, including 10% post consumer waste. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness

279

EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

280

SciTech Connect: Getting a grip on the electrical grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2) Cu (3)Getting a grip on the electrical grid

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network [OSTI]

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-06-07T23:59:59.000Z

282

2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

283

MICROGRIDS – Large Scale Integration of Micro-Generation to Low Voltage Grids  

E-Print Network [OSTI]

Key economic potential of the installation of Distributed Generation (DG) at customer premises lies in the opportunity to utilise locally the waste heat from conversion of primary fuel to electricity. Therefore there has been a significant

Nikos Hatziargyriou

284

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

of about 80 GW of coal-based generation technologyand reduces coal-based electricity generation by 18%.to offset coal- and natural gas-based electricity generation

Hand, Maureen

2008-01-01T23:59:59.000Z

285

From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser and P. R.  

E-Print Network [OSTI]

From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni. Press, 1996. 1 From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B State Univ. Press, 1996. Geological Applications of Automatic Grid Generation Tools for Finite Elements

Gable, Carl W.

286

electric generation | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop

287

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

15,1998 pp. 1424-1431 [140] Grid 2020: Towards a Policy ofInverter connected to the Grid via LCL Filter Papavasiliou,Act, Title XIII- Smart Grid, Section 1301-Statement of

Hill, Steven Craig

2013-01-01T23:59:59.000Z

288

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

289

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

290

Smart Grid Status and Metrics Report Appendices  

SciTech Connect (OSTI)

A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

2014-07-01T23:59:59.000Z

291

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network [OSTI]

for microbial fermenta- tion to ethanol. This conversion of cellulose to sugars can,suchascornstover,forethanolproduction (1-3). One of the main technical obstacles is that cellulose needs to first be converted to sugars gas through cellulose fermentation or electricity in microbial fuel cells (MFCs) (3, 4). On the anode

292

Maine: Energy Efficiency Program Helps Generate Town's Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

293

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky)  

Broader source: Energy.gov [DOE]

No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State...

294

Sales and Use Tax Exemption for Electrical Generating Facilities  

Broader source: Energy.gov [DOE]

Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

295

Alternative electric generation impact simulator : final summary report  

E-Print Network [OSTI]

This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

Gruhl, Jim

1981-01-01T23:59:59.000Z

296

Competitive electricity markets and investment in new generating capacity  

E-Print Network [OSTI]

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

297

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network [OSTI]

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

298

Applications for Certificates for Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

299

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper on renewable energy, and to develop efficient electricity storage. Renewable energy--such as wind energy

300

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Renewable Electricity Generation Success Stories | Department...  

Broader source: Energy.gov (indexed) [DOE]

Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

302

A rotating suspended liquid film as an electric generator  

E-Print Network [OSTI]

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

303

Generating Revenue for Generating Green Electricity: Evidence from Laboratory Experiments on  

E-Print Network [OSTI]

Programs The first generation of green electricity programs were established over the last fifteen years generation. As of 2009, 860 such programs were operating in the United States (Bird and Sumner, 2010 per kilowatt-hour and decides the fraction of monthly electricity consumption to which the premium

Edwards, Paul N.

304

INTEGRAL: ICT-platform based Distributed Control in electricity grids with a large share of Distributed  

E-Print Network [OSTI]

operating grids using extended context information from the level of individual devices to the highest HVDC

Paris-Sud XI, Université de

305

The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson  

E-Print Network [OSTI]

distributed generation if not done carefully. 1. Introduction With the increased utilization of local, oftenThe Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A@engr.wisc.edu Abstract In this paper we investigate the impact of the introduction of distributed generation

Dobson, Ian

306

Effects of pulsed-power loads upon an electric power grid  

SciTech Connect (OSTI)

Certain proposed particle-accelerator and laser experiments, and other devices related to fusion research, require multi-megawatt, repetitive power pulses, often at low (subsynchronous) frequency. While some power-delivery technologies call for a certain degree of buffering of the utility demand using capacitive, inductive, or inertial energy storage, considerations have also been made for serving such loads directly from the line. In either case, such pulsed loads represent non-traditional applications from the utility's perspective which, in certain cases, can have significant design and operational implications. This paper outlines an approach to the analysis of the effects of such loads upon the electric power grid using existing analysis techniques. The impacts studied include busvoltage flicker, transient and dynamic stability, and torsional excitation. The impact of a particular pulsed load is examined and illustrated for the power network serving the Los Alamos National Laboratory. 19 refs., 13 figs.

Smolleck, H.A.; Ranade, S.J.; Prasad, N.R. (New Mexico State Univ., Las Cruces, NM (USA). Dept. of Electrical and Computer Engineering); Velasco, R.O. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

307

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

SciTech Connect (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

308

Electric Power Generation Systems | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric Grid -

309

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric FuelGas

310

Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 3. March 2012.  

