National Library of Energy BETA

Sample records for generation electric grid

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    of Energy  Computational Needs for Next Generation Electric Generation Electric Grid   HyungSeon   Oh  National Energy generation  communication requirements, technologies, and architecture for the electric power  grid”, IEEE   Power and Energy 

  2. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  3. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    power  flow  relations  for  electric  transmission  lines  (electric power  costs  are  cheap:  if  a  large  power  consumer  is  close  to  the  generator,  the  excess  power  needs associated with transmission line electric grid consists of a network of transmission lines.  Power 

  4. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    stability prediction for power grids”, 2011.    [47]  D.  ?Multigrid on GPU: tackling power grid analysis on parallel control of the electric power grid,”  Technical Report EECS?

  5. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    the  computing  needs for building this smart grid,  and using the cloud for building the smart grid.   4.1 The requirements  for  building  successful  smart  electric 

  6. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    electric  power  sector.   The  Regional  Energy  Deployment  System  (ReEDS)  model  (model  provide  additional  constraints  on  the  system,  such  as  the  inclusion  of  power  flow  relations  for  electric Electric Power Grid  2.1 Overview  Power  system  researchers  have  devoted  significant  efforts  in  the  past  to  the  development of sophisticated computer models 

  7. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

  9. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    that are vital for grid security.     The cost of  these problems involving grid security  at  bulk  transmission/problems  involving  grid  security  at  distribution  or 

  10. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    The Cloud Cost Advantage  The Smart Grid needs a national?the smart grid.  In order to avoid the prohibitive cost  of smart  grid.   One  complicating factor is that many of the cost?

  11. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    mechanism for electricity transmission expansion. Journal ofpolicy,  electricity  reliability,  transmission  planning, transmission investment in restructured electricity 

  12. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    of smart grid research and operation management.   4  International Series in Operations Research and ManagementHandbooks in Operations Research and Management Science, 

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    flow constraints on electric transmission The  objective relations  for  electric  transmission  lines  (we  used A ?A E : Set of AC electric transmission arcs, which satisfy

  14. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Modeling electricity markets as two?stage capacity capacity expansion in  imperfectly competitive restructured  electricity markets.  Capacity expansion in the integrated supply  network for an electricity market.  

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

  16. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    wind power for representative load scenarios in  a  us  electric  power  system:  Operational  costs 

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    for  unexpected  failure  of  generators  and  transmission case  of  a  failure of one of the generators, transmission considering failure of more than one generator and/or 

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    is affiliated with  the Power and Energy Systems area.  His of  Electrical Power & Energy Systems,  27 (2005), pp.  528?of Electrical Power & Energy  Systems, 32 (2010), pp.  615?

  19. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    applied  to  power  systems,  Computational Needs for Next Electric  power  system  computational  needs  appropriate converting a powerful computational system into a powerful 

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    AC electric transmission arcs, which satisfy DC power flowof  transmission  constraints  (that  is,  DC?based power flow, DC,  and  AC.   In  addition,  standard  transmission 

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    promise for expanding renewable  energy supply.  Electric report, National Renewable Energy  Laboratory, August Hyung?Seon Oh, National Renewable Energy Laboratory  3:00: 

  2. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    optimization for the unit commitment problem. Technicaloptimization of generation unit commitment and transmissionLee,  M.   Anitescu,  “Unit  Commitment  with  Wind  Power 

  3. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Generation:  Integrating  Wind  Forecast  Uncertainty  and day?ahead  forecast  for  the  wind  speed.    Similar forecast,  fits  this  description.   Another  example is wind 

  4. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Commitment  with  Wind  Power  Generation:  Integrating El?Saadany.  Overview of wind power intermittency impacts for  minimizing wind  power  scenarios  in  stochastic 

  5. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    play this role.   i. The smart home.   In this vision, the Aware Appliances in a Smart Home  According to the most challenges  Varies  Smart  home  Next  generation  SCADA 

  6. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  7. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  8. California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity generation with energy storage to meet our electricity demands and to support electric transportation. The Sustainable Integrated Grid

    E-Print Network [OSTI]

    California at Riverside, University of

    California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity. The Sustainable Integrated Grid Initiative at UCR combines these elements so that researchers, utility personnel and wind are intermittent in nature and may not be available when needed. Electrical energy stored

  9. Dualmode transportation - impact on the electric grid 

    E-Print Network [OSTI]

    Azcarate Lara, Francisco Javier

    2009-05-15

    and freight) in a specific electric region grid and analyze the impact that it represents. A model that gives a close approximation of the electric energy demand that would be generated by converting existing traffic data into electricity demand was developed...

  10. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  11. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  12. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    purchasing electricity off the grid during off-peak hours ofthat it is charging off the grid or discharging back intothe electricity purchased off the grid would most likely be

  13. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  14. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  15. Demand Response and Electric Grid Reliability 

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01

    and Regional Transmission Organizations are the ?air traffic controllers? of the bulk electric power grids 4 Power supply (generation) must match load (demand) CATEE Conference October 10, 2012 ? The fundamental concept behind ERCOT operations... changes or incentives.? (FERC) ? ?Changes in electric use by demand-side resources from their normal consumption patterns in response to changes in the price of electricity, or to incentive payments designed to induce lower electricity use at times...

  16. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Environmental Management (EM)

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  17. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  18. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    National Grid Generation, LLC (Redirected from KeySpan Generation LLC) Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory:...

  19. Transdisciplinary electric power grid science

    E-Print Network [OSTI]

    Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

    2013-01-01

    The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

  20. Securing the Electricity Grid: Government and Industry Exercise...

    Office of Environmental Management (EM)

    Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III...

  1. ELECTRIC GRID PROTECTION THE INTERNATIONAL

    E-Print Network [OSTI]

    Schrijver, Karel

    interference, Electromagnetic Pulse (EMP), or Intentional Electromagnetic Interference (IEMI). See below the status of national electric grid evaluation and protection against electromagnetic threats in 11 counties sensitivity to the full range of electromagnetic threats1 . This historic and ongoing situation has resulted

  2. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  3. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  4. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  5. Energy storage for frequency regulation on the electric grid

    E-Print Network [OSTI]

    Leitermann, Olivia

    2012-01-01

    Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

  6. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  7. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  8. "Artificial" brains, electrical grids, and disease modeling:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science discoveries unveiled "Artificial" brains, electrical grids, and disease modeling: Los Alamos science discoveries unveiled September 15 The event is an opportunity for...

  9. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    Introduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity the standards process that will allow the many pieces of "the world's largest and most complex machine" to work

  10. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  11. Updating the Electric Grid: An Introduction to Non-Transmission...

    Energy Savers [EERE]

    Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for...

  12. Protecting the Electric Grid from Increasingly Severe Weather...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Electric Grid from Increasingly Severe Weather Due to Climate Change Protecting the Electric Grid from Increasingly Severe Weather Due to Climate Change August 12,...

  13. Energy Storage Activities in the United States Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies...

  14. Request for Information on the Electric Grid Resilience Self...

    Energy Savers [EERE]

    the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 Request for Information on the Electric Grid...

  15. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will...

  16. A National Grid Energy Storage Strategy - Electricity Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  17. Electricity Grid Basics Webinar Presentation Slides and Text...

    Energy Savers [EERE]

    Electricity Grid Basics Webinar Presentation Slides and Text Version Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text...

  18. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Office of Environmental Management (EM)

    Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

  19. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications resources. To operate the future power grids, these will need to take into account: » the integration (509) 372-6575 jason.fuller@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver

  20. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Reiter, Michael

    @cs.unc.edu ABSTRACT A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measurements and power system models. Various using IEEE test systems. Our results indicate that security protection of the electric power grid must

  1. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Young, R. Michael

    @cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measure- ments and power system models. Various malicious attacks. I. INTRODUCTION A power grid is a complex system connecting a variety of electric power

  2. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    False Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu, Peng Ning@cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power to ensure the reliable operation of power grids, and state estimation is used in system monitoring to best

  3. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, Léonie

    (U 20 kV) · Grids initially constructed and operated to distribute electricity · New Role technology cost reduction #12;Challenges for the grids 4. Grid Codes · Grid Codes: Regulation for production challenges ­ New capacities & grid connection : RES grid connection schemes (S3RENR) ­ RES and distribution

  5. Transdisciplinary electric power grid science Charles D. Brummitta,b,1

    E-Print Network [OSTI]

    D'Souza, Raissa

    OPINION Transdisciplinary electric power grid science Charles D. Brummitta,b,1 , Paul D. H. Hinesc-long feedbacks surrounding electrical infrastructure (includ- ing weather, policy, public sentiment, mar- kets storm damage or build distributed generation?). The "smart grid," which monitors and controls electrical

  6. Request for Comments on the Electric Grid Integration Technical...

    Office of Environmental Management (EM)

    Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Request for Comments on the Electric Grid Integration Technical...

  7. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  8. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  9. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  10. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  11. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  12. Scheduling for Electricity Cost in Smart Grid Mihai Burcea1,

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    Scheduling for Electricity Cost in Smart Grid Mihai Burcea1, , Wing-Kai Hon2 , Hsiang-Hsuan Liu2 management in smart grid. Consumers send in power requests with a flexible set of timeslots during which arising in "demand response manage- ment" in smart grid [7, 9, 18]. The electrical smart grid is one

  13. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  14. Defining CPS Challenges in a Sustainable Electricity Grid Jay Taneja, Randy Katz, and David Culler

    E-Print Network [OSTI]

    California at Berkeley, University of

    ; cyber-physical systems; smart grid; renewable energy I. INTRODUCTION Modern electric grids serve a portfolio of electric power generation resources must be managed dynamically to meet an uncontrolled time is ultimately manifested through power quality observations, i.e., frequency fluctuations and voltage deviations

  15. Impacts of Severe Space Weather on the Electric Grid

    E-Print Network [OSTI]

    Schrijver, Karel

    Impacts of Severe Space Weather on the Electric Grid JASON The MITRE Corporation 7515 Colshire. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Impacts of Severe Space Weather on the Electric Grid 5b. GRANT on the impact of space weather on the electric grid, seeking to understand 1) the current status of solar

  16. ANALYSIS OF ELECTRIC GRID SECURITY UNDER TERRORIST THREAT Javier Salmeron

    E-Print Network [OSTI]

    Baldick, Ross

    ANALYSIS OF ELECTRIC GRID SECURITY UNDER TERRORIST THREAT Javier Salmeron Kevin Wood Operations techniques for analyzing the security and resilience of electrical power grids against disruptions caused analytical techniques to help mitigate the disruptions to electric power grids caused by terrorist attacks

  17. Energy Storage Activities in the United States Electricity Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior Vice...

  18. New York State Electric & Gas Corporation Smart Grid Demonstration...

    Open Energy Info (EERE)

    New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States...

  19. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  20. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  1. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  2. Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

  3. A Novel Visualization Technique for Electric Power Grid Analytics

    SciTech Connect (OSTI)

    Wong, Pak C.; Schneider, Kevin P.; Mackey, Patrick S.; Foote, Harlan P.; Chin, George; Guttromson, Ross T.; Thomas, James J.

