National Library of Energy BETA

Sample records for generation cesium solvent

  1. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.; Bruffey, Stephanie H.; Delmau, Laetitia Helene; Duncan, Nathan C.; Ensor, Dale; Hill, Talon G.; Lee, Denise L.; Rajbanshi, Arbin; Roach, Benjamin D.; Szczygiel, Patricia L.; Frederick V. Sloop, Jr.; Stoner, Erica L.; Williams, Neil J.

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  2. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene; Sloop Jr, Frederick {Fred} V; Williams, Neil J; Birdwell Jr, Joseph F; Lee, Denise L; Leonard, Ralph; Fink, Samuel D; Peters, Thomas B.; Geeting, Mark W

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  3. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste.

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J. )

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix[4]arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative[1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol] (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy?s (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE?s Hanford Site.

  4. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  5. DRAMATIC IMPROVEMENTS IN CAUSTIC-SIDE SOLVENT EXTRACTION OF CESIUM THROUGH MORE EFFICIENT STRIPPING

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bazelaire, Eve; Bonnesen, Peter V; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Moyer, Bruce A; Ensor, Dale; Meadors, Viola M; Harmon, Ben; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2008-01-01

    Dramatic potential improvements to the chemistry of the Caustic-Side Solvent Extraction (CSSX) process are presented as related to enhancement of cesium stripping. The current process for removing cesium from the alkaline high-level waste (HLW) at the USDOE Savannah River Site employs acidic scrub and strip stages and shows remarkable extraction and selectivity properties for cesium. It was determined that cesium stripping can be greatly improved with caustic or near-neutral stages using sodium hydroxide and boric acid as scrub and strip solutions, respectively. Improvements can also be achieved by appending pH-sensitive functional groups to the calix[4]arene-crown-6 extractant. Addition of a proton-ionizable group to the calixarene frame leads to a dramatic "pH swing" of up to 6 orders of magnitude change in cesium distribution ratio.

  6. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bartsch, Richard A.

    2003-06-01

    Calix[4]arenebiscrown-6 molecules are currently the selected technology for removal of radioactive cesium-137 from DOE nuclear wastes. By attachment of an acidic function to such molecules, the efficiency with which cesium ion can be extracted from an aqueous solution into an organic diluent is markedly increased since the requirement for concomitant extraction of an aqueous phase anion is avoided. Thus, cesium ion extraction by proton-ionizable calix[4]arenebiscrown-6 molecules may be the ''second-generation'' technology for removal of cesium-137 from DOE nuclear wastes. During Year 1 of this EMSP project, we have established synthetic routes to new, lipophilic, proton-ionizable calix[4]arenebiscrown-6 molecules to be evaluated for solvent extraction of cesium ion at Oak Ridge National Laboratory. Analogous calix[4]arenecrown-6 compounds are also being prepared to determine if even higher cesium ion selectivities can be obtained with extractants having a single crown ether unit.

  7. Fluoro-alcohol phase modifiers and process for cesium solvent extraction

    DOE Patents [OSTI]

    Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.

    2003-05-20

    The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.

  8. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    SciTech Connect (OSTI)

    Smith, Tara E.; Scherman, Carl; Martin, David; Suggs, Patricia

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  9. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  10. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    SciTech Connect (OSTI)

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  11. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  12. Alternatives to Nitric Acid Stripping in the Caustic-Side Solvent Extraction (CSSX) Process for Cesium Removal from Alkaline High-Level Waste

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Haverlock, Tamara; Bazelaire, Eve; Bonnesen, Peter V; Ditto, Mary E; Moyer, Bruce A

    2009-01-01

    Effective alternatives to nitric acid stripping in the Caustic-Side Solvent Extraction (CSSX) solvent have been demonstrated in this work. The CSSX solvent employs calix[4]arene-bis(tert-octylbenzo-18-crown-6) (BOBCalixC6) as the cesium extractant in a modified alkane diluent for decontamination of alkaline high-level wastes. Results reported in this paper support the idea that replacement of the nitrate anion by a much more hydrophilic anion like borate can substantially lower cesium distribution ratios on stripping. Without any other change in the CSSX flowsheet, however, the use of a boric acid stripping solution in place of the 1 mM nitric acid solution used in the CSSX process marginally, though perhaps still usefully, improves stripping. The less-than-expected improvement was explained by the carryover of nitrate from scrubbing into stripping. Accordingly, more effective stripping is obtained after a scrub of the solvent with 0.1 M sodium hydroxide. Functional alternatives to boric acid include sodium bicarbonate or cesium hydroxide as strip solutions. Profound stripping improvement is achieved when trioctylamine, one of the components of the CSSX solvent, is replaced with a commercial guanidine reagent (LIX 79). The more basic guanidine affords greater latitude in selection of aqueous conditions in that it protonates even at mildly alkaline pH values. Under process-relevant conditions, cesium distributions on stripping are decreased on the order of 100-fold compared with current CSSX performance. The extraction properties of the solvent were preserved unchanged over three successive extract-scrub-strip cycles. From the point of view of compatibility with downstream processing, boric acid represents an attractive stripping agent, as it is also a potentially ideal feed for borosilicate vitrification of the separated 137Cs product stream. Possibilities for use of these results toward a dramatically better next-generation CSSX process, possibly one employing the more soluble cesium extractant calix[4]arene-bis(2 ethylhexylbenzo-18-crown-6) (BEHBCalixC6) are discussed.

  13. Next generation extractants for separation of cesium from high-level waste

    SciTech Connect (OSTI)

    Bartsch, R.A.; Zhou, H.; Delmau, L.H.; Moyer, B.A.

    2008-07-01

    Using calix[4]arene as a scaffold, lipophilic, proton-ionizable ligands for cesium ion extraction have been synthesized. In the 1,3-alternate conformation, lipophilic octyl groups are attached to distal oxygens on one side of the calix[4]arene molecule, and an alkylated benzo-crown-6 unit is connected to distal oxygens on the other side. One phenyl octyl ether unit bears an acidic group in the para-position which orients it directly over the polyether ring. Solvent extractions of trace cesium ion from aqueous solutions into toluene have been performed. The efficiency of cesium ion extraction as a function of the aqueous phase pH and the identity of the acidic group have been assessed. Promising results are obtained for this new series of cesium ion extractants. (authors)

  14. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  15. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  16. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.

    2001-08-20

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  17. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2002-06-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  18. Preparation and use of tetra-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents

    DOE Patents [OSTI]

    Miller, R.L.; Pinkerton, A.B.; Abney, K.D.; Kinkead, S.A.

    1997-02-11

    Preparation and use of tetra-C-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents. Tetra-C-alkyl derivatives of cobalt dicarbollide, Co(C{sub 2}R{sub 2}B{sub 9}H{sub 9}){sub 2}{sup {minus}}(CoB{sub 2}R{sub 4}{sup {minus}}; R=CH{sub 3} and C{sub 6}H{sub 13}) are demonstrated to be significant cesium and strontium extractants from acidic and alkaline solutions into non-toxic organic solvent systems. Extractions using mesitylene and diethylbenzene are compared to those with nitrobenzene as the organic phase. CoB{sub 2}-hexyl{sub 4}{sup {minus}} in diethylbenzene shows improved selectivity (10{sup 4}) for Cs over Na in acidic solution. In dilute alkaline solution, CoB{sub 2}-hexyl{sub 4}{sup {minus}} extracts Cs less efficiently, but more effectively removes Sr from higher base concentrations. A general synthesis of tetra-C-alkyl cobalt dicarbollides is described. 6 figs.

  19. Preparation and use of tetra-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents

    DOE Patents [OSTI]

    Miller, Rebecca L. (Los Alamos, NM); Pinkerton, Anthony B. (Santa Fe, NM); Abney, Kent D. (Los Alamos, NM); Kinkead, Scott A. (Los Alamos, NM)

    1997-01-01

    Preparation and use of tetra-C-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents. Tetra-C-alkyl derivatives of cobalt dicarbollide, Co(C.sub.2 R.sub.2 B.sub.9 H.sub.9).sub.2.sup.- (CoB.sub.2 R.sub.4.sup.- ; R=CH.sub.3 and C.sub.6 H.sub.13) are demonstrated to be significant cesium and strontium extractants from acidic and alkaline solutions into non-toxic organic solvent systems. Extractions using mesitylene and diethylbenzene are compared to those with nitrobenzene as the organic phase. CoB.sub.2 -hexyl.sub.4.sup.- in diethylbenzene shows improved selectivity (10.sup.4) for Cs over Na in acidic solution. In dilute alkaline solution, CoB.sub.2 -hexyl.sub.4.sup.- extracts Cs less efficiently, but more effectively removes Sr from higher base concentrations. A general synthesis of tetra-C-alkyl cobalt dicarbollides is described.

  20. Next Generation Extractants for Cesium Separation from High-Level Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia Helene; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Marquez, Manuel; Zhou, Hui

    2006-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste. Disposal of high-level waste is horrendously expensive, in large part because the actual radioactive matter in underground waste tanks at various USDOE sites has been diluted over 1000-fold by ordinary inorganic chemicals. To vitrify the entire mass of the high-level waste would be prohibitively expensive. Accordingly, an urgent need has arisen for technologies to remove radionuclides such as {sup 137}Cs from the high-level waste so that the bulk of it may be diverted to cheaper low-level waste forms and cheaper storage. To address this need in part, chemical research at Oak Ridge National Laboratory (ORNL) has focused on calixcrown extractants, molecules that combine a crown ether with a calixarene. This hybrid possesses a cavity that is highly complementary for the Cs{sup +} ion vs. the Na+ ion, making it possible to cleanly separate cesium from wastes that contain 10,000- to 1,000,000-fold higher concentrations of sodium. Previous EMSP results in Project 55087 elucidated the underlying extraction equilibria in cesium nitrate extraction by the calixcrown used in the CSSX process, calix[4]arene-bis(t-octylbenzo-crown-6), designated here as BOBCalixC6 (see structure). This understanding led to key improvements in the development of the CSSX process under the EM Efficient Separations and Crosscutting Program, entailing a method to back-extract or 'strip' cesium from the calixcrown subsequent to cesium extraction from waste. Having this stripping method allowed the cesium to be concentrated in a relatively pure aqueous stream and the extractant to be regenerated for recycle. Closing the cycle then made possible the design of a process flowsheet and successful demonstration through collaboration with Argonne National Laboratory and Savannah River Technology Center under funding from the USDOE Office of Project Completion and Tanks Focus Area. Despite these successes, the CSSX process represents young technology that can benefit substantially from further fundamental inquiry. First, reversibility of the process (stripping efficiency) still presents the greatest potential for problems and the greatest potential for improvement. Second, although the calixcrown extractants for cesium are two orders of magnitude stronger than the next best simple crown ether, a minor fraction of the extractant capacity is utilized. Third, potassium competes significantly with cesium for the calixcrown binding site, an important issue in dealing with Hanford wastes having potassium concentrations as high as 1 M. Fourth, the calixcrown solubility needs to be improved. And finally, the mechanism of extraction must be understood in detail to provide the base of knowledge from which further development of the technology can be rationally made.

  1. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Taiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Hui Zhou

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  2. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  3. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    SciTech Connect (OSTI)

    Leonard, R. A.; Conner, C.; Liberatore, M. W.; Sedlet, J.; Aase, S. B.; Vandegrift, G. F.

    1999-11-29

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste.

  4. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  5. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.

    2004-06-30

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  6. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-09-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  7. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Tomkins, Bruce A.; Bazelaire, Eve; Delamu, Laetitia H.; Moyer, Bruce A.

    2003-09-10

    The successful development of the Caustic-Side Solvent Extraction (CSSX) process at ORNL owes a great deal to basic scientific concepts uncovered and discoveries made through research programs funded both by the US DOE's Basic Energy Sciences and Environmental Management Science Programs. Under the EMSP, we have been designing, synthesizing and characterizing new calixarene-crown ethers for cesium extraction. Scientific issues we are addressing with the new extractants include increasing hydrocarbon solubility, and improving the efficiency of cesium ion binding and release. The fundamental chemistry and extraction behavior of these new calixarene crowns will be discussed.

  8. Thermal And Spectroscopic Analyses Of Next Generation Caustic Side Solvent Extraction Solvent Contacted With 3, 8, And 16 Molar Nitric Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Fink, S. D.

    2011-12-07

    A new solvent system referred to as Next Generation Solvent or NGS, has been developed at Oak Ridge National Laboratory for the removal of cesium from alkaline solutions in the Caustic Side Solvent Extraction process. The NGS is proposed for deployment at MCU{sup a} and at the Salt Waste Processing Facility. This work investigated the chemical compatibility between NGS and 16 M, 8 M, and 3 M nitric acid from contact that may occur in handling of analytical samples from MCU or, for 3 M acid, which may occur during contactor cleaning operations at MCU. This work shows that reactions occurred between NGS components and the high molarity nitric acid. Reaction rates are much faster in 8 M and 16 M nitric acid than in 3 M nitric acid. In the case of 16 M and 8 M nitric acid, the nitric acid reacts with the extractant to produce initially organo-nitrate species. The reaction also releases soluble fluorinated alcohols such as tetrafluoropropanol. With longer contact time, the modifier reacts to produce a tarry substance with evolved gases (NO{sub x} and possibly CO). Calorimetric analysis of the reaction product mixtures revealed that the organo-nitrates reaction products are not explosive and will not deflagrate.

  9. INVESTIGATION OF PLUTONIUM AND URANIUM UPTAKE INTO MCU SOLVENT AND NEXT GENERATION SOLVENT

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-01-06

    At the request of the Savannah River Remediation (SRR) customer, the Savannah River National Laboratory (SRNL) examined the plutonium (Pu) and uranium (U) uptake into the Next Generation Solvent (NGS) that will be used at the Salt Waste Processing Facility (SWPF). SRNL examined archived samples of solvent used in Extraction-Scrub-Strip (ESS) tests, as well as samples from new tests designed explicitly to examine the Pu and U uptake. Direct radiocounting for Pu and U provided the best results. Using the radiocounting results, we found that in all cases there were <3.41E-12 g Pu/g of NGS and <1.17E-05 g U/g of NGS in multiple samples, even after extended contact times and high aqueous:organic volume phase ratios. These values are conservative as they do not allow for release or removal of the actinides by scrub, strip, or solvent wash processes. The values do not account for extended use or any increase that may occur due to radiolytic damage of the solvent.