E-Print Network [OSTI]

Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel operator. Index Terms-- Charge Scheduling, EV, Smart Grid, V2G I. INTRODUCTION One million electric and application to facilitate "smart" charging has been proposed [6], however integration of the mobile component

California at Los Angeles, University of

311

Modeling of a detonation driven, linear electric generator facility  

E-Print Network [OSTI]

the heat and the force produced from the detonation wave. In previous experimental work, a single that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One. For instance, it may be possible to design a generator that uses the force created by the pressure rise from

Texas at Arlington, University of

312

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

313

Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)  

Broader source: Energy.gov [DOE]

Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

314

Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption  

E-Print Network [OSTI]

of a Smart Grid Smart Meters Intelligent Grid Expanded Energy Sources 3 Digital Meters Meter Data Management System Common Portal / Data Repository Home Area Network CNP?s smart grid journey A history of stakeholder commitment 1990s... Phase 1 covers about 15 percent of CenterPoint Energy?s service area, some of the improvements will benefit consumers in the entire system. 2010-2014 Deployment of the Intelligent Grid ? IG Infrastructure ? Automate up to 29 substations ? Smart...

Bartel, W.

2012-01-01T23:59:59.000Z

315

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facility’s electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

316

Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks  

SciTech Connect (OSTI)

GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

None

2012-01-11T23:59:59.000Z

317

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network [OSTI]

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

318

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

319

The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications  

SciTech Connect (OSTI)

1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the development of flow-assisted nickel zinc battery technology. This technology has the promise of enabling low-cost (<$250 / kWh) energy storage, while overcoming the historical poor cycle-life drawback. To date, the results have been promising, with a cycle life of 1,500 cycles demonstrated in small laboratory cells – an improvement of approximately 400%. Prior state of the art nickel zinc batteries have only demonstrated about 400 cycles to failure.

Banerjee, Sanjoy

2013-03-31T23:59:59.000Z

320

From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser and P. R.  

E-Print Network [OSTI]

From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni. Press, 1996. 3-Dimensional Wells and Tunnels for Finite Element Grids 1 3-Dimensional Wells and Tunnels for Finite Element Grids Terry A. Cherry1 Carl W. Gable1 Harold Trease2 ABSTRACT Modeling fluid, vapor

Gable, Carl W.

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

322

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

323

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

324

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

325

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

326

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation  

E-Print Network [OSTI]

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical fish consumption, and significant portions of the general population are believed to be consuming toxicologically significant levels of mercury (e.g., National Research Council, 2000). Historical discharges ­ e

327

Effective critical electric field for runaway electron generation  

E-Print Network [OSTI]

In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

2014-01-01T23:59:59.000Z

328

Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation  

SciTech Connect (OSTI)

GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

None

2012-03-16T23:59:59.000Z

329

Brookhaven National Laboratory Solar Energy and Smarter Grid  

E-Print Network [OSTI]

Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

330

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network [OSTI]

in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

331

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect (OSTI)

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

332

Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges  

E-Print Network [OSTI]

Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

Fang, Xi; Xue, Guoliang

2011-01-01T23:59:59.000Z

333

A Framework of Incorporating Spatio-temporal Forecast in Look-ahead Grid Dispatch with Photovoltaic Generation  

E-Print Network [OSTI]

Increasing penetration of stochastic photovoltaic (PV) generation into the electric power system poses significant challenges to system operators. In the thesis, we evaluate the spatial and temporal correlations of stochastic PV generation...

Yang, Chen

2013-05-02T23:59:59.000Z

334

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

335

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation forElectricity

336

12827Federal Register / Vol. 77, No. 42 / Friday, March 2, 2012 / Notices National Grid Transmission Services Corporation Bangor Hydro Electric Company .............................................. Docket No. EL1149000.  

E-Print Network [OSTI]

. Cooperating agencies: Federal, state, local, and tribal agencies with jurisdiction and/or special expertise12827Federal Register / Vol. 77, No. 42 / Friday, March 2, 2012 / Notices National Grid Transmission Services Corporation Bangor Hydro Electric Company

337

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

costs, EV battery degradation costs, and sales. min C ?????electricity sales, $ Electricity exchange with EVs D EV m,h

Stadler, Michael

2012-01-01T23:59:59.000Z

338

National Electrical Manufacturers Association (NEMA) Vids for Grids: New Media for the New Energy Workforce  

SciTech Connect (OSTI)

The objective of this program was to use a new media â?? videos posted on YouTube â?? to augment education about the emerging Smart Grid. All of the specific tasks have been completed per plan, with twelve videos and three podcasts posted on YouTube on the NEMA Vids4Grids channel.

Gene Eckhart

2011-12-15T23:59:59.000Z

339

Identification and definition of unbundled electric generation and transmission services  

SciTech Connect (OSTI)

State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

Kirby, B.; Hirst, E.; Vancoevering, J.

1995-03-01T23:59:59.000Z

340

Sandia National Laboratories: How a Grid Manager Meets Demand...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to meet peak loads. Comments are closed. Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid Synchronization Important? How a Grid Manager...