    2009-05-01

    The application of information visualization holds tremendous promise for the electric power industry, and yet its potential has not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to maximize the analytical strengths naturally gained by the visualization itself. This paper introduces a visualization system prototype, known as GreenGrid, that explores the planning and monitoring of the North American Electricity Infrastructure. For the purposes of visualization, the power infrastructure can be described as a network of nodes and links. The nodes represent the electrical buses where generators and loads are connected, while the links represent the transmission lines that interconnect the buses. This paper focuses mainly on a customized technique within GreenGrid that is designed to visually identify abnormal characteristics of the electricity infrastructure. In particular, we examine an extreme event that occurred within the Western United States power grid on August 10, 1996. We compare our study results with the conclusion of the post-disturbance analysis and find that many of the disturbance characteristics can be readily identified with the proper form of visualization. The paper includes a lessons learned discussion to evaluate the visualization application.

  4. Randomized Auction Design for Electricity Markets between Grids and Microgrids

    E-Print Network [OSTI]

    Li, Zongpeng

    Randomized Auction Design for Electricity Markets between Grids and Microgrids Linquan Zhang Dept power markets with grid-to-microgrid and microgrid-to-grid energy sales are studied, with an auction of algorithms General Terms Algorithms, Design, Economics Keywords Power Grid; Microgrids; Unit Commitment

  5. Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid

    E-Print Network [OSTI]

    Lavaei, Javad

    Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) 1/13 Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) 1. Introduction 1.1 Background of electric vehicles and its meaning of research An electric vehicle refers to the vehicle powered from batteries

  6. A Comparative Study of High Renewables Penetration Electricity Grids

    E-Print Network [OSTI]

    McAuliffe, Jon

    A Comparative Study of High Renewables Penetration Electricity Grids Jay Taneja, Virginia Smith,culler}@cs.berkeley.edu,vsmith@berkeley.edu Catherine Rosenberg Department of Electrical and Computer Engineering University of Waterloo Email: cath@uwaterloo.ca Abstract--Electricity grids are transforming as renewables proliferate, yet operational concerns due

  7. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  8. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Energy Savers [EERE]

    - Breakout Sessions Notes and Reports Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Breakout Sessions Notes and Reports On June 11, 2014, the Department of...

  9. Electric Grid - Forecasting system licensed | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

  10. Renewable Electricity Grid Integration Roadmap for Mexico: Supplement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR LOW EMISSION DEVELOPMENT STRATEGIES Renewable Electricity Grid Integration Roadmap for Mexico: Supplement to the IEA Expert Group Report on Recommended Practices for...

  11. Secretary Chu to Discuss Importance of Electric Grid Modernization...

    Office of Environmental Management (EM)

    Chu will discuss the need to modernize America's electric grid to compete in the 21st century global economy. Secretary Chu will deliver remarks and participate in a...

  12. Generating Circuit Current Constraints to Guarantee Power Grid Safety

    E-Print Network [OSTI]

    Najm, Farid N.

    Generating Circuit Current Constraints to Guarantee Power Grid Safety Zahi Moudallal ECE Dept, as well as power grid-aware placement and floorplanning. We give a rigorous problem definition and develop of power grids is a necessity in modern chip design. We will use the term "power grid" to refer to either

  13. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

  14. Automatic Clustering of Grid Nodes Department of Electrical and

    E-Print Network [OSTI]

    Subhlok, Jaspal

    Automatic Clustering of Grid Nodes Qiang Xu Department of Electrical and Computer Engineering systems such as the Network Weather Service (NWS) [15] are commonly employed by Grid middleware systems Science University of Houston Houston, Texas 77204 Email: jaspal@uh.edu Abstract-- In a grid

  15. CyberPhysical System Security for the Electric Power Grid

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    INVITED P A P E R Cyber­Physical System Security for the Electric Power Grid Control in power for the power grid as the functional composition of the following: 1) the physical Manuscript received June 29 | The development of a trustworthy smart grid requires a deeper understanding of potential impacts resulting from

  16. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    and Ostergaard, J. (2009). Battery energy storage technology2001). Vehicle-to-grid power: battery, hybrid and fuel cell468. United States Advanced Battery Consortium (2010). USABC

  17. Structural Vulnerability Analysis of Electric Power Distribution Grids

    E-Print Network [OSTI]

    Koc, Yakup; Warnier, Martijn; Kumar, Tarun

    2015-01-01

    Power grid outages cause huge economical and societal costs. Disruptions in the power distribution grid are responsible for a significant fraction of electric power unavailability to customers. The impact of extreme weather conditions, continuously increasing demand, and the over-ageing of assets in the grid, deteriorates the safety of electric power delivery in the near future. It is this dependence on electric power that necessitates further research in the power distribution grid security assessment. Thus measures to analyze the robustness characteristics and to identify vulnerabilities as they exist in the grid are of utmost importance. This research investigates exactly those concepts- the vulnerability and robustness of power distribution grids from a topological point of view, and proposes a metric to quantify them with respect to assets in a distribution grid. Real-world data is used to demonstrate the applicability of the proposed metric as a tool to assess the criticality of assets in a distribution...

  18. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  19. Sixth Northwest Conservation and Electric Power Plan Appendix K: The Smart Grid

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix K: The Smart Grid Introduction..................................................................................................................................... 1 Components of the Smart Grid.............................................................................................................. 2 Benefits from the Smart grid

  20. Delocalization of Phase Perturbations and the Stability of AC Electricity Grids

    E-Print Network [OSTI]

    S. Kettemann

    2016-01-03

    The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase perturbations which may be caused by local power fluctuations, affect the AC grid stability. To this end, we start from nonlinear power balance equations and map them to complex linear wave equations, yielding stationary solutions with phases $\\varphi_i$ at generator and consumer sites $i$. Next, we study deviations from these stationary solutions. Starting with an initially localized perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We derive the parametric dependence of diffusion constant $D$. We apply the same solution strategy to general grid topologies and analyse their stability against local perturbations. The perturbation remains either localized or becomes delocalized, depending on grid topology, power capacity and distribution of consumers and generators $P_i$. Delocalization is found to increase the lifetime of perturbations and thereby their influence on grid stability, while localization results in an exponentiallyfast decay of perturbations at all grid sites. These results may therefore lead to new strategies to control the stability of electricity grids.

  1. Smart Grid Week: Working to Modernize the Nation's Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for access to videos, maps and data on the effort to transform the nation's...

  2. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  3. Registration of Electric Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

  4. Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment of the requirements for

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment;iii Abstract Electricity generated from wind power is both variable and uncertain. Wind forecasts prices. Wind power forecast errors for aggregated wind farms are often modeled with Gaussian

  5. EAC Recommendations for DOE Action Regarding U.S. Electric Grid...

    Energy Savers [EERE]

    U.S. Electric Grid Resiliency More Documents & Publications Recommendations on U. S. Grid Security - EAC 2011 DOE Responses to EAC Work Products - June 2014 Electricity...

  6. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  7. The Smart Grid's Data Generating Potentials Marco Aiello

    E-Print Network [OSTI]

    Aiello, Marco

    The Smart Grid's Data Generating Potentials Marco Aiello Johann Bernoulli Institute for Mathematics, The Netherlands Email: g.a.pagani@rug.nl Abstract--The Smart Grid is the vision underlying the evo- lution of such data put the smart grid in the category of Big Data applications, followed by the natural question

  8. : A TWO-DIMENSIONAL BATHYMETRY BASED UNSTRUCTURED TRIANGULAR GRID GENERATOR

    E-Print Network [OSTI]

    unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is providedBATTRI* : A TWO-DIMENSIONAL BATHYMETRY BASED UNSTRUCTURED TRIANGULAR GRID GENERATOR FOR FINITE utilities to check and improve grid quality. The final output mesh node locations, node depths and element

  9. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema (OSTI)

    Zhenyu (Henry) Huang

    2012-12-31

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  10. Graphical Contingency Analysis for the Nation's Electric Grid

    SciTech Connect (OSTI)

    Zhenyu Huang

    2011-04-01

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  11. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  12. Modeling Weather Impact on a Secondary Electrical Grid

    E-Print Network [OSTI]

    Wang, Dingquan

    Weather can cause problems for underground electrical grids by increasing the probability of serious “manhole events” such as fires and explosions. In this work, we compare a model that incorporates weather features ...

  13. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

  14. Generating Electricity with your Steam System: Keys to Long Term Savings 

    E-Print Network [OSTI]

    Bullock, B.; Downing, A.

    2010-01-01

    The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

  15. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect (OSTI)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  16. Delocalization of Phase Fluctuations and the Stability of AC Electricity Grids

    E-Print Network [OSTI]

    S. Kettemann

    2015-04-21

    The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase fluctuations affect the AC grid stability. To this end, we start from a model of nonlinear dynamic power balance equations. We map them to complex linear wave equations and find stationary solutions for the distribution of phases $\\varphi_i$ at the generator and consumer sites $i$. Next, we derive differential equations for deviations from these stationary solutions. Next, we derive differential equations for deviations from these stationary solutions. Starting with an initially localized phase perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We derive the parametric dependence of diffusion constant $D$. We apply the same solution strategy to general grid topologies and analyse their stability against local fluctuations. The fluctuation remains either localized or becomes delocalized, depending on grid topology and distribution of consumers and generators $P_i$. Delocalization is found to increase the lifetime of phase fluctuations and thereby their influence on grid stability, while localization results in an exponentially fast decay of phase fluctuations at all grid sites.

  17. Delocalization of Phase Perturbations and the Stability of AC Electricity Grids

    E-Print Network [OSTI]

    S. Kettemann

    2015-08-12

    The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase fluctuations affect the AC grid stability. To this end, we start from a model of nonlinear dynamic power balance equations. We map them to complex linear wave equations and find stationary solutions for the distribution of phases $\\varphi_i$ at the generator and consumer sites $i$. Next, we derive differential equations for deviations from these stationary solutions. Next, we derive differential equations for deviations from these stationary solutions. Starting with an initially localized phase perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We derive the parametric dependence of diffusion constant $D$. We apply the same solution strategy to general grid topologies and analyse their stability against local fluctuations. The fluctuation remains either localized or becomes delocalized, depending on grid topology and distribution of consumers and generators $P_i$. Delocalization is found to increase the lifetime of phase fluctuations and thereby their influence on grid stability, while localization results in an exponentially fast decay of phase fluctuations at all grid sites.

  18. Presented at the "Computational Needs for the Next Generation Electric Grid workshop", Organized by Department of Energy, Hosted by Bob Thomas (Cornell University), Joe Ito (Sandia National Labs) and Gil

    E-Print Network [OSTI]

    California at Los Angeles, University of

    off-peak hours, enabling power storage aggregated battery-operated electric vehicles, or transmit Integration and Microgrids. The UCLA WINSmartGridTM is a mobile communications network platform technology feeds from utilities and external sources on information such as instantaneous price of power, future

  19. EIA - Electricity Generating Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel pricesDieselAnnualElectricity

  20. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm...

  1. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  2. Cascade Failures from Distributed Generation in Power Grids

    E-Print Network [OSTI]

    Scala, Antonio; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  3. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    and timing of vehicle electricity demand. As the number ofcontinually changing electricity demands by using a suite ofif local patterns of electricity demand change significantly

  4. Load control in low voltage level of the electricity grid using CHP appliances

    E-Print Network [OSTI]

    Hurink, Johann

    as a Virtual Power Plant to the electricity grid. In this work we focus on different algorithms to control is centrally generated in large power plants and in which distribution means distribution from these power.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed

  5. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

  6. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  7. Wide-area situation awareness in electric power grid

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  8. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

  9. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    https:www1.nationalgridus.comEnergyEfficiencyPrograms Expiration Date 12312015 State New York Program Type Rebate Program Rebate Amount Electric Water heaters ENERGY STAR Heat...

