Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COKEMASTER: Coke plant management system  

SciTech Connect (OSTI)

To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

1996-12-31T23:59:59.000Z

2

Water protection in coke-plant design  

SciTech Connect (OSTI)

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

3

Design and construction of coke battery 1A at Radlin coke plant, Poland  

SciTech Connect (OSTI)

In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

4

The waste water free coke plant  

SciTech Connect (OSTI)

Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

Schuepphaus, K.; Brink, N. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany)

1995-12-01T23:59:59.000Z

5

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect (OSTI)

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

6

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 23. Coal Receipts at Coke Plants by Census Division...

7

Unmanned operation of the coke guides at Hoogovens IJmuiden Coke Plant 1  

SciTech Connect (OSTI)

Due to the bad condition of batteries and many ovens under repair, Hoogovens was forced to partially repair and rebuild the Coke plant No. 1. The production of coke at Coke plant No. 1 is realized in 3 production blocks subdivided in 6 batteries. Besides a renovated installation, all coke oven machines were renewed. A total of five identical machine sets are available. Each consists of a pusher machine, larry car, coke guide and quench car with diesel locomotive. A complete automated control system was implemented. The main objectives were a highly regular coking and pushing process, automated traveling and positioning and a centrally coordinated interlocking of machine functions. On each operational machine however an operator performed the supervisory control of the automated machine functions. After years of good experience with the automated system, economical reasons urged further personnel reduction from 1994 on. Totally 375 people were involved, including the maintenance department. To reduce the occupation at coke plant No. 1, the coke guide was the first machine to be fully automated because of the isolated and uncomfortable working place.

Vos, D.; Mannes, N.; Poppema, B. [Hoogovens IJmuiden B.V. (Netherlands)

1995-12-01T23:59:59.000Z

8

Priorities in the design of chemical shops at coke plants  

SciTech Connect (OSTI)

Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

9

Ammonia removal process upgrade to the Acme Steel Coke Plant  

SciTech Connect (OSTI)

The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

1995-12-01T23:59:59.000Z

10

Cyanide treatment options in coke plants  

SciTech Connect (OSTI)

The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

Minak, H.P.; Lepke, P. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

11

The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience  

SciTech Connect (OSTI)

At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

Strunk, J.

1996-12-31T23:59:59.000Z

12

How to implement a quality program in a coking plant. The AHMSA experience  

SciTech Connect (OSTI)

AHMSA (Altos Hornos de Mexico) is the largest integrated Steel Plant in Mexico, with its 3.1 MMMT of Liquid Steel production program for 1995. AHMSA operates two coke plants which began operations in 1955 and 1976. Total coke monthly production capacity amounts to as much as 106,000 Metric Tons (MT). The coke plants working philosophy was discussed and established in 1986 as part of the Quality Improvement Program, where its ultimate goal is to give the best possible coke quality to its main client--the blast furnaces. With this goal in mind, a planned joint effort with their own coal mines was initiated. This paper deals with the implementation process of the Quality Program, and the results of this commitment at the coal mines, coke plants and blast furnaces. The coke quality improvement is shown since 1985 to 1994, as well as the impact on the blast furnace operation.

Reyes M, M.A.; Perez, J.L.; Garza, C. de la; Morales, M.

1995-12-01T23:59:59.000Z

13

Heating control methodology in coke oven battery at Rourkela Steel Plant  

SciTech Connect (OSTI)

A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

1996-12-31T23:59:59.000Z

14

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

15

Teamwork in planning and carrying out the first inspection of the coke dry quenching (CDQ) plant of the Kaiserstuhl Coking Facility  

SciTech Connect (OSTI)

The coke plant Kaiserstuhl operates a coke dry quenching (CDQ) plant with a downstream installed waste heat boiler to satisfy statutory pollution control rules and requirements. This CDQ which went on stream in March 1993 cools the whole coke production output from the Kaiserstuhl coke plant in counterflow to an inert cooling gas. This brief overview on the whole CDQ plant should elucidate the complex of problems posed when trying to make an exact plant revision plan. After all it was impossible to evaluate or to assess all the interior process technology relevant components during the planning stage as the plant was in operation. The revision data for the first interior check was determined and fixed by the statutory rule for steam boilers and pressure vessels. The relevant terms for this check are mandatorily prescribed. In liaison with the testing agency (RW TUEV) the date for the first revision was fixed for April 1995, that means two years after the first commissioning.

Burchardt, G.

1996-12-31T23:59:59.000Z

16

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

17

Light oil yield improvement project at Granite City Division Coke/By-Product Plant  

SciTech Connect (OSTI)

Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

Holloran, R.A. [National Steel Corp., Granite City, IL (United States). Granite City Div.

1995-12-01T23:59:59.000Z

18

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

19

Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant  

SciTech Connect (OSTI)

Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

1995-12-01T23:59:59.000Z

20

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works  

SciTech Connect (OSTI)

Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

1995-12-01T23:59:59.000Z

22

Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate  

SciTech Connect (OSTI)

Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar [Ruhr-University Bochum, Bochum (Germany). Soil Science and Soil Ecology Group, Faculty of Geosciences

2004-07-01T23:59:59.000Z

23

VACASULF operation at Citizens Gas and Coke Utility  

SciTech Connect (OSTI)

Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-12-01T23:59:59.000Z

24

Factors affecting coking pressures in tall coke ovens  

SciTech Connect (OSTI)

The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

1995-12-01T23:59:59.000Z

25

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITís Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the ďwasteĒ water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the ďwasteĒ water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

26

Mathematical modeling of clearance between wall of coke oven and coke cake  

SciTech Connect (OSTI)

A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

1995-12-01T23:59:59.000Z

27

Coke cake behavior under compressive forces  

SciTech Connect (OSTI)

The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

1997-12-31T23:59:59.000Z

28

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

Worrell, Ernst

2011-01-01T23:59:59.000Z

29

Simulation of industrial coking -- Phase 1  

SciTech Connect (OSTI)

Two statistically designed experimental programs using an Appalachian and a Western Canadian coal blend were run in CANMET`s 460mm (18 inch) movable wall oven. Factors included coal grind, moisture, oil addition, carbonization rate and final coke temperature. Coke quality parameters including CSR, coal charge characteristics and pressure generation were analyzed.

Todoschuk, T.W.; Price, J.T.; Gransden, J.F.

1997-12-31T23:59:59.000Z

30

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy (DOE) to develop jointly a licensing strategy for the Next Generation Nuclear plant (NGNP), a very high temperature gas-cooled reactor (VHTR) for...

31

New and revised standards for coke production  

SciTech Connect (OSTI)

The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

32

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

33

Next Generation Geothermal Power Plants  

SciTech Connect (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

34

Mozambique becomes a major coking coal exporter?  

SciTech Connect (OSTI)

In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

Ruffini, A.

2008-06-15T23:59:59.000Z

35

Possibilities of coke manufacture in nonpollutant conditions  

SciTech Connect (OSTI)

The paper presents some possibilities to obtain coke briquettes from anthracite, using as binders petroleum pitch, wheat flour, cement, plaster, ashes from power-plants dried from the electrofilters. Specific thermal post-treatment were proposed for each case, such as: oxidation or heating at low temperatures (under 300 C). As a result the authors obtained coke briquettes to be used in small equipment, with no pollutant pyrogenetic treatment.

Barca, F.; Panaitescu, C.; Vidrighin, C.; Peleanu, I. [Politehnica Univ. Bucharest (Romania); Albastroiu, P. [S.C. ICEM S.A., Bucharest (Romania)

1994-12-31T23:59:59.000Z

36

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

37

Western Canadian coking coals -- Thermal rheology and coking quality  

SciTech Connect (OSTI)

Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

Leeder, W.R. [Teck Corp. (Canada); Price, J.T.; Gransden, J.F. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

1997-12-31T23:59:59.000Z

38

The Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950įC) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

Dr. David A. Petti

2009-01-01T23:59:59.000Z

39

Experience and results of new heating control system of coke oven batteries at Rautaruukki Oy Raahe Steel  

SciTech Connect (OSTI)

The latest development and results of the heating control system at Raahe Steel are presented in this paper. From the beginning of coke production in Rautaruukki Oy Raahe Steel (October 1987) the heating control systems have been developed. During the first stage of development work at the coking plant (from year 1987 to 1992), when only the first coke oven battery consisting of 35 ovens was in production, the main progress was in the field of process monitoring. After commissioning of the second stage of the coking plant (November 1992), the development of the new heating control model was started. Target of the project was to develop a dynamic control system which guides the heating of batteries through the various process conditions. Development work took three years and the heating control system was commissioned in the year 1995. Principle of the second generation system is an energy balance calculation, coke end temperature determination and dynamic oven scheduling system. The control is based on simultaneous feedforward and feedback control. The fuzzy logic components were added after about one year experience.

Swanljung, J.; Palmu, P. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

40

Met coke world summit 2005  

SciTech Connect (OSTI)

Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coking and gasification process  

DOE Patents [OSTI]

An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

1986-01-01T23:59:59.000Z

42

High coking value pitch  

SciTech Connect (OSTI)

A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

2014-06-10T23:59:59.000Z

43

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Should that prove to be impractical (e.g. due to excessive heat loss in the intermediate heat transfer loop), an earthen berm separating the two plants may be a suitable...