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-  

E-Print Network [OSTI]

The key to fully tapping the promise of the smart grid in the electric utility industry is highly grid a reality. AT&T already has teamed up with Itron, SmartSynch, Cooper Power Systems and Silver will be better positioned to complete the smart grid rollout. The smart grid is often mistakenly thought

Fisher, Kathleen

342

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

SciTech Connect (OSTI)

We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

2014-06-17T23:59:59.000Z

343

The impact of carbon taxes or allowances on the electric generation market in the Ohio and ECAR region  

SciTech Connect (OSTI)

The North American electricity grid is separated into 11 regional reliability councils, collectively called the North American Electric Reliability Council (NERC). The East Central Area Reliability Coordination Agreement (ECAR) is the reliability council that covers Ohio and Indiana, along with parts of Kentucky, Illinois, Maryland, Michigan, Pennsylvania, Virginia, and West Virginia. Ohio and the rest of the ECAR region rely more heavily on coal-fired generation than any other US region. The purpose of this report is to study the effect of carbon reduction policies on the cost and price of generation in the ECAR region, with an emphasis on Ohio. In order to do that, the author modeled the possible electric generation system for the ECAR and Ohio region for the year 2010 using a model developed at Oak Ridge National Laboratory called the Oak Ridge Competitive Electric Dispatch model (ORCED). He let the model optimize the system based on various factors and carbon reduction policies to understand their impact. He then used the electricity prices and assumed demand elasticities to change the demands while also requiring all power plants to be profitable. The author discusses the different potential policies for carbon reduction and issues involving a restructured market; describes the model used for this analysis, the ECAR electricity sector, and the establishment of a base case; and describes the results of applying various carbon emission reduction approaches to the region. 14 figs., 5 tabs.

Hadley, S.W.

1998-07-01T23:59:59.000Z

344

Integrating High Levels of Renewables into the Lanai Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind turbine * Run-of-river hydropower * Biomass power * Generator: diesel, gasoline, biogas, alternative and custom fuels, co- fired * Electric utility grid * Microturbine * Fuel...

345

Design And Development Of Small Wind Energy Systems Is A Soft Path For Power Generation And Environment Conservation For Off Grid Applications In India.  

E-Print Network [OSTI]

ABSTRACT: This paper describes the design a new evolving electrical power generation system with small wind turbine. Which offer solutions to meet local energy requirements of a specific location. Energy conservation decreases energy requirements, promotes energy efficiency and facilitates development of renewable. Wind energy dominates as an immediate viable cost effective option which promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids million ton of green house gas emission causing ozone depletion and other environmental impacts like global warming. This paper gives an over view about the current status and a possible development for small wind turbines for off – grid applications in India. KEY WORDS: wind energy, wind power generation system, wind sensor, Energy resources, and wind

unknown authors

346

Description of a solder pulse generator for the single step formation of ball grid arrays  

SciTech Connect (OSTI)

The traditional geometry for surface mount devices is the peripheral array where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. The leads on these fine pitch devices are fragile and can be easily bent. It becomes increasingly difficult to deliver solder past to leads spaced as little as 0.012 inch apart. Too much solder mass can result in bridging between leads while too little solder can contribute to the loss of mechanical and electrical continuity. A solution is to shift the leads from the periphery of the device to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. A system has been designed and constructed to deposit an entire array of several hundred uniform solder droplets onto a printed circuit board in a fraction of a second. The solder droplets wet to the interconnect lands on a pc board and forms a basis for later application of a BGA device. The system consists of a piezoelectric solder pulse unit, heater controls, an inert gas chamber and an analog power supply/pulse unit.

Schmale, D.T.; Frear, D.R.; Yost, F.G.; Essien, M. [Sandia National Labs., Albuquerque, NM (United States). Materials and Process Sciences Center

1997-02-01T23:59:59.000Z

347

Electricity generation and environmental externalities: Case studies, September 1995  

SciTech Connect (OSTI)

Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

NONE

1995-09-28T23:59:59.000Z

348

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

SciTech Connect (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

349

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

350

Regulated apparatus for the generation of electrical energy, such as a wind generator  

SciTech Connect (OSTI)

The invention relates to a regulated apparatus for the generation of electrical energy. A wind generator comprises a propeller having fixed blades and a generator connected by a transmission to the propeller and having sets of main and secondary brushes. The hub of the propeller comprises a rotor of an eddy-current brake whose inductor stator is supplied by a current delivered, starting from a certain speed , by the secondary brushes of the generator which are angularly shifted relative to their neutral position.

Kant, M.

1980-04-15T23:59:59.000Z

351

Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel Cell  

E-Print Network [OSTI]

and the exoelectrogen Geobacter sulfurreducens generated electricity, and the power generated using soluble celluloseARTICLE Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel.interscience.wiley.com). DOI 10.1002/bit.22015 ABSTRACT: Electricity can be directly generated by bacteria in microbial fuel

352

TEC as electric generator in an automobile catalytic converter  

SciTech Connect (OSTI)

Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

1996-12-31T23:59:59.000Z

353

Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes  

E-Print Network [OSTI]

with the introduction of dynamic electricity energy pricing models since electricity consumers can use their PV, and thereby, minimize their electricity bill. Due to the characteristics of a realistic electricity price period under a general electricity energy price function. The proposed algorithm is based on dynamic

Pedram, Massoud

354

Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid  

E-Print Network [OSTI]

The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of ...

Alhajeri, Nawaf S.

355

Next-generation building energy management systems and implications for electricity markets.  