  10. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect (OSTI)

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is designed to facilitate remote operation and direct maintenance. Two general deployment concepts were considered: (1) deployment in an existing but unused SRS facility and (2) deployment in transportable containers. Deployment in three transportable containers was selected as the preferred option, based on concerns regarding facility availability (due to competition from other processing alternatives) and decontamination and renovation costs. A risk assessment identified environmental, safety, and health issues that exist. These concerns have been addressed in the conceptual design by inclusion of mitigating system features. Due to the highly developed state of CSSX technology, only a few technical issues remain unresolved; however, none of these issues have the potential to make the technology unviable. Recommended development tasks that need to be performed to address technical uncertainties are discussed in this report. Deployment of the proposed CSSX-A system provides significant qualitative and quantitative benefits. The qualitative benefits include (1) verification of full-scale contactor performance under CSSX conditions that will support SWPF CSSX design and deployment; (2) development of design, fabrication, and installation experience bases that will be at least partially applicable to the SWPF CSSX system; and (3) availability of the CSSX-A system as a means of providing contactor-based solvent extraction system operating experience to SWPF CSSX operating personnel. Estimates of fixed capital investment, development costs, and annual operating cost for SRS deployment of the CSSX-A system (in mid-2003 dollars) are $9,165,199, $2,734,801, and $2,108,820, respectively. When the economics of the CSSX-A system are compared with those of the baseline SWPF CSSX system, benefit-to-cost ratios ranging from 20 to 47 are obtained. The benefits in the cost/benefit comparison arise from expedited tank closure and reduced engineering, construction, and operating costs for the SWPF CSSX system. No significant impediments to deployment were determined in the reported a

  11. Development of a novel solvent for the simultaneous separation of strontium and cesium from dissolved Spent Nuclear Fuel solutions

    SciTech Connect (OSTI)

    Catherine L. Riddle; John D. Baker; Jack D. Law; Christopher A. McGrath; David H. Meikrantz; Bruce J. Mincher; Dean R. Peterman; Terry A. Todd

    2004-10-01

    The recovery of Cs and Sr from acidic solutions by solvent extraction has been investigated. The goal of this project was to develop an extraction process to remove Cs and Sr from high-level waste in an effort to reduce the heat loading in storage. Solvents for the extraction of Cs and Sr separately have been used on both caustic and acidic spent nuclear fuel waste in the past. The objective of this research was to find a suitable solvent for the extraction of both Cs and Sr simultaneously from acidic nitrate media. The solvents selected for this research possess good stability and extraction behavior when mixed together. The extraction experiments were performed with 4 ,4,(5 )-Di-(tbutyldicyclohexano)- 18-crown-6 {DtBuCH18C6}, Calix[4]arene-bis-(tert-octylbenzocrown-6) {BOBCalixC6} and 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol {Cs-7SB modifier} in a branched aliphatic kerosene {Isopar L}. The BOBCalixC6 and Cs-7SB modifier were developed at Oak Ridge National Laboratory (ORNL) by Bonnesen et al. [1]. The values obtained from the SREX solvent for DSr in 1 M nitric acid ranged from 0.7 to 2.2 at 25oC and 10oC respectively. The values for DCs in 1 M nitric acid with the CSSX solvent ranged from 8.0 to 46.0 at 25oC and 10oC respectively. A new mixed solvent, developed at the Idaho National Engineering and Environmental Laboratory (INEEL) by Riddle et al. [2], showed distributions for Sr ranging from 8.8 to 17.4 in 1 M nitric acid at 25oC and 10oC respectively. The DCs for the mixed solvent ranged from 7.7 to 20.2 in 1 M nitric acid at 25oC to 10oC respectively. The unexpectedly high distributions for Sr at both 25oC and 10oC show a synergy in the mixed solvent. The DCs, although lower than with CSSX solvent, still showed good extraction behavior.

  12. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  13. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  14. CESIUM RECOVERY

    DOE Patents [OSTI]

    McKenzie, T.R.; Schulz, W.W.

    1961-05-01

    A process is given for extracting cesium from an aqueous acid or alkaline solution with a hexone solution of sodium tetraphenyl boron.

  15. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    SciTech Connect (OSTI)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the first stage D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) predicted equivalent DF for MCU from this testing is greater than 3,500 assuming 95% efficiency during extraction and 80% efficiency during scrub and strip. Hydraulically, the system performed very well in all tests. Target flows were easily obtained and stable throughout testing. Though some issues were encountered with plugging in the coalescer, they were not related to the solvent. No hydraulic upsets due to the solvent were experienced during any of the tests conducted. The first extraction coalescer element used in testing developed high pressure drop that made it difficult to maintain the target flow rates. Analysis showed an accumulation of sodium aluminosilicate solids. The coalescer was replaced with one from the same manufacturers lot and pressure drop was no longer an issue. Concentrations of Isopar L and Modifier were measured using semi-volatile organic analysis (SVOA) and high performance liquid chromatography (HPLC) to determine the amount of solvent carryover. For low-flow (0.27 gpm aqueous) conditions in stripping, SVOA measured the Isopar L post-contactor concentration to be 25 mg/L, HPLC measured 39 mg/L of Modifier. For moderate-flow (0.54 gpm aqueous) conditions, SVOA measured the Isopar L postcontactor to be ~69 mg/L, while the HPLC measured 56 mg/L for Modifier. For high-flow (0.8 gpm aqueous) conditions, SVOA measured the Isopar L post-contactor to be 39 mg/L. The post-coalescer (pre-decanter) measurements by SVOA for Isopar L were all less than the analysis detection limit of 10 mg/L. The HPLC measured 18, 22 and 20 mg/L Modifier for the low, medium, and high-low rates respectively. In extraction, the quantity of pre-coalescer Isopar L carryover measured by SVOA was ~280-410 mg/L at low flow (4 gpm aqueous), ~400-450 mg/L at moderate flow (8 gpm aqueous), and ~480 mg/L at high flow (12 gpm aqueous). The amount of post coalescer (pre-decanter) Isopar L carryover measured by SVOA was less than 45 mg/L for all flow rates. HPLC results for Modifier were 182, 217 and 22

  16. RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent

    SciTech Connect (OSTI)

    Peters, T.; Williams, M.

    2013-09-13

    Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

  17. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect (OSTI)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  18. Recovery of cesium

    DOE Patents [OSTI]

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  19. SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.

    2013-06-03

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  20. Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  1. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect (OSTI)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of Isopar L{reg_sign} and Modifier were measured using semi-volatile organic analysis (SVOA

  2. Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process

    SciTech Connect (OSTI)

    Moyer, Bruce A; Delmau, Laetitia Helene; Duncan, Nathan C; Ensor, Dale; Hill, Talon G; Lee, Denise L; Roach, Benjamin D; Sloop Jr, Frederick {Fred} V; Williams, Neil J

    2013-01-01

    The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG.

  3. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the

  4. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

  5. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  6. Precursors for the Immobilization of Radioactive Cesium and Strontium from Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Ortega, Luis H.; McDeavitt, Sean M.

    2007-07-01

    Next generation processes for the recycling of spent nuclear fuel are being developed by the US Department of Energy; this includes solvent extraction methods developed to isolate Cs and Sr fission products and immobilize them in a stable storage form. In this study, simulated (i.e., non-radioactive) cesium and strontium bearing liquid wastes were created and treated with carbon, silica, and alumina at 700 deg. C. The overall goal of this 2006 Nuclear Energy Research Initiative (NERI) project is to synthesize candidate ceramics for Cs and Sr storage and characterize their behavior. The initial results described here confirm the formation of stable compounds resembling strontianite (SrCO{sub 3}) and cesium-aluminosilicate (CsAlSi{sub 2}O{sub 4}). (authors)

  7. Combined Extraction of Cesium and Strontium from Akaline Nitrate Solutions

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bonnesen, Peter V; Engle, Nancy L; Haverlock, Tamara; Sloop Jr, Frederick {Fred} V; Moyer, Bruce A

    2006-01-01

    The combined extraction of cesium and strontium from caustic wastes can be achieved by adding a crown ether and a carboxylic acid to the Caustic-Side Solvent Extraction (CSSX) solvent. The ligand 4,4'(5')-di(tert-butyl)cyclohexano-18-crown-6 and one of four different carboxylic acids were combined with the components of the CSSX solvent optimized for the extraction of cesium, allowing for the simultaneous extraction of cesium and strontium from alkaline nitrate media simulating alkaline high level wastes present at the U.S. Department of Energy Savannah River Site. Extraction and stripping experiments were conducted independently and exhibited adequate results for mimicking waste simulant processing through batch contacts. The promising results of these batch tests showed that the system could reasonably be tested on actual waste.

  8. Mechanisms of {ital H}{sub 2} vibrational excitation and {ital H}{sup {minus}} generation in a low-voltage plasma-beam cesium-hydrogen discharge

    SciTech Connect (OSTI)

    Baksht, F.G.; Ivanov, V.G.; Kostin, A.A.; Nikitin, A.G.; Shkolnik, S.M.

    1996-07-01

    The main difficulty of practical realization of the low-voltage cesium-hydrogen discharge in a dense plasma is the high value of the electron emission current density, which is required to obtain a strongly ionized cesium plasma in the discharge at the desirable value of electron temperature. In the present communication it will be shown that in the so called Knudsen mode of the discharge, the discharge at small gas pressure, the required discharge parameters, may be obtained at significantly smaller values of emission current density j{le}10 {sup A}/cm{sup 2}. This cathode emission current value may be achieved without difficulty at cesium pressure {approximately}10{sup {minus}2} Torr which is needed for maximum negative hydrogen yield in the discharge. (AIP) {copyright} {ital 1996 American Institute of Physics.}

  9. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

  10. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  11. Methods of producing cesium-131

    DOE Patents [OSTI]

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  12. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect (OSTI)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  13. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    SciTech Connect (OSTI)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  14. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...

  15. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect (OSTI)

    Samadi-Dezfouli, Azadeh

    2012-11-14

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  16. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2014-03-03

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  17. CAUSTIC SIDE SOLVENT EXTRACTION AT THE SAVANNAH RIVER SITE OPERATING EXPERIENCE AND LESSONS LEARNED

    SciTech Connect (OSTI)

    Brown, S.

    2010-01-06

    The Modular Caustic-Side Solvent Extraction Unit (MCU) is the first, production-scale Caustic-Side Solvent Extraction process for cesium separation to be constructed. The process utilizes an engineered solvent to remove cesium from waste alkaline salt solution resulting from nuclear processes. While the application of this solvent extraction process is unique, the process uses commercially available centrifugal contactors for the primary unit operation as well as other common methods of physical separation of immiscible liquids. The fission product, cesium-137, is the primary focus of the process due to the hazards associated with its decay. The cesium is extracted from the waste, concentrated, and stripped out of the solvent resulting in a low-level waste salt solution and a concentrated cesium nitrate stream. The concentrated cesium stream can be vitrified into borosilicate glass with almost no increase in glass volume, and the salt solution can be dispositioned as a low-level grout. The unit is deployed as an interim process to disposition waste prior to start-up of the Salt Waste Processing Facility. The Salt Waste Processing Facility utilizes the same cesium removal technology, but will treat more contaminated waste. The MCU is not only fulfilling a critical need, it is the first demonstration of the process at production-scale.

  18. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    SciTech Connect (OSTI)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue University and is detailed in Appendix A. Steam reforming proved to be too rigorous for efficient The second stage of this project was carried out at Texas A&M University and is Detailed in Appendix B. In this stage, a gentler ceramic synthesis process using Cs and Sr loaded kaolinite and bentonite clays was developed in collaboration with Dr. M. Kaminski at Argonne National Laboratory.

  19. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    SciTech Connect (OSTI)

    Samadi, Azadeh

    2013-07-01

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  20. N,N'-DICYCLOHEXYL-N"-ISOTRIDECYLGUANIDINE AS SUPPRESSOR FOR THE NEXT GENERATION CAUSTIC SIDE SOLVENT EXTRACTION (NG-CSSX) PROCESS

    SciTech Connect (OSTI)

    Duncan, Nathan C; Roach, Benjamin D; Williams, Neil J; Bonnesen, Peter V; Rajbanshi, Arbin; Moyer, Bruce A

    2012-01-01

    ABSTRACT The purity, concentration, and source of the N,N'-dicyclohexyl-N"-isotridecylguanidine (DCiTG) suppressor (guanidine) used in the NG-CSSX process were found to influence solvent performance. As the starting isotridecanol used in the preparation of DCiTG is comprised of a mixture of branched-chain aliphatic alcohols, varying in composition with manufacturer, the resulting DCiTG itself is a mixture. Thus, it is necessary to address how the solvent performance will be affected by the different preparations of the DCiTG solvent component. In this study, four preparations of DCiTG from three sources were analyzed and evaluated for purity and performance, both in the absence and presence of an anionic surfactant impurity.

  1. METHOD OF PREPARING RADIOACTIVE CESIUM SOURCES

    DOE Patents [OSTI]

    Quinby, T.C.

    1963-12-17

    A method of preparing a cesium-containing radiation source with physical and chemical properties suitable for high-level use is presented. Finely divided silica is suspended in a solution containing cesium, normally the fission-product isotope cesium 137. Sodium tetraphenyl boron is then added to quantitatively precipitate the cesium. The cesium-containing precipitate is converted to borosilicate glass by heating to the melting point and cooling. Up to 60 weight percent cesium, with a resulting source activity of up to 21 curies per gram, is incorporated in the glass. (AEC)

  2. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  3. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  4. Process for cesium decontamination and immobilization

    DOE Patents [OSTI]

    Komarneni, Sridhar (Altoona, PA); Roy, Rustum (State College, PA)

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  5. Process for cesium decontamination and immobilization

    DOE Patents [OSTI]

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  6. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J.; Noland, Robert A.; Ruther, Westly E.

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  7. Catalog solvent extraction: anticipate process adjustments

    SciTech Connect (OSTI)

    Campbell, S.G.; Brass, E.A.; Brown, S.J.; Geeting, M.W.

    2008-07-01

    The Modular Caustic-Side Solvent Extraction Unit (MCU) utilizes commercially available centrifugal contactors to facilitate removal of radioactive cesium from highly alkaline salt solutions. During the fabrication of the contactor assembly, demonstrations revealed a higher propensity for foaming than was initially expected. A task team performed a series of single-phase experiments that revealed that the shape of the bottom vanes and the outer diameter of those vanes are key to the successful deployment of commercial contactors in the Caustic-Side Solvent Extraction Process. (authors)

  8. Solvent substitution

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  9. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  10. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  11. Method for primary containment of cesium wastes

    DOE Patents [OSTI]

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  12. Cesium recovery from aqueous solutions

    DOE Patents [OSTI]

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  13. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  14. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  15. Cesium heat-pipe thermostat

    SciTech Connect (OSTI)

    Wu, F.; Song, D.; Sheng, K.; Wu, J.; Yi, X.; Yu, Z.