44

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and passive heat dissipation to withstand design basis events with minimal fuel damage and source term generation. As such, the NGNP places a burden on the designer to...

45

Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen  

SciTech Connect (OSTI)

Today's commercially proved technology to recover oil from the Athabasca oil sands, as practiced by Suncor and Syncrude, involves two major operations, namely: separation of the bitumen from the sand and upgrading of the bitumen to refinery oil. Significant amounts of petroleum coke are produced during the bitumen upgrading process. Suncor burns the bulk of its petroleum coke in boilers to fulfill the energy requirements of the entire operation, still meeting government regulations restricting the amount of sulfur dioxide that can be released to the environment. In contrast, Syncrude is able to burn only 20% of its coke production because of high sulphur dioxide emissions from elsewhere in its operations. The boiler ash (Fly ash) which contains appreciable amounts of metals, such as vanadium, nickel, titianium, iron, aluminum and other elements, is collected in the boiler hoppers and cyclones of the petroleum coke fired steam generation plants. There has been relatively little effort made towards the understanding of the chemical or physical nature of these materials. Knowledge of the physico-chemical properties of these materials will be helpful in assessing their beneficiation and potential use as fuel or metallurigcal coke and the feasibility of extracting some metals, especially Ni and V. In this communication the authors report studies of acid demineralization as a means of reducing ash content of these materials for /sup 13/C NMR spectroscopic investigations.

Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A.

1988-06-01T23:59:59.000Z

46

NEXT GENERATION NUCLEAR PLANT PROJECT IMPLEMENTATION STRATEGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEXT GENERATION NUCLEAR PLANT PROJECT IMPLEMENTATION STRATEGY Presented by NGNP Industry Alliance November 30, 2009 I In nd du us st tr ry y A Al ll li ia an nc ce e Clean,...

47

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

48

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

49

Mesaba next-generation IGCC plant  

SciTech Connect (OSTI)

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

50

Coke from coal and petroleum  

DOE Patents [OSTI]

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

51

GENERATING CLIMBING PLANTS USING L-SYSTEMS Johan Knutzen1  

E-Print Network [OSTI]

and heliotropism, as well pseudo- tropisms. The structure of the generated climbing plants is discretized

Assarsson, Ulf

52

Converting Petroleum Coke to Electricity  

E-Print Network [OSTI]

contributes 80% of this total. As crude oil coke is a cement kiln, where the alkaline quality deteriorates, and the market for residual components in cement will absorb the sulfur oil. becomes less profitable due to increasingly released by the coke during.... The higher value has been amply demonstrated by the Combustion Power Units, and by commercial gasification systems producing syngas for chemicals We do not anticipate a major system availability debit for adding an industrial-scale, base loaded...

Pavone, A.

53

New coke-sorting system at OAO Koks  

SciTech Connect (OSTI)

A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

54

Optimization of Water Consumption in Second Generation Bioethanol Plants  

E-Print Network [OSTI]

1 Optimization of Water Consumption in Second Generation Bioethanol Plants Mariano MartŪna optimization of second generation bioethanol production plants from lignocellulosic switchgrass when using/gal and with no or low water discharge. Keywords: Energy, Biofuels, Alternative fuels, Water, Ethanol

Grossmann, Ignacio E.

55

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

56

Trends in the automation of coke production  

SciTech Connect (OSTI)

Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

57

Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation  

SciTech Connect (OSTI)

The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

1995-12-01T23:59:59.000Z

58

Next Generation Nuclear Plant GAP Analysis Report  

SciTech Connect (OSTI)

As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

2008-12-01T23:59:59.000Z

59

Next Generation Nuclear Plant Licensing Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reactor that is based on research and development (R&D) activities supported by the Generation IV Nuclear Energy Systems Initiative and shall be used to generate electricity,...

60

Power generation using solar power plant.  

E-Print Network [OSTI]

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 ratherÖ (more)

Amin, Parth

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling Generator Power Plant Portfolios and Pollution Taxes  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice ∑ Each Genco has a portfolio of power plants ∑ Each power plant can have different supply costs and transaction costs ∑ Supply costs can reflect capital

Nagurney, Anna

62

Next generation geothermal power plants. Draft final report  

SciTech Connect (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

63

Collector main replacement at Indianapolis Coke  

SciTech Connect (OSTI)

Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

Sickle, R.R. Van

1997-12-31T23:59:59.000Z

64

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

SciTech Connect (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

65

New designs in the reconstruction of coke-sorting systems  

SciTech Connect (OSTI)

In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

66

The Next Generation Nuclear Plant (NGNP) Project  

SciTech Connect (OSTI)

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOEís project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

67

Innovative Design of New Geothermal Generating Plants  

SciTech Connect (OSTI)

This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

1989-07-01T23:59:59.000Z

68

An overview of crisis management in the coke industry  

SciTech Connect (OSTI)

Members of the American Coke and Coal Chemicals Institute (ACCCI), as responsible corporate citizens, have embraced the concepts of crisis management and progress down the various paths of planning and preparation, monitoring, media communications, community outreach, emergency response, and recovery. Many of the concepts outlined here reflect elements of crisis management guidelines developed by the Chemical Manufacturers Association (CMA). At a coke plant, crises can take the form of fires, chemical releases, labor strikes, feedstock supply disruptions, and excessive snowfall, just to name a few. The CMA defines a crisis as: ``an unplanned event that has the potential to significantly impact a company`s operability or credibility, or to pose a significant environment, economic or legal liability``; and crisis management as: ``those activities undertaken to anticipate or prevent, prepare for, respond to and recover from any incident that has the potential to greatly affect the way a company conducts its business.

Saunders, D.A.

1995-12-01T23:59:59.000Z

69

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

70

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network [OSTI]

in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

71

Heat treatment of exchangers to remove coke  

SciTech Connect (OSTI)

This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

Turner, J.D.

1990-02-20T23:59:59.000Z

72

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect (OSTI)

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

73

Physical, chemical and thermal changes of coals and coal maceral concentrates during coke formation.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) The measured coke reactivity index (CRI) and coke strength after reaction (CSR) determined in experiments based on cokeÖ (more)

Xie, Wei

2013-01-01T23:59:59.000Z

74

New Generation Nuclear Plant -- High Level Functions and Requirements  

SciTech Connect (OSTI)

This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

2003-09-01T23:59:59.000Z

75

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

76

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

77

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect (OSTI)

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

78

Technology Data for Electricity and Heat Generating Plants  

E-Print Network [OSTI]

.................................................................................63 13 Centralised Biogas Plants

79

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

G. O. Hayner; E.L. Shaber

2004-09-01T23:59:59.000Z

80

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

SciTech Connect (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energyís (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTARís initial offering combines--for the first time--a ďgasification with CO2 captureĒ process simulator with a ďcombined-cycleĒ power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industryís growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

2003-02-07T23:59:59.000Z

82

Steam generator design considerations for modular HTGR plant  

SciTech Connect (OSTI)

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

83

Innovative Self- Generating Projects  

E-Print Network [OSTI]

Steam Driven Cooling Water Pump Blast Furnace Coke Plant Flares Boilers Steam Header Electric Cooling Water Pump (Back-up) Process Steam (Main Plant) Coal Hot Mill Reheat Furnace COG Bunker Oil ESL-IE-13-05-06 Proceedings... Driven Cooling Pump (New Back-up) Blast Furnace Coke Plant Flares Boilers Parastic Loads Natural Gas Turbine Steam Header Electric Cooling Water Pump (with Power Meter) Net ElectricityG Process Steam (Main Plant) Coal Hot Mill Reheat...

Kelly, L.

2013-01-01T23:59:59.000Z

84

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

Michael Volk Jr; Keith Wisecarver

2005-10-01T23:59:59.000Z

85

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

SciTech Connect (OSTI)

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

86

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS  

SciTech Connect (OSTI)

The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

2002-05-01T23:59:59.000Z

87

Plugging of steam generator tubes and consequences for plant operation  

SciTech Connect (OSTI)

The simulation of pressurized water reactor (SIROP) code was created using the SICLE software developed by the study and research department at Electricite de France. It is the largest computer code with this software (260 tubes, 1800 computation points, 19 water-steam cavities, 9 pumps, 6 turbines, 32 control system elements). It simulates the general operating conditions of a 900-MW(electric) CP2 power plant by computing the main physical parameters from the reactor core to the condenser. The study was performed by the study and research department (Reactor Physics Division) with the help of SEPTEN following an SPT (power operation department) request. It consisted of identifying the change in margins with respect to emergency shutdown protections (especially for ..delta..T protections) as a function of the number of plugged steam generators (1, 2, or 3) and the degree of plugging (10, 20, and 30%) under the following operating conditions: (1) steady state at 100% full power; and (2) main transients: manual load rejection, load rejection induced by grid fault, turbine tripping. The purpose was to assess the effect of a large number of steam generator plugged tubes on the behavior of the plant to secure a long-term prediction for the date of replacement of these steam generators.