  10. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    sources and EVs on the power grid and electricity prices.storage capabilities to the power grid by utilizing plug-inprices due to additional power grid loads from EVs. Since

  11. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect (OSTI)

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar radiation on the stringing section, transmits the data to the Transmission Energy Management System, validates its integrity and passes it on to Oncor and ERCOT (Electric Reliability Council of Texas) respective system operations. The iDLR system is automatic and transparent to ERCOT System Operations, i.e., it operates in parallel with all other system status telemetry collected through Supervisory Control and Data Acquisition (SCADA) employed across the company.

  12. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  13. An Electricity Trade Model for Microgrid Communities in Smart Grid

    E-Print Network [OSTI]

    Pedram, Massoud

    An Electricity Trade Model for Microgrid Communities in Smart Grid Tiansong Cui, Yanzhi Wang Los Angeles, CA, USA {tcui, yanzhiwa, shahin, pedram}@usc.edu Abstract--Distributed microgrid network and a small group of energy users. In the distributed power system, each microgrid acts as a "prosumer

  14. Update to Large Power Transformers and the U.S. Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update to Large Power Transformers and the U.S. Electric Grid Report Now Available Update to Large Power Transformers and the U.S. Electric Grid Report Now Available April 25, 2014...

  15. Large Power Transformers and the U.S. Electric Grid Report Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) The Office of...

  16. Triangle geometry processing for surface modeling and cartesian grid generation

    DOE Patents [OSTI]

    Aftosmis, Michael J. (San Mateo, CA) [San Mateo, CA; Melton, John E. (Hollister, CA) [Hollister, CA; Berger, Marsha J. (New York, NY) [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  17. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  18. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResourceAnalysesGrid

  19. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    SciTech Connect (OSTI)

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  20. Large Power Transformers and the U.S. Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Company North American Electrical Reliability Corporation Ontario Power Generation Scott, Daniel U.S. Department of Commerce U.S. Department of Homeland Security U.S....

  1. Disturbances in the US electric grid associated with geomagnetic Carolus J. Schrijver* and Sarah D. Mitchell

    E-Print Network [OSTI]

    Schrijver, Karel

    & Coetzee 2007). Despite the known impact of large space weather events on the electrical power grid (see, eDisturbances in the US electric grid associated with geomagnetic activity Carolus J. Schrijver on the US electric power grid for the period from 1992 through 2010. We find, with more than 3r significance

  2. CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges

    E-Print Network [OSTI]

    CARNEGIE MELLON UNIVERSITY Electric Power Micro-grids: Opportunities and Challenges for an Emerging;Electric Power Micro-grids: Barriers and opportunities for an emerging distributed energy architecture ii, such as engines and micro-turbines. #12;Electric Power Micro-grids: Barriers and opportunities for an emerging

  3. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  4. Chapter III: Modernizing the Electric Grid

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter 9 of the LANL34 QER Report:

  5. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  6. Transmission and Generation Investment in Electricity Markets

    E-Print Network [OSTI]

    Mar 4, 2015 ... Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes.

  7. Proceedings of the Computational Needs for the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011 Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April...

  8. Methodology for combined Integration of electric vehicles and distributed resources into the electric grid

    E-Print Network [OSTI]

    Gunter, Samantha Joellyn

    2011-01-01

    Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

  9. AVTA: ARRA EV Project Electric Grid Impact Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  10. Towards a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid

    E-Print Network [OSTI]

    Kundur, Deepa

    Towards a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid Deepa Kundur analysis of a smart grid. We focus on the model synthesis stage in which both cyber and physical grid-effect relationships can be conveniently expressed for both analysis and extension to large-scale smart grid systems. I

  11. Byzantine Fault Tolerance for Electric Power Grid Monitoring and Control Wenbing Zhao and F. Eugenio Villaseca

    E-Print Network [OSTI]

    Zhao, Wenbing

    Byzantine Fault Tolerance for Electric Power Grid Monitoring and Control Wenbing Zhao and F of the electric power grid is crucial to ev- ery nation's security and well-being. As revealed by a num- ber of large-scale blackout incidents in North America, the data communication infrastructure for power grid

  12. OPTIMIZATION STRATEGIES FOR THE VULNERABILITY ANALYSIS OF THE ELECTRIC POWER GRID

    E-Print Network [OSTI]

    Pinar, Ali

    OPTIMIZATION STRATEGIES FOR THE VULNERABILITY ANALYSIS OF THE ELECTRIC POWER GRID ALI PINAR, JUAN would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a bilevel mixed integer nonlinear programming

  13. Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.

    SciTech Connect (OSTI)

    Loose, Verne W.

    2011-01-01

    The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints on hydro-electric resources, and production cost simulations aimed at quantifying the increased role of hydro.

  14. Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications

    E-Print Network [OSTI]

    Fernandez, Ted (Ted A.)

    2010-01-01

    Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

  15. Provably secure time distribution for the electric grid

    SciTech Connect (OSTI)

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  16. Aalborg Universitet Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Generation-Side Power Scheduling in a Grid-Connected DC Microgrid Hernández). Generation-Side Power Scheduling in a Grid-Connected DC Microgrid. In IEEE ICDCM 2015. IEEE. General rights.aau.dk on: juli 04, 2015 #12;Generation-Side Power Scheduling in a Grid-Connected DC Microgrid Adriana C

  17. WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC.

    E-Print Network [OSTI]

    1 WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC. 1001 SW Higgins, Panorama, but not the more fundamental issues of stakeholder definition, future role, governance and structure. We

  18. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  19. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity

    E-Print Network [OSTI]

    Williams, J.H.

    2013-01-01

    generation, on-grid energy storage, transmission capacity,biofuels, CCS, on-grid energy storage, electric vehicle bat-

  20. Abstract--This paper looks into the vulnerabilities of the electric power grid and associated communication network, in the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for electrical energy supply and their conception/renovation as "smart" grids [4]-[8] with distributed generation challenge, European Foundation for New Energy-EDF at Ecole Centrale Paris and Supelec, Paris, France. He is also with Energy Department, Politecnico di Milano, 20133 Milan, Italy (phone: 39-02-2399.6340; fax: 39

  1. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  2. Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya

    E-Print Network [OSTI]

    Jacobson, Arne

    -based electricity project in rural Ken- ya. Empirical research on group-based micro-grids is also rele- vant in view

  3. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  4. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  5. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  6. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  7. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    distributed generation energy management system electricenergy resources, distributed generation, electric vehicle,

  8. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  9. Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

  10. Electrical Characteristics of Multi-Layer Power Distribution Grids Andrey V. Mezhiba and Eby G. Friedman

    E-Print Network [OSTI]

    Friedman, Eby G.

    Electrical Characteristics of Multi-Layer Power Distribution Grids Andrey V. Mezhiba and Eby G a multi- layer power distribution grid typically has significantly different elec- trical properties distribution grids built exclusively in the up- per, low resistance metal layers, a multi-layer power

  11. Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*,

    E-Print Network [OSTI]

    Maxemchuk, Nicholas F.

    Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*, , Student Member, IEEE.edu Abstract--Electric vehicles create a demand for additional electrical power. As the popularity of electric. However, in the interim the rate at which electric vehicles can be deployed will depend on our ability

  12. Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors fluctuations in the generator power. This paper deals with power smoothing control of grid connected MCT system a smoothed grid-injected power in case of swell disturbances. Index Terms-Marine current turbine, power

  13. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01

    and of the electric power grid, yet analysts, industries,be realized only if the power grid operator has control overplugged in when the power grid needs them. A. The California

  14. Large Power Transformers and the U.S. Electric Grid Report Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes...

  15. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

  16. Electromechanical Wave Green's Function Estimation from Ambient Electrical Grid Frequency Noise

    E-Print Network [OSTI]

    Backhaus, Scott

    2011-01-01

    Many electrical grid transients can be described by the propagation of electromechanical (EM) waves that couple oscillations of power flows over transmission lines and the inertia of synchronous generators. These EM waves can take several forms: large-scale standing waves forming inter-area modes, localized oscillations of single or multi-machine modes, or traveling waves that spread quasi-circularly from major grid disturbances. The propagation speed and damping of these EM waves are potentially a powerful tool for assessing grid stability, e.g. small signal or rotor angle stability, however, EM wave properties have been mostly extracted from post-event analysis of major grid disturbances. Using a small set of data from the FNET sensor network, we show how the spatially resolved Green's function for EM wave propagation can be extracted from ambient frequency noise without the need for a major disturbance. If applied to an entire interconnection, an EM-wave Green's function map will enable a model-independent...

  17. Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid

    E-Print Network [OSTI]

    Victoria, University of

    Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot Boronowski Committee Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot only be practical at power penetration levels less than 20%. #12;iv Table of Contents Supervisory

  18. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  20. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  1. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect (OSTI)

    Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

  2. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect (OSTI)

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  3. Statistical Analysis of Abnormal Electric Power Grid Behavior

    SciTech Connect (OSTI)

    Ferryman, Thomas A.; Amidan, Brett G.

    2010-10-30

    Pacific Northwest National Laboratory is developing a technique to analyze Phasor Measurement Unit data to identify typical patterns, atypical events and precursors to a blackout or other undesirable event. The approach combines a data-driven multivariate analysis with an engineering-model approach. The method identifies atypical events, provides a plane English description of the event, and the capability to use drill-down graphics for detailed investigations. The tool can be applied to the entire grid, individual organizations (e.g. TVA, BPA), or specific substations (e.g., TVA_CUMB). The tool is envisioned for (1) event investigations, (2) overnight processing to generate a Morning Report that characterizes the previous days activity with respect to previous activity over the previous 10-30 days, and (3) potentially near-real-time operation to support the grid operators. This paper presents the current status of the tool and illustrations of its application to real world PMU data collected in three 10-day periods in 2007.

  4. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  5. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  6. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

  7. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    groups of electricity generation, storage and concurrentforms of mobile storage of electricity, eventually availablemobile storage aid PV with supplying electricity needs from

  8. Did English Generators Play Cournot? Capacity Withholding in the Electricity Pool

    E-Print Network [OSTI]

    Green, Richard J.

    2004-06-16

    The electricity industry in England and Wales was restructured in March 1990. The integrated Central Electricity Generating Board was divided into three generating companies and the National Grid Company (NGC), responsible for transmission. NGC also operated... published the load factors of its stations, while the MMC published information on the load factors of National Power and PowerGen’s coal-fired stations in its 1996 reports into their merger proposals. NGC provided load-duration curves, showing...

  9. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPressElectrical Safety- 2015Reports and

  10. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect (OSTI)

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  11. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Transmission Grid Study of the U.S. Department of Energy (Abraham, 2002) declares: "Growth in electricity of incentives for investment in the U.S. electricity transmission system are sparse. Moreover, noneDo Generation Firms in Restructured Electricity Markets Have Incentives to Support Social

  12. BATTRI: A TWO-DIMENSIONAL BATHYMETRY BASED UNSTRUCTURED TRIANGULAR GRID GENERATOR

    E-Print Network [OSTI]

    of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method Delaunay scheme, called "off-centers" [10], on reducing the number of grid nodes without sacrificingBATTRI: A TWO-DIMENSIONAL BATHYMETRY BASED UNSTRUCTURED TRIANGULAR GRID GENERATOR FOR FINITE

  13. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    reflect the benefit of electricity demand displacement bystorage electricity supplied by EVs electricity demand fromthe building electricity demand from local storage

  14. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    , and to meet increasing electricity demand without harming the environment. Two of the most promising solutions batteries. Grid storage can also help match the supply and demand of an entire electricity market. In Chapter 3, I examine how electricity storage can be used to help match electricity supply and demand

  15. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

  16. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Energy Savers [EERE]

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  17. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  18. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  19. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April...