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 C to 800 C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 C to 0.20 C. A precise temperature controller is used to ensure the temperature fluctuation within 0.03 C. The size of Cs HPT is 380mm320mm280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  16. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect (OSTI)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  17. Solvent Hold Tank Sample Results For MCU-15-710-711-712: June 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-710, MCU-15-711, and MCU-15-712), pulled on 06/15/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-710-711-712 indicated a low concentration (~ 55 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier (92 % of nominal) to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier were sufficient when this solvent sample was collected from MCU. A higher cesium concentration (9.3 E6 dpm/mL) was observed in this sample relative to recent samples. In the past, this level of cesium appeared to correlate with upsets in the MCU operation. It is not known at this time the reason for the higher cesium level in this solvent. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). In addition, the sample contains up to 10.4 micrograms of mercury per gram of solvent (or 8.7 µg/mL). A relatively large cesium concentration (9.3 E 6 dpm/mL) was measured in this solvent and it may indicate poor cesium stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  18. Sintered wire cesium dispenser photocathode

    DOE Patents [OSTI]

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  19. RECOVERY OF CESIUM FROM WASTE SOLUTIONS

    DOE Patents [OSTI]

    Burgus, W.H.

    1959-06-30

    This patent covers the precipitation of fission products including cesium on nickel or ferric ferrocyanide and subsequent selective dissolution from the carrier with a solution of ammonia or mercurlc nitrate.

  20. Solvent Immersion Imprint Lithography

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  1. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  2. Cesium injection system for negative ion duoplasmatrons

    DOE Patents [OSTI]

    Kobayashi, Maasaki (Oho, JA); Prelec, Krsto (Setauket, NY); Sluyters, Theodorus J (East Patchogue, NY)

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  3. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  4. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  5. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    SciTech Connect (OSTI)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  6. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  7. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  8. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  9. ROBUSTNESS OF THE CSSX PROCESS TO FEED VARIATION: EFFICIENT CESIUM REMOVAL FROM THE HIGH POTASSIUM WASTES AT HANFORD

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Birdwell Jr, Joseph F; McFarlane, Joanna; Moyer, Bruce A

    2010-01-01

    This contribution finds the Caustic-Side Solvent Extraction (CSSX) process to be effective for the removal of cesium from the Hanford tank-waste supernatant solutions. The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. By use of a computerized CSSX thermodynamic model, it was calculated that the higher levels of potassium depress the cesium distribution ratio (D{sub Cs}), as validated to within {+-}11% by the measurement of D{sub Cs} values on various Hanford waste-simulant compositions. A simple analog model equation that can be readily applied in a spreadsheet for estimating the D{sub Cs} values for the varying waste compositions was developed and shown to yield nearly identical estimates as the computerized CSSX model. It is concluded from the batch distribution experiments, the physical-property measurements, the equilibrium modeling, the flowsheet calculations, and the contactor sizing that the CSSX process as currently formulated for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds, albeit with more stages. For the most challenging Hanford waste composition tested, 31 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 2. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated based on experimental distribution ratios determined for an improved solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 0.010 M boric acid. The improved solvent and flowsheet can meet minimum requirements (DF = 5000 and CF = 2) with 15 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Thus, a modular CSSX application for the Hanford waste seems readily obtainable with further short-term development.

  10. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect (OSTI)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  11. Cesium titanium silicate and method of making

    DOE Patents [OSTI]

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  12. Cesium titanium silicate and method of making

    DOE Patents [OSTI]

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  13. Microsoft PowerPoint - HAB Cesium pathway latest.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management for the Low Activity Waste Pretreatment System (LAWPS) David Bernhard ERWM Program Nez Perce Tribe P.O. Box 365 Lapwai, ID 83540 September 23, 2015 2 Outline * Reasons for not returning cesium to tanks. * Current ORP plans are the only path to make critical decision timeline for 2022 startup. * Cesium pathways considered for WSC, several possible waste types. * Possible change in cesium removal to increase efficiency; experimental but could likely work and has advantages. Would be

  14. Lasing in robust cesium lead halide perovskite nanowires (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Lasing in robust cesium lead halide perovskite nanowires Authors: Eaton, Samuel W. ; Lai, Minliang ; Gibson, Natalie A. ; Wong, Andrew B. ; Dou, Letian ; Ma, Jie ; Wang, ...

  15. Lanthanide doped strontium-barium cesium halide scintillators

    DOE Patents [OSTI]

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  16. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  17. SOLvent | Open Energy Information

    Open Energy Info (EERE)

    search Name: SOLvent Place: Kamen, Germany Zip: 59174 Sector: Services, Solar, Wind energy Product: Planning and consultancy services for wind and solar projects....

  18. Electrically Switched Cesium Ion Exchange

    SciTech Connect (OSTI)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  19. Method for synthesizing pollucite from chabazite and cesium chloride

    DOE Patents [OSTI]

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  20. Method for synthesizing pollucite from chabazite and cesium chloride

    DOE Patents [OSTI]

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  1. Cleaning Cesium Radionuclides from BN-350 Primary Sodium

    SciTech Connect (OSTI)

    Romanenko, O.G.; Allen, K.J.; Wachs, D.M.; Planchon, H.P.; Wells, P.B.; Michelbacher, J.A.; Nazarenko, P.; Dumchev, I.; Maev, V.; Zemtzev, B.; Tikhomirov, L.; Yakovlev, V.; Synkov, A

    2005-04-15

    This paper reports the successful design and operation of a system to remove highly radioactive cesium from the sodium coolant of the BN-350 reactor in Aktau, Kazakhstan. As an international effort between the United States and the Republic of Kazakhstan, a cesium-trapping system was jointly designed, fabricated, installed, and successfully operated. The results are significant for a number of reasons, including (a) a significant reduction of radioactivity levels of the BN-350 coolant and reactor surfaces, thereby reducing exposure to workers during shutdown operations; (b) demonstration of scientific ideas; and (c) the engineering application of effective cesium trap deployment for commercial-sized liquid-metal reactors. About 255 300 GBq (6900 Ci) of cesium was trapped, and the {sup 137}Cs specific activity in BN-350 primary sodium was decreased from 296 MBq/kg (8000 {mu}Ci/kg) to 0.37 MBq/kg (10 {mu}Ci/kg) by using seven cesium traps containing reticulated vitreous carbon (RVC) as the cesium adsorbent. Cesium trapping was accomplished by pumping sodium from the primary circuit, passing it through a block of RVC within each trap, and returning the cleaned sodium to the primary circuit. Both to predict and to analyze the behavior of the cesium traps in the BN-350 reactor primary circuit, a model was developed that satisfactorily describes the observed results of the cesium trapping. By using this model, thermodynamic parameters, such as the heat of adsorption of cesium atoms on RVC and on internal piping surfaces of the BN-350 reactor primary circuit, -22.7 and -5.0 kJ/mole, respectively, were extracted from the experimental data.

  2. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System

    SciTech Connect (OSTI)

    Moyer, B.A.; Birdwell, J.F.; Delmau, L. H.; McFarlane, J.

    2008-06-01

    The purpose of this work is to examine the applicability of the Caustic-Side Solvent Extraction (CSSX) process for the removal of cesium from Hanford tank-waste supernatant solutions in support of the Hanford Interim Pretreatment System (IPS). The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. It was confirmed by use of the CSSX model that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated by measurement of DCs values for four of eight specified Hanford waste-simulant compositions. The model predictions were good to an apparent standard error of 11%. It is concluded from batch distribution experiments, physical-property measurements, equilibrium modeling, flowsheet calculations, and contactor sizing that the CSSX process as currently employed for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds. For the most challenging waste composition, 41 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 5. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated for a new solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 10 mM boric acid. The improved system can meet minimum requirements (DF = 5000 and CF = 5) with 17 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Potential benefits of further research and development are identified that would lead to reduced costs, greater adaptability of the process to DOE alkaline salt wastes, and greater readiness for implementation. Such benefits accrue from optimal sizing of centrifugal contactors for application of the CSSX process for the IPS; more accurate modeling of cesium extraction with greater flexibility and applicability to a variety of feeds and flowsheet conditions; and further improving and optimizing the alternative CSSX solvent and scrub/strip system.

  3. SOLVENT EXTRACTION OF NEPTUNIUM

    DOE Patents [OSTI]

    Butler, J.P.

    1958-08-12

    A process is described for the recovery of neptuniunn from dissolver solutions by solvent extraction. The neptunium containing solution should be about 5N, in nitric acid.and about 0.1 M in ferrous ion. The organic extracting agent is tributyl phosphate, and the neptuniunn is recovered from the organic solvent phase by washing with water.

  4. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOE Patents [OSTI]

    Rasor, Ned S.; Riley, David R.; Murray, Christopher S.; Geller, Clint B.

    2000-01-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  5. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, Richard P. (Pasco, WA)

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  6. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect (OSTI)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  7. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOE Patents [OSTI]

    Nerad, Bruce A. (Longmont, CO); Krantz, William B. (Boulder, CO)

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  8. Photocathode Device Using Diamondoid and Cesium Bromide Films...

    Office of Scientific and Technical Information (OSTI)

    Title: Photocathode Device Using Diamondoid and Cesium Bromide Films Authors: Clay, William A.:a Juan R.Maldonado ; Pianetta, Piero ; Dahl, Jeremy E.P. ; Carlson, Robert M.K. ; ...

  9. Volatility literature of chlorine, iodine, cesium, strontium, technetium,

    Office of Scientific and Technical Information (OSTI)

    and rhenium; technetium and rhenium volatility testing (Technical Report) | SciTech Connect Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing Citation Details In-Document Search Title: Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a

  10. Microsoft Word - CesiumManagementDFLAW 12-4.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Paper - DFLAW Cesium Disposition Alternative 12/8/2015 8:28 AM Issue Managers: David Bernhard, Bob Suyama Cesium Management and Disposition for the Low Activity Waste Pretreatment System (LAWPS) Summary The Hanford Advisory Board, following lengthy discussions and reviews conducted by the Board's Tank Waste Committee with the U.S. Department of Energy (DOE) Office of River Protection (ORP), has completed a review of the proposed Direct Feed Low Activity Waste (DFLAW) process and the Low

  11. Halogenated solvent remediation

    DOE Patents [OSTI]

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  12. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  13. Halogenated solvent remediation

    DOE Patents [OSTI]

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  14. Exotic stable cesium polynitrides at high pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  15. Organic solvent topical report

    SciTech Connect (OSTI)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  16. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  17. solvent-babcock-wilcox | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of an Energy Efficient, Environmentally Friendly Solvent for the Capture of CO2 Project No.: DE-FE0007716 The Babcock & Wilcox Power Generation Group (B&W) is characterizing and optimizing the formulation of a novel solvent as a critical enabler for economic, energy efficient and environmentally-friendly capture of CO2 at coal-fired utility plants. The work will be performed on a solvent that has been identified through a 5-year solvent development program conducted at

  18. Long-Term Storage of Cesium and Strontium at the Hanford Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Storage of Cesium and Strontium at the Hanford Site OAS-L-14-04 March 2014 ... SUBJECT: INFORMATION: Audit Report on "Long-Term Storage of Cesium and Strontium at ...

  19. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  20. Cesium-137 in K west basin canister water

    SciTech Connect (OSTI)

    Trimble, D.J.

    1997-01-24

    Liquid and gas samples were taken from 50 K West Basin fuel storage canisters in 1996. The cesium-137 data from the liquid samples and an analysis of the data are presented. The analysis indicated that the cesium-137 data follow a lognormal distribution. Assuming that the total distribution of the K West canister water was predicted, the total K West Basin canister water was estimated to contain about 8,150 curies. The mean canister contains about 2.14 curies with as many as 5% or 190 of the canisters exceeding 19 curies. Opening ten canisters per shift could include a hot canister (cesium-137 > 25 curies) in one out of eight shifts.

  1. Extractant compositions for co-extracting cesium and strontium, a method of separating cesium and strontium from an aqueous feed, and calixarene compounds

    DOE Patents [OSTI]

    Peterman,Dean R.; Meikrantz,David H.; Law,Jack D.; Riddle,Catherine L.; Todd,Terry A.; Greenhalgh,Mitchell R.; Tillotson,Richard D.; Bartsch,Richard A.; Moyer,Bruce A.; Delmau,Laetitia H.; Bonnesen,Peter V.

    2012-04-17

    A mixed extractant solvent that includes at least one dialkyloxycalix[4]arenebenzocrown-6 compound, 4',4',(5')-di-(t-butyldicyclohexano)-18-crown-6, at least one modifier, and, optionally, a diluent. The dialkyloxycalix[4]arenebenzocrown-6 compound is 1,3-alternate-25,27-di(octyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(decyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(dodecyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(2-ethylhexyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(3,7-dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(4-butyloctyl-1-oxy)calix[4]arenebenzocrown-6, or combinations thereof. The modifier is a primary alcohol. A method of separating cesium and strontium from an aqueous feed is also disclosed, as are dialkyloxycalix[4]arenebenzocrown-6 compounds and an alcohol modifier.

  2. Cesium Pentazolate: a New Nitrogen-rich Energetic Material (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Citation Details In-Document Search Title: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Authors: Steele, B A ; Stavrou, E ; Prakapenka, V B ; Radousky, H B ; Zaug, J M ; Crowhurst, J C ; Oleynik, I I Publication Date: 2015-09-15 OSTI Identifier: 1223838 Report Number(s): LLNL-PROC-677378 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented

  3. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOE Patents [OSTI]

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  4. Solvent Hold Tank Sample Results for MCU-15-661-662-663: April 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-07-08

    The Savannah River National Lab (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-661, MCU-15-662, and MCU-15-663 pulled on April 2, 2015) for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-661-662-663 indicated a low concentration (~ 63% of nominal) of the suppressor (TiDG) and a slightly below the nominal concentration (~ 10% below nominal) of the extractant (MaxCalix). The modifier (CS-7SB) level was also 10% below its nominal value while the Isopar™ L level was slightly above its nominal value. This analysis confirms the addition of Isopar™L to the solvent on March 6, 2015. Despite that the values are below target component levels, the current levels of TiDG, CS-7SB and MaxCalix are sufficient for continuing operation without adding a trim at this time until the next monthly sample. No impurities above the 1000 ppm level were found in this solvent. However, the sample was found to contain approximately 18.4 ug/gsolvent mercury. The gamma level increased to 8 E5 dpm/mLsolvent and it represents an order of magnitude increase relative to previous solvent samples. The increase means less cesium is being stripped from the solvent. Further analysis is needed to determine if the recent spike in the gamma measurement is due to external factors such as algae or other material that may impede stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.

  5. SOLVENT EXTRACTION OF URANIUM VALUES

    DOE Patents [OSTI]

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  6. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect (OSTI)

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  7. Cesium trapping characteristics on fly ash filter according to different carrier gases

    SciTech Connect (OSTI)

    Shin, Jin-Myeong; Park, Jang-Jin; Song, Kee-Chan

    2007-07-01

    Fly ash, which is a kind of waste from a coal fired power plant, has been used as a trapping material because it contains silica and alumina suitable for forming pollucite (CsAlSi{sub 2}O{sub 6}). Fly ash is sintered in order to fabricate it into a self-standing filter. The effect of a carrier gas on a cesium trapping quantity is investigated to analyze the cesium trapping characteristics by the fly ash filter in a lab-scale experimental apparatus. The chemical form of the cesium trapped on the filter after trapping cesium is identified to be a pollucite phase regardless of the type of carrier gas. The trapping efficiency of cesium by the fly ash filter under the air and NO{sub x}/air conditions is up to 99.0 %. However, the trapping efficiency of the cesium under the SO{sub x} condition was decreased to 80.0 %. (authors)

  8. Method and article for primary containment of cesium wastes. [DOE patent application

    DOE Patents [OSTI]

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  9. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  10. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  11. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A.