Agnoux, D.; Chenal, J.C.

1987-01-01T23:59:59.000Z

88

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect (OSTI)

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

89

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

90

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

91

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

92

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

93

Model based control of a coke battery  

SciTech Connect (OSTI)

This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

1997-12-31T23:59:59.000Z

94

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect (OSTI)

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

95

Coking properties of perhydrous low-rank vitrains. Influence of pyrolysis conditions  

E-Print Network [OSTI]

generally lead to increased coking potential of coals characterised in the resulting cokes by large sizes equivalent to natural coking coals, since the cokes from these residues are always made of smaller MOD than those obtained for coking coals. For comparison, a similar characterisation, carried out

Paris-Sud XI, Université de

96

Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking  

SciTech Connect (OSTI)

1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

2007-09-15T23:59:59.000Z

97

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

98

A mathematical model for the estimation of flue temperature in a coke oven  

SciTech Connect (OSTI)

The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

1997-12-31T23:59:59.000Z

99

Next Generation Nuclear Plant Methods Technical Program Plan  

SciTech Connect (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the ďhighly rankedĒ phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2007-01-01T23:59:59.000Z

100

Next Generation Nuclear Plant Methods Technical Program Plan  

SciTech Connect (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the ďhighly rankedĒ phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498  

SciTech Connect (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the ďhighly rankedĒ phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2010-09-01T23:59:59.000Z

102

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

103

Reducing power production costs by utilizing petroleum coke. Annual report  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

Galbreath, K.C.

1998-07-01T23:59:59.000Z

104

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

105

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

106

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

107

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

108

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network [OSTI]

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayedÖ (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

109

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

110

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

SciTech Connect (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

111

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network [OSTI]

effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

1982-01-01T23:59:59.000Z

112

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

113

Next Generation Nuclear Plant Research and Development Program Plan  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

114

Next Generation Nuclear Plant Research and Development Program Plan  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

115

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

116

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

SciTech Connect (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

117

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

118

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

119

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

120

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF  

E-Print Network [OSTI]

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF LIFETIME CONSUMPTION of a combined cycle power plant under consideration of the real cost of lifetime usage is accomplished behavior of a combined cycle power plant. In order to model both the continuous/discrete dynamics

Ferrari-Trecate, Giancarlo

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heat Generation by Heat Pump for LNG Plants.  

E-Print Network [OSTI]

?? Abstract The LNG production plant processing natural gas from the SnÝhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally withÖ (more)

Moe, BjÝrn Kristian

2011-01-01T23:59:59.000Z

122

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect (OSTI)

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

123

Method for removal of furfural coke from metal surfaces  

SciTech Connect (OSTI)

This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating ship furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas with a total pressure of less than 100 psig containing molecular oxygen. The gas being at a sufficient temperature below 800{degrees}F. (427{degrees}C.) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of about 5000 psi.

Turner, J.D.

1990-02-27T23:59:59.000Z

124

AVESTAR Center for operational excellence of electricity generation plants  

SciTech Connect (OSTI)

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energyís National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARô). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

Zitney, S.

2012-01-01T23:59:59.000Z

125

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

126

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES  

SciTech Connect (OSTI)

Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

2003-06-01T23:59:59.000Z

127

New process to avoid emissions: Constant pressure in coke ovens  

SciTech Connect (OSTI)

A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

128

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network [OSTI]

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicabilityÖ (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

129

CAES (conventional compressed-air energy storage) plant with steam generation: Preliminary design and cost analysis  

SciTech Connect (OSTI)

A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstrated the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.

Nakhamkin, M.; Swensen, E.C.; Abitante, P.A. (Energy Storage and Power Consultants, Mountainside, NJ (USA))

1990-10-01T23:59:59.000Z

130

In-Plant Reliability Data base for nuclear plant components. Interim report: diesel generators, batteries, chargers and inverters  

SciTech Connect (OSTI)

The objective of the In-Plant Reliability Data (IPRD) program is to develop a comprehensive, component-specific reliability data base for probabilistic risk assessment and for other statistical analyses relevant to component reliability evaluations. This document is the product of a pilot study that was undertaken to demonstrate the methodology and feasibility of applying IPRDS techniques to develop and analyze the reliability characteristics of key electrical components in five nuclear power plants. These electrical components include diesel generators, batteries, battery chargers and inverters. The sources used to develop the data base and produce the component failure rates and mean repair times were the plant equipment lists, plant drawings, maintenance work requests, Final Safety Analysis Reports (FSARs), and interviews with plant personnel. The data spanned approximately 33 reactor-years of commercial operation.

Kahl, W.K.; Borkowski, R.J.

1985-01-01T23:59:59.000Z

131

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect (OSTI)

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

132

Co-Generation at a Practical Plant Level  

E-Print Network [OSTI]

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

133

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

134

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

135

Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks  

E-Print Network [OSTI]

, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

Nagurney, Anna

136

MHD (magnetohydrodynamics) retrofit of a coal-fired generating plant  

SciTech Connect (OSTI)

This report presents the following appendices on the design of a coal-fired MHD retrofit: AVCO part load study; AVCO full load calculations; MSE mass balance calculations; Corette/MHD combined plant overall efficiency estimate; Corette boiler efficiency estimate; dynamic modeling and control simulation; combustor and nozzle scaling approach; field inductance and energy calculations; diagnostic instrumentation listing; equipment list; cost estimate factors; equipment and vendor costs data; CFFF test information; HRSR-ESP seed/ash calculations; and K{sub 2}/S molar ratio.

Not Available

1989-01-01T23:59:59.000Z

137

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect (OSTI)

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

138

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs  

SciTech Connect (OSTI)

A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

2008-03-01T23:59:59.000Z

139

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect (OSTI)

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian S. [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory; Hill, Thomas R. [Los Alamos National Laboratory; Macarthur, Duncan W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin E. [Los Alamos National Laboratory; Sheppard, Gregory A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

2008-06-13T23:59:59.000Z

140

Table 33. Coal Carbonized at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Year to Date Census Division April - June 2014 January - March 2014 April - June 2013 2014 2013 Percent Change Middle Atlantic 1,599 1,503 1,622 3,102 3,178 -2.4 East North...

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 38. Coal Stocks at Coke Plants by Census Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: ReportedEnergyChanges

142

A coke oven model including thermal decomposition kinetics of tar  

SciTech Connect (OSTI)

A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

1997-12-31T23:59:59.000Z

143

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect (OSTI)

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

144

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

that were subject to incentive regulation also saw fuel e?a strong form of incentive regulation. This suggests thata speci?c focus on incentive regulation. from the generation

Bushnell, James B.; Wolfram, Catherine

2005-01-01T23:59:59.000Z

145

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

146

CONCEPTUAL DESIGN AND ECONOMICS OF A NOMINAL 500 MWe SECOND-GENERATION PFB COMBUSTION PLANT  

SciTech Connect (OSTI)

Research has been conducted under United States Department of Energy Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48 percent, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler, and the combustion of carbonizer syngas in a gas turbine combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design and an economic analysis was previously prepared for this plant. When operating with a Siemens Westinghouse W501F gas turbine, a 2400psig/1000 F/1000 F/2-1/2 in. Hg. steam turbine, and projected carbonizer, PCFB, and topping combustor performance data, the plant generated 496 MWe of power with an efficiency of 44.9 percent (coal higher heating value basis) and a cost of electricity 22 percent less than a comparable PC plant. The key components of this new type of plant have been successfully tested at the pilot plant stage and their performance has been found to be better than previously assumed. As a result, the referenced conceptual design has been updated herein to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine. The use of this advanced gas turbine, together with a conventional 2400 psig/1050 F/1050 F/2-1/2 in. Hg. steam turbine increases the plant efficiency to 48.2 percent and yields a total plant cost of $1,079/KW (January 2002 dollars). The cost of electricity is 40.7 mills/kWh, a value 12 percent less than a comparable PC plant.

A. Robertson; H. Goldstein; D. Horazak; R. Newby

2003-09-01T23:59:59.000Z

147

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

148

Coke profile and effect on methane/ethylene conversion process  

E-Print Network [OSTI]

The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were...

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

149

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

150

Design Features and Technology Uncertainties for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

2004-06-01T23:59:59.000Z

151

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

from combustion and gasification of coal Ė an equilibriumHolysh, M. 2005. Coke Gasification: Advanced technology forfrom a Coal-Fired Gasification Plant. Final Report, December

Apps, J.A.

2006-01-01T23:59:59.000Z

152

Trends in hydrogen plant design  

SciTech Connect (OSTI)

Understanding important design considerations for H{sub 2} production via steam reforming require detailed attention to the many elements that make up the process. This paper discusses design trends focus on improvements to the plant's three principal unit operations: Generation of H{sub 2}/CO syngas, Conversion of CO in the syngas and Separation/purification of H{sub 2} from syngas. Natural gas, LPG, oil, coal and coke are all potential raw materials for H{sub 2} production. For the first step in the process, generation of H{sub 2} syngas, the processes available are: Reforming the steam; Autothermal reforming with oxygen and steam; and Partial oxidation with oxygen (POX). Most syngas is presently produced by steam reforming of natural gas or light hydrocarbons up to naphtha.