  20. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  1. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report

    SciTech Connect (OSTI)

    Taylor, Emmanuel; Kramer, Caroline; Marchionini, Brian; Sabouni, Ridah; Cheung, Kerry; Lee, Dominic F

    2015-10-01

    The Materials Innovations for Next-Generation T&D Grid Components Workshop was co-sponsored by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the Oak Ridge National Laboratory (ORNL) and held on August 26 27, 2015, at the ORNL campus in Oak Ridge, Tennessee. The workshop was planned and executed under the direction of workshop co-chair Dr. Kerry Cheung (DOE) and co-chair Dr. Dominic Lee (ORNL). The information contained herein is based on the results of the workshop, which was attended by nearly 50 experts from government, industry, and academia. The research needs and pathways described in this report reflect the expert opinions of workshop participants, but they are not intended to represent the views of the entire electric power community.

  2. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  3. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Storage #12;Competitive Electric Market Structure Power Generation Distributed Generation Grid Management Power Mkts. & Reliability Micro-Grids Power Quality Grid Reliability Competitive State Regulated FERCGrid Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7

  4. Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper

    E-Print Network [OSTI]

    Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 1 White Paper Electric Energy Challenges of the Future Project Team Gerald T. Heydt, Kory Hedman Arizona

  5. The U.S. Electric Transmission Grid: Essential Infrastructure...

    Open Energy Info (EERE)

    Grid: Essential Infrastructure in need of Comprehensive Legislation Abstract Renewable Energy Transmission Company Inc (Retco) is a small, start-up company dedicated to building...

  6. Coming Full Circle in Florida: Improving Electric Grid Reliability...

    Office of Environmental Management (EM)

    grid modernization efforts but also fostered greater innovation among employees and suppliers. This includes the expansion of FPL's Enhanced Performance Diagnostic Centers --...

  7. Dynamic pricing and stabilization of supply and demand in modern electric power grids

    E-Print Network [OSTI]

    Roozbehani, Mardavij

    The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

  8. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Risř National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy

  9. Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid., & Vasquez, J. C. (2015). Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid-Connected Microgrid Adriana C. Luna, Nelson L. Diaz, Fabio Andrade, Mois`es Graells§, Josep M. Guerrero, and Juan C

  10. Finite element decomposition and grid generation for brain modeling and visualization 

    E-Print Network [OSTI]

    Batte, David Allan

    1997-01-01

    Numerical grid generation is used to provide a framework for brain and neuron visualization. Smoothing spline surfaces are fit to contour data to generate 3D solid model reconstruction of brain tissues. Finite element methods are then used...

  11. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  12. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling

    E-Print Network [OSTI]

    -mail: blogan@psu.edu #12;taneous electricity generation, including municipal, food processing, brewery

  13. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  14. Preprint for Space Weather Journal (2014) Assessing the impact of space weather on the electric power grid

    E-Print Network [OSTI]

    Schrijver, Karel

    2014-01-01

    power grid based on insurance claims for industrial electrical equipment C. J. Schrijver1 , R. Dobbins2 disturbances in the electric power grid. Here, we perform a statistical analysis of 11,242 insurance claims on geomagnetic activity mirrors that of major disturbances in the U.S. high-voltage elec- tric power grid

  15. Grid Limitations Presentation to the

    E-Print Network [OSTI]

    Baldick, Ross

    generation: ­ Concentrate on "on-grid" applications, · National energy policy. #12;3 Overview of Generation% of total cost of electric power system, · Inter-connects almost all electric generation and demand in North of the electricity system. · Historically, utilities planned generation and transmission jointly to meet growing

  16. Book Chapter Microbial Fuel Cells: Electricity Generation from Organic

    E-Print Network [OSTI]

    Gu, Tingyue

    oxygen demand (BOD) sensors, bioremediation, hydrogen production and electricity generation (Logan Book Chapter Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes Kun) are bioreactors that convert chemical energy stored in the bonds of organic matters into electricity through

  17. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  18. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    anaerobic treatment technologies, based on methane production, economical. The costs of wastewater treatment, and a calculation is made on the potential for electricity recovery. Assuming a town of 100,000 people generate 16.4 Ł 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  19. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

  20. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  1. Computing confidence intervals on solution costs for stochastic grid generation expansion problems.

    SciTech Connect (OSTI)

    Woodruff, David L..; Watson, Jean-Paul

    2010-12-01

    A range of core operations and planning problems for the national electrical grid are naturally formulated and solved as stochastic programming problems, which minimize expected costs subject to a range of uncertain outcomes relating to, for example, uncertain demands or generator output. A critical decision issue relating to such stochastic programs is: How many scenarios are required to ensure a specific error bound on the solution cost? Scenarios are the key mechanism used to sample from the uncertainty space, and the number of scenarios drives computational difficultly. We explore this question in the context of a long-term grid generation expansion problem, using a bounding procedure introduced by Mak, Morton, and Wood. We discuss experimental results using problem formulations independently minimizing expected cost and down-side risk. Our results indicate that we can use a surprisingly small number of scenarios to yield tight error bounds in the case of expected cost minimization, which has key practical implications. In contrast, error bounds in the case of risk minimization are significantly larger, suggesting more research is required in this area in order to achieve rigorous solutions for decision makers.

  2. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2014-09-23

    Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  3. Compensating Customer-Generators: A taxonomy describing methods of compensating

    E-Print Network [OSTI]

    Hughes, Larry

    , investment in grid-connected generation capacity is growing at a faster rate than off-grid applications (IEA-generators for electricity supplied to the grid Larry Hughes1 Energy Research Group Electrical and Computer Engineering-generators that supply electricity to the grid. Although many practices exist for providing such compensation, confusion

  4. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    Effect of Heat and Electricity Storage and Reliability onEV storage output electricity storage losses in the batterydoc/2001/012022p.pdf) [18] Electricity Storage Association,

  5. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Office of Environmental Management (EM)

    from two concurrent breakout sessions are also available. Electric Power Distribution System Resilience: Federal Government and National Lab Perspective - R. Bent, LANL Electric...

  6. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  7. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    SciTech Connect (OSTI)

    Key, T.

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  8. Sandia Energy - Grid System Planning for Wind: Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling Technology HomeGrid CyberGridGrid System

  9. Preprint for Space Weather Journal (2014) Assessing the impact of space weather on the electric power grid

    E-Print Network [OSTI]

    Schrijver, Karel

    2014-01-01

    Preprint for Space Weather Journal (2014) Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment C. J. Schrijver1 , R. Dobbins2 disturbances in the electric power grid. Here, we perform a statistical analysis of 11,242 insurance claims

  10. Electric Power Generation Using Geothermal Fluid Coproduced from...

    Open Energy Info (EERE)

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electric...

  11. Restructuring, Ownership and Efficiency: The Case of Labor in Electricity Generation

    E-Print Network [OSTI]

    Shanefelter, Jennifer Kaiser

    2007-01-01

    inputs to electricity generation: fuel, capital, materialsand labor. Electricity generation is a fuel-intensive

  12. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  13. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Introduction of the Renewable Micro-Grid Test-Bed Dr. Wenxin Liu Smart Micro-grid and Renewable Technology/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage - ± 70A Renewable Microgrid Shipboard Power System ZEDSZEDS ZEDSZEDS ZEDS PDM PDM PMM PMM PDM PMM PMM PDM

  14. Eastern Seaboard Electric Grid Fragility Maps Supporting Persistent Availability

    SciTech Connect (OSTI)

    Walker, Kimberly A; Weigand, Gilbert G; Fernandez, Steven J

    2012-11-01

    Persistently available power transmission can be disrupted by weather causing power outages with economic and social consequences. This research investigated the effects on the national power grid from a specific weather event, Hurricane Irene, that caused approximately 5.7 million customer power outages along the Eastern Seaboard in August of 2011. The objective was to describe the geographic differences in the grid s vulnerability to these events. Individual factors, such as wind speed or precipitation, were correlated with the number of outages to determine the greatest mechanism of power failure in hopes of strengthening the future power grid. The resulting fragility maps not only depicted 18 counties that were less robust than the design-standard robustness model and three counties that were more robust, but also drew new damage contours with correlated wind speeds and county features.

  15. Towards Effective Clustering Techniques for the Analysis of Electric Power Grids

    SciTech Connect (OSTI)

    Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh; Wang, Shaobu; Mackey, Patrick S.; Hines, Paul; Huang, Zhenyu

    2013-11-30

    Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques on two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.

  16. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  17. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  18. A Nested Game-Based Optimization Framework for Electricity Retailers in the Smart Grid with Residential Users and PEVs

    E-Print Network [OSTI]

    Pedram, Massoud

    A Nested Game-Based Optimization Framework for Electricity Retailers in the Smart Grid California Los Angeles, CA USA {yli760, yanzhiwa, shahin, pedram}@usc.edu Abstract--In the smart grid, real to the smart grid with distributed control mechanism in order to reduce the amount of communication overhead

  19. Commitment of Electric Power Generators under Stochastic Market Prices

    E-Print Network [OSTI]

    Mazumdar, Mainak

    that when an electric power producer has the option of trading electricity at market prices, an optimal unitCommitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market

  20. Western Electricity Coordinating Council Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin, NewInformation Council Smart Grid

  1. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  2. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | DepartmentXIII--SMART GRID SEC. 1301. STATEMENT OF POLICY ON

  3. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2015-10-26

    Graphene-like materials can be effectively described by Quantum Electrodynamics in (2+1)-dimensions. In a pristine state, these systems exhibit a symmetry between the nonequivalent Dirac points in the honeycomb lattice. Realistic samples which include distortions and crystalline anisotropies are considered through mass gaps of topological and dynamical nature. In this work we show that the incorporation of an in-plane uniform external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field: The pseudo chiral magnetic effect. This scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  4. Message Passing for Integrating and Assessing Renewable Generation in a Redundant Power Grid

    E-Print Network [OSTI]

    Zdeborová, Lenka; Chertkov, Michael

    2009-01-01

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of "firm" generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch settings where no generator is overloaded.