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  12. Batch extracting process using magneticparticle held solvents...

    Office of Scientific and Technical Information (OSTI)

    Batch extracting process using magneticparticle held solvents Citation Details In-Document Search Title: Batch extracting process using magneticparticle held solvents A process for ...

  13. Thermal conductivities of Wilsonville solvent and Wilsonville solvent/Illinois No. 6 coal slurry. [Wilsonville solvent

    SciTech Connect (OSTI)

    Wilson, J.H.; Mrochek, J.E.; Johnson, J.K.

    1984-01-01

    Thermal conductivities of a Wilsonville solvent and of a slurry prepared from this solvent and Illinois No. 6 coal have been measured at temperatures from 295 up to 500 K. With increasing temperature, the thermal conductivity varied from 1.23 to 1.02 mW cm/sup -1/ K/sup -1/ (296 to 438 K) and from 1.51 to 1.02 mW cm/sup -1/ K/sup -1/ (295 to 505 K) for the solvent and the slurry, respectively. At room temperature, measurements on toluene were accurate to within 3% of literature values. 18 references, 9 figures, 7 tables.

  14. Recovery of cesium and palladium from nuclear reactor fuel processing waste

    DOE Patents [OSTI]

    Campbell, David O.

    1976-01-01

    A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.

  15. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    SciTech Connect (OSTI)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  16. Coal liquefaction process with enhanced process solvent

    DOE Patents [OSTI]

    Givens, Edwin N.; Kang, Dohee

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  17. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasilev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  18. The radiation chemistry of CCD-PEG, a solvent-extraction process for Cs and Sr from dissolved nuclear fuel

    SciTech Connect (OSTI)

    Mincher, B.J.; Herbst, R.S.; Tillotson, R.D.; Mezyk, S.P.

    2008-07-01

    Cobalt dicarbollide and polyethylene glycol in phenyl-trifluoromethyl sulfone (HCCD/PEG in FS- 13) is currently under consideration for use in the process-scale selective extraction of fission- product cesium and strontium from dissolved nuclear fuel. This solvent will be exposed to high radiation doses during use and has not been adequately investigated for radiation stability. Here, HCCD/PEG was y-irradiated to various absorbed doses, to a maximum of 432 kGy, using {sup 60}Co. Irradiations were performed for the neat organic phase and also for the organic phase in contact with 1 M-nitric acid mixed by air sparging. Post-irradiation solvent-extraction measurements showed that Cs distribution ratios were unaffected; however, Sr extraction efficiency decreased with absorbed dose under both conditions and was greater when in contact with the aqueous phase. Stripping performance was not affected. A mechanism, initiated by direct radiolysis of the sulfone diluent, is proposed. (authors)

  19. Essential roles of protein-solvent many-body correlation in solvent-entropy

    Office of Scientific and Technical Information (OSTI)

    effect on protein folding and denaturation: Comparison between hard-sphere solvent and water (Journal Article) | SciTech Connect Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water Citation Details In-Document Search Title: Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere

  20. Microstructure analysis for chemical interaction between cesium and SUS 316 steel in fast breeder reactor application

    SciTech Connect (OSTI)

    Sasaki, K.; Fukumoto, K. I.; Oshima, T.; Tanigaki, T.; Masayoshi, U.

    2012-07-01

    In this study the corrosion products on a surface after cesium corrosion examination at 650 deg. C for 100 hrs were characterized by TEM observation around the corroded area on the surface in order to understand the corrosion mechanism of cesium fission product for cladding materials in fast reactor. The experimental results suggest the main corrosion mechanism occurred in the process of the separation of cesium chromate and metal (Fe, Ni). The main reaction of corrosion process was considered to be equation, 2Cs + 7/2 O{sub 2} + 2Cr {yields} Cs{sub 2}Cr{sub 2}O{sub 7}(L). (authors)

  1. Replacement solvents for use in chemical synthesis

    DOE Patents [OSTI]

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  2. Essential roles of protein-solvent many-body correlation in solvent...

    Office of Scientific and Technical Information (OSTI)

    between hard-sphere solvent and water Citation Details In-Document Search Title: ... between hard-sphere solvent and water In earlier works, we showed that the ...

  3. Trade study for the disposition of cesium and strontium capsules

    SciTech Connect (OSTI)

    Claghorn, R.D.

    1996-03-01

    This trade study analyzes alternatives for the eventual disposal of cesium and strontium capsules currently stored at the Waste Encapsulation and Storage Facility as by-product. However, for purposes of this study, it is assumed that at some time in the future, the capsules will be declared high-level waste and therefore will require disposal at an offsite geologic repository. The study considered numerous alternatives and selected three for detailed analysis: (1) overpack and storage at high-level waste canister storage building, (2) overpack at the high-level waste vitrification facility followed by storage at a high-level waste canister storage building, and (3) blend capsule contents with other high-level waste feed streams and vitrify at the high-level waste vitrification facility.

  4. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect (OSTI)

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  5. Anion Partitioning and Ion-Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5?-bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-Dichloroethane

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Maya, Leon; Van Berkel, Gary J.; Moyer, Bruce A.

    2007-01-01

    A systematic study of anion partitioning, anion selectivity, and ion-pairing was performed for an extraction of individual cesium salts into 1,2-dichloroethane (1,2-DCE) using 4,5?-bis(tert-octylbenzo)dibenzo-24-crown-8 host. Equilibrium constants corresponding to the extraction of ion pairs and dissociated ions, formation of the 1:1 cesium/crown complex, and dissociation of the ion pairs in water-saturated 1,2-DCE at 25 C were obtained from equilibrium modeling using the SXLSQI program. The standard Gibbs energy of partitioning between water and water-saturated 1,2-DCE was determined for picrate, permanganate, trifluoromethanesulfonate, methanesulfonate, trifluoroacetate, and acetate anions. The ion pairing behavior observed in the extraction experiments was shown to be consistent with the dissociation constant of the complex ion pair (Cs4,4?- bis(tert-octylbenzo)dibenzo-24-crown-8)+NO3 determined independently by conductance measurements. The cesium/crown complex cation exhibited a weak tendency toward ion pairing and no discrimination among the tested anions, as attributed to the large effective radius of the complex cation, in agreement with the Fuoss treatment of ion pairing. These results provide insight into the inclusion properties of the clefts formed by opposing arene rings of the crown ether upon encapsulation of the Cs+ ion, whose lack of anion recognition likely reflects the preferential inclusion of 1,2-DCE molecules in the clefts. Observed anion selectivity, which was ascribed to solvent-induced bias selectivity in preference of large charge-diffuse anions, was nearly the same whether cesium salts were extracted as dissociated ions or ion pairs.

  6. Anion Partitioning and Ion-Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5"-bix(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-Dichloroethane

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Maya, Leon {nmn}; Van Berkel, Gary J; Moyer, Bruce A

    2007-01-01

    A systematic study of anion partitioning and ion-pairing was performed for an extraction of individual cesium salts into 1,2-dichloroethane (1,2-DCE) using 4,5"-bis(tert-octylbenzo)dibenzo-24-crown-8 as the cesium receptor. Equilibrium constants corresponding to the extraction of ion pairs and dissociated ions, formation of the 1:1 cesium/crown complex (confirmed by electrospray mass spectrometry), and dissociation of the ion pairs in water-saturated 1,2-DCE at 25 C were obtained from equilibrium modeling using the SXLSQI program. The standard Gibbs energy of partitioning between water and water-saturated 1,2-DCE was determined for picrate, permanganate, trifluoromethanesulfonate, methanesulfonate, trifluoroacetate, and acetate anions. The dissociation of the organic-phase complex ion pair [Cs(4,4"-bis(tert-octylbenzo)dibenzo-24-crown-8)]+NO3 observed in the extraction experiments was shown to be consistent with the dissociation constant determined independently by conductance measurements. As attributed to the large effective radius of the complex cation, the evident anion discrimination due to ion-pairing in the 1,2-DCE phase, was relatively small, by comparison only a tenth of the discrimination exhibited by the anion partitioning. Only chloride and picrate exhibit evidence for significantly greater-than-expected ion-pairing tendency. These results provide insight into the inclusion properties of the clefts formed by opposing arene rings of the crown ether upon encapsulation of the Cs+ ion, whose weak anion recognition likely reflects the preferential inclusion of 1,2-DCE molecules in the clefts. Observed anion extraction selectivity in this system, which may be ascribed predominantly to solvent-induced Hofmeister bias selectivity toward large charge-diffuse anions, was nearly the same whether cesium salts were extracted as dissociated ions or ion pairs.

  7. Wash solvent reuse in paint production

    SciTech Connect (OSTI)

    Parsons, A.B.; Heater, K.J.; Olfenbuttel, R.F.

    1994-04-01

    The project evaluated solvent used to clean paint manufacture equipment for its utility in production of subsequent batches of solvent-borne paint. Reusing wash solvent would reduce the amount of solvent disposed of as waste. The evaluation of this wash-solvent recovery technology was conducted by Battelle Memorial Institute for the Pollution Prevention Research Branch of the U.S. Environmental Protection Agency. The evaluation was conducted with the cooperation and assistance of Vanex Color, Inc. The product quality, waste reduction/pollution prevention, and economic impacts of this technology change, as it has been implemented by Vanex, were examined. Two batches of a solvent-borne alkyd house paint were prepared at Vanex--one batch made with 100%-new solvent and the other with 30%-wash solvent--and sampled for laboratory analysis at Battelle.

  8. Evaluation of the Use of Synroc to Solidify the Cesium and Strontium...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product ... Citation Details In-Document Search Title: Evaluation of the Use of Synroc to Solidify the ...

  9. TUNGSTEN SHIELDS FOR CS-137 INLINE MONITORS IN THE CAUSTIC SIDE SOLVENT EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Casella, V; Mark Hogue, M; Javier Reyes-Jimenez, J; Paul Filpus-Luyckx, P; Timothy Riley, T; Fred Ogden, F; Donald Pak, D

    2007-05-10

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). The CSSX process is a continuous process that uses a novel solvent to extract cesium from highly radioactive waste and concentrate it in dilute nitric acid. In-line analyses are performed with gamma-ray monitors to measure the C-137 concentration in the decontaminated salt solution (DSS) and in the strip effluent (SE). Sodium iodide (NaI) monitors are used to measure the Cs-137 concentration before the DSS Hold Tank, while Geiger-Mueller (GM) monitors are used for Cs-137 measurements before the SE hold tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to provide the needed reduction of the process background radiation at the detector positions. A one-inch tungsten cylindrical shield reduced the background radiation by a factor of fifty that was adequate for the GM detectors, while a three-and-one-half-inch tungsten cylindrical shield was required for the NaI detectors. Testing of the NaI shield was performed at the SRS Instrument Calibration Facility. Based on this testing, the as-built shield is predicted to be able to detect the MCU DSS stream at concentrations above 0.003 Ci/gal under the ''worst case'' field conditions with a MCU feed solution of 1.1 Ci/gal and all of the process tanks completely full. This paper discusses the design, fabrication, testing and implementation of the tungsten shields in the MCU facility.

  10. Evaluation of the Use of Synroc to Solidify the Cesium and Strontium

    Office of Scientific and Technical Information (OSTI)

    Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel (Technical Report) | SciTech Connect Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel Citation Details In-Document Search Title: Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel This report is a literature evaluation on the

  11. Solvent-induced forces in protein folding

    SciTech Connect (OSTI)

    Ben-Naim, A. (Hebrew Univ., Jerusalem (Israel))

    1990-08-23

    The solvent-induced forces between various groups on the protein are examined. It is found that the intramolecular hydrophilic forces are likely to be the strongest forces mediated through the solvent. It is argued that these are probably the most important solvent-induced driving forces in the process of protein folding.

  12. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  13. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect (OSTI)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  14. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  15. Batch extracting process using magneticparticle held solvents

    DOE Patents [OSTI]

    Nunez, Luis; Vandergrift, George F.

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  16. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOE Patents [OSTI]

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  17. Solvent mediated self-assembly of solids

    SciTech Connect (OSTI)

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of CaCO{sub 3} on polyamino acid templates. From these measurements, we will extract fundamental growth parameters for input into KMC simulations whose predictions will in turn be compared to the experimental observations. The KMC simulations will incorporate atomic processes representing the minimum energy pathways as determined from the MD calculations. The interaction potentials of the relevant chemical species as well as the hydrated surface, including the electrochemical double layer, used in the MD simulations will be determined using coupled solutions to the Schrodinger and Poisson-Boltzmann equations which take account of electronic relaxation effects.

  18. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G. (Danville, CA)

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  19. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  20. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect (OSTI)

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, 382 428 (India); Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat (India)

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  1. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  2. MCU MATERIALS COMPATIBILITY WITH CSSX SOLVENT

    SciTech Connect (OSTI)

    Fondeur, F

    2006-01-13

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) plans to use several new materials of construction not previously used with CSSX solvent. SRNL researchers tested seven materials proposed for service in seal and gasket applications. None of the materials leached detectable amounts of components into the CSSX solvent during 96 hour tests. All are judged acceptable for use based on their effect on the solvent. However, some of the materials adsorbed solvent or changed dimensions during contact with solvent. Consultation with component and material vendors with regard to performance impact and in-use testing of the materials is recommended. Polyetheretherketone (PEEK), a material selected for use in contactor bearing seals, did not gain weight or change dimensions on contact with CSSX solvent. Analysis of the solvent contacted with this material showed no impurities and the standard dispersion test gave acceptable phase separation results. The material contains a leachable hydrocarbon substance, detectable on exposed surfaces, that did not adversely contaminate the solvent within the limits of the testing. We recommend contacting the vendor to determine the source and purpose of this component, or, alternatively, pursue the infrared analysis of the PEEK in an effort to better define potential impacts.

  3. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2007-06-25

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the liquid Waste Organization (LWO) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU.'' The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Revision of this report is a deliverable in Technical Task Report SP-TTR-2006-00010, ''NaI Shield Box Testing.'' Gamma-ray monitors were developed to: {lg_bullet} Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, {lg_bullet} Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, {lg_bullet} Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be approximately fifteen times higher than the Cs-137 concentration in the Feed Tank.)