Johansen, T.; Raghuraman, K.S.; Hackett, L.A. (KTI, Zoetermeer (NL))

1992-08-01T23:59:59.000Z

153

Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint  

SciTech Connect (OSTI)

In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

Zhang, J.; Chowdhury, S.; Hodge, B. M.

2014-01-01T23:59:59.000Z

154

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents [OSTI]

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

155

New environmental concepts in the chemical and coke industries  

SciTech Connect (OSTI)

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

156

Development of advanced technology of coke oven gas drainage treatment  

SciTech Connect (OSTI)

In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

1996-12-31T23:59:59.000Z

157

Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect (OSTI)

This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

2004-03-29T23:59:59.000Z

158

District heating from electric-generating plants and municipal incinerators: local planner's assessment guide  

SciTech Connect (OSTI)

This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

Pferdehirt, W.; Kron, N. Jr.

1980-11-01T23:59:59.000Z

159

Effect of pressure on second-generation pressurized fluidized bed combustion plants  

SciTech Connect (OSTI)

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

160

Low-coke rate operation under high PCI at Kobe No. 3 BF  

SciTech Connect (OSTI)

Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro [Kobe Steel Ltd. (Japan). Kobe Works

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens  

SciTech Connect (OSTI)

Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

Ellis, C.E.; Pruitt, C.W.

1995-12-01T23:59:59.000Z

162

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

SciTech Connect (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

163

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect (OSTI)

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

164

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

165

The effect of diabietic acid on the coking of oxidised solvent-extracted coal.  

E-Print Network [OSTI]

??Refcoal is a refined carbon source obtained by extraction of coal with dimethylformamide (DMF). During the coking process, Refcoal goes through a mesophase (fluid) stageÖ (more)

Ludere, Margaret Tshimangadzo

2008-01-01T23:59:59.000Z

166

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network [OSTI]

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. CupolaÖ (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

167

Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report  

SciTech Connect (OSTI)

This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

Saurwein, John

2011-07-15T23:59:59.000Z

168

Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants  

SciTech Connect (OSTI)

Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

Goldberg, A.; Streit, R.D.

1981-05-01T23:59:59.000Z

169

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

170

Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)  

ScienceCinema (OSTI)

Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

Wiegel, Detlef

2011-04-25T23:59:59.000Z

171

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report  

SciTech Connect (OSTI)

A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

Ball, Sydney J [ORNL

2008-03-01T23:59:59.000Z

172

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

SciTech Connect (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

173

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network [OSTI]

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.Ö (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

174

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect (OSTI)

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

175

Analytical input-output and supply chain study of China's coke and steel sectors  

E-Print Network [OSTI]

I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

176

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect (OSTI)

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

177

Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance  

SciTech Connect (OSTI)

As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ĎAir-Cooled Condensers in Next- Generation Conversion Systemsí. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

Daniel S. Wendt; Greg L. Mines

2010-09-01T23:59:59.000Z

178

Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)  

E-Print Network [OSTI]

- 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

Boyer, Edmond

179

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

180

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: ē Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas ē Utilizing proven and reliable technology and equipment ē Maximizing electrical efficiency ē Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill ē Maximizing equipment uptime ē Minimizing water consumption ē Minimizing post-combustion emissions ē The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhís of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

182

Conceptual design and optimization of a 1-1/2 generation PFBC plant task 14. Topical report  

SciTech Connect (OSTI)

The economics and performance of advanced pressurized fluidized bed (PFBC) cycles developed for utility applications during the last 10 years (especially the 2nd-Generation PFBC cycle) are projected to be favorable compared to conventional pulverized coal power plants. However, the improved economics of 2nd-Generation PFBC cycles are accompanied by the perception of increased technological risk related to the pressurized carbonizer and its associated gas cleanup systems. A PFBC cycle that removed the uncertainties of the carbonizer while retaining the high efficiency and low cost of a 2nd-Generation PFBC cycle could improve the prospects for early commercialization and pave the way for the introduction of the complete 2nd-Generation PFBC cycle at some later date. One such arrangement is a PFBC cycle with natural gas topping combustion, referred to as the 1.5-Generation PFBC cycle. This cycle combines the advantages of the 2nd-Generation PFBC plant with the reduced risk associated with a gas turbine burning natural gas, and can potentially be part of a phased approach leading to the commercialization of utility 2nd-Generation PFBC cycles. The 1.5-Generation PFBC may also introduce other advantages over the more complicated 2nd-Generation PFBC system. This report describes the technical and economic evaluation of 1.5-Generation PFBC cycles for utility or industrial power generation.

White, J.S.; Witman, P.M.; Harbaugh, L.; Rubow, L.N.; Horazak, D.A.

1994-12-01T23:59:59.000Z

183

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

184

Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498  

SciTech Connect (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the ďhighly rankedĒ phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2008-09-01T23:59:59.000Z

185

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750įC, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

J. K. Wright; R. N. Wright

2010-07-01T23:59:59.000Z

186

Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)  

SciTech Connect (OSTI)

In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

Mark Holbrook

2007-09-01T23:59:59.000Z

187

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

188

Management activities for retrieved and newly generated transuranic waste, Savannah River Plant  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to assess the potential environmental impacts of the retrieval and processing of retrieved and newly generated transuranic (TRU) radioactive waste at the Savannah River Plant (SRP), including the transportation of the processes TRU waste to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. A new TRU Waste Facility (TWF) will be constructed at SRP to retrieve and process the SRP TRU waste in interim storage to meet WIPP criteria. This EA has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council of Environmental Quality Regulations for implementing NEPA (40 CFR Parts 1500--1508). The National Environmental Policy Act (NEPA) requires the assessment of environmental consequences of all major federal actions that may affect the quality of the human environment. This document describes the environmental impact of constructing and operating the TWF facility for processing and shipment of the TRU waste to WIPP and considers alternatives to the proposed action. 40 refs., 12 figs., 12 tabs.

Not Available

1988-08-01T23:59:59.000Z

189

Investigation of the effects of heating rate on coking of shale during retorting  

SciTech Connect (OSTI)

The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

Guffey, F.D.; Hunter, D.E.

1988-02-01T23:59:59.000Z

190

Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen  

SciTech Connect (OSTI)

Ash reduction of the cokes and fly ash samples derived from the Athabasca oil sands bitumen was attempted by dissolving the mineral matter in acids. The samples used for this investigation included Syncrude fluid coking coke, Suncor delayed coking coke and the two fly ash samples obtained from the combustion of these cokes. All samples were analyzed for C,H,N,O, and S before and after acid demineralization and the analyses results compared. Further, the ash from the samples before and after acid demineralization was analyzed for silica, alumina, iron titanium, nickel and vanadium to assess the acid leaching of these elements. CP/MAS, /sup 13/C NMR spectroscopic study of the demineralized coke and fly ash samples was also attempted.

Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

1989-01-01T23:59:59.000Z

191

Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.  

SciTech Connect (OSTI)

In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

2007-03-21T23:59:59.000Z

192

Glass-coating and cleaning system to prevent carbon deposition on coke oven walls  

SciTech Connect (OSTI)

The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka [Kawasaki Steel Corp., Mizushima, Kurashiki (Japan). Mizushima Works

1997-12-31T23:59:59.000Z

193

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest Ė i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

194

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900įC and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2ľCr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

195

Producing and controlling of the pollutant in the coal`s coking process  

SciTech Connect (OSTI)

In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

1997-12-31T23:59:59.000Z

196

Current developments at Giprokoks for coke-battery construction and reconstruction  

SciTech Connect (OSTI)

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

197

The Videofil probe, a novel instrument to extend the coke oven service life  

SciTech Connect (OSTI)

To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

1997-12-31T23:59:59.000Z

198

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

199

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect (OSTI)

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

200

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

1998-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

202

Coke gasification: the influence and behavior of inherent catalytic mineral matter  

SciTech Connect (OSTI)

Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

2009-04-15T23:59:59.000Z

203

Modification of environmental control of cokemaking plant  

SciTech Connect (OSTI)

Recently, global environmental protection has been a great concern in the world. In the United States of America, the Clean Air Act (CAA) has been revised to control emissions strictly. Especially in the field of cokemaking, the restriction of fume emission from a coke oven is so severe that old coke ovens will stop operation with the application of CAA. In Japan, it is expected that more severe protection measures are going to be requested for keeping environmental quality. In this situation, it is indispensable to strengthen environmental protection measures for cokemaking plants to continue coke production in the 21st century. In Chiba Works, Kawasaki Steep Corp., the Ironmaking Department has been struggling for the improvement of environmental measures for. These activities for coke ovens are described in this report. The paper describes fume emission control from the coke oven door and dust emission control measures, including the dust monitoring system, prevention of secondary dust scattering from coke ovens, replacement of dedusters, and fume and dust control of stack emission.