SciTech Connect (OSTI)

The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

2011-08-11T23:59:59.000Z

356

Abstract--The deployment of small (generators, heat and electrical storage, efficiency investments,  

E-Print Network [OSTI]

1 Abstract--The deployment of small (generators, heat and electrical storage-CAM], extended to incorporate electrical storage options. DER-CAM chooses annual energy bill minimizing systems management systems, cogeneration, cooling, cost optimal control, dispersed storage and generation

Guillas, Serge

357

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

358

Risk implications of the deployment of renewables for investments in electricity generation  

E-Print Network [OSTI]

This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

2014-01-01T23:59:59.000Z

359

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-Ă?ela, Eranda

360

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future  

SciTech Connect (OSTI)

Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

Landis Kannberg

2011-10-11T23:59:59.000Z

362

PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future  

ScienceCinema (OSTI)

Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

Landis Kannberg

2013-06-10T23:59:59.000Z

363

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

364

From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications  

ScienceCinema (OSTI)

The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

Ken Marken

2010-01-08T23:59:59.000Z

365

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

366

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *  

E-Print Network [OSTI]

1 Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially that generation firms have in restructured electricity markets for supporting long-term transmission investments.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

367

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

368

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders  

E-Print Network [OSTI]

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders Department, construction and testing of an electrical generator intended for interface with a MEMS internal combustion (IC fuels through the use of internal combustion (IC) engines paired with electrical generators (see [4

Sanders, Seth

369

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

370

A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation  

E-Print Network [OSTI]

an electric transmission network with wind power generation and their impact on its reliability. A stochastic disconnections leading to massive network blackout. 1. Introduction Systems of electric power generation, supply of generating units, the transfer of electric power over networks of transmission lines and, finally

Paris-Sud XI, Université de

371

Use of Linear Predictive Control for a Solar Electric Generating System  

E-Print Network [OSTI]

1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Engineering Drive Madison, WI, 53706, USA ABSTRACT In a Solar Electric Generating System (SEGS A solar electric generating system (SEGS), shown in Figure 1, refers to a class of solar energy systems

Wisconsin at Madison, University of

372

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Under Various Electricity Tariffs Firestone, R. , Creighton,Under Various Electricity Tariffs Table of Contents Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

373

Electrical motor/generator drive apparatus and method  

DOE Patents [OSTI]

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

374

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation

375

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry for

376

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

377

Submerged electricity generation plane with marine current-driven motors  

DOE Patents [OSTI]

An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

2014-07-01T23:59:59.000Z

378

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by batterybattery minimum state of charge, dimensionless EV battery charging efficiency, dimensionless EV battery discharging efficiency, dimensionless electricity storage

Stadler, Michael

2012-01-01T23:59:59.000Z

379

Electric power grid control using a market-based resource allocation system  

DOE Patents [OSTI]

Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

Chassin, David P

2014-01-28T23:59:59.000Z

380

AUSTRIAN GRID AUSTRIAN GRID  

E-Print Network [OSTI]

AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Real-Time Power Balancing in Electric Grids with Distributed Storage  

E-Print Network [OSTI]

that the algorithm converges quickly and provides asymptotically optimal performance as the capacity of DS units and solar, are expected to be integrated into the future power grid. For example, the European Commission aims to include 20% renewable energy in the EU energy profile by 2020 [3], and California plans

Liang, Ben

382

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect (OSTI)

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

383

On parallel electric field generation in transversely inhomogeneous plasmas  

E-Print Network [OSTI]

The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field aligned) speed attained by electrons. However, parallel ion velocity decreases linearly with inverse of the mass ratio m_i/m_e. These results can be interpreted as following: (i) ion dynamics plays no role in the E_{||} generation; (ii) E_{||} \\propto 1/m_i scaling is caused by the fact that omega_d = 0.3 omega_{ci} \\propto 1/m_i is decreasing with the increase of ion mass, and hence the electron fluid can effectively "short-circuit" (recombine with) the slowly oscillating ions, hence producing smaller E_{||}.

David Tsiklauri

2007-11-28T23:59:59.000Z

384

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

solar PV and distributed generation. UTILITY RATE DESIGN ANDutility concerns that a high penetration of inverter-based solar energy systems along with other distributed generation

Hill, Steven Craig

2013-01-01T23:59:59.000Z

385

Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis  

E-Print Network [OSTI]

In this article, we investigate the competitive interaction between electrical vehicles or hybrid oil-electricity vehicles in a Cournot market consisting of electricity transactions to or from an underlying electricity distribution network. We provide a mean field game formulation for this competition, and introduce the set of fundamental differential equations ruling the behavior of the vehicles at the system equilibrium, namely the mean field equilibrium. This framework allows for a consistent analysis of the evolution of the sale-and-purchase price of electricity as well as of the instantaneous total demand. Simulations precisely quantify those parameters and suggest that following the charge and discharge policy at the equilibrium allows for a significant reduction of the daily electricity peak demand.