  5. Abstract--Currently, there are multiple national directives that call for the development of a smarter electrical grid. This

    E-Print Network [OSTI]

    Oren, Shmuel S.

    of a smarter electrical grid. This includes, but is not limited to, the development of advanced transmission of the electric transmission grid. The USA Energy Policy Act of 2005, Sec.1223.a.5, includes: "encourage technologies as well as optimizing the use of transmission. Transmission control has been identified

  6. PPL Electric Utilities Corp. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: Energy ResourcesLLC

  7. Securing the Electricity Grid: Government and Industry Exercise Together at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo » Search resultsEnergy CERAWeekSecuringGridEx

  8. THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being conducted by the campus-wide Electricity Industry

    E-Print Network [OSTI]

    THE MANY MEANS OF "SMART GRID" At Carnegie Mellon, research on the electricity system is being on information system security is conducted in CyLab (www.cylab.cmu.edu). July 2009 The many meanings of "Smart seems to have decided that a "smart grid" is what we need to solve the problems of our electric power

  9. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Proof-of-Principle Detonation Driven, Linear Electric Generator Facility Eric M. Braun, Frank K. Lu a generator and produce electricity.4­6 Since the majority of power in the world is generated by deflagrative is described in which a detonation-driven piston system has been integrated with a linear generator in order

  10. Implementation of battery energy storage system for the electricity grid in Singapore

    E-Print Network [OSTI]

    Wu, Zhenqi, M. Eng. Massachusetts Institute of Technology

    2010-01-01

    The market of grid-level electricity storage is growing rapidly, with a predicted market value of 1.6 billion in 2012 and 8.3 billion in 2016. Electrochemical storages such as lead-acid, nickel-cadmium, sodium-sulfur and ...

  11. Experimental Evaluation of Electric Power Grid Visualization Tools in the EIOC

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin; Dalton, Angela C.

    2009-12-01

    The present study follows an initial human factors evaluation of four electric power grid visualization tools and reports on an empirical evaluation of two of the four tools: Graphical Contingency Analysis, and Phasor State Estimator. The evaluation was conducted within specific experimental studies designed to measure the impact on decision making performance.

  12. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  13. Solar Storm Risks for Maine and the New England Electric Grid,

    E-Print Network [OSTI]

    Schrijver, Karel

    Solar Storm Risks for Maine and the New England Electric Grid, and Potential Protective Measures.resilientsocieties.org #12;1 EXECUTIVE SUMMARY A severe solar storm--a historical example being the Carrington Event of 1859 of the eastern United States. Severe solar storms--of the intensity of the 1921 New York Central Storm

  14. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01

    ciency of Electric Generating Plants: A Stochastic Frontierthe existing stock of electricity generating plants. Betweenover 300 electric generating plants in the US, accounting

  15. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01

    Cost Efficiency of Electric Generating Plants: A Stochasticat US Electricity Generating Plants? Kira Markiewicz, Nancyat US Electricity Generating Plants? Kira Markiewicz UC

  16. Exact and Efficient Algorithm to Discover Extreme Stochastic Events in Wind Generation over Transmission Power Grids

    E-Print Network [OSTI]

    Chertkov, Michael; Pan, Feng; Baldick, Ross

    2011-01-01

    In this manuscript we continue the thread of [M. Chertkov, F. Pan, M. Stepanov, Predicting Failures in Power Grids: The Case of Static Overloads, IEEE Smart Grid 2011] and suggest a new algorithm discovering most probable extreme stochastic events in static power grids associated with intermittent generation of wind turbines. The algorithm becomes EXACT and EFFICIENT (polynomial) in the case of the proportional (or other low parametric) control of standard generation, and log-concave probability distribution of the renewable generation, assumed known from the wind forecast. We illustrate the algorithm's ability to discover problematic extreme events on the example of the IEEE RTS-96 model of transmission with additions of 10%, 20% and 30% of renewable generation. We observe that the probability of failure may grow but it may also decrease with increase in renewable penetration, if the latter is sufficiently diversified and distributed.

  17. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  18. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  19. SENSING THE ENVIRONMENT Detection and Generation of Electric Signals

    E-Print Network [OSTI]

    be actively generated by an electric organ or passively generated due to the uneven distribution of ions of kilohertz such as those produced by an EOD. Electrosense The ability to detect electric fields. A passive to a unique form of electricity ­ an innate vital force housed within animal tissue that was released

  20. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect (OSTI)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  1. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    the potential to meet the worldwide demand of electricity and they contribute to the total generation of providing enough energy to meet the world demand of electricity, the current amount of electricitySupplementary Information Potential for Electricity Generation from Renewable Resources

  2. Solar storm Risk to the north American electric grid

    E-Print Network [OSTI]

    Schrijver, Karel

    Internal Heating 12 6.5 Damage Criteria and Outage 13 6.6 Outage Scenarios 13 7 AWARENESS AND PREPARATION and we become more and more dependent on electricity, the risk of a catastrophic outage increases of the potential for long-term, widespread power outage, the hazard posed by geomagnetic storms is one of the most

  3. Electric Grid Using a Dynamically Controlled Battery Bank for...

    Office of Scientific and Technical Information (OSTI)

    research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery...

  4. Smart Grid The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant Misra, Member, IEEE, Guoliang Xue, Fellow, IEEE,

    E-Print Network [OSTI]

    Misra, Satyajayant

    Smart Grid ­ The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant--The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely

  5. Disturbances in the U.S. electric grid associated with geomagnetic activity

    E-Print Network [OSTI]

    Schrijver, Carolus J

    2013-01-01

    Large solar explosions are responsible for space weather that can impact technological infrastructure on and around Earth. Here, we apply a retrospective cohort exposure analysis to quantify the impacts of geomagnetic activity on the U.S. electric power grid for the period from 1992 through 2010. We find, with more than 3-sigma significance, that approximately 4% of the disturbances in the U.S. power grid reported to the U.S. Department of Energy are attributable to strong geomagnetic activity and its associated geomagnetically induced currents.

  6. Effect of the fast nuclear electromagnetic pulse on the electric power grid nationwide: A different view

    SciTech Connect (OSTI)

    Rabinowitz, M.

    1987-01-01

    This paper primarily considers the potential effects of a single high-altitude nuclear burst on the US power grid. A comparison is made between electromagnetic pulse(EMP) and natural phenomena such as lightning. This paper concludes that EMP is no more harmful to the power grid than its counterparts in nature. An upper limit of the electric field of the very fast, high-amplitude EMP is derived from first principles. The resulting values are significantly lower than the commonly presented values. Additional calculations show that the ionization produced by a nuclear burst severely attenuates the EMP. 21 refs., 2 figs., 6 tabs.

  7. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  8. The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson

    E-Print Network [OSTI]

    Dobson, Ian

    The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A on the robustness of the power transmission grid using a dynamic model of the power transmission system (OPA of the transmission grid. This intuitive improvement comes simply from the realization that less power would need

  9. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    energy  resources  in  remote  regions  to  urban  consumers,  for  example,  requires  broader,  regional  planning 

  10. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    future  (in  about  5  years):  integration  of  renewable  energy and Future Work The goal of energy independence through the use of renewablefuture  needs of the power system, such as increasing integration of renewable energy 

  11. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    van Renesse.  Towards A Cloud  Computing Research Agenda.   on Hot Topics in Cloud Computing, June  Computational Needs Vivek Kundra.   Federal Cloud Computing Strategy.   http://

  12. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Power  Management of Microgrids”, 2009 IEEE Power & Energy as for local, decentralized microgrids. Application of thesethat homes,  buildings,  microgrids,  etc.   may  have 

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    better forms of cloud security.   Thus CAP stands as an of Weak Consistency  Cloud security illustrates one of the computations.     The  cloud  security  and  privacy 

  14. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Data  Acquisition  (SCADA)  systems.     These  systems system  configuration, the SCADA platform determines a shed  loads,  etc.   The  SCADA  system  also  plays  key 

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    refineries)  and  transportation  (natural  gas  pipelines, natural  gas,  coal,  uranium)  and  electrified  transportation natural gas, nuclear, and hydro, while 95% of transportation 

  16. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    prediction method based on PMU”, Power & Energy Society model of utilizing PMU measurements”,  International for excitation system based on  PMU  data”,  CRIS  2009  ? 

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    2] review the academic literature on the  unit  commitment unit commitment (UC) problem as a mathematical program.   References  [2]  and  [3]  are  two  excellent  reviews 

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Operation, Control and Cyber Security”, North American facilities, means  of cyber security, and visualization an adequate level of cyber?security and protection of 

  19. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Supervisory  and  Energy  Management  System  of  large Simőes,  “An  Energy  Management  System  for  Building to a DSM based energy management system for  real time 

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    der Vorst, “A Jacobi–Davidson Iteration  Method for Linear is the Jacobi?Davidson (JD)  [59]  method  that  addresses 

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    penetration  of  distributed  renewable  energy  sources, driven by distributed  renewable  energy  and  storage  and analysis of distributed renewable energy  variability.  For 

  2. Exotic Electricity Options and the Valuation of Electricity Generation and Transmission

    E-Print Network [OSTI]

    Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

  3. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    SciTech Connect (OSTI)

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  4. Modeling of a detonation driven, linear electric generator facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Modeling of a detonation driven, linear electric generator facility E.M. Braun, E. Baydar, and F demonstrated that a PDE can be used for power generation and may be more efficient than a deflagration that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One

  5. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  6. Abstract--The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the

    E-Print Network [OSTI]

    Perreault, Dave

    1 Abstract--The penetration of plug-in electric vehicles and renewable distributed generation, power grids I. INTRODUCTION ROWING concern for climate change and energy security has renewed interest legislative effort to mandate, or incentivize, large scale integration of renewable energy resources

  7. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect (OSTI)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

  8. Connecticut Municipal Electric Energy Cooperative Smart Grid Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordia Electric Coop, Inc Place:Confederation PowerEnergy

  9. Lakeland Electric Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: Energy ResourcesMary,Lake

  10. South Mississippi Electric Power Association (SMEPA) Smart Grid Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin JumpOpen Energy Information Mississippi Electric

  11. Wellsboro Electric Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh KiepeWebel Micro PowerRural Electric

  12. Coming Full Circle in Florida: Improving Electric Grid Reliability and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22, 2015 | Department of Energy

  13. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  14. Secure Information Exchange Gateway for Electric Grid Operations

    SciTech Connect (OSTI)

    Robertson, F. Russell; Carroll, J. Ritchie; Sanders, William; Yardley, Timothy; Heine, Erich; Hadley, Mark; McKinnon, David; Motteler, Barbara; Giri, Jay; Walker, William; McCartha, Esrick

    2014-09-30

    The major objectives of the SIEGate project were to improve the security posture and minimize the cyber-attack surface of electric utility control centers and to reduce the cost of maintaining control-room-to-control-room information exchange. Major project goals included the design, development, testing, and commercialization of a single security-hardened appliance that could meet industry needs for resisting cyber-attacks while protecting the confidentiality and integrity of a growing volume of real-time information needed to ensure the reliability of the bulk electric system and interoperating with existing data formats and networking technologies. The SIEGate project has achieved its goals and objectives. The SIEGate Design Document, issued in March 2012, presented SIEGate use cases, provided SIEGate requirements, established SIEGate design principles, and prescribed design functionality of SIEGate as well as the components that make up SIEGate. SIEGate Release Version 1.0 was posted in January 2014. Release Version 1.0.83, which was posted on March 28, 2014, fixed many issues discovered by early adopters and added several new features. Release Candidate 1.1, which added additional improvements and bug fixes, was posted in June 2014. SIEGate executables have been downloaded more than 300 times. SIEGate has been tested at PJM, Entergy, TVA, and Southern. Security testing and analysis of SIEGate has been conducted at PNNL and PJM. Alstom has provided a summary of recommended steps for commercialization of the SIEGate Appliance and identified two deployment models with immediate commercial application.

  15. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  16. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable...

  17. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  18. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  19. DOE Announces Webinars on Next Generation Electric Machines,...