Katoh, H.; Yasuno, M.; Gotch, T.; Yoshida, F.

1993-01-01T23:59:59.000Z

204

Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

Dr. Mark Schanfein; Philip Casey Durst

2012-07-01T23:59:59.000Z

205

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect (OSTI)

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

206

Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)  

SciTech Connect (OSTI)

DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900įC and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Todayís high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760įC. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

J. K. Wright

2008-04-01T23:59:59.000Z

207

Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants  

SciTech Connect (OSTI)

The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

Sackschewsky, M.R.

1997-03-01T23:59:59.000Z

208

Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel  

E-Print Network [OSTI]

non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has

Tsair-wang Chung; Kuan-ting Liu; Mai-tzu Chen

209

Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling  

SciTech Connect (OSTI)

One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

Hur, Jin-Suk; Roh, Myung- Sub [KEPCO International Nuclear Graduate School, 1456-1 Shinam-ri, Seosaeng-myeon, Ulju-gun, Ulsan, 689-882 (Korea, Republic of)

2014-02-12T23:59:59.000Z

210

Effect of coal and coke qualities on blast furnace injection and productivity at Taranto  

SciTech Connect (OSTI)

Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

1995-12-01T23:59:59.000Z

211

Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report  

SciTech Connect (OSTI)

The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

1997-03-01T23:59:59.000Z

212

Automatic coke oven heating control system at Burns Harbor for normal and repair operation  

SciTech Connect (OSTI)

An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

1997-12-31T23:59:59.000Z

213

Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride  

SciTech Connect (OSTI)

Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

Sotowa, Chiaki; Korai, Yozo; Mochida, Isao [Kyushu Univ., Kasuga, Fukuoka (Japan)] [and others

1995-12-31T23:59:59.000Z

214

The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants  

SciTech Connect (OSTI)

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

2008-07-01T23:59:59.000Z

215

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network [OSTI]

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

216

Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore Torquatob)  

E-Print Network [OSTI]

Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore of a Brownian particle diffusing among a, digitized lattice-based domain of traps. Following the first, the inverse of the trapping rate, is obtained for a variety of configurations involving digitized spheres

Torquato, Salvatore

217

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), Sodium-cooled Fast Reactor (SFR), Supercritical-water-cooled Reactor (SCWR) and the Very-high-temperature Reactor (VHTR). An international effort to develop these new... and the hydrogen production plant4,5. Davis et al. investigated the possibility of helium and molten salts in the IHTL2. The thermal efficiency of the power conversion unit is paramount to the success of this next generation technology. Current light water...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

218

Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report  

SciTech Connect (OSTI)

Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

Nelson, C.

1995-08-01T23:59:59.000Z

219

Abstract-Private investment in generation plants in Ecuador has been null over the last 10 years due to several political  

E-Print Network [OSTI]

Abstract- Private investment in generation plants in Ecuador has been null over the last 10 years and the Ministry of Electricity are the only ones initiating the construction of new hydro plants of significant in place for the last 10 years, particularly in relation to incentive to private investment. Arguments

Catholic University of Chile (Universidad Católica de Chile)

220

New technology for purging the steam generators of nuclear power plants  

SciTech Connect (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modeling and Control of Co-generation Power Plants: A Hybrid System Approach  

E-Print Network [OSTI]

cycle is driven by some fossil fuel (usually natural gas) and produces electric power via expansion of the gas turbine and generates both electricity and steam for the industrial processes. Clearly, the liberalization of the energy market has promoted the need of operating CCPPs in the most efficient way

Ferrari-Trecate, Giancarlo

222

Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations  

SciTech Connect (OSTI)

Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment.

Blum, A.; Smith, R.J. [Public Service Electric and Gas Co., Hancocks Bridge, NJ (United States)

1991-06-01T23:59:59.000Z

223

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:Community Nominations open for6.633492¬įPower Plant Jump

224

Model of sludge behavior in nuclear plant steam generators. Final report  

SciTech Connect (OSTI)

The accumulation of large amounts of sludge in pressurized water reactor steam generators is thought to be a cause of accelerated corrosion by trace impurities which concentrate in such deposits. Based on fundamental principles, this study develops a mathematical model for predicting the behavior (e.g., deposition and reentrainment) of sludge in steam generators. The calculated sludge behavior shows good agreement with the limited amount of experimental data available. The results suggest that the continued accumulation of sludge on the tubesheet might be preventable, and that if it could be, the incoming sludge would be removed by blowdown. An analysis of the uncertainties in the model led to suggested priorities for further analytical and experimental work to gain a better understanding of sludge behavior. 29 refs., 12 figs., 15 tabs.

Beal, S.K.; Chen, J.H.

1986-06-01T23:59:59.000Z

225

Martin Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co LtdInformation Next Generation Solar

226

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC <Generator.jpg

227

Melting characteristics of the stainless steel generated from the uranium conversion plant  

SciTech Connect (OSTI)

The partition ratio of cerium (Ce) and uranium (U) in the ingot, slag and dust phases has been investigated for the effect of the slag type, slag concentration and basicity in an electric arc melting process. An electric arc furnace (EAF) was used to melt the stainless steel wastes, simulated by uranium oxide and the real wastes from the uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). The composition of the slag former used to capture the contaminants such as uranium, cerium, and cesium during the melt decontamination process generally consisted of silica (SiO{sub 2}), calcium oxide (CaO) and aluminum oxide (Al{sub 2}O{sub 3}). Also, Calcium fluoride (CaF{sub 2} ), nickel oxide (NiO), and ferric oxide (Fe{sub 2}O{sub 3}) were added to provide an increase in the slag fluidity and oxidative potential. Cerium was used as a surrogate for the uranium because the thermochemical and physical properties of cerium are very similar to those of uranium. Cerium was removed from the ingot phase to slag phase by up to 99% in this study. The absorption ratio of cerium was increased with an increase of the amount of the slag former. And the maximum removal of cerium occurred when the basicity index of the slag former was 0.82. The natural uranium (UO{sub 2}) was partitioned from the ingot phase to the slag phase by up to 95%. The absorption of the natural uranium was considerably dependent on the basicity index of the slag former and the composition of the slag former. The optimum condition for the removal of the uranium was about 1.5 for the basicity index and 15 wt% of the slag former. According to the increase of the amount of slag former, the absorption of uranium oxide in the slag phase was linearly increased due to an increase of its capacity to capture uranium oxide within the slag phase. Through experiments with various slag formers, we verified that the slag formers containing calcium fluoride (CaF{sub 2}) and a high amount of silica were more effective for a melt decontamination of stainless steel wastes contaminated with uranium. During the melting tests with stainless steel wastes from the uranium conversion plant(UCP ) in KAERI, we found that the results of the uranium decontamination were very similar to those of the uranium oxide from the melting of stimulated metal wastes. (authors)

Choi, W.K.; Song, P.S.; Oh, W.Z.; Jung, C.H. [Korea Atomic Energy Research Institute (Korea, Republic of); Min, B.Y. [Chungnam National University, 220 Gung-Dong, Yusung-Gu Taejon 305-764 (Korea, Republic of)

2007-07-01T23:59:59.000Z

228

Coke oven doors: Historical methods of emission control and evaluation of current designs  

SciTech Connect (OSTI)

The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

Pettrey, J.O.; Greene, D.E. (Armco Steel Co., Middletown, OH (United States))

1993-01-01T23:59:59.000Z

229

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect (OSTI)

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

230

High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

J. M. Beck; L. F. Pincock

2011-04-01T23:59:59.000Z

231

Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants  

SciTech Connect (OSTI)

Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

Goldberg, A.; Streit, R.D.; Scott, R.G.

1980-06-25T23:59:59.000Z

232

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

1984-01-01T23:59:59.000Z

233

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

234

Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky  

SciTech Connect (OSTI)

In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

1991-06-01T23:59:59.000Z

235

Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water  

SciTech Connect (OSTI)

An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

2013-11-15T23:59:59.000Z

236

Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea  

SciTech Connect (OSTI)

The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

Urakaev, F.K. [Institute of Geology & Mineral SB RAS, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

237

Process safety management (OSHA) and process risk management (CAA) application. Application to a coke plant  

SciTech Connect (OSTI)

Risk Management Programs for Chemical Accidental Release Prevention is the name of the proposed rule for the RMP Risk Management Program. The RMP was written in response to several catastrophic releases of hazardous substances. The rule is applicable to facilities that store, process or use greater than threshold quantities of 62 listed flammable chemicals and another 100 listed toxic substances. Additionally, a Risk Management Plan is registered with the EPA, Chemical Safety and Hazardous Investigation Board, state governments and the local emergency planning commission. The Clean Air Act Amendments of 1990 (specifically Section 112r) required the EPA to develop a three phase Risk Management Plan for industry: prevention program; hazard assessment; and emergency response program. The Prevention Program closely follows the OSHA`s Process Safety Management Standard. The Hazard Assessment section requires facilities to develop plans for a worst case scenario. The Emergency Response section defines the steps the facility and each employee will take if a release occurs. This section also needs to be coordinated with the Local Emergency Planning Commission. These regulations are described using Clairton Works as an example of compliance.