Couillet, Romain; Tembine, Hamidou; Debbah, Merouane

2011-01-01T23:59:59.000Z

386

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

Electric Coordinating Council (WECC), the National RenewableSubstations Recommendations For WECC Transmission Expansioncoordinated with the CAISO and WECC. OTHER The target budget

Hill, Steven Craig

2013-01-01T23:59:59.000Z

387

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)  

SciTech Connect (OSTI)

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

Not Available

2010-10-01T23:59:59.000Z

388

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

is limited by battery size - Heat storage is limited bybattery discharging efficiency, dimensionless electricity storagefor other non-storage technologies, $ EV battery degradation

Stadler, Michael

2012-01-01T23:59:59.000Z

389

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network [OSTI]

S. Beer, J. Lay and V. Battaglia. 2010. “The added economicJ. Lai, C. Marnay, and V. Battaglia. 2010. “Plug-in Electric

Mendes, Goncalo

2013-01-01T23:59:59.000Z

390

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network [OSTI]

utility purchases by investment in additional PV and battery storage. Keywords: Distributed Generation,

Mendes, Goncalo

2013-01-01T23:59:59.000Z

391

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

392

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

SciTech Connect (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

393

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network [OSTI]

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long Wei Ding, Liangcheng Zhou, and Stephen Y. Chou* NanoStructure Laboratory, Department of Electrical

394

Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks  

E-Print Network [OSTI]

, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

Nagurney, Anna

395

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

396

Science Blog -Bacterium cleans up uranium, generates electricity Create an account  

E-Print Network [OSTI]

Science Blog - Bacterium cleans up uranium, generates electricity Create an account :: Home electricity Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published

Lovley, Derek

397

Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

Whyatt, Greg A.; Chick, Lawrence A.

2012-04-01T23:59:59.000Z

398

Maximizing Return on Investment of a Grid-Connected Hybrid Electrical Energy Storage System  

E-Print Network [OSTI]

-of-day pricing policy [3] with much higher energy price during peak hours for residential users, incentivizing energy when the electricity price is low and supply energy for use when the electricity price is high [6 total energy cost saving compared to its capital cost (i.e., the purchase price of the system plus its

Pedram, Massoud

399

he prospect of millions of vehicles plugging into the nation's electric grid in the coming decades  

E-Print Network [OSTI]

: Tesla Motors recently intro- duced an all-electric vehicle. See sidebar, p. 34.) Two startup firms plan of Tesla Motors The all-electric Tesla Roadster can go from 0 to 60 in about 4 sec- onds (see p. 34 ). 28

Firestone, Jeremy

400

Three-dimensional hybrid grid generator and unstructured flow solver for compressors and turbines  

E-Print Network [OSTI]

/Output control panel. : : : : : : : : : : : : : : : : : : : 87 19 GUI: Geometry panel. : : : : : : : : : : : : : : : : : : : : : : : : : : 87 20 GUI: Execution control panel. : : : : : : : : : : : : : : : : : : : : : : 88 21 Test case airfoil... by Wieghardt and Tillmann. The computed result is based on the k ?! model. : : : : : : : : : : : : : : : : : : : 123 46 Detail of the Honeywell centrifugal compressor impeller geometry. : : 125 47 Computational grid...

Kim, Kyusup

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RESEARCH ARTICLE The proteome survey of an electricity-generating organ  

E-Print Network [OSTI]

RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

Vertes, Akos

402

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

SciTech Connect (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

403

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network [OSTI]

in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member...

Rastler, D. M.

404

The economic impact of state ordered avoided cost rates for photovoltaic generated electricity  

E-Print Network [OSTI]

The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

Bottaro, Drew

1981-01-01T23:59:59.000Z

405

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

406

Stuart Michael Cohen The Implications of Flexible CO2 Capture on the ERCOT Electric Grid  

E-Print Network [OSTI]

and compression systems to partial- or zero-load in order to increase electricity output. Two models were created of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science

Rochelle, Gary T.

407

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

408

DESIGN OF TEMPERATURE SENSOR ARRAY IN SMART ELECTRIC GRID BASED ON SAW RESONATORS  

E-Print Network [OSTI]

and electrical equipment connected at high voltage switchgear contacts, dry-type transformers, the overhead line, discrete Hartley Transform (DHT) and the method of fast searching center frequency of sensors by comparison

Wang, Ji

409

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

410

Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)  

SciTech Connect (OSTI)

GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

None

2012-03-01T23:59:59.000Z

411

Smart grids are forcing the evolution of grid operational strategies. The variability inherent in large-scale renewable generation challenges existing regulation approaches.  

E-Print Network [OSTI]

stable, optimal operation. Wide Area Monitoring and Control (WAMC) Phasor measurement units (PMUs transformers (TCPSTs, phase angle differences), and unified power flow controllers (UPFCs, all of the aboveSmart grids are forcing the evolution of grid operational strategies. The variability inherent

Hiskens, Ian A.

412

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

413

Floating offshore wind farms : demand planning & logistical challenges of electricity generation .  

E-Print Network [OSTI]

??Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind… (more)

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

414

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid… (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

415

Electrically heated particulate filter diagnostic systems and methods  

DOE Patents [OSTI]

A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

Gonze, Eugene V [Pinckney, MI

2009-09-29T23:59:59.000Z

416

Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet  

E-Print Network [OSTI]

energy savings in the American Electric Power West/PCA(Table 7). This was input in the last row of the American Electric Power West/PCA column in Table 9. Then, the NOx emissions reductions due to the energy savings by county were calculated as shown...