    Broader source: Energy.gov (indexed) [DOE]

    April 1: Live Webinar on Next Generation Electric Machines: Megawatt Class Motors FOA Webinar Sponsor: Advanced Manufacturing Office The Energy Department will present a live...

  20. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Edison Electric Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  1. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and...

  2. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  3. A Survey of National Transmission Grid Modeling Capabilities at DOE

    E-Print Network [OSTI]

    Howle, Victoria E.

    711712003 A Survey of National Transmission Grid Modeling Capabilities at DOE Laboratories Steve Data Sheets.................................................................... 9 Electricity Market Complex Adaptive Systems (EMCAS)..................10 Generation and Transmission Maximization (GTMAX

  4. Stuart Michael Cohen The Implications of Flexible CO2 Capture on the ERCOT Electric Grid

    E-Print Network [OSTI]

    Rochelle, Gary T.

    , and coal burning for electricity generation is responsible for 60% of America's power sector CO2 emissions. However, since coal is relatively inexpensive, available, politically secure, and uses mature, widespread technology, coal is likely to remain a major fuel for electricity generation for several decades. Thus

  5. Minimizing electricity costs with an auxiliary generator using stochastic programming

    E-Print Network [OSTI]

    Rafiuly, Paul, 1976-

    2000-01-01

    This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

  6. Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems 

    E-Print Network [OSTI]

    Alexander, H. R.; Rogge, D. S.

    1995-01-01

    This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different ...

  7. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  8. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment

    E-Print Network [OSTI]

    Schrijver, Carolus J; Murtagh, William; Petrinec, Stephen M

    2014-01-01

    Geomagnetically induced currents are known to induce disturbances in the electric power grid. Here, we perform a statistical analysis of 11,242 insurance claims from 2000 through 2010 for equipment losses and related business interruptions in North-American commercial organizations that are associated with damage to, or malfunction of, electrical and electronic equipment. We find that claims rates are elevated on days with elevated geomagnetic activity by approximately 20% for the top 5%, and by about 10% for the top third of most active days ranked by daily maximum variability of the geomagnetic field. When focusing on the claims explicitly attributed to electrical surges (amounting to more than half the total sample), we find that the dependence of claims rates on geomagnetic activity mirrors that of major disturbances in the U.S. high-voltage electric power grid. The claims statistics thus reveal that large-scale geomagnetic variability couples into the low-voltage power distribution network and that relat...

  9. Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low

    E-Print Network [OSTI]

    Wierman, Adam

    and Electrical Engineering Departments, California Institute of Technology, (email: slow@caltech.edu). interest1 Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low Abstract-- Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future

  10. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta, we study a problem of sched- uling EV charging with ES from an electricity market perspectiveIEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging

  11. 500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric

    E-Print Network [OSTI]

    Baldick, Ross

    ), vehicle to grid (V2G). I. INTRODUCTION THERE ARE various motivations for developing alterna- tive energy500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric sources and associated vehicle powertrains to reduce a widespread dependence on oil. The motivations

  12. Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re nement.

    E-Print Network [OSTI]

    Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re#28;nement. Ph Hamilton-Jacobi equations on a manifold, typically on the graph of some previously computed function z method. Keywords: Hamilton-Jacobi equations, viscosity solutions, level set method, adaptative meshes

  13. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  14. Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry restructuring and following the blackout of August, 2003, has treated network congestion, Wheatstone network, merchant transmission, available transfer capability, reliability, congestion

  15. Farmers Electric Cooperative (Kalona)- Renewable Energy Purchase Rate

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are...

  16. A Formal Model for Sustainable Vehicle-to-Grid Mohammad Ashiqur Rahman, Fadi Mohsen, and Ehab Al-Shaer

    E-Print Network [OSTI]

    Wang, Yongge

    Keywords Smart Grid; Plug-in Electric Vehicle; Vehicle-to-Grid; For- mal Model 1. INTRODUCTION Energy increases, the combined storage could pro- vide different electrical (e.g., energy generating capacity

  17. Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 3. March 2012.

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel operator. Index Terms-- Charge Scheduling, EV, Smart Grid, V2G I. INTRODUCTION One million electric@gmail.com) techniques which minimize charging cost to the consumer and grid load at peak hours. Shao et al. [7] proposed

  18. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies 

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01

    -sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure reliable long-term power for critical... source of emergency power available with new building-sited combined heat and power (CHP) electric generation technologies (see US Department of Energy, 2000 and 2002 for descriptions of these technologies). Instead of traditional emergency...

  19. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    SciTech Connect (OSTI)

    Basso, T.

    2014-12-01

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series of standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.

  20. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    SciTech Connect (OSTI)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  1. Optimization strategies for the vulnerability analysis of the electric power grid.

    SciTech Connect (OSTI)

    Meza, Juan C.; Pinar, Ali; Lesieutre, Bernard; Donde, Vaibhav

    2009-03-01

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  2. OpenEI Community - electric generation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 en BigArtby

  3. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  4. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption 

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01

    integration of distributed generation and renewables ? Future ? Automatic Outage Notification, Support for Plug in Hybrid Vehicles, Consumer Control of Thermostats/Appliances, etc. AMS Successes 6 ? Service orders completed electronically... pipelines ? Natural gas gathering and processing ? 150 separate systems in major producing fields in Arkansas, Louisiana, Oklahoma and Texas 2 Who is CenterPoint Energy? A domestic energy delivery company Three Components of a Smart Grid Smart...

  5. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  6. CSEM WP 111R The Efficiency of Electricity Generation

    E-Print Network [OSTI]

    California at Berkeley. University of

    -utility generating plants. Then, beginning with California in 1996, nearly half the states passed and a smaller-utility generators, specifically cogeneration facilities or plants using renewable resources. Also, initiativesCSEM WP 111R The Efficiency of Electricity Generation in the U.S. After Restructuring Catherine

  7. THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    environments. The Energy Policy Act of 1992 opened access to transmission for non-utility generating plants-utility generators, specifically cogeneration facilities or plants using renewable resources. Also, initiativesTHE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC

  8. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  9. The nuclear electromagnetic pulse and the electric power grid: A different perspective: Special report

    SciTech Connect (OSTI)

    Rabinowitz, M.

    1987-10-01

    This report primarily considers the potential effects of a single high-altitude nuclear burst on the US power grid. It describes various types of electromagnetic pulses (EMP) from a nuclear explosion and provides a brief historical overview of EMP. A comparison is made between EMP and natural phenomena such as lightning and solar storms. This report concludes that EMP effects are exaggerated because of an unrealistic assumption of the pulse that can be seen by the power system. An upper limit of the electric field of the very fast, high-amplitude EMP is derived from first principles. The resulting values indicate that although electric fields approaching 50 kV/m might be obtained locally, the energy content is significantly lower than the commonly presented values, and the electric field decreases rapidly with distance. Additional calculations show that the ionization produced by a nuclear burst severely attenuates the EMP. These findings all indicate that EMP damage to the US power grid in equipment flashovers and line flashovers from a high-altitude nuclear bomb will be negligible, except for localized damage to some unshielded electronic control systems. Since it is difficult to make accurate calculations of the coupling of EMP into complex electronic systems, this report relies on the results of other studies which indicate the possibility of minimal damage. 42 refs., 23 figs., 6 tabs.

  10. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  11. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    of generating systems. These include steam cycles, combined steam- and gas-turbine cycles (systems where the hot a steam turbine), and a number of advanced technology processes such as fuel cells (i.e., systems having exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive

  12. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  13. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    . To quantify general features of such a weather dependent electricity supply in the contiguous US, windFeatures of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions Sarah Becker a, b, * , Bethany A. Frew b , Gorm B. Andresen d, b , Timo Zeyer c

  14. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset of shifting emissions from millions of individual vehicles to a relatively few number of power plants. Overall

  15. VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid

    SciTech Connect (OSTI)

    Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.; Carpenter, Brandon J.; Pratt, Richard M.; Carroll, Thomas E.

    2013-12-06

    The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehicle charging with home energy usage

  16. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  17. Sales and Use Tax Exemption for Electrical Generating Facilities

    Broader source: Energy.gov [DOE]

    Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

  18. Alternative electric generation impact simulator : final summary report

    E-Print Network [OSTI]

    Gruhl, Jim

    1981-01-01

    This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

  19. The Economics and Feasibility of Electricity Generation using

    E-Print Network [OSTI]

    Laughlin, Robert B.

    benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwise efficient rate structure will err against biogas. The second consideration is that manure digester

  20. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  1. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  2. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  3. Pricing Bilateral Electricity Trade between Smart Grids and Hybrid Green Datacenters

    E-Print Network [OSTI]

    Li, Zongpeng

    of such distributed generation. For example, the enormous wind generation in Germany in May 2014 resulted energy sources. This work considers two key aspects towards realtime electricity pricing for elicit- ing of view. At the cloud side, in quest for performance, scalability and robustness, the energy cost

  4. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes, 2323 Audubon St, New Orleans, LA 70125-4117, USA; www.EKonomicsLLC.com ¶ Department of Economics

  5. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    -piston Stirling engine devices incorporating integrated electric generation. We target concentrator- collector design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

  6. Pricing Carbon for Electricity Generation: National and International Dimensions

    E-Print Network [OSTI]

    Grubb, Michael; Newbery, David

    In this paper, which forms a chapter in the forthcoming Book �Delivering a Low Carbon Electricity System: Technologies, Economics and Policy�, Grubb and Newbery examine how carbon for electricity generation should be priced. They begin...

  7. Bioaugmentation for Electricity Generation from Corn Stover

    E-Print Network [OSTI]

    -intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate and animal wastewaters and corn stover hydrolysates. For example, high power densities (810 to 970 mW/m2

  8. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14

    .twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However, the intermittent nature of output from wind turbines and solar panels... . This intermittency discount is not a market failure but simply reflects the value of electricity provided by different technologies. Building on this base case the paper assesses the impact of monopolist and strategic behaviour of conventional generation companies...

  9. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada,Flying Electric

  10. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  11. Compare All CBECS Activities: Electricity Generation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592Number ofBy Electricity

  12. Nonlinear Electrical Simulation of High-Power Synchronous Generator System

    E-Print Network [OSTI]

    Wu, Thomas

    power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite for motor simulation [I]. Fardoun simulated permanent-magnet machine drive system using SPlCE [2]. NatarajanNonlinear Electrical Simulation of High-Power Synchronous Generator System Jie Chen and Thomas Wu

  13. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  14. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  15. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    63  Off?Grid (Stand?Alone) PV Power System not well established. OFF-GRID (STAND-ALONE) PV POWER SYSTEMvariability characteristics of off-grid PV power systems and

  16. Lincoln Electric System- Renewable Energy Rebate

    Broader source: Energy.gov [DOE]

    Customer-generators may also qualify for an incentive payment based on the amount of electricity generated by the renewable energy system that goes to the electricity grid. For more information o...

  17. Implementation of Resistive Type Superconducting Fault Current Limiters in Electrical Grids: Performance Analysis and Measuring of Optimal Locations

    E-Print Network [OSTI]

    Zhang, Xiuchang; Zhong, Z; Coombs, T A

    2015-01-01

    In the past few years there has been a significant rise in the short-circuit current levels in transmission and distribution networks, it due to the increasing demands on power and the addition of sources of distributed generations. It leads to the need of integration of novel protection systems such as the superconducting fault current limiters (SFCLs), ... . SFCL models on the electric distribution networks largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. However, beyond the framework of these models, the study of the performance, reliability, and location strategy for the installation of sole or multiple SFCLs in power grids still lacks of proper development leading to the utter need of comprehensive and systematic studies on this issue. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of a SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the c...