Graeser, W.C.; Mentzer, W.P.

1995-12-01T23:59:59.000Z

238

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energyís Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energyís lead laboratory for nuclear energy development. The ATR is one of the worldís premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

239

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

240

Hydroprocessing Bio-oil and Products Separation for Coke Production  

SciTech Connect (OSTI)

Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Initial coke deposition on a NiMo/{gamma}-Al{sub 2}O{sub 3} bitumen hydroprocessing catalyst  

SciTech Connect (OSTI)

Athabasca bitumen was hydrocracked over a commercial NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst in two reactors, a microbatch reactor and a 1-L continuous stirred tank reactor (CSTR). Coke deposition on catalyst was measured as a function of hydrogen pressure, time on stream, and liquid composition by measuring the carbon content of the cleaned spent catalyst. The carbon content ranged from 11.3% to 17.6% over the pressure range 6.9--15.2 MPa in CSTR experiments. Batch and CSTR experiments showed a rapid approach to a constant coke content with increasing oil/catalyst ratio. Coke deposition was independent of product composition for residue concentrations ranging from 8% to 32% by weight. Removal of the coke by tetralin at reaction conditions suggested reversible adsorption of residue components on the catalyst surface. A physical model based on clearance of coke by hydrogen in the vicinity of metal crystallites is presented for the coke deposition behavior during the first several hours of hydrocracking use. This model gives good agreement with experimental data, including the effect of reaction time, the ratio of total feed weight to catalyst weight, hydrogen pressure, and feed composition, and it agrees with general observations from industrial usage. The model implies that except at the highest coke levels, the active surfaces of the metal crystallites remain exposed. Severe mass-transfer limitations are caused by the overall narrowing of the pore structure, which in {gamma}-Al{sub 2}O{sub 3} would give very low effective diffusivity for residuum molecules in micropores.

Richardson, S.M.; Nagaishi, Hiroshi; Gray, M.R. [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering] [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering

1996-11-01T23:59:59.000Z

242

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect (OSTI)

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

243

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? September 2004. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

244

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

245

Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report  

SciTech Connect (OSTI)

OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

2000-09-01T23:59:59.000Z

246

Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

Not Available

2010-12-01T23:59:59.000Z

247

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

248

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

249

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs  

SciTech Connect (OSTI)

The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures for on-site welding, post-weld heat treatment (PWHT), and inspections will be required for the materials of construction. High-importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy sections; and the maintenance of high emissivity of the RPV materials over their service lifetime to enable passive heat rejection from the reactor core. All identified phenomena related to the materials of construction for the IHX, RPV, and other components were evaluated and ranked for their potential impact on reactor safety.

Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

250

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

251

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energyís Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energyís lead laboratory for nuclear energy development. The ATR is one of the worldís premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

252

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

253

Petroleum Coke  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbedPricethe PricetheCity Gate Price81,811

254

Petroleum Coke  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,310 8,304PricePriceby81,811 82,516 82,971

255

Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350- and 500- micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system. Use of a larger 425-micron kernel diameter single fissile particle (proposed here), as opposed to the 350-micron GT-MHR fissile particle size, helps alleviate current compact particle packing fractions fabrication limitations (<35%), improves fuel block loading for higher n-batch reload options, and tracks the historical correlation between particle size and enrichment (10 and 14 wt% U-235 particle enrichments are proposed for the NGNP). Overall, the use of the slightly larger kernel significantly broadens the NGNP reactor core design envelope and provides increased design margin to accommodate the (as yet) unknown final NGNP reactor design. Maximum power-peaking factors are calculated for both the initial and equilibrium NGNP cores. Radial power-peaking can be fully controlled with particle packing fraction zoning (no enrichment zoning required) and discrete burnable poison rods. Optimally loaded NGNP cores can expect radial powerpeaking factors as low as 1.14 at beginning of cycle (BOC), increasing slowly to a value of 1.25 by end of cycle (EOC), an axial power-peaking value of 1.30 (BOC), and for individual fuel particles in the maximum compact <1.05 (BOC) and an approximate value of 1.20 (EOC) due to Pu-239 buildup in particles on the compact periphery. The NGNP peak particle powers, using a conservative total power-peaking factor (~2.1 factor), are expected to be <150 mW/particle (well below the 250 mW/particle limit, even with the larger 425-micron kernel size).

James W. Sterbentz; Bren Phillips; Robert L. Sant; Gray S. Chang; Paul D. Bayless

2003-09-01T23:59:59.000Z

256

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

257

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

258

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

259

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

260

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

262

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

263

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

264

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

265

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

266

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

267

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

268

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

269

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

270

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

271

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

272

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

273

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

274

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

275

Protection from ground faults in the stator winding of generators at power plants in the Siberian networks  

SciTech Connect (OSTI)

The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

Vainshtein, R. A., E-mail: vra@tpu.ru [Tomsk Polytechnical University (Russian Federation); Lapin, V. I. [ODU Sibiri (Integrated Dispatcher Control for Siberia), branch of JSC 'SO EES' (Russian Federation); Naumov, A. M.; Doronin, A. V. [JSC NPP 'EKRA' (Russian Federation); Yudin, S. M. [Tomsk Polytechnical University (Russian Federation)

2010-05-15T23:59:59.000Z

276

Evaluation of pitches and cokes from solvent-extracted coal materials  

SciTech Connect (OSTI)

Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

McHenry, E.R.

1996-12-01T23:59:59.000Z

277

Modernization of the iron making plant at SOLLAC FOS  

SciTech Connect (OSTI)

When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

1995-12-01T23:59:59.000Z

278

Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed  

SciTech Connect (OSTI)

Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an ďopportunity fuelĒ for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an ďopportunity fuelĒ for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administrationís ďNational Goal to Reduce Emissions Intensity.Ē 8

Chudnovsky, Yaroslav; Kozlov, Aleksandr

2013-08-15T23:59:59.000Z

279

Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint  

SciTech Connect (OSTI)

This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-06-01T23:59:59.000Z

280

Options for Generating Steam Efficiently  

E-Print Network [OSTI]

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

282

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

283

Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions  

E-Print Network [OSTI]

To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

Cuellar, Amanda Dulcinea

2012-01-01T23:59:59.000Z

284

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

285

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

286

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

287

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

average value for nuclear plants) aFinal Envir. Statement (Statement, Koshkonong Nuclear Plant, August 1976. U. S.rem; operation of the nuclear plants themselves only *Other

Nero, A.V.

2010-01-01T23:59:59.000Z

288

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

289

The effects of a steam-electric generating plant on suitability of adjacent estuarine waters for growth of phytoplankton  

E-Print Network [OSTI]

'F above normal levels. Roessler (1971) and Steidinger and Breedveld (1971) reported thermal discharges from power plants in Florida caused benthic macroalgae and grasses to be replaced by fil- amentous blue green algae mats. Morgan and Stross... on the north and east by a line running from Morgan's Point to Cedar Point then southeastward to Smith Point (Masch and Espy 1967). The Bay extends south and west from this line to form arm-like East and West Bays. Outlets to the Gulf of Mexico...

Kelsey, John Allen

2012-06-07T23:59:59.000Z

290

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect (OSTI)

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

291

Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption  

SciTech Connect (OSTI)

The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

1995-12-01T23:59:59.000Z

292

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect (OSTI)

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

293

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750Ė800įC Reactor Outlet Temperature  

SciTech Connect (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750Ė800įC reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

294

Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

295

Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)  

SciTech Connect (OSTI)

The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

Williams, W.C.

2002-08-01T23:59:59.000Z

296

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

297

TRU (transuranic) waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

Not Available

1989-01-01T23:59:59.000Z

298

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

299

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

300

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

302

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

303

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

304

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

Nero, A.V.

2010-01-01T23:59:59.000Z

305

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers  

SciTech Connect (OSTI)

Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

306

Second generation PFB for advanced power generation  

SciTech Connect (OSTI)

Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

Robertson, A.; Van Hook, J.

1995-11-01T23:59:59.000Z

307

Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant  

SciTech Connect (OSTI)

This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

Manohar S. Sohal

2005-09-01T23:59:59.000Z

308

Processing and analysis techniques involving in-vessel material generation  

DOE Patents [OSTI]

In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

2012-09-25T23:59:59.000Z

309

Processing and analysis techniques involving in-vessel material generation  

DOE Patents [OSTI]

In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

2011-01-25T23:59:59.000Z

310

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect (OSTI)

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

311

Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant  

SciTech Connect (OSTI)

When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

Gambert, G.

1996-12-31T23:59:59.000Z

312

3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS'03), Makuhari, Japan, 4-5 Dec. 2003. PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP  

E-Print Network [OSTI]

), Makuhari, Japan, 4-5 Dec. 2003. 1 PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP Luc G-mail: lucf@alum.mit.edu ABSTRACT This paper presents the system-level and component design of a micro steam. The microfabricated device consists of a steam turbine that drives an integrated micropump and generator. Two

Frechette, Luc G.