  4. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOE Patents [OSTI]

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  5. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    SciTech Connect (OSTI)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  6. RESULTS OF ROUTINE STRIP EFFLUENT HOLD TANK AND DECONTAMINATED SALT SOLUTION HOLD TANK SAMPLES FROM MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT DURING MACROBATCH 3 OPERATIONS

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-10

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the 'microbatches' of Integrated Salt Disposition Project (ISDP) Salt Batch ('Macrobatch') 3 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate consistent operations. However, the Decontamination Factors for plutonium and strontium removal have declined in Macrobatch 3, compared to Macrobatch 2. This may be due to the differences in the Pu concentration or the bulk chemical concentrations in the feed material. SRNL is considering the possible reasons for this decline. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in ARP. During operation of the ISDP, quantities of salt waste are processed through the Actinide Removal Process (ARP) and MCU in batches of {approx}3800 gallons. Monosodium titanate (MST) is used in ARP to adsorb actinides and strontium from the salt waste and the waste slurry is then filtered prior to sending the clarified salt solution to MCU. The MCU uses solvent extraction technology to extract cesium from salt waste and concentrate cesium in an acidic aqueous stream (Strip Effluent - SE), leaving a decontaminated caustic salt aqueous stream (Decontaminated Salt Solution - DSS). Sampling occurs in the Decontaminated Salt Solution Hold Tank (DSSHT) and Strip Effluent Hold Tank (SEHT) in the MCU process. The MCU sample plan requires that batches be sampled and analyzed for plutonium and strontium content by Savannah River National Lab (SRNL) to determine MST effectiveness. The cesium measurement is used to monitor cesium removal effectiveness and the inductively coupled plasma emission spectroscopy (ICPES) is used to monitor inorganic carryover.

  7. Pneumatic conveying of pulverized solvent refined coal

    DOE Patents [OSTI]

    Lennon, Dennis R.

    1984-11-06

    A method for pneumatically conveying solvent refined coal to a burner under conditions of dilute phase pneumatic flow so as to prevent saltation of the solvent refined coal in the transport line by maintaining the transport fluid velocity above approximately 95 ft/sec.

  8. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    SciTech Connect (OSTI)

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  9. Generation of negative hydrogen ions in low-voltage cesium-hydrogen discharge

    SciTech Connect (OSTI)

    Baksht, F.G.; Djuzhev, G.A.; Elizarov, L.I.; Ivanov, V.G.; Kostin, A.A.; Shkolnik, S.M. )

    1992-10-05

    Theory of low-voltage (LV) Cs--H[sub 2] discharge is presented. LV arc plasma is created in consequence of ionization of small Cs amount (N[sub Cs]/N[sub H[sub 2

  10. New approaches for the reduction of plasma arc drop in second-generation thermionic converters. Final report

    SciTech Connect (OSTI)

    Hatziprokopiou, M.E.; Shaw, D.T.

    1981-03-31

    Investigations of ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter are described. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  11. Next Generation Batteries with Metal Anodes - Joint Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 3, 2015, Accomplishments Next Generation Batteries with Metal Anodes Promising electrolytes for the magnesium battery consist of salts dissolved in liquid solvents. Recent ...

  12. Extraction of Cesium by a Calix[4]arene-Crown-6 Ether Bearing a Pendant amine Group

    SciTech Connect (OSTI)

    Harmon, Ben; Ensor, Dale; Delmau, Laetitia Helene; Moyer, Bruce A

    2007-01-01

    The goal of this work was to evaluate the role of the amino group of 5-aminomethylcalix[4]arene-[bis-4-(2-ethylhexyl)benzo-crown-6] (AMBEHB) in the extraction of cesium from acidic and basic mixtures of sodium nitrate and other concentrated salts. The extraction of cesium from nitrate media was measured as a function of extractant concentration, nitrate concentration, cesium concentration, and pH over the range 1-13. The initial studies showed a moderate decrease in the extraction of cesium in acidic media, which indicated the binding of cesium by the calixarene-crown was weakened by the protonation of the amine group. The results also indicated that a 1:1:1 Cs-ligand-nitrate complex is formed in the organic phase. To further evaluate AMBEHB, the empirical data were mathematically modeled to determine the formation constants of the complexes formed in the organic phase. The resulting formation constants showed that the attachment of the amine group to the calixarene-crown molecule reduced the binding stability for the cesium ion upon contact with an acidic solution. This supports the hypothesis of charge repulsion as the basis for more efficient stripping of cesium via pH-switching.

  13. Switchable solvents and methods of use thereof

    DOE Patents [OSTI]

    Jessop, Philip G; Eckert, Charles A; Liotta, Charles L; Heldebrant, David J

    2014-04-29

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  14. Switchable solvents and methods of use thereof

    DOE Patents [OSTI]

    Jessop, Philip G. (Kingston, CA); Eckert, Charles A. (Atlanta, GA); Liotta, Charles L. (Atlanta, GA); Heldebrant, David J. (Richland, WA)

    2011-07-19

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  15. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  16. Switchable solvents and methods of use thereof

    DOE Patents [OSTI]

    Jessop, Philip G.; Eckert, Charles A.; Liotta, Charles L.; Heldebrant, David J.

    2013-08-20

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  17. Mechanism of paint removing by organic solvents

    SciTech Connect (OSTI)

    Del Nero, V.; Siat, C.; Marti, M.J.; Aubry, J.M.; Lallier, J.P.; Dupuy, N.; Huvenne, J.P.

    1996-01-01

    The mechanism of paint removing has been studied by comparing the stripping efficiency of a given solvent with its ability to swell the film. The most effective solvents have a Hildebrand{close_quote}s parameter, {delta}{sub H}, ranging from 10.5 to 12 and a Dimroth parameter, ET{sub (30)}, ranging from 0.25 to 0.4. The synergy observed with the mixtures DMSO/non polar solvent is explained by a dissociation of the DMSO clusters into individual molecules which diffuse more easily. {copyright} {ital 1996 American Institute of Physics.}

  18. Advanced Water Removal via Membrane Solvent Extraction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Removal via Membrane Solvent Extraction Advanced Water Removal via Membrane Solvent Extraction PDF icon advwaterremovalmse.pdf More Documents & Publications ITP Energy ...

  19. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable, ...

  20. The Role of Solvent Heterogeneity in Determining the Dispersion...

    Office of Scientific and Technical Information (OSTI)

    The Role of Solvent Heterogeneity in Determining the Dispersion Interaction Between Nanoassemblies Citation Details In-Document Search Title: The Role of Solvent Heterogeneity in ...

  1. Solvent composition and process for the isolation of radium

    DOE Patents [OSTI]

    McDowell, William J. (Knoxville, TN); Case, Gerald N. (Oak Ridge, TN)

    1990-01-01

    A solvent extraction composition for radium including a high molecular wet organophilic carboxylic acid and an organophilic macrocycle dissolved in a suitable solvent.

  2. Advanced Water Removal via Membrane Solvent Extraction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Removal via Membrane Solvent Extraction Reduction in energy and water use for the ethanol industry Ethanol is the leading biofuel in the U.S. with 13 Billion gallons produced ...

  3. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  4. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  5. SOLVENT HOLD TANK SAMPLE RESULTS FOR MCU-13-1403/1404/1405/1406/1407/1408: QUARTERLY SAMPLE FROM SEPTEMBER 2013

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2013-11-20

    Savannah River National Laboratory (SRNL) analyzed solvent samples from the Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-1403, MCU-13-1404, MCU-13-1405, MCU-13-1406, MCU-13-1407, and MCU-13-1408 received on September 17, 2013 are reported. This sample was taken after the addition of the Next Generation Solvent (NGS) cocktail to produce a NGS-MCU blended solvent. The results show that the solvent contains a slight excess of Isopar? L and a deficit concentration of modifier and TiDG when compared to the target composition. Addition of TiDG trim is recommended. SRNL also analyzed the SHT sample for {sup 137}Cs content and determined the measured value is within tolerance and that the value has returned to levels observed in 2011. In contrast to what was observed in the heel prior to adding the NGS cocktail, no organic impurities were detected in these solvent samples.

  6. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  7. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  8. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOE Patents [OSTI]

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  9. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOE Patents [OSTI]

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  10. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  11. Immobilization of Cesium Traps from the BN-350 Fast Reactor (Aktau, Kazakhstan)

    SciTech Connect (OSTI)

    J. A. Michelbacher; C. Knight; O. G. Romanenko; I. L. Tazhibaeva; I. L. Yakovlev; A. V. Rovneyko; V. I. Maev; D. Wells; A. Herrick

    2011-03-01

    During BN-350 reactor operations and also during the initial stages of decommissioning, cesium traps were used to decontaminate the reactor’s primary sodium coolant. Two different types of carbon-based trap were used – the MAVR series, low ash granulated graphite adsorber (LAG) contained in a carrier designed to be inserted into the reactor core during shutdown; and a series of ex-reactor trap accumulators(TAs) which used reticulated vitreous carbon (RVC) to reduce Cs-137 levels in the sodium after final reactor shutdown. In total four MAVRs and seven TAs were used at BN-350 to remove an estimated cumulative 755 TBq of cesium. The traps, which also contain residual sodium, need to be immobilized in an appropriate way to allow them to be consigned as waste packages for long term storage and, ultimately, disposal. The present paper reports on the current status of the implementation phase, with particular reference to the work done to date on the trap accumulators, which have the most similarity with the cesium traps used at other reactors.

  12. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  13. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  14. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    SciTech Connect (OSTI)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  15. Using GC-FID to Quantify the Removal of 4-sec-Butylphenol from NGS Solvent by NaOH

    SciTech Connect (OSTI)

    Sloop, Jr., Frederick V.; Moyer, Bruce A.

    2014-12-01

    A caustic wash of the solvent used in the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process was found to remove the modifier breakdown product 4-sec-butylphenol (SBP) with varying efficiency depending on the aqueous NaOH concentration. Recent efforts at ORNL have aimed at characterizing the flowsheet chemistry and reducing the technical uncertainties of the NG-CSSX process. One technical uncertainty has been the efficacy of caustic washing of the solvent for the removal of lipophilic anions, in particular, the efficient removal of SBP, an important degradation product of the solvent modifier, Cs-7SB. In order to make this determination, it was necessary to develop a sensitive and reliable analytical technique for the detection and quantitation of SBP. This report recounts the development of a GC-FID-based (Gas Chromatography Flame Ionization Detection) technique for analyzing SBP and the utilization of the technique to subsequently confirm the ability of the caustic wash to efficiently remove SBP from the Next Generation Solvent (NGS) used in NG-CSSX. In particular, the developed technique was used to monitor the amount of SBP removed from a simple solvent and the full NGS by contact with sodium hydroxide wash solutions over a range of concentrations. The results show that caustic washing removes SBP with effectively the same efficiency as it did in the original Caustic-Side Solvent Extraction (CSSX) process.

  16. Solvent treatment of coal for improved liquefaction

    DOE Patents [OSTI]

    Appell, Herbert R. (Pitcairn, PA); Narain, Nand K. (Bethel Park, PA); Utz, Bruce R. (Pittsburgh, PA)

    1986-05-06

    Increased liquefaction yield is obtained by pretreating a slurry of solid carbonaceous material and a liquid hydrocarbonaceous solvent at a temperature above 200.degree. C. but below 350.degree. C. for a period of 10 minutes to four hours prior to exposure to liquefaction temperatures.

  17. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  18. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  19. Experiments Performed in Substantiation of the Conditioning of BN-350 Spent Cesium Traps Using Lead or Lead-Bismuth Alloy Filling Technology

    SciTech Connect (OSTI)

    O. Romanenko; I. Tazhibaeva; I. Yakovlev; A. Ivanov; D. Wells; A. Herrick; J. Michelbacher; S. Shiganakov

    2009-05-01

    The technology of cleaning cesium radionuclides from sodium coolant at the BN-350 fast reactor was realized in the form of cesium traps of two types: stationary devices connected to the circuit that was to be cleaned and in-core devices installed into the core of reactor when it was not under operation. Carbon-graphite materials were used as sorbents to collect and concentrate radioactive cesium, accumulated in the BN-350 reactor circuits over the decades of their operation, in relatively small volume traps which provided effective radiation-safe conditions for personnel working in proximity to the coolant and equipment of the primary circuit during BN-350 decommissioning. Spent cesium traps, as products unfit for further use, represent solid radioactive wastes. The presence of chemically active sodium, potassium and cesium that are able to react violently with water results in series of problems related to their disposal in the Republic of Kazakhstan. Considering the technology of filling spent cesium traps with lead/lead-bismuth alloy as a priority one for their conditioning, evaluations for safety substantiation were implemented. A set of experiments was implemented aimed at verification of calculations performed in substantiation of the proposed technology: filling a full scale cesium trap mock-up with sodium followed by its draining to determine the optimal regimes of draining; filling bench scale cesium trap mock-ups with sodium and cesium followed by sodium draining and filling with lead or lead-bismuth alloy at different temperatures and filling rates to chose the optimal regimes for filling spent cesium traps; implementation of leachability tests to determine the rate of cesium release from the filling materials into water. This paper provides a description of the experimental program carried out and the main results obtained.

  20. novel-solvent-system | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compared to conventional aqueous amine solvents. Related Papers and Publications: Ion Novel Solvent System for CO2 Capture PDF-1.09MB (July 2013) Presented by Nathan Brown, ION...

  1. Organic Solvent Tropical Report [SEC 1 and 2

    SciTech Connect (OSTI)

    COWLEY, W.L.

    2000-06-21

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines.

  2. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST...

    Office of Scientific and Technical Information (OSTI)

    SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES Citation Details In-Document Search Title: SOLVENT-BASED ENHANCED OIL ...

  3. Batch extracting process using magneticparticle held solvents (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: Batch extracting process using magneticparticle held solvents Citation Details In-Document Search Title: Batch extracting process using magneticparticle held solvents A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the

  4. Gamma Ray Radiolysis of the FPEX Solvent

    SciTech Connect (OSTI)

    B. J. Mincher; S. P. Mezyk; D. R. Peterman

    2006-09-01

    Slide presentation. FPEX contains a calixarene for Cs extraction, a crown ether for Sr extraction, Cs7SB modifier, and TOA to aid in stripping, in Isopar L diluent. The radiation stability FPEX must be evaluated prior to process use. Radiolytic degradation of species in solution are due to reaction with the direct radiolysis products of the diluent. In Isopar L, the reactive species produced include e-, H and alkane radicals, resulting in a reducing environment. However, in nitric acid, oxidizing hydroxyl (OH) and nitro (NO2) radicals dominate system chemistry. Thus, the nature of diluent and the presence of radical scavengers affect the results of irradiation. We report the preliminary results of a new program to investigate the radiolysis of FPEX using the 60Co irradiation of FPEX neat solvent, acid pre-equilibrated solvent and mixed aerated phases. The Cs and Sr distribution ratios were used as metrics.

  5. Alternative solvents/technologies for paint stripping

    SciTech Connect (OSTI)

    Tsang, M.N.; Harris, T.L.