  18. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    Independence & Security Act, Title XIII- Smart Grid, Sectiongrid operations Secure – integrated multi-faceted securityIndependence & Security act, Title XIII-Smart Grid, Section

  19. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  20. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  1. Real-Time Power Balancing in Electric Grids with Distributed Storage

    E-Print Network [OSTI]

    Liang, Ben

    (DS) units, such as batteries in electric vehicles and batteries deployed at renewable generators battery size constraints, cost of using external energy sources, and battery degradation. We develop and the need to reduce greenhouse gas emissions, more and more renewable energy resources, such as wind

  2. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  3. HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity

    E-Print Network [OSTI]

    goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

  4. ELECTR-6198; No of Pages 22 Please cite this article in press as: Sandiford, M.., et al., Five Years of Declining Annual Consumption of Grid-Supplied Electricity in Eastern Australia: Causes and Consequences. Electr. J. (2015), http://dx.doi.org/

    E-Print Network [OSTI]

    Sandiford, Mike

    2015-01-01

    Years of Declining Annual Consumption of Grid-Supplied Electricity in Eastern Australia: Causes Consumption of Grid-Supplied Electricity in Eastern Australia: Causes and Consequences For decades, consumption of grid-supplied electricity increased in line with a growing economy. In the five years since

  5. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

  6. Multi-Agent Based Techniques for Coordinating the Distribution of Electricity in a Micro-Grid Environment

    E-Print Network [OSTI]

    Southampton, University of

    . 2 Background Research To reduce carbon emissions and ensure that the UK low car- bon emissions plan to the current national grid, the in- creasing demand for electricity will only result in more car- bon emissions carbon emissions. In order to ensure that this challenging low carbon emissions plan is met, not only

  7. Improving the Power Grid with Superconducting Technology New superconducting technology will help America reduce the demand for additional electric power

    E-Print Network [OSTI]

    Pennycook, Steve

    will help America reduce the demand for additional electric power generation and increased delivery because they have virtually no resistance to electric current, offering the possibility of new electric@ornl.gov #12;Working with Industry to Develop Electric Power Applications Superconducting technologies

  8. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Broader source: Energy.gov [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  9. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  10. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  11. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  12. Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water

    E-Print Network [OSTI]

    Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water using Fuel Cell Technologies, 2007. Acid-mine drainage (AMD) is difficult and costly to treat. We investigated a new approach to AMD and systems suitable for scale-up. Introduction Acid-mine drainage (AMD) is a serious environmental problem

  13. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  14. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  15. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01

    models of the electric transmission network flow problem.requirements in the electric transmission grid is provided.operations of the electric transmission grid. It also

  16. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01

    Reliability for Improved Grid Security,” IEEE TransmissionNext Generation Power Grid Security, Syngress, 2010. [12] A.Grids,” 16th ACM Conference on Computer and Communications Security,

  17. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect (OSTI)

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  18. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    grid aspects such as (1) automatic volt/VAR control, (2) utilization of community-level energy storage

  19. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  20. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  1. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U Pacific Northwest National Laboratory (509) 375-3899 bruce.palmer@pnnl.gov ABOUT FPGI The Future Power and ensure a more secure, efficient and reliable future grid. Building on the Electricity Infrastructure

  2. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  3. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    electricity from biogas and they have the same rate of electrical generationbiogas can be used as a supplemental energy source for thermal energy loads and the generation of electricity.generation of electricity. Anaerobic digestion destroys pathogens and this method is used to generate biogas

  4. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the development of flow-assisted nickel zinc battery technology. This technology has the promise of enabling low-cost (<$250 / kWh) energy storage, while overcoming the historical poor cycle-life drawback. To date, the results have been promising, with a cycle life of 1,500 cycles demonstrated in small laboratory cells – an improvement of approximately 400%. Prior state of the art nickel zinc batteries have only demonstrated about 400 cycles to failure.

  5. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect (OSTI)

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  6. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  7. Alleviating Solar Energy Congestion in the Distribution Grid via Smart

    E-Print Network [OSTI]

    Ansari, Nirwan

    generator supplies power to multiple groups of end users through transmission and distribution lines energy is generated and injected into the grid; this is attributed to a lack of transmission lines metering. Ç 1 INTRODUCTION THE electric power grid is one of the national critical infrastructures

  8. Brookhaven National Laboratory Solar Energy and Smarter Grid

    E-Print Network [OSTI]

    Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

  9. A Framework of Incorporating Spatio-temporal Forecast in Look-ahead Grid Dispatch with Photovoltaic Generation 

    E-Print Network [OSTI]

    Yang, Chen

    2013-05-02

    Increasing penetration of stochastic photovoltaic (PV) generation into the electric power system poses significant challenges to system operators. In the thesis, we evaluate the spatial and temporal correlations of stochastic PV generation...

  10. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

  11. Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges

    E-Print Network [OSTI]

    Fang, Xi; Xue, Guoliang

    2011-01-01

    Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

  12. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A.

    2011-08-11

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  13. Use of Comprehensive Utility Software for Optimal Energy Management and Electric Grid Failure Assessment in an Oil Refinery 

    E-Print Network [OSTI]

    Bedard, S.; Hammache, A.; Poulin, B.; Ayotte-Sauve, A.

    2015-01-01

    software for optimal energy management and electric grid failure assessment in an oil refinery New Orleans – IETC Conference June 3, 2015 Serge Bédard M. Eng. Senior Project Manager CanmetENERGY - Industrial Optimization Systems ESL-IE-15...-06-18 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 ? Who is CanmetENERGY ? Project objectives ? Description of the refinery ? COGEN software ? Modeling strategy ? Energy saving projects ? Savings...

  14. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  15. Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

  16. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    Effect of Heat and Electricity Storage and Reliability ondimensionless electricity storage loss factor for the EVceusweb/. Electricity Storage Association, Morgan Hill, CA,

  17. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  18. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  19. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  20. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

  1. Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid

    E-Print Network [OSTI]

    Alhajeri, Nawaf S.

    The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of ...

  2. National Electrical Manufacturers Association (NEMA) Vids for Grids: New Media for the New Energy Workforce

    SciTech Connect (OSTI)

    Gene Eckhart

    2011-12-15

    The objective of this program was to use a new media â?? videos posted on YouTube â?? to augment education about the emerging Smart Grid. All of the specific tasks have been completed per plan, with twelve videos and three podcasts posted on YouTube on the NEMA Vids4Grids channel.

  3. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  4. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST AND PERFORMANCE

    E-Print Network [OSTI]

    F-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F APPENDIX F GENERATION WIND #12;F-2 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST and Electric Power Plan, Appendix F ANALYTICALAPPROACH The analysis of alternative generating resources

  5. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

  6. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *

    E-Print Network [OSTI]

    .S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity investment in new generation and growth in electricity demand. Much of the current underinvestment1 Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially

  7. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel

    E-Print Network [OSTI]

    Sun, Baolin

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

  8. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  9. The rebuilding and repairing of electric motors and generators

    E-Print Network [OSTI]

    Ridenour, Roy Everett

    1918-01-01

    Motor After Coils had been Put Back in Place In the repairing and rebuilding of electric motors and generators there are three principal factors which must be considered. These factors are, service, cost and reliability. If a machine can easily... motor. This motor had been through a fire in a Cripple Creek mine. The insulation had been burned from the coils except in the slots where mica had been used. The solder was*melted from the rotor and the babbitt from the bearings. Water had been...

  10. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpowerBiocarFired Electricity Generation

  11. Yangbi Puping Electric Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPuping Electric Power Generation

  12. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  13. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    to solar insolation. Energy Prices Electricity prices weresolar insolation that are based on these data. Energy Loads Utility electricityenergy loads (non- cooling electric, electric, and heating), electricity prices, DG availability, and solar

  14. Citizens Collaboration to Minimize Power Costs in Smart Grids: A Game Theoretic Approach

    E-Print Network [OSTI]

    Bellalta, Boris

    Citizens Collaboration to Minimize Power Costs in Smart Grids: A Game Theoretic Approach Tarek Al.bellalta@upf.edu Keywords: Smart Cities, Smart Grids, Renewable Energy, Game Theory. Abstract: Generating the power end-users in smart grids. We consider that citizens can produce some amount of electric power obtained

  15. A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid

    E-Print Network [OSTI]

    Kundur, Deepa

    the advantages of our approach. I. INTRODUCTION A smart grid is a term used to describe an electricity network and flexible generation, transmission, and distribution of power through the grid. By facilitating bidirectional information and energy flow through the overall network, a smart grid promises energy savings

  16. EE 260-002-20191 Introduction to Smart Grid Syllabus Instructor

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Challenges · Economics and Market Operations o Energy and Reserve Markets o Market Power o Generation Firms o Load and Generation o Power Flow Analysis o Economic Dispatch and Unit Commitment Problems · Smart Grid Electric Vehicles and Vehicle-to-Grid Systems o Demand Side Ancillary Services · Renewable Generation: o

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    Lipo, T. Wisconsin Electric Machines & Power Electronicsrevolutionary approach to electric machine analysis. Park’sElectric Utility company control centers are evolving from a human-centric operational model to a machine-

  18. PowerGrid - A Computation Engine for Large-Scale Electric Networks

    SciTech Connect (OSTI)

    Chika Nwankpa

    2011-01-31

    This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

  19. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  20. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    resources for electric power generation. i. Plant size ii.SYSTEMS Electric Power Generation Systems NonelectricFLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

  1. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema (OSTI)

    Marken, Ken [Superconductivity Technology Center, Los Alamos, New Mexico, United States

    2010-01-08

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  2. PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future

    ScienceCinema (OSTI)

    Landis Kannberg

    2013-06-10

    Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

  3. PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future

    SciTech Connect (OSTI)

    Landis Kannberg

    2011-10-11

    Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

  4. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    of uncontrollable influences such as weather #12;11 Today's Electric Power Grid ·Today's electric power systems Grid, October 2010. #12;10 Today's Electric Power Grid ·Today's electric power systems have grown up's Electric Power Grid ·Challenges include: -Huge number of customers, uncontrolled demand -Changing supply

  5. FireGrid: An e-infrastructure for next-generation emergency response support 

    E-Print Network [OSTI]

    Han, Liangxiu; Potter, Stephen; Beckett, George; Pringle, Gavin; Welch, Stephen; Koo, Sung-Han; Wickler, Gerhard; Usmani, Asif; Torero, Jose L; Tate, Austin

    2010-01-01

    The FireGrid project aims to harness the potential of advanced forms of computation to support the response to large-scale emergencies (with an initial focus on the response to fires in the built environment). Computational ...