313

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

314

Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Progress report for the period November 1989 through December 1992  

SciTech Connect (OSTI)

The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO{sub 2}, H{sub 2}S, and H{sub 2}. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. No significant reaction took place on any material in any environment in the vapor-phase exposures.

Telander, M.R.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States)

1993-09-01T23:59:59.000Z

315

Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities  

E-Print Network [OSTI]

plant capacity to meet future of the following major expenses: operating labor, loads. maintenance labor, sorbent material,plant electric Requirements of the Fuel Use Act state that energy consumption, ash removal and disposal and mis- the new units...

Mesko, J. E.

1980-01-01T23:59:59.000Z

316

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Components," Journal of Nuclear Materials, 212-215, 1223 (1994). 13. Arnold, L, Windscale 1957, Anatomy of a Nuclear Accident, St Martin Press, London, 1992. 14....

317

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concern that were identified and categorized as high importance combined with medium to low knowledge follow: * core coolant bypass flows (normal operation), * powerflux...

318

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High- importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy...

319

Sawdust Pyrolysis and Petroleum Coke CO2 Gasification at High Heating Rates.  

E-Print Network [OSTI]

??Clean and efficient electricity can be generated using an Integrated Gasification Combined Cycle (IGCC). Although IGCC is typically used with coal, it can also beÖ (more)

Lewis, Aaron D.

2011-01-01T23:59:59.000Z

320

The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant  

SciTech Connect (OSTI)

There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

322

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

323

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

324

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . ē . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

325

Early Entrance Coproduction Plant  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

326

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2003-12-16T23:59:59.000Z

327

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

328

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

329

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

330

Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin  

SciTech Connect (OSTI)

In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

2006-10-15T23:59:59.000Z

331

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

332

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

333

The Cylinder: Kinematics of the Nineteenth Century  

E-Print Network [OSTI]

distillation. The coking of coal as well as the productionin coal mines, in steel and paper mills, in coking plants,

MŁller-Sievers, Helmut

2012-01-01T23:59:59.000Z

334

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

generation, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, and

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

335

Planting Food or Fuel: Developing an Interdisciplinary Approach to Understanding the Role of Culture in Farmersí Decisions to Grow Second-Generation Biofuel Feedstock Crops  

E-Print Network [OSTI]

Recent interest in biofuels as an alternative energy source has spurred considerable changes in agricultural practice worldwide. These changes will be more pronounced as second-generation biofuels, such as switch grass, ...

White, Stacey Swearingen; Brown, J. Christopher; Gibson-Carpenter, Jane W.; Hanley, Eric; Earnhart, Dietrich H.

2009-12-01T23:59:59.000Z

336

Florida CFB demo plant yields low emissions on variety of coals  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

NONE

2005-07-01T23:59:59.000Z

337

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect (OSTI)

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

338

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

S. Commercial Nuclear Power Plants. WASH-1400. October 1975.Content of for Nuclear Power Plants. Regulatory Guide 1.101.PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESS

Yen, W.W.S.

2010-01-01T23:59:59.000Z

339

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

from the Rancho Seco nuclear plant was simulated, A total ofdistributions around the nuclear plant sites based on thegrowth surrounding nuclear plants after the issuance of the

Yen, W.W.S.

2010-01-01T23:59:59.000Z

340

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Removal Equipment (nuclear plant) Turbine Building ClosedCooling Water System (nuclear plant) SteamReheater (nuclear plant) Inspection Water Induction

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

surrounding a nuclear plant, and they are stronglylocation for a nuclear plant, but it is the measures thatand consequences of nuclear plant accidents and would match

Nero, jA.V.

2010-01-01T23:59:59.000Z

342

EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

343

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

344

Modulating lignin in plants  

DOE Patents [OSTI]

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

345

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

generation by 18%. Natural gas combustion turbine capacitycycle natural gas plants, combustion turbine natural gasnuclear plants, combustion turbine natural gas plants, and

Hand, Maureen

2008-01-01T23:59:59.000Z

346

Plant Phenotype Characterization System  

SciTech Connect (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

347

Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle  

E-Print Network [OSTI]

Thermodynamics - 2 A cogeneration plant (plant which provides both electricity and thermal energy] Determine the rate of heat addition in the steam generator. Now consider an ideal, reversible cogeneration 1 2 3 45 6 Cogeneration Plant Boundary #12;

Virginia Tech

348

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

349

Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards  

SciTech Connect (OSTI)

Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

350

The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants  

SciTech Connect (OSTI)

This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

NONE

1997-06-01T23:59:59.000Z

351

Low cost improvements in air pollution control for ARMCO's Ashland, Kentucky Works Sinter Plant  

SciTech Connect (OSTI)

Particulate emissions from sinter plants can contribute a significant percentage of the total emissions from integrated steelmaking facilities. A well-known sinter plant air pollution phenomenon is called blue haze emissions. These emissions are caused when hydrocarbons introduced by filter cake, coke breeze, and mill scale are not burned in the sintering process and pass through the system as a very finely divided stable dispersed fog. The Sinter Plant at Ashland Works consists of Dravo-Lurgi traveling grate sintering machine which processes a mixture of materials including iron ore, iron pellet fines, blast furnace flue dust, limestone, melt shop slag, coke breeze and sinter return fines. This system is illustrated by the authors. Upon completion of the sintering process, the hot agglomerated sinter product is discharged to the sinter crusher. The sinter is then cooled and screened for use in Ashland Works' Amanda Blast Furnace. This system is illustrated. The Ashland Works Sinter Plant complex consists of a Sintering Machine Building, Sinter Screens Building and Ore Screens Building. For the purposes of this study, the Ore Transfer Tower Building was also included. The general layout of the complex is illustrated.

Felton, S.S. (ARMCO Inc., Ashland, KY (US))

1987-01-01T23:59:59.000Z

352

Planning for the 400,000 tons/year AISI ironmaking demonstration plant  

SciTech Connect (OSTI)

The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

1993-01-01T23:59:59.000Z

353

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

354

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

SciTech Connect (OSTI)

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

355

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

356

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

Nero, jA.V.

2010-01-01T23:59:59.000Z

357

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

358

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

359

Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity  

SciTech Connect (OSTI)

In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

Scott Barnett

2007-09-30T23:59:59.000Z

360

In-plant recycling of ironmaking waste materials at Pohang Works  

SciTech Connect (OSTI)

The regulations for pollution control are being strengthened more year by year. Therefore, waste materials containing iron oxides are being increasingly used in the sinter plant. As a result, waste materials recycling in the sintering process not only reduces costs by eliminating waste disposal costs and utilizing Fe bearing by-products to replace iron ores and flux materials, but gives fuel rate benefits to the sintering process through heat of oxidizing of Fe bearing materials and combustion of coke fines carried with Fe Bearing by-products.

Kim, C.H.; Jung, S. [POSCO, Pohang (Korea, Republic of). Ironmaking Dept.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

362

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report. Report No. 5 for reporting period May 1, 1999 through August 1, 1999  

SciTech Connect (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a probe for measuring the thickness of coke deposits located within the high-temperature tubes of a thermal cracking furnace. The objective of work during this period was to enhance the sensitivity and signal-to-noise ratio of the probe measurement. Testing identified that the primary source of signal noise was traced to imperfections in the sacrificial stand-off, which was formed using a casting procedure. Laminations, voids, and impurities contained in the casting result in attenuation and dispersion of the ultrasonic signal. This report describes the work performed to optimize the signal conductance of the sacrificial stand-off.

NONE

1999-08-15T23:59:59.000Z

363

Steam generator tube failures  

SciTech Connect (OSTI)

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

364

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringĖOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

365

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

366

The expansion currently underway at Plant Vogtle is emblematic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

total U. S. electricity generation. And more nuclear generation is on the way. At nearby Plant Vogtle, one of three Georgia nuclear stations operated by Southern Company,...

367

Power Plant Research and Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term...

368

Minnesota Power Plant Siting Act (Minnesota)  

Broader source: Energy.gov [DOE]

This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a capacity of 50,000 kW or more. The policy of the...

369

Construction or Extended Operation of Nuclear Plant (Vermont)  

Broader source: Energy.gov [DOE]

Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date...

370

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

371

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

372

Pinellas Plant facts  

SciTech Connect (OSTI)

The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

NONE

1990-11-01T23:59:59.000Z

373

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

374

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

375

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

376

Design and simulation of a plant control system for a GCFR demonstration plant  

SciTech Connect (OSTI)

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

377

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSoham

378

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

379

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

380

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

(percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

382

EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

383

MHD Generating system  

DOE Patents [OSTI]

According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

1980-01-01T23:59:59.000Z

385

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, jA.V.

2010-01-01T23:59:59.000Z

386

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

387

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

388

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

389

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

power generation and coal input to coking is not included inTransformation Coking Generation CIS Total Coal Demand (Coking Generation AIS Figure 44 CIS and AIS Coal Demand by

Zhou, Nan

2011-01-01T23:59:59.000Z

390

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

John W. Rich

2003-06-01T23:59:59.000Z

391

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

392

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

393

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain...