    1990-01-01

    Paint stripping is a necessary part of maintenance at US Air Force Air Logistics Centers. The Waste from Air Force paint stripping operations contains toxic chemicals that require special handling and disposal at considerable cost. Solvent emissions of volatile organic compounds (VOCs) into the atmosphere are another source of pollution. These wastes are hazardous to the environment and to operating personnel, and are now regulated by the US Environmental Protection Agency, which can impose fines for discharges that exceed the established limits. This report describes the research project titled Alternative Solvents/Technologies for Paint Stripping being conducted by the Idaho National Engineering Laboratory for the Engineering and Services Center at Tyndall Air Force Base. This report also includes the results obtained in Phase 1. 8 refs., 3 tabs.

  6. Production of biodiesel using expanded gas solvents

    SciTech Connect (OSTI)

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  7. Solvent extraction of Southern US tar sands

    SciTech Connect (OSTI)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  8. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOE Patents [OSTI]

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  9. solvent-battelle | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Project No.: DE-FE0007466 Battelle Pacific Northwest Division is developing a new CO2 capture technology for treating post-combustion emissions. The new process couples the unique attributes of non-aqueous, switchable organic solvents (CO2 binding organic liquids - CO2BOLs) with the newly discovered polarity-swing-assisted regeneration (PSAR) process. The process requires significantly lower temperatures and

  10. solvent-neumann | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Absorber Retrofit Equipment (CARE) Project No.: DE-FE0007528 Spray Jet Array for Neustream-C Nozzle Technology Spray Jet Array for Neustream-C Nozzle Technology Neumann Systems Group will be designing, constructing and testing their patented novel absorber in order to establish that the absorberwill significantly reduce process equipment footprint and the cost of full scale CO2 capture systems. The absorber will employ proven nozzle technology and an advanced solvent that efficiently

  11. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  12. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, D.; Givens, E.N.; Schweighardt, F.K.

    1986-12-09

    A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

  13. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect (OSTI)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  14. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect (OSTI)

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  15. Batch extracting process using magnetic particle held solvents

    DOE Patents [OSTI]

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  16. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOE Patents [OSTI]

    Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  17. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOE Patents [OSTI]

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  18. Characterization of a state-insensitive dipole trap for cesium atoms

    SciTech Connect (OSTI)

    Phoonthong, P.; Douglas, P.; Wickenbrock, A.; Renzoni, F.

    2010-07-15

    In this work we characterize a state-insensitive dipole trap for cold cesium atoms, as realized by tightly focusing a single running laser beam at the magic wavelength. The use of trapping light at the magic wavelength of 935.6 nm resulted in the same ac Stark shift for the {sup 6}S{sub 1/2} ground state and the {sup 6}P{sub 3/2} excited state. A complete characterization of the trap is given, which includes the dependence of the lifetime on the trap depth, an analysis of the important role played by a depumper beam, and a comparison with dipole trapping at different (nonmagic) wavelengths. In particular, we measured the differential light shift of the relevant optical transition as a function of the trapping light wavelength, and showed that it becomes zero at the magic wavelength. Our results are compared to previous realizations of state-insensitive dipole traps for cesium atoms. We also discuss the possible role of the state-insensitive trap, its limitations, and possible developments for the study of ground-state quantum coherence phenomena and related applications.

  19. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    SciTech Connect (OSTI)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.

  20. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    SciTech Connect (OSTI)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC.

  1. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S.; Chang, Y. Alice; Gatsis, John G.; Funk, Edward W.

    1988-01-01

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  2. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  3. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  4. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    SciTech Connect (OSTI)

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  5. Effect on Non-Uniform Heat Generation on Thermionic Reactions

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19

    The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a 10% variation in heat generation across a series array can result in a 25 to 50% power penalty.

  6. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    SciTech Connect (OSTI)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-04-14

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.

  7. Solvent-extraction purification of neptunium

    SciTech Connect (OSTI)

    Kyser, E.A.; Hudlow, S.L.

    2008-07-01

    The Savannah River Site (SRS) has recovered {sup 237}Np from reactor fuel that is currently being processed into NpO{sub 2} for future production of {sup 238}Pu. Several purification flowsheets have been utilized. An oxidizing solvent-extraction (SX) flowsheet was used to remove Fe, sulfate ion, and Th while simultaneously {sup 237}Np, {sup 238}Pu, u, and nonradioactive Ce(IV) was extracted into the tributyl phosphate (TBP) based organic solvent. A reducing SX flowsheet (second pass) removed the Ce and Pu and recovered both Np and U. The oxidizing flowsheet was necessary for solutions that contained excessive amounts of sulfate ion. Anion exchange was used to perform final purification of Np from Pu, U, and various non-actinide impurities. The Np(IV) in the purified solution was then oxalate-precipitated and calcined to an oxide for shipment to other facilities for storage and future target fabrication. Performance details of the SX purification and process difficulties are discussed. (authors)

  8. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2005-12-15

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System (DCS). In order to provide user friendly software for the process personnel, the software was broken down into just a few software modules. These software modules are the Application Window, Detector Selection, Detector Configuration Settings, Background Counting, and Routine Data Acquisition. Instructions for using the software have been included in a user's manual that is appended to this report. The work presented in this report meets all of the requirements set forth in the project task plan to design and implement gamma ray monitors for the MCU. Additional setup and testing of the system will be required when it implemented in the process.

  9. Thermal conductivities of Wilsonville solvent and Wilsonville solvent/Illinois No. 6 coal slurry

    SciTech Connect (OSTI)

    Mrochek, J.E.; Wilson, J.H.; Johnson, J.K.

    1985-12-01

    This report describes instrumentation and techniques that, when used in conjunction with a unique bench-scale flow system for coal liquids, enabled thermal conductivity measurements of fresh, slurried coal-solvent mixtures under more or less dynamic flow conditions. The transient hot-wire technique was selected as the method of choice, and a high-temperature, high-pressure cell, rated for temperatures to 850 K and pressures to 30 MPa (4366 psig), was fabricated from type 347 stainless steel. The cell, constructed of two identical manifolds joined by a length of pipe (34.9-mm OD x 19.7-mm ID), contained a platinum hot wire gauge (40 SWG, 0.076-mm diam) approx.29 cm in length. The measurement system consisted of a commercially available, precision dc current source (programmable and capable of current output to 164 mA) and a custom-built, switching/voltage amplification network with a digital oscilloscope for data acquisition. Measurements of the voltage drop across the hot-wire gauge (4096 data points) were transferred to a minicomputer for analysis and long-term storage. Thermal conductivities were measured on a Wilsonville solvent and a slurry prepared from this solvent and Illinois No. 6 coal over a temperature range of 295 to 505 K. Thermal conductivities for both the solvent and the slurry decreased with increasing temperatures, similar to the trend showed by toluene. The solvent decreased from 1.23 to 1.02 mW cm/sup -1/ K/sup -1/ over the temperature range 296 to 438 K, while the slurry decreased from 1.51 to 1.02 mW cm/sup -1/ K/sup -1/ over the range 295 to 505 K. 20 refs., 9 figs., 7 tabs.

  10. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOE Patents [OSTI]

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  11. Acid gas scrubbing by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  12. Acid gas scrubbing by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  13. Method for destroying halocarbon compositions using a critical solvent

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.; Janikowski, Stuart K.

    2006-01-10

    A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.

  14. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Sharp Interface Tracking in Rotating Microflows of Solvent Extraction Citation Details In-Document Search Title: Sharp Interface Tracking in Rotating Microflows of Solvent Extraction The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent

  15. BioRenewable Chemicals and Solvents - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search BioRenewable Chemicals and Solvents National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryAs a spin-off of NREL's long history of renewable energy research, alternatives to chemicals and solvents have been developed from renewable feedstocks. Traditionally, household and industrial chemicals and solvents are made from the limited

  16. Solvent and Process for Recovery of Hydroxide from Aqueous Mixtures

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    1999-09-13

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  17. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Chambliss, C. Kevin (Macon, GA); Bonnesen, Peter V. (Knoxville, TN); Keever, Tamara J. (Oak Ridge, TN)

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  18. Alcohols as hydrogen-donor solvents for treatment of coal

    DOE Patents [OSTI]

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  19. Critical Oxidation Reactions Optimized with Solvent Swap | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the solvent, organic reactions vital for producing the starting materials for many major industrial processes have been found to be faster and able to yield the desired product...

  20. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Ji, Q.

    1995-12-31

    Coal liquefaction is highly dependent upon the type of coal liquefaction solvent used. The solvent must readily solubilize the coal and must act as an effective hydrogen donor or shuttler. Oil derived from the vacuum pyrolysis of used rubber tires has recently been used as a coal solvent with good conversion of coal to liquids in a hydrogen atmosphere. All experiments were completed in shaken tubing reactors at 450{degrees}C utilizing a bituminous coal. Results show the effectiveness of the pyrolyzed tire oil as a coal liquefaction solvent depends upon hydrogen pressure. Electron probe microanalysis data reveal good dispersion of the molybdenum catalyst in coal particles taken from liquefaction experiments.

  1. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers

    Broader source: Energy.gov [DOE]

    Breakout Session 1-D: The Pitch Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Len Rand, Chief Executive Officer, Chairman, xF Technologies

  2. Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications

    SciTech Connect (OSTI)

    Moyer, Bruce A.

    2008-07-01

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly how this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.

  3. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  4. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  5. Implementation of a solvent management program to control paint shop volatile organic compounds

    SciTech Connect (OSTI)

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Waste Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.

  6. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    SciTech Connect (OSTI)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Three topic areas were identified for development during this project. These areas are: mass balance, Enhanced Attenuation (EA), and new characterization and monitoring tools and approaches to support MNA and EA. Each of these topics is documented in stand alone reports, WSRC-STI-2006-00082, WSRC-STI-2006-00083, and WSRC-STI-2006-00084, respectively. In brief, the mass balance efforts are examining methods and tools to allow a site to be evaluated in terms of a system where the inputs and processes within the system are compared to the outputs from the system, as well as understanding what attenuation processes may be occurring and how likely they are to occur within a system. Enhanced Attenuation is a new concept that is a transition step between primary treatments and MNA, when the natural attenuation processes are not sufficient to allow direct transition from the primary treatment to MNA. EA technologies are designed to either boost the level of the natural attenuation processes or decrease the loading of contaminants to the system for a period of time sufficient to allow the remedial goals to be met over the long-term. For characterization and monitoring, a phased approach based on documenting the site specific mass balance was developed. Tools and techniques to support the approach included direct measures of the biological processes and various tools to support cost-effective long-term monitoring of systems where the natural attenuation processes are the main treatment remedies. The effort revealed opportunities for integrating attenuation mechanisms into a systematic set of ''combined remedies'' for contaminated sites.

  7. FAST NEUTRON DOSIMETER FOR HIGH TEMPERATURE OPERATION BY MEASUREMENT OF THE AMOUNT OF CESIUM 137 FORMED FROM A THORIUM WIRE

    DOE Patents [OSTI]

    McCune, D.A.

    1964-03-17

    A method and device for measurement of integrated fast neutron flux in the presence of a large thermal neutron field are described. The device comprises a thorium wire surrounded by a thermal neutron attenuator that is, in turn, enclosed by heat-resistant material. The method consists of irradiating the device in a neutron field whereby neutrons with energies in excess of 1.1 Mev cause fast fissions in the thorium, then removing the thorium wire, separating the cesium-137 fission product by chemical means from the thorium, and finally counting the radioactivity of the cesium to determine the number of fissions which have occurred so that the integrated fast flux may be obtained. (AEC)

  8. Hydrogen donor solvent coal liquefaction process

    DOE Patents [OSTI]

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  9. Selective solvent delignification for fermentation enhancement

    SciTech Connect (OSTI)

    Avgerinos, G.C.; Wang, D.I.C.

    1983-01-01

    Cellulose and hemicellulose in renewable biomass resources such as cornstover and wheat straw have been examined as substrates for the production of ethanol. A mixed culture of selected strains of Clostridium thermocellum and Clostridium thermosaccharolyticum are used to accomplish both the hydrolysis and fermentation of these carbohydrates in a single step. However, lignin and related phenolic materials are shown to diminsh the rate, extent, and yield at which these carbohydrates can be utilized for ethanol production. In order to overcome this problem, a selective solvent pretreatment with alkaline-ethanol-water mixtures was examined for the delignification of cellulosic biomass under conditions where very little loss of fermentable carbohydrates results. Under optimal conditions, up to 67% of the initial lignin in cornstover can be extraced while 95% of the alpha cellulose and pentosan carbohydrates remain insoluble. Subsequent mixed culture fermentation of the treated material has shown a 400% increase in the rate of degradation and greater than 85% utilization of substrate. The effects of various extraction parameters on delignification kinetics and subsequent fermentation performance are discussed. (Refs. 17).

  10. Selective solvent delignification for fermentation enhancement

    SciTech Connect (OSTI)

    Augerinos, G.C.; Wang, D.I.C.

    1983-01-01

    Cellulose and hemicellulose in renewable biomass resources such as cornstover and wheat straw have been examined as substrates for the production of ethanol. A mixed culture of selected strains of Clostridium thermocellum and Clostridium thermosaccharolyticumare used to accomplish both the hydrolysis and fermentation of these carbohydrates in a single step. However, lignin and related phenolic materials are shown to diminish the rate, extent, and yield at which these carbohydrates can be utilized for ethanol production. In order to overcome this problem, a selective solvent pretreatment with alkaline-ethanol-water mixtures was examined for the delignification of cellulosic biomass under conditions where very little loss of fermentable carbohyrates results. Under optimal conditions, up to 67% of the initial lignin in cornstover can be extracted while 95% of the ..cap alpha..-cellulose and pentosan carbohydrates remain insoluble. Subsequent mixed culture fermentation of the treated material has shown a 400% increase in the rate of degradation and greater than 85% utilization of the substrate. The effects of various extraction parameters on delignification kinetics and subsequent fermentation performance are discussed.

  11. Radiation chemistry in solvent extraction: FY2010 Research

    SciTech Connect (OSTI)

    Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk

    2010-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: Development of techniques to measure free radical reaction kinetics in the organic phase. Initiation of an alpha-radiolysis program Initiation of an effort to understand dose rate effects in radiation chemistry Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution, and the method to measure OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry of nitration under radiolysis conditions. Finally, work toward understanding the chemistry of irradiated formic acid is presented. This is important because all organic compounds eventually produce formic acid under long-term irradiation.

  12. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high flow moving through these reservoirs. • The reservoirs play a major role as a sink of sediment and cesium in the river systems. Some amounts of sediment pass through them along with cesium in dissolved and clay-sorbed cesium forms. • Effects of countermeasures such as overland decontamination, dam control and sorbent injection were tentatively estimated. The simulation suggested that overland decontamination and sorbent injection would be effective for decreasing the contamination of water in the reservoir and in the river below the dam.