  6. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  7. Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics

    E-Print Network [OSTI]

    Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long

  8. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Modeling Water Withdrawal and Consumption for Electricity Generation in the United States Kenneth://globalchange.mit.edu/ Printed on recycled paper #12;1 Modeling Water Withdrawal and Consumption for Electricity Generation of Withdrawal and Consumption for Thermo-electric Systems (WiCTS) is formalized. This empirically

  9. Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing

    E-Print Network [OSTI]

    Pedram, Massoud

    Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost their electric bill. On the other hand optimizing the number and production time of power generation facilities lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which

  10. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  11. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  12. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  13. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  14. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  15. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  16. RESEARCH ARTICLE The proteome survey of an electricity-generating organ

    E-Print Network [OSTI]

    Vertes, Akos

    RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

  17. Electric power grid control using a market-based resource allocation system

    DOE Patents [OSTI]

    Chassin, David P

    2014-01-28

    Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

  18. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    , the OC-OTEC plant makes use of low pressure steam generated in flash evaporators to drive steam turbine pressurized anhydrous ammonia as the working fluid to drive turbine-generators to produce electricity; and pressurized anhydrous ammonia as the working fluid to drive turbine- generators to produce electricity; and

  19. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power...

  20. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    E-Print Network [OSTI]

    Bottaro, Drew

    1981-01-01

    The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

  1. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    electrical stationary storage. An amount of 371kWh of EV batteries energy, corresponding to around 23 employee cars

  2. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  3. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    -term solution to reduce the dependence on fossil fuel and greenhouse gas emission. However, a fleet of EVs that the OPF problem can be solved optimally for most practical power grid networks using its convex dual the dependence on fossil fuel and the emission of greenhouse gases. However, with an increase in EV penetration

  4. Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes

    E-Print Network [OSTI]

    Pedram, Massoud

    with the introduction of dynamic electricity energy pricing models since electricity consumers can use their PV function and the energy storage capacity limitation, the control algorithm for a residential EES system period under a general electricity energy price function. The proposed algorithm is based on dynamic

  5. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    of wind and conventional energy technologies, transmission,wind versus the displaced conventional energy technologies,wind energy I. I NTRODUCTION Generating electricity from wind technology

  6. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  7. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  8. Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis

    E-Print Network [OSTI]

    Couillet, Romain; Tembine, Hamidou; Debbah, Merouane

    2011-01-01

    In this article, we investigate the competitive interaction between electrical vehicles or hybrid oil-electricity vehicles in a Cournot market consisting of electricity transactions to or from an underlying electricity distribution network. We provide a mean field game formulation for this competition, and introduce the set of fundamental differential equations ruling the behavior of the vehicles at the system equilibrium, namely the mean field equilibrium. This framework allows for a consistent analysis of the evolution of the sale-and-purchase price of electricity as well as of the instantaneous total demand. Simulations precisely quantify those parameters and suggest that following the charge and discharge policy at the equilibrium allows for a significant reduction of the daily electricity peak demand.

  9. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-10-11

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  10. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  11. Assessment and Methods for Supply-Following Loads in Modern Electricity Grids with Deep Renewables Penetration

    E-Print Network [OSTI]

    Taneja, Jayant Kumar

    2013-01-01

    Stanford, and the Renewable Energy Futures project from theNREL RE Futures The Renewable Energy Futures study by theRenewable Energy Laboratory. Renewable Electricity Futures

  12. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    stationary batteries, thermal storage, and combined heat andFor both electric and thermal storage, a charging andelectrical storage, TS – thermal storage, AC - absorption

  13. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    could be used to offset EV charging at home. It is importantbattery charging and discharging efficiencies, E EV is theby EV battery Electricity for stationary battery charging

  14. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    is limited by battery size - Heat storage is limited bybattery discharging efficiency, dimensionless electricity storagefor other non-storage technologies, $ EV battery degradation

  15. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    part of the normal utility planning and operation process.of a group of electric utility planning engineers from thefor public utilities involved with transmission planning and

  16. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    U.S. Energy Information Administration Today In Energy JulyU.S. Energy Information Administration Today In Energy Julyclean energy technology available today. The electric

  17. Assessment and Methods for Supply-Following Loads in Modern Electricity Grids with Deep Renewables Penetration

    E-Print Network [OSTI]

    Taneja, Jayant Kumar

    2013-01-01

    45] Der Spiegel. Germany’s Energy Poverty: How ElectricityGermany – Monthly proportion of annual energy contributionsources. EEX - Germany The European Energy Exchange (EEX)

  18. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  19. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore »the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  20. Radiological characterization of main cooling reservoir bottom sediments at The South Texas Project Electrical Generating Station 

    E-Print Network [OSTI]

    Blankinship, David Randle

    1993-01-01

    The South Texas Project Electrical Generating Station (STPEGS operating license directs that an effective radiological environmental monitoring program be established. Site- specific data should then augment the generation of an accurate dose model...

  1. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    energy consumption by human activity [72]. Clearly, solarenergy by reducing consumption of generating plant fuel. Solar

  2. Assessment and Methods for Supply-Following Loads in Modern Electricity Grids with Deep Renewables Penetration

    E-Print Network [OSTI]

    Taneja, Jayant Kumar

    2013-01-01

    generator ramp rate capabilities, and emissions limits, with sufficient reserve to handle faults and failures.

  3. Maximizing Return on Investment of a Grid-Connected Hybrid Electrical Energy Storage System

    E-Print Network [OSTI]

    Pedram, Massoud

    -of-day pricing policy [3] with much higher energy price during peak hours for residential users, incentivizing energy when the electricity price is low and supply energy for use when the electricity price is high [6/or supercapacitors. Incorporation of EES system effectively shifts the residential peak hour energy demand from

  4. How Internet Concepts and Technologies Can Help Green and Smarten the Electrical Grid

    E-Print Network [OSTI]

    Rosenberg, Catherine P.

    Canada keshav@uwaterloo.ca Catherine Rosenberg Dept. of Electrical and Computer Engineering University of Waterloo Waterloo, Ontario N2L 3G1 Canada cath@ecemail.uwaterloo.ca ABSTRACT Several powerful forces] (also see Figure 1). · Second, a substantial fraction of electrical energy pro- duced is from coal

  5. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D. (Richland, WA); Lytle, John M. (Richland, WA)

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  6. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  7. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as ...

  8. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  9. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy...

  10. A novel technique that creates electricity using the sun and generation technology

    E-Print Network [OSTI]

    Bristol, University of

    unlimited, if the electricity is transported from the world's solar belts to areas of high demand. DiamondA novel technique that creates electricity using the sun and generation technology from space solar heat to produce electricity in devices called thermionic energy converters (TECs) for which

  11. "The Dynamics of Market Power with Deregulated Electricity Generation Richard E. Schuler,

    E-Print Network [OSTI]

    "The Dynamics of Market Power with Deregulated Electricity Generation Supplies" Richard E. Schuler markets for bulk electricity supplies are likely to deviate from the perfectly competitive ideal in many price competition in some electricity markets. 1. Introduction A primary motive for the deregulation

  12. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  13. Case Study - National Rural Electric Cooperative Association Smart Grid Investment Grant

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA)civilEnergy Water HeatersSmart Grid

  14. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    OTC 20957 First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated for presentation at the 2010 Offshore Technology Conference held in Houston, Texas, USA, 3­6 May 2010. This paper pressurized anhydrous ammonia as the working fluid to drive turbine-generators to produce electricity; and

  15. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain in their power plants. This paper proposes significant extensions to the electric power supply chain network generators faced with a portfolio of power plant options and subject to pollution taxes. We then demonstrate

  16. Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial

    E-Print Network [OSTI]

    2005-01-01

    Water Research 39 (2005) 4961­4968 Electricity generation from swine wastewater using microbial indicated that electricity could be generated from swine wastewater containing 83207190 mg/L of soluble wastewater (14678 mW/m2 ) due to the higher concentration of organic matter in the swine wastewater. Power

  17. Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned Keywords: Diffraction Liquid crystal devices Propagation A pair of electrically switchable finite energy to the liquid crystal molecules realignment, and the finite energy Airy beams can be generated or erased

  18. Proceedings of the Computational Needs for the Next Generation Electric

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | Department Primus PowerEffects on Rivers inGrid

  19. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  20. 2014 International Workshop on Grid Simulator Testing

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and Clemson University will host the second International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains at the Duke Energy Electric Grid Research, Innovations and Development Center at 1253 Supply Street, North Charleston, South Carolina. The purpose of the workshop is to discuss the research and testing needs involved in grid compliance testing of utility-scale wind turbine generators. Information regarding the workshop can be found at: http://www.nrel.gov/esi/pdfs/201406_egrid_workshop_flyer.pdf.

  1. Cathode Performance as a Factor in Electricity Generation in Microbial

    E-Print Network [OSTI]

    , and azure A); therefore, using them is impractical for economical electricity production (10, 11 from chemicals such as glucose (Rhodoferax ferrireducens; ref 12), lactate, pyruvate, formate (S

  2. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

  3. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    buildings [GW] stationary storage [GWh] combined heat and power (CHP) andenergy source or CHP system at the building could be used toon CHP, they feed electricity back to the building.

  4. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    PV), solar thermal, stationary batteries, thermal storage,thermal storage, AC - absorption cooling, ST-solar thermal,solar thermal collector (kW) PV (kW) stationary electric storage (

  5. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect (OSTI)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  6. Abstract of Doctoral Dissertation in "Engineering and Public Policy, EPP" Integrating Variable Renewables into the Electric Grid: An Evaluation of Challenges and

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    ~$15/tonne CO2 to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV. In this thesis I quantify the cost of variability of different renewable energy technologies and then explore energy into the electricity grid. Cost of Variability I calculate the cost of variability of solar

  7. Simulation of Off-Grid, Off-Pipe, Single-Family Detached Residences in US Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2008-01-01

    , the building UA, Tbal and daily hot water use were obtained for F-Chart inputs. Electricity use for space cooling, lighting, appliances and other: The off-grid house requires electricity for operating the cooling system including fans and pumps.... The battery storage system was sized to store excess electricity generated for use during days when the weather is not favorable for electricity generation. The parameters used for sizing the battery system include: total electricity requirement for a...

  8. Natural rubber for sustainable high-power electrical energy generation

    E-Print Network [OSTI]

    Suo, Zhigang

    to harvest ocean wave energy,2 but they are not economically competitive. These devices couple with the ocean no technology exists to convert such mechanical motions to electricity economically. Other sources of mechanical to satisfy the total worldwide demand for electrical energy.1 No technologies, however, exist to convert

  9. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    generation sources such as fuel cells and microturbines,engines, microturbines and fuel cells. Mobile storage canMicroturbine, FC - Fuel Cell. S – Small-sized equipment, M -

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    a Policy of Renewable and Distributed Energy ResourcesMore renewable energy sources and distributed generationdistributed generation, improve energy efficiency, increase renewable energy

  11. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  12. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  13. ENERGY SERIES "New findings on variable renewable energy and the electricity

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "New findings on variable renewable energy and the electricity grid" Jay Apt Renewable Energy and the Electricity Grid". Professor Apt received an A.B. in physics from Harvard College the market share of variable renewable electric power generation in the United States from the present 4

  14. A principle based system architecture framework applied for defining, modeling & designing next generation smart grid systems

    E-Print Network [OSTI]

    Sachs, Gregory (Gregory Dennis)

    2010-01-01

    A strong and growing desire exists, throughout society, to consume electricity from clean and renewable energy sources, such as solar, wind, biomass, geothermal, and others. Due to the intermittent and variable nature of ...

  15. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  16. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  17. Electric Generating and Transmission Facilities – Emissions Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

  18. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    Reports and Publications (EIA)

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  19. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  20. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    in November 2005 during a natural gas price spike. Figure 22for the year in natural gas prices and general trends in6. electricity and natural gas prices for January 2004 to