394

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network [OSTI]

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

395

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

396

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

397

Distributed Power Generation: Requirements and Recommendations for an ICT Architecture  

E-Print Network [OSTI]

. Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable), distrib- uted generation, energy management systems (EMS) , IEC standards 1 Power Generation possible to generate energy efficiently in large-scale power plants, a complex infrastructure is needed

Appelrath, Hans-JŁrgen

398

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

399

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

400

Corporate Property Tax Reduction for New/Expanded Generating Facilities  

Broader source: Energy.gov [DOE]

Montana generating plants producing one megawatt (MW) or more with an alternative renewable energy source are eligible for the new or expanded industry property tax reduction. This incentive...

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

San Diego Solar Panels Generate Clean Electricity Along with...  

Broader source: Energy.gov (indexed) [DOE]

of 20 MW of renewable energy systems. This includes systems generating energy from biogas and hydroelectric sources at the Point Loma Wastewater Treatment Plant - also a...

402

Exemption from Electric Generation Tax (Connecticut)  

Broader source: Energy.gov [DOE]

In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

403

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

404

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

405

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

406

GCFR steam generator conceptual design  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

407

A SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT  

E-Print Network [OSTI]

dynamic objects and relationships; a C++ code generator to translate SBML into highly efficient simulationA SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT Victoria present the software architecture of the Computable Plant Project, a multidisciplinary computationally

Mjolsness, Eric

408

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

409

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network [OSTI]

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

410

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

411

Hardware simulation of diesel generator and microgrid stability  

E-Print Network [OSTI]

Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

Zieve, Michael M

2012-01-01T23:59:59.000Z

412

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

413

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

Paris-Sud XI, Université de

414

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

415

Nuclear Plant Feedwater Heater Handbook. Volume 1. Primer. Final report  

SciTech Connect (OSTI)

This document is the first part of a three volume handbook covering closed feedwater heaters for electric power generating plants. This volume is a primer to the subject of feedwater heaters and their integration into the plant. 24 refs.

Bell, R.J.; Wells, T.G. Jr.

1985-06-01T23:59:59.000Z

416

Evaluating Equipment Performance Using SCADA/PMS Data for Thermal Utility Plants - Case Studies  

E-Print Network [OSTI]

The equipment in cogeneration plants and thermal energy plants such as gas tubing generators, boilers, steam turbine generators, chillers and cooling towers are often critical to satisfying building needs. Their actual energy performance is very...

Deng, X.; Chen, Q.; Xu, C.

2007-01-01T23:59:59.000Z

417

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

418

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

entry are u Table 4-6 GAS TURBINE FOR 1965-1974 (OUTAGES)AVERAGE utage Cause Code GAS TURBINE GENERATOR FORCED OUTAGEof fossil units, and for gas turbine units, the basic data

Nero, A.V.

2010-01-01T23:59:59.000Z

419

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as...

420

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

distributed generation (residential rooftop) plant in Ota City, Japan, and the Copper Mountain 48MW p utility

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maintenance implementation plan for B Plant  

SciTech Connect (OSTI)

The B Plant facility, is located in the 200 East Area at the Hanford Site in south-central Washington State. It consists of two major operating areas: the B Plant Canyon Building, and the Waste Encapsulation and Storage Facility (WESF). The B Plant was originally designed to chemically process spent nuclear fuels. After this initial mission was completed, the plant was modified to provide for the separation of strontium and cesium, individually, from the fission productwaste stream following plutonium and uranium recovery from irradiated reactor fuels in the Plutonium-Uranium Extraction Plant (PUREX). The recovered, purified, and concentrated strontium and cesium solutions were then transferred to the WESF for conversion to solid compounds, encapsulation, and interim storage. After strontium and cesium removal, the remaining waste was transferred from B Plant to tank farms. B Plantis an operating facility that is required to ensure safe storage And management of the WESF cesium and strontium capsules, as well as a substantial radiological inventory remaining in the plant from previous campaigns. There are currently no production activities at B Plant, but several operating systems are required to accomplish the current B Plant mission.B Plant receives and stores various chemicals from commercial suppliers for treatment of low-level waste generated at WESF and B Plant, generation of demineralized water, and conditioning of water used in heating, ventilation, and air conditioning units. This report describes the maintenance of B Plant, including personnel training and schedules.

Tritt, S.E.

1992-06-01T23:59:59.000Z

422

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

423

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

424

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Energy generation in France is a competitive market, whereas ... from wind farms, solar energy or run of river plant without pondage.

2012-02-17T23:59:59.000Z

425

Geothermal Power Plants ó Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

426

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy,Ö (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

427

Development of an advanced continuous mild gasification process for the production of co-products. Final report, September 1987--September 1996  

SciTech Connect (OSTI)

Char, the major co-product of mild coal gasification, represents about 70 percent of the total product yield. The only viable use for the char is in the production of formed coke. Early work to develop formed coke used char from a pilot plant sized mild gasification unit (MGU), which was based on commercial units of the COALITE plant in England. Formed coke was made at a bench-scale production level using MGU chars from different coals. An evolutionary formed coke development process over a two-year period resulted in formed coke production at bench-scale levels that met metallurgical industries` specifications. In an ASTM D5341 reactivity test by a certified lab, the coke tested CRI 30.4 and CSR 67.0 which is excellent. The standard is CRI < 32 and CSR > 55. In 1991, a continuous 1000 pounds per hour coal feed mild coal gasification pilot plant (CMGU) was completed. The gasification unit is a heated unique screw conveyor designed to continuously process plastic coal, vent volatiles generated by pyrolysis of coal, and convert the plastic coal to free flowing char. The screw reactor auxiliary components are basic solids materials handling equipment. The screw reactor will convert coal to char and volatile co-products at a rate greater than 1000 pounds per hour of coal feed. Formed coke from CMGU char is comparable to that from the MGU char. In pilot-plant test runs, up to 20 tons of foundry coke were produced. Three formed coke tests at commercial foundries were successful. In all of the cupola tests, the iron temperature and composition data indicated that the formed coke performed satisfactorily. No negative change in the way the cupola performed was noticed. The last 20-ton test was 100 percent CTC/DOE coke. With conventional coke in this cupola charging rates were 10 charges per hour. The formed coke charges were 11 to 12 charges per hour. This equates to a higher melt rate. A 10 percent increase in cupola production would be a major advantage. 13 figs., 13 tabs.

NONE

1996-12-31T23:59:59.000Z

428

Coking Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the

429

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-05-01T23:59:59.000Z

430

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-01-01T23:59:59.000Z

431

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect (OSTI)

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2004-12-01T23:59:59.000Z

432

Generation Technologies  

E-Print Network [OSTI]

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

433

Plutonium finishing plant dangerous waste training plan  

SciTech Connect (OSTI)

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

434

Alloy Design for a Fusion Power Plant  

E-Print Network [OSTI]

Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring...

Kemp, Richard

435

Milliwatt Generator Project  

SciTech Connect (OSTI)

This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

Latimer, T.W.; Rinehart, G.H.

1992-05-01T23:59:59.000Z

436

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network [OSTI]

steam generator of a CSP plant nor does it consider hybridstorage to some proposed CSP plants in order to boost theirfor an individual CSP plant in Sioshansi and Denholm (2010).

Mills, Andrew

2013-01-01T23:59:59.000Z

437

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

438

Managing nuclear predominant generating capacity  

SciTech Connect (OSTI)

The most common belief, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires various actions be taken, ranging from a daily to a multi-annual perspective. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary.

Bouget, Y.H.; Herbin, H.C.; Carbonnier, D.

1998-07-01T23:59:59.000Z

439

Foote Hydroelectric Plant spillway rehabilitation  

SciTech Connect (OSTI)

In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

1996-10-01T23:59:59.000Z

440

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "generation coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Introduction Minimal generation  

E-Print Network [OSTI]

Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

St Andrews, University of

442

Master Thesis: Collaboration between Utility Systems and Production  

E-Print Network [OSTI]

) Electricity Natural GasElectricity Generation (Power Plant) 1. Abbreviations: CO (coke oven), SP (sinter plant and LF) Casting (CC) Storage (SY) Reheating (RF) Rolling (HSM) Meltshop Hot Rolling Mill Coal Iron Ore) Meltshop Hot Rolling Mill Coal Iron Ore Slabs CO and BF Gas BOF Gas Given: Hot rolling mill produces set

Grossmann, Ignacio E.

443

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network [OSTI]

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

444

Bagdad Plant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant 585 Silicon

445

Genomic Aspects of Research Involving Polyploid Plants  

SciTech Connect (OSTI)

Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

2011-01-01T23:59:59.000Z

446

Synthetic Biology and reshaping plant form Jim Haseloff  

E-Print Network [OSTI]

Industrial Revolution: based on innovations in coal, iron, steam and mechanical engineering #12; Steam power machines.This enabled rapid development of e cient semi-automated factories Iron founding - Coke replaced

Rosso, Lula

447

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z