  13. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect (OSTI)

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  14. Dry phase reactor for generating medical isotopes

    DOE Patents [OSTI]

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  15. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, Frank K. (Upper Macungie, PA)

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  16. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  17. Integrated process for the solvent refining of coal

    DOE Patents [OSTI]

    Garg, Diwakar

    1983-01-01

    A process is set forth for the integrated liquefaction of coal by the catalytic solvent refining of a feed coal in a first stage to liquid and solid products and the catalytic hydrogenation of the solid product in a second stage to produce additional liquid product. A fresh inexpensive, throw-away catalyst is utilized in the second stage hydrogenation of the solid product and this catalyst is recovered and recycled for catalyst duty in the solvent refining stage without any activation steps performed on the used catalyst prior to its use in the solvent refining of feed coal.

  18. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    SciTech Connect (OSTI)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  19. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  20. Renewable, Nontoxic, and Cost-Competitive Solvents and Plasticizers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Befer than leading "green" candidates TURI Test xF solvents Compared s olvents Paint Stripping MF and EF DCM, NMP, Green AlternaKve Degreasing MF and EF TCE, NPB, Green...

  1. Solvent for urethane adhesives and coatings and method of use

    DOE Patents [OSTI]

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  2. Universal solvent restructuring induced by colloidal nanoparticles (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Universal solvent restructuring induced by colloidal nanoparticles Citation Details In-Document Search Title: Universal solvent restructuring induced by colloidal nanoparticles Authors: Zobel, Mirijam ; Neder, Reinhard B. ; Kimber, Simon A.J. [1] ; ESRF) [2] + Show Author Affiliations (Nürnberg) ( Publication Date: 2015-01-15 OSTI Identifier: 1168535 Resource Type: Journal Article Resource Relation: Journal Name:

  3. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  4. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT

    Office of Scientific and Technical Information (OSTI)

    EXTRACTION (Conference) | SciTech Connect PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION Citation Details In-Document Search Title: PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION The United States Department of Energy proposes to re-establish a domestic capability for producing plutonium-238 (238Pu) to fuel radioisotope power systems primarily in support of future space missions. A conceptual design report is currently

  5. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT

    Office of Scientific and Technical Information (OSTI)

    EXTRACTION (Conference) | SciTech Connect PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION Citation Details In-Document Search Title: PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  6. Requirements for a Dynamic Solvent Extraction Module to Support Development

    Office of Scientific and Technical Information (OSTI)

    of Advanced Technologies for the Recycle of Used Nuclear Fuel (Technical Report) | SciTech Connect Technical Report: Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel Citation Details In-Document Search Title: Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel The Department of Energy's Nuclear Energy Advanced Modeling

  7. Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Gamma-valerolactone (GVL) is an inexpensive solvent derived from biomass that can be used to break apart tough lignocellulose into fermentable sugars including xylose and glucose. GVL-based techniques are a potentially transformative breakthrough in biofuel production (for more information see WARF reference

  8. Recovery of Sugars by Solvent Extraction - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery of Sugars by Solvent Extraction Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have developed a technology to extract 5C and 6C sugars directly at two points in an ionic liquid biomass pretreatment process and deliver a concentrated solution of fermentable sugars. The process minimizes toxic byproducts and facilitates ionic liquid reuse. DescriptionThe JBEI invention uses solvent

  9. Test Plan for Solvent Extraction Data Acquisition to Support Modeling

    Office of Scientific and Technical Information (OSTI)

    Efforts (Technical Report) | SciTech Connect Technical Report: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts Citation Details In-Document Search Title: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts This testing will support NEAMS SafeSep Modeling efforts related to droplet simulation in liquid-liquid extraction equipment. Physical characteristic determinations will be completed for the fluids being used in the experiment

  10. Test Plan for Solvent Extraction Data Acquisition to Support Modeling

    Office of Scientific and Technical Information (OSTI)

    Efforts (Technical Report) | SciTech Connect Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts Citation Details In-Document Search Title: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  11. The Role of Solvent Heterogeneity in Determining the Dispersion Interaction

    Office of Scientific and Technical Information (OSTI)

    Between Nanoassemblies (Journal Article) | SciTech Connect The Role of Solvent Heterogeneity in Determining the Dispersion Interaction Between Nanoassemblies Citation Details In-Document Search Title: The Role of Solvent Heterogeneity in Determining the Dispersion Interaction Between Nanoassemblies Understanding fundamental nanoassembly processes on intermediate scales beween the molecular and the continuum requires an in-depth analysis of the coupling between particle interactions and

  12. Initiate test loop irradiations of ALSEP process solvent

    SciTech Connect (OSTI)

    Peterman, Dean R.; Olson, Lonnie G.; McDowell, Rocklan G.

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  13. Evaluation of aqueous degreasers versus chlorinated solvents at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Gunn, D.

    1988-10-31

    Spent chlorinated solvents are produced mainly as a result of degreasing operations at several Paducah Gaseous Diffusion Plant (PGDP) locations. This waste is a listed hazardous waste under Resource Conservation and Recovery Act (RCRA) regulations (40 CFR 261). In addition, some of the solvents become contaminated with uranium which classifies the waste as a mixed waste for which no disposal method is currently available. Due to health and environmental concerns and the desire to minimize mixed and hazardous waste generation, degreasing operations in the plant were delineated and alternate nonhazardous solvents were evaluated for their suitability for replacing the chlorinated solvents. Metal cleanliness testing of eight aqueous degreasers using ultrasonic cleaning and immersion with agitation, and vapor degreasing with trichloroethylene (TCE) and 1,1,1-trichloroethane (TC-ane) was performed. Soils such as dust, fingerprints, lube oil, water-soluble oil, silicone grease, and petroleum-based grease were removed from Monel, copper, mild steel, aluminum, and phosphor bronze. Cleanliness was determined by estimating the surface energy of metal coupons before and after cleaning. A Kepner-Tregoe (KT) decision analysis was utilized to determine the three best multipurpose degreasers for the plant. Additional testing was performed on the top three selected degreasers to evaluate corrosive effects of the cleaning solutions (general surface corrosion and pitting), and to determine the compatability of any residual contamination with process gases. Corrosion testing was performed in an electrochemical corrosion tester. Cleaned coupons were exposed to uranium hexafluoride, fluorine, and chlorine trifluoride. In addition, metal cleanliness testing was conducted to evaluate the cleaning efficiency of parts cleaned in the field.

  14. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth; Vaknin, David

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likely ensuingmore » ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  15. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  16. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOE Patents [OSTI]

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  17. A cesium copper vanadyl-diphosphate: Synthesis, crystal structure and physical properties

    SciTech Connect (OSTI)

    Shvanskaya, Larisa; Yakubovich, Olga; Bychkov, Andrey; Shcherbakov, Vasiliy; Golovanov, Alexey; Zvereva, Elena; Volkova, Olga; Vasiliev, Alexander

    2015-02-15

    A non-centrosymmetric orthorhombic diphosphate, Cs{sub 2}Cu{sub 1+x}(VO){sub 2−x}(P{sub 2}O{sub 7}){sub 2} (x=0.1) with a=13.7364(2) Å, b=9.2666(2) Å, c=11.5678(2) Å, Z=4, has been isolated. Its 3D framework is built from Cu atoms in square pyramidal and square planar coordination, VO{sub 5} tetragonal pyramids and P{sub 2}O{sub 7} diphosphate groups, sharing vertices. Large channels are fulfilled by cesium atoms. The ESR study reveals a similarity in behaviour of two paramagnetic (Cu and V) subsystems. The temperature dependences of the ESR linewidth and static magnetic susceptibility data present evidences for a cluster type magnetic ordering in the title compound at T⁎=22 K. The weakness of the relevant anomalies reflects presumably obvious Cu{sup 2+} ions and (VO){sup 2+} units disorder in the system. It is supposed that the charge and geometry of the framework are controlled by the Cu{sup 2+}/(VO){sup 2+} ratio; its variation may lead to a design of new materials. - Graphical abstract: A microporous 3D anionic framework of the first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2}. The similarity in behaviour of Cu and V paramagnetic subsystems revealed by ESR study. - Highlights: • The first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2} is reported. • A 3D anionic framework is characterized by disorder in distribution of Cu and V atoms. • Structural relations with topologically similar compounds are discussed. • The similarity in behaviour of Cu and V paramagnetic subsystems has been revealed.

  18. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions range, i.e. using steady-state sputtering. The recession of both the uraniums and uranium carbides surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U??Ga??, (UC)??Ga?? and U??Cs?, (UC)??Cs??, respectively.

  19. REMOVAL OF CESIUM FROM SAVANNAH RIVER SITE WASTE WITH SPHERICAL RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN EXPERIMENTAL TESTS

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.

    2010-03-31

    A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.

  20. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-08-22

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compacts andmore » fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Moreover, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.« less

  1. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  2. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    SciTech Connect (OSTI)

    Penwell, D.L.

    1994-12-28

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs.

  3. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  4. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  5. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  6. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  7. Development of novel contactor for nuclear solvent extraction

    SciTech Connect (OSTI)

    Kumar, Shekhar; Kumar, Rajnish; Sivakumar, D.; Balamurugan, M.; Koganti, S.B.

    2008-07-01

    For current designs of radiochemical plants, solvent-extraction contactors with no periodic maintenance like pulse column are the first choice. In addition, as costs of specialty solvents for nuclear extraction are quite high, there is a demand for operation at extreme phase ratios. Recently a novel mixer-settler was visualized and developed for this kind of service. The mixer of the novel contactor is based on rotated helical tubes and does not involve any mechanical moving part. Mass-transfer runs were carried out with aqueous nitric acid and 30% TBP solvent at A/O of 0.25-200 (in extraction) and A/O of 0.25-10 (in back-extraction mode). The developed contactor exhibited nearly 100% efficiency for all the cases. (authors)

  8. Coking and rheological measurements using Exxon donor solvent materials

    SciTech Connect (OSTI)

    Lee, D.D.; Wilson, J.H.; Sams, T.L.; Johnson, J.K.; Rodgers, B.R.

    1984-02-01

    This report describes a study made under contract with Exxon Research and Engineering Company to investigate the rheology and density of Exxon-supplied slurries of Illinois and Wyodak coals, solvents, and bottoms in the Oak Ridge National Laboratory Coal Liquids Flow System. The rheological data were taken between 478 and 700/sup 0/K at 28-K increments at three shear rates at each temperature. Density was measured at 478, 533, 589, 644, 672, and 700/sup 0/K at one mass flow rate. The slurry compositions studied included Illinois No. 6 coal with two different solvents and recycle bottoms at solvent-to-coal-to-bottoms weight ratios of 2.0/1.0/0.5, 1.2/1.0/0.5, 1.6/1.0/0.5, and Wyodak solvent, coal, and bottoms at a 1.6/1.0/0.5 ratio. The rheology measurements showed that the behavior of the Wyodak slurries below 589/sup 0/K was almost Newtonian, and above 589/sup 0/K it was very non-Newtonian. The Illinois-coal slurries showed a greater deviation from Newtonian character than did the Wyodak slurries. The peaks in the plots of viscosity vs temperature for the slurries varied with solvent type, mass flow rate, and solvent-to-coal-to-bottoms ratio. The data and results from this study will be useful in comparing physical properties of these coals and slurries with others and in building up the coal-slurry data base. 4 references, 36 figures, 15 tables.

  9. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  10. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOE Patents [OSTI]

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  11. Industrial application of GNEP solvent-extraction processes

    SciTech Connect (OSTI)

    Arm, S.T.; Phillips, C.; Dobson, A.

    2008-07-01

    EnergySolutions is currently studying the feasibility of commercially recycling spent nuclear fuel in the USA as part of the Global Nuclear Energy Partnership. Uranium, plutonium, and neptunium recycling are accomplished by employing well-established solvent-extraction technology based on the tributylphosphate extractant and acetohydroxamic complexant stripping in a commercially demonstrated configuration. Americium and curium recycling is best achieved by employing the TRUEX and TALSPEAK solvent-extraction processes or a simplified variant of them. Facility design is not predicated on performing any research and development a priori. Process development and demonstration will proceed in parallel with design by proven design-management techniques. (authors)

  12. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect (OSTI)

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  13. The Effects of Radiation Chemistry on Solvent Extraction 4. Separation of the Trivalent Actinides and Considerations for Radiation-Resistant Solvent Systems

    SciTech Connect (OSTI)

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2010-07-01

    The separation of the minor actinides from dissolved nuclear fuel is one of the more formidable challenges associated with the design of the advanced fuel cycle. The partitioning of americium and its transmutation in fast reactor fuel would reduce high-level-waste long-term storage requirements by as much as two orders of magnitude. However, the lanthanides have very similar chemistry. They also have large neutron capture cross sections and poor metal alloy properties and thus they can not be incorporated into fast reactor fuel. A separation amenable to currently existing aqueous solvent extraction processes is therefore desired, and research is underway in Europe, Asia and the USA toward this end. Current concepts for this final separation rely on the use of soft-donor nitrogen or sulfur-containing ligands that favor complexation with the 5f orbitals of the actinides. In the USA, the most developed process is the TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes) process, based upon the competition between bis(2-ethylhexyl)phosphoric acid (HDEHP) in the organic phase and lactate-buffered diethylenetriamine pentaacetic acid (DTPA) in the aqueous phase. In Europe and Japan, current investigation is focused on the BTP diamide mixtures or dithiophosphinic acids. Any process eventually adopted must be robust under conditions of high-radiation dose-rates and acid hydrolysis. The effects of irradiation on solvent extraction formulations may result in: 1) decreased ligand concentrations resulting in lower metal distribution ratios, 2) decreased selectivity due to the generation of ligand radiolysis products that are complexing agents, 3) decreased selectivity due to the generation of diluent radiolysis products that are complexing agents, and 4) altered solvent performance due to films, precipitates, and increased viscocity. Many of the ligands associated with minor actinide/lanthanide separations are relatively new. Unlike their predecessors, many have been designed with radiation chemical principals in mind. The evolution of the BTPs and diamides show attention to these details, and a series of structural modifications have evolved that are meant to address them. In this fourth and final part in the series we report on the radiation chemistry of the minor actinide separations processes. We also provide a summary of the general radiolysis reactions that have implications for all ligand and diluent systems.

  14. Simultaneous separation of cesium and strontium from spent nuclear fuel using the fission-product extraction process

    SciTech Connect (OSTI)

    Law, J.D.; Peterman, D.R.; Riddle, C.L.; Meikrantz, D.A.; Todd, T.A.