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

2003-01-01T23:59:59.000Z

417

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

418

Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing  

E-Print Network [OSTI]

, when large data centers suddenly increase their energy consumption in low price regions, they may of a data center consumes a tremendous amount of electricity, and the energy cost accounts for a large portion of the data center's operation cost. This leads to a growing interest towards reducing the energy

Huang, Jianwei

419

Radiological characterization of main cooling reservoir bottom sediments at The South Texas Project Electrical Generating Station  

E-Print Network [OSTI]

The South Texas Project Electrical Generating Station (STPEGS operating license directs that an effective radiological environmental monitoring program be established. Site- specific data should then augment the generation of an accurate dose model...

Blankinship, David Randle

1993-01-01T23:59:59.000Z

420

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation  

SciTech Connect (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

Singh, Ruchi; Vyakaranam, Bharat GNVSR

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed  

E-Print Network [OSTI]

Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

Johnson, Eric E.

422

Method of generating electricity using an endothermic coal gasifier and MHD generator  

DOE Patents [OSTI]

A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

Marchant, David D. (Richland, WA); Lytle, John M. (Richland, WA)

1982-01-01T23:59:59.000Z

423

Integrating High Levels of Renewables in to the Lanai Electric Grid  

SciTech Connect (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment.

Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P.

2012-06-01T23:59:59.000Z

424

A principle based system architecture framework applied for defining, modeling & designing next generation smart grid systems  

E-Print Network [OSTI]

A strong and growing desire exists, throughout society, to consume electricity from clean and renewable energy sources, such as solar, wind, biomass, geothermal, and others. Due to the intermittent and variable nature of ...

Sachs, Gregory (Gregory Dennis)

2010-01-01T23:59:59.000Z

425

Smart Grid Investment Grant Recipient Information | Department...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity...

426

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

427

Single and double grid long-range alpha detectors  

DOE Patents [OSTI]

Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

MacArthur, Duncan W. (Los Alamos, NM); Allander, Krag S. (Ojo Caliente, NM)

1993-01-01T23:59:59.000Z

428

Single and double grid long-range alpha detectors  

DOE Patents [OSTI]

Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

MacArthur, D.W.; Allander, K.S.

1993-03-16T23:59:59.000Z

429

Future Grid: The Environment Future Grid Initiative White Paper  

E-Print Network [OSTI]

Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

430

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode  

E-Print Network [OSTI]

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode D. Luo, H.T. Dai, X.W. Sun , H.V. Demir School of Electrical and Electronic Engineering, Nanyang Keywords: Diffraction Liquid crystal devices Propagation A pair of electrically switchable finite energy

Demir, Hilmi Volkan

431

Superconductivity for Electric Systems Program Review LANL Contributions to GE HTS Generator  

E-Print Network [OSTI]

-section · Develop a heat generation profile => thermal analysis #12;Superconductivity for Electric Systems Program of coolant loop to verify heat due to flow work on helium #12;Superconductivity for Electric Systems Program for Electric Systems Program Review Stationary heat pipe tests were necessary to determine performance impact

432

EV3 : Traction drives and generators A: Electric machine design and optimization 1  

E-Print Network [OSTI]

EV3 : Traction drives and generators A: Electric machine design and optimization 1 Influence Electrical Machine Type B. Aslan1 , J. Korecki1 , T. Vigier1 , E. Semail1 bassel.aslan@yahoo.com, korecki according to the electrical angle e (angle between current and back-EMF vector), for different values

Boyer, Edmond

433

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

utility experience with RTP tariffs is described in 3. Distributed GenerationUtilities Commission, Division of Ratepayer Advocates have also provided support on related work. Distributed Generation

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

434

Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell  

E-Print Network [OSTI]

Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

2005-01-01T23:59:59.000Z

435

Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial  

E-Print Network [OSTI]

Water Research 39 (2005) 4961­4968 Electricity generation from swine wastewater using microbial September 2005 Abstract Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters indicated that electricity could be generated from swine wastewater containing 83207190 mg/L of soluble

436

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network [OSTI]

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

437

Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge  

E-Print Network [OSTI]

Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum

438

Electric Power Generation from Coproduced Fluids from Oil and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

oil and gas settings. lowgosnoldcoproducedfluids.pdf More Documents & Publications Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical...

439

Effect of Wind Intermittency on the Electric Grid: Mitigating the Risk of Energy Deficits  

E-Print Network [OSTI]

Successful implementation of California's Renewable Portfolio Standard (RPS) mandating 33 percent renewable energy generation by 2020 requires inclusion of a robust strategy to mitigate increased risk of energy deficits (blackouts) due to short time-scale (sub 1 hour) intermittencies in renewable energy sources. Of these RPS sources, wind energy has the fastest growth rate--over 25% year-over-year. If these growth trends continue, wind energy could make up 15 percent of California's energy portfolio by 2016 (wRPS15). However, the hour-to-hour variations in wind energy (speed) will create large hourly energy deficits that require installation of other, more predictable, compensation generation capacity and infrastructure. Compensating for the energy deficits of wRPS15 could potentially cost tens of billions in additional dollar-expenditure for fossil and / or nuclear generation capacity. There is a real possibility that carbon dioxide and other greenhouse gas (GHG) emission reductions will miss the California ...

George, Sam O; Nguyen, Scott V

2010-01-01T23:59:59.000Z

440

Security and privacy in demand response systems in smart grid.  

E-Print Network [OSTI]

??Demand response programs are used in smart grid to improve stability of the electric grid and to reduce consumption of electricity and costs during peak… (more)

Paranjpe, Mithila

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric0-A2and- June 6, 2013-

442

Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper  

E-Print Network [OSTI]

)-965-1643 Fax: (480)-965-0745 Notice Concerning Copyright Material This copyrighted document may be distributed. 2012 Arizona State University. All rights reserved. #12;i Acknowledgements The support for research Dynamic balancing of load and generation Wide area controls, including integrative controls

443

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network [OSTI]

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

444

E-Print Network 3.0 - adaptive grid generation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with an increasing amount of de-central "green" energy generation, which... with (remote) control functions; Smart de-central energy ... Source: IBM T.J. Watson Research...

445

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network [OSTI]

of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements chains and emission factors for the generation, transmission and distribution portions of the electricity, for electricity and for particular products, results show environmental impacts split up by generation type

446

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

SciTech Connect (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

447

Mobile Applications and Algorithms to Facilitate Electric Vehicle Deployment  

E-Print Network [OSTI]

side management, to make better use of volatile renewable generation, makes them an attractive that of traditional vehicles, but the possibility of integrating an electric fleet with the smart grid, using demand component in building an efficient smart grid. Various companies have introduced hybrid electric vehi- cles

de Veciana, Gustavo

448

Proceedings of the Computational Needs for the Next Generation Electric  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid Workshop, April 19-20, 2011 |

449

DOE Announces Webinars on Next Generation Electric Machines, Zero Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrillingRFIChallenges,Buildings, and

450

Edison Electric Institute State Generation and Transmission Siting  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGrid EUEdgecombe-MartinEdgewood isDirectory |

451

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty, SouthEggEl686206°,Technologies

452

Identifying emerging smart grid impacts to upstream and midstream natural gas operations.  

SciTech Connect (OSTI)

The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

McIntyre, Annie

2010-09-01T23:59:59.000Z

453

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions  

E-Print Network [OSTI]

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid, controlling and managing the demands of customers. A smart grid is a huge complex network composed of millions

Aloul, Fadi

454

Electrical ship demand modeling for future generation warships  

E-Print Network [OSTI]

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

455

La Plata Electric Association- Renewable Generation Rebate Program  

Broader source: Energy.gov [DOE]

La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or...

456

Generation of Dielectrophoretic Force under Uniform Electric Field  

E-Print Network [OSTI]

Effective dipole moment method has been widely accepted as the de facto technique in predicting the dielectrophoretic force due to the non-uniform electric field. In this method, a finite-particle is modeled as an equivalent ...

Kua, C.H.

457

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

27 Table 3. carbon intensity of electric load offset fromconsumption. The carbon intensity of natural gas is 0.052Table 3 summarizes the carbon intensities of various energy

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

458

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

459

AMO FOA Targets Advanced Components for Next-Generation Electric...  

Office of Environmental Management (EM)

power electronics (i.e., wide band gap devices) with high RPM, high power density and energy efficient megawatt (MW) class electric motors in three primary areas: (1) chemical...

460

Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water  

E-Print Network [OSTI]

through removal of metals from solution, but also for producing useful products such as electricity from gases or liquid fuels such as hydrogen or methanol. However, new types of microbial fuel cells

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Renewable Power Options for Electricity Generation on Kauai...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7% renewable energy installed in their system. Their strategic plan calls for 50% of electricity from renewable energy by 2023. KIUC is well on their way to achieving this goal...

462

Electric Generating and Transmission Facilities – Emissions Management (Iowa)  

Broader source: Energy.gov [DOE]

This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

463

A model-based approach to regulating electricity distribution under new operating conditions  

E-Print Network [OSTI]

New technologies such as distributed generation and electric vehicles are connecting to the electricity distribution grid, a regulated natural monopoly. Existing regulatory schemes were not designed for these new technologies ...

Yap, Xiang Ling

2012-01-01T23:59:59.000Z

464

Backup Generators (BUGS): The Next Smart Grid Peak Resource? | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWS Migratory

465

Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity  

E-Print Network [OSTI]

We propose a simple relativistic derivation of the electric and the magnetic fields generated by an electric point charge moving with constant velocity. Our approach is based on the radar detection of the point space coordinates where the fields are measured. The same equations were previously derived in a relatively complicated way2 based exclusively on general electromagnetic field equations and without making use of retarded potentials or relativistic equations

Bernhard Rothenstein; Stefan Popescu; George J. Spix

2006-01-05T23:59:59.000Z

466

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

467

Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE  

E-Print Network [OSTI]

Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

468

A Microfabricated Inductively-Coupled Plasma Generator Department of Electrical and Computer Engineering,  

E-Print Network [OSTI]

of the supplied power. This mechanism of RF plasma generation is referred to as capacitive coupling. Electrodeless generation7 . The inductively-coupled plasma (ICP) is one type of electrodeless discharge that is now widelyA Microfabricated Inductively-Coupled Plasma Generator J. Hopwood Department of Electrical

469

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

470

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

471

GREEN Grid PhD Project Descriptions February 2014  

E-Print Network [OSTI]

, and with a number of electricity industry partners. The project, officially titled "Renewable Energy and the Smart Grid" will contribute to a future New Zealand with greater renewable generation and improved energy.epecentre.ac.nz. PhD Description The growth of inherently variable distributed renewable generation

Hickman, Mark

472

Grid Architecture William E. Johnston  

E-Print Network [OSTI]

·numerical grid generators ·etc. Apache Tomcat&WebSphere &Cold Fusion=JVM + servlet instantiation + routing

473

Carbon-free generation Carbon-free central generation of electricity, either through fossil  

E-Print Network [OSTI]

State Smart Grid Consortium (NYSSCG) provide a solid connection to local and regional utility needs research is focused on developing a variety of storage technologies, including advanced battery materials adjusts accordingly. The Lab is actively working with a New York State utility on a modeling technology

Ohta, Shigemi

474

DOE Announces Webinars on Next Generation Electric Machines,...  

Energy Savers [EERE]

typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars April 1: Live Webinar on Next Generation...

475

San Diego Solar Panels Generate Clean Electricity Along with...  

Broader source: Energy.gov (indexed) [DOE]

of 20 MW of renewable energy systems. This includes systems generating energy from biogas and hydroelectric sources at the Point Loma Wastewater Treatment Plant - also a...

476

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

477

Electrically heated particulate filter enhanced ignition strategy  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

Gonze, Eugene V; Paratore, Jr., Michael J

2012-10-23T23:59:59.000Z

478

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

Broader source: Energy.gov [DOE]

This study, completed by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology.

479

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

480

Critical Electric Power Issues in Pennsylvania  

E-Print Network [OSTI]

Critical Electric Power Issues in Pennsylvania: Transmission, Distributed Generation and Continuing Services when the Grid Fails Produced by the Carnegie Mellon Electricity Industry Center for the Pa-268-3003, apt@cmu.edu. Executive Director of the Carnegie Mellon Electricity Industry Center at Carnegie Mellon

Note: This page contains sample records for the topic "generation electric grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect (OSTI)

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

482

Short term generation scheduling in photovoltaic-utility grid with battery storage  

SciTech Connect (OSTI)

This paper presents an efficient approach to short term resource scheduling for an integrated thermal and photovoltaic-battery generation. The proposed model incorporated battery storage for peak load shaving. Several constraints including battery capacity, minimum up/down time and ramp rates for thermal units, as well as natural photovoltaic (PV) capacity are considered in the proposed model. A case study composed of 26 thermal units and a PV-battery plant is presented to test the efficiency of the method.

Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering] [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering; Abdul-Rahman, K.H. [Siemens Energy and Automation, Brooklyn Park, MN (United States)] [Siemens Energy and Automation, Brooklyn Park, MN (United States)

1998-08-01T23:59:59.000Z

483

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect (OSTI)

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

484

Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

485

Dynamic modelling of generation capacity investment in electricity markets with high wind penetration   

E-Print Network [OSTI]

The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

Eager, Daniel

2012-06-25T23:59:59.000Z

486

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

487

Modeling Water Withdrawal and Consumption for Electricity Generation in the United States  

E-Print Network [OSTI]

Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

Strzepek, Kenneth M.

2012-06-15T23:59:59.000Z

488

Did English generators play cournot? : capacity withholding in the electricity pool  

E-Print Network [OSTI]

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

Green, Richard

2004-01-01T23:59:59.000Z

489

Gas production response to price signals: Implications for electric power generators  

SciTech Connect (OSTI)

Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

Ferrell, M.L.

1995-12-31T23:59:59.000Z

490

General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement  

E-Print Network [OSTI]

Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

Lanz, Bruno, 1980-

491

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

492

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

493

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

494

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system   

E-Print Network [OSTI]

Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

Issaeva, Natalia

2009-01-01T23:59:59.000Z

495

Producing methane from electrical current generated using renewable energy sources using  

E-Print Network [OSTI]

Producing methane from electrical current generated using renewable energy sources using power production (33% efficient power plants) (Does not include solar and geothermal energy sources) 3 #12;New Energy Sources Available using Microbial Electrochemical Technologies (METs) · Wastewater

496

A two-phase spherical electric machine for generating rotating uniform magnetic fields  

E-Print Network [OSTI]

This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

Lawler, Clinton T. (Clinton Thomas)

2007-01-01T23:59:59.000Z

497

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

gas combustion turbine capacity is In the WinDS model themodel selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine

Hand, Maureen

2008-01-01T23:59:59.000Z

498

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential in response to applied mechanical  

E-Print Network [OSTI]

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential, PZT ceramics I. INTRODUCTION Piezoelectricity is an ability to generate an electric potential that demonstrate the direct piezoelectric effect, which is the generation of electricity upon applied mechanical

Ha, Dong S.

499

Electric Vehicle Deployment: Policy Questions and Impacts to...  

Energy Savers [EERE]

regarding policy questions and impacts to the electric grid from the energy demands of electric vehicles. EAC - Electric Vehicle Deployment - Impacts to the US Electric Grid -...

500

POWER GRID RELIABILITY AND SECURITY  

SciTech Connect (OSTI)

This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

2014-09-30T23:59:59.000Z