    2008-07-01

    The Fission-Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Global Nuclear Energy Partnership (GNEP) for the simultaneous separation of cesium and strontium from spent LWR fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository and, when combined with the separation of Am and Cm, could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly-specific extractants: 4,4',(5')-di-(t-butyl-dicyclohexano)- 18-crown-6 (DtBuCH18C6) and calix[4]arene-bis-(t-octyl-benzo-crown-6 ) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium, and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with simulated and actual spent-nuclear-fuel feed solution in centrifugal contactors are detailed. Removal efficiencies, co-extraction of metals, and process hydrodynamic performance ar e discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel. Recent advances in the evaluation of alternative calixarenes with increased solubility and stability are also detailed. (authors)

  15. Solvent extraction of radionuclides from aqueous tank waste

    SciTech Connect (OSTI)

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A.; Leonard, R.A.; Lumetta, G.J.

    1997-01-01

    This task aims toward the development of efficient solvent-extraction processes for the removal of the fission products {sup 99}Tc, {sup 90}Sr, and {sup 137}Cs from alkaline tank wastes. Processes already developed or proposed entail direct treatment of the waste solution with the solvent and subsequent stripping of the extracted contaminants from the solvent into a dilute aqueous solution. Working processes to remove Tc(and SR) separately and Cs separately have been developed; the feasibility of a combined process is under investigation. Since Tc, Sr, and Cs will be vitrified together in the high-level fraction, however, a process that could separate Tc, Sr, and Cs simultaneously, as opposed to sequentially, potentially offers the greatest impact. A figure presents a simplified diagram of a proposed solvent-extraction cycle followed by three possible treatments for the stripping solution. Some degree of recycle of the stripping solution (option a) is expected. Simple evaporation (option c) is possible prior to vitrification; this offers the greatest possible volume reduction with simple operation and no consumption of chemicals, but it is energy intensive. However, if the contaminants are concentrated (option b) by fixed-bed technology, the energy penalty of evaporation can be avoided and vitrification facilitated without any additional secondary waste being produced.

  16. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    SciTech Connect (OSTI)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in the Fukushima environment. The issues to be addressed in future are the following: • Validate the simulation results by comparison with the investigation data. • Confirm the applicability of the FLESCOT code to Fukushima coastal areas. • Increase computation speed by parallelizing the FLESCOT code.

  17. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  18. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect (OSTI)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  19. Donor solvent coal liquefaction with bottoms recycle at elevated pressure

    DOE Patents [OSTI]

    Bauman, Richard F.; Taunton, John W.; Anderson, George H.; Trachte, Ken L.; Hsia, Steve J.

    1982-01-01

    An improved process for liquefying solid carbonaceous materials wherein increased naphtha yields are achieved by effecting the liquefaction at a pressure within the range from about 1750 to about 2800 psig in the presence of recycled bottoms and a hydrogen-donor solvent containing at least 0.8 wt % donatable hydrogen. The liquefaction is accomplished at a temperature within the range from about 700.degree. to about 950.degree. F. The coal:bottoms ratio in the feed to liquefaction will be within the range from about 1:1 to about 5:1 and the solvent or diluent to total solids ratio will be at least 1.5:1 and preferably within the range from about 1.6:1 to about 3:1. The yield of naphtha boiling range materials increases as the pressure increases but generally reaches a maximum at a pressure within the range from about 2000 to about 2500 psig.

  20. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  1. Investigation of HNO2 Production in Solvent Extraction Organic Phases

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01

    This document is a letter report that was prepared to meet FCR&D level 4 milestone M4FT-14IN0304054, Investigate HNO2 production in solvent extraction organic phases. This work was carried out under the auspices of the Fundamental Radiation Chemistry FCR&D work package. This document reports on an initial tests performed to follow HNO2 formation in reference flowsheet relevant organic phases.

  2. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  3. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    SciTech Connect (OSTI)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  4. Apparatus and methods for regeneration of precipitating solvent

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  5. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  6. DESIGN AND SYNTHESIS OF THE NEXT GENERATION OF CROWN ETHERS FOR WASTE SEPARATIONS: AN INTER-LABORATORY COMPREHENSIVE PROPOSAL

    SciTech Connect (OSTI)

    Moyer, Bruce A.

    2000-12-31

    The objectives of this project were to develop the techniques, materials, and fundamental understanding necessary to solve difficult separations problems of the USDOE in the 21st century. The specific goals included developing new, powerful molecular modeling tools for ligand design, performing computational and structural studies to reveal fundamental properties of ligand-metal ion interactions, studying solvent extraction behavior to provide basic understanding of solution speciation and equilibria, and preparing new ion-exchange resins for the separation of metal ions of environmental significance to the USDOE. Contaminants of special interest included alkali and alkaline-earth metal ions, especially, lithium, cesium, and strontium. For example, Li+ ions contaminate the groundwater at the Oak Ridge Y-12 Plant; Cs+ and Sr2+ represent fission products in groundwater (e.g., INEEL, Hanford), stored waste (e.g., Savannah River Site, Hanford tanks), and process-water streams (e. g., ORNL).

  7. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  8. Recycling paint and solvents and reducing use of 1,1,1-trichloroethane

    SciTech Connect (OSTI)

    Walpole, D. )

    1993-01-01

    Great Dane Trailers Tennessee, Inc., manufacturers over-the-road platform truck trailers in an Environmental Protection Agency (EPA) non-attainment area in Memphis. Because plant management was concerned about air emissions, it began a waste-reduction program in February 1990. Their goal was to identify process changes and alternative coatings to reduce both solvent vapor emissions and paint-related RCRA hazardous wastes. Great Dane, working with the University of Tennessee's Center for Industrial Services, implemented waste-reduction measures that recycled 100% of the paint-related wastes previously shipped offsite for disposal, and eliminated 100% of the total hazardous waste. These measures reduced emissions of 1,1,1-trichloroethane by 93.6%. They also replaced purchased undercoating with an undercoating blended from recycled paint sludge residue. These innovations saved the Memphis plant more than $135,000 in 1991. Because Great Dane now generates virtually no hazardous waste, it went from a large-quantity generator to a conditionally exempt small-quantity generator. In recognition of Great Dane's contribution to the environment, Governor Ned McWherter awarded Great Dane the 1990 Tennessee Governor's Award for Excellence in Hazardous Waste Management.

  9. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect (OSTI)

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  10. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  11. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  12. PLASMA GENERATOR

    DOE Patents [OSTI]

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  13. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  14. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  15. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  16. Oak Ridge Reservation Volume 2. Records relating to cesium at the K-25 Plant: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-02-21

    The purpose of this guide is to describe the documents and record series at the K-25 plant that pertain to the handling of waste containing cesium-137 produced as a result of processes to enrich uranium and separate plutonium at the Department of Energy`s (DOE) Oak Ridge National Laboratory (ORNL) and Oak Ride Gaseous Diffusion Plant (ORGDP, called K-25) in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, the purpose of which is to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in it. Specific attention is given to the history of the DOE-Oak Ridge Reservation, the history and development of the K-25 plant, the creation and handling of cesium-contaminated waste, and environmental monitoring efforts at ORNL and K-25 from the late 1940s to the present. This introduction also presents the methodology used to identify the documents and series pertaining to cesium, a discussion of the inventory of these documents, information concerning access to the site and the records, and a description of the arrangement of the chapters.

  17. Chemical and radiation stability of SuperLig{reg_sign}644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    SciTech Connect (OSTI)

    Brown, G.N.; Adami, S.R.; Bray, L.A.

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ``Develop and Test Sorbents.`` The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig{reg_sign}644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig{reg_sign}644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study.

  18. A solvent system to provide selective removal of sulfur compounds

    SciTech Connect (OSTI)

    Pearce, R.L.; Bacon, T.R.

    1986-01-01

    Energy costs and SRU inefficiencies resulting from utilization of low strength MEA technology induced a large refinery to convert to MDEA. One of the seven product streams being treated required extremely low carbonyl sulfide in the treated product. This required careful consideration in making the decision to convert. However, the conclusions were that the advantages outweighed the disadvantages. When the initial converted operations verified a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation at acceptable COS specification, lower energy utilization, reduced solvent losses, and improved sulfur recovery unit operation.

  19. HIGH-PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES:

    Office of Scientific and Technical Information (OSTI)

    PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES: TECHNICAL EVALUATION AND COST ANALYSIS R. Quong H. H. Otsuki F. E. Locke July 1981 This is an informal report intended primarily for internal or limited extcrual dirtribdk.. 1Lc opinions and condusions stated are tbose of the antbor and m y or may m o t be tbosc of tbe Laboratory. Work performed under the ampices of the U S . Department of Elnrgy by tbe Lawrence Livermore Laboratory under Cwbsct W-7405-Er498. 7 DISTRIBUTIUN OF THIS

  20. Monthly Generation System Peak (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

  1. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    SciTech Connect (OSTI)

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).

  2. Solvent Exchange in Liquid Methanol and Rate Theory

    SciTech Connect (OSTI)

    Dang, Liem X.; Schenter, Gregory K.

    2016-01-01

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find that the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  3. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  4. Solvent Refined Coal (SRC) process: trace elements. Volume III. Pilot plant development work. Part 6. Fate of trace elements in the SRC process. [Ph. D. Thesis

    SciTech Connect (OSTI)

    Weiss, C.S.

    1980-09-01

    A study of the forms of trace elements occurring in Solvent Refined Coal has been performed by chemical separation of the Solvent Refined Coal based on differences in the functionality and molecular weight of the organic matrix. Analysis of the fractions separated for various trace elements has revealed associations of certain elements with other elements as well as with certain fractions. The analysis of Solvent Refined Coal I by these methods provided data on the distribution of Ti, V, Ca, S, Al, Mn, As, Se, Cr, Fe, Ni, Zn, Sc, and Ga in the fractions generated. Because of the low trace element content of Solvent Refined Coal II only As, Se, and Cr could be detected in the silica fractions. Based on the distributions three different groups of elements have been based on the association of elements with each other and with certain fractions. The first group is composed of As, Se, and Cr associated with silica fractions of relatively low functionality; these elements have a high percent solubility in the starting Solvent Refined Coal II oil. The second group composed of Ti, V, and to a lesser extent a second form of Cr, is associated with fractions that have a high concentration of phenolic material and is probably present as phenoxide complexes. The third group composed of Fe, Ca, K, Al, and Mg is associated with the most functional fractions and is possibly present as humic acid type complexes or as submicron size particulates. The integration of chromatographic methods with trace element analysis of the fractions generated is capable of discerning the presence of different forms of the elements. The methods used are applicable to other important geologically occurring organic matter.

  5. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  6. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect (OSTI)

    Franois, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192?GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192?GHz output signal are measured to be ?42, ?100, ?117 dB?rad{sup 2}/Hz and ?129 dB?rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 10{sup ?14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  7. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    SciTech Connect (OSTI)

    Grebmeier, J.M.; Cooper, L.W. |; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-06-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68{degree}37` N, 149{degree}17` W). Inventories of {sup 137}Cs (102--162 mBq/cm{sup 2}) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of {sup 137}Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70{degree}13` N, 148{degree}30` W). Atmospheric deposition of {sup 137}Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of {sup 137}Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68{degree}38` N, 149{degree}38` W) showed widely varying {sup 137}Cs inventories, from a low of 22 mBq/cm{sup 2} away from the lake inlet, to a high between 140 to >200 mBq/cm{sup 2} near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed.

  8. Interaction of Cesium Ions with Calix[4]arene-bis(t-octylbenzo-18-crown-6): NMR and Theoretical Study

    SciTech Connect (OSTI)

    Kriz, Jaroslav; Dybal, Jiri; Vanura, Petr; Moyer, Bruce A

    2011-01-01

    Using 1H, 13C, and 133Cs NMR spectra, it is shown that calix[4]arene-bis (t-octylbenzo-18-crown-6) (L) forms complexes with one (L 3 Cs ) and two (L 3 2Cs ) Cs ions offered by cesium bis(1,2-dicarbollide) cobaltate (CsDCC) in nitrobenzene-d5. The ions interact with all six oxygen atoms in the crown-ether ring and the electrons of the calixarene aromatic moieties. According to extraction technique, the stability constant of the first complex is log nb(L 3 Cs ) = 8.8 ( 0.1. According to 133Cs NMR spectra, the value of the equilibrium constant of the second complex is log Knb (2)(L 3 2Cs ) = 6.3(0.2, i.e., its stabilization constant is log nb(L 3 2Cs ) = 15.1 ( 0.3. Self-diffusion measurements by 1H pulsed-field gradient (PFG) NMRcombined with density functional theory (DFT) calculations suggest that one DCC ion is tightly associated with L 3 Cs , decreasing its positive charge and consequently stabilizing the second complex, L 3 2Cs . Using a saturation-transfer 133Cs NMR technique, the correlation times ex of chemical exchange between L 3 Cs and L 3 2Cs as well as between L 3 2Cs and free Cs ions were determined as 33.6 and 29.2 ms, respectively.

  9. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  10. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOE Patents [OSTI]

    Yates, Stephen Frederic; DeFilippi, Irene; Gaita, Romulus; Clearfield, Abraham; Bortun, Lyudmila; Bortun, Anatoly

    2000-09-05

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  11. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    DOE Patents [OSTI]

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  12. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  13. Novel Solvent System for Post Combustion CO{sub 2} Capture (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Novel Solvent System for Post Combustion CO{sub 2} Capture Citation Details In-Document Search Title: Novel Solvent System for Post Combustion CO{sub 2} Capture The purpose of this project was to evaluate the performance of ION's lead solvent and determine if ION's solvent candidate could potentially meet DOE's target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project,

  14. Upgrading heavy oils by solvent dissolution and ultrafiltration

    SciTech Connect (OSTI)

    Osterhuber, E.J.

    1989-01-10

    A method is described for the separation of a heavy oil diluting the heavy oil with a solvent which is completely miscible with the heavy oil in an amount sufficient to completely dissolve the oil so as to produce an ultrafiltration feed; contacting the ultrafiltration feed with a first side of a continuous generally unswelled organic membrane selected from the group consisting of those comprising cellulose or polyvinylidine fluoride at a pressure between about 750 kPa and about 1500 kPa and at a temperature between 20/sup 0/C. and about 125/sup 0/C.; recovering a permeate fraction enriched in aromatic and saturated hydrocarbons from a second side of the membrane, and recovering a retentate fraction enriched in polar and metal-containing hydrocarbons from the first side of the membrane.

  15. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Michael T. Klein

    1998-10-01

    Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

  16. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Solvent doubles processing rate, saves over $1 billion This innovation used state-of-the-are molecular modeling to challenge the limits of chemical processing and approach. This led to the development, testing, and deployment of a new chemical process. The Next Generation Solvent, an improved cesium extraction system, doubles production rates in salt waste processing at SRS. This scientific advancement will allow for more rapid removal of waste from tanks slated for closure, and

  17. Revised Methodology for Determining Cesium-137 Content of HN-200 Grout Containers

    SciTech Connect (OSTI)

    SHELOR, J.L.

    1999-08-31

    The purpose of this technical paper is to examine the accuracy of the existing method of determining the Cs-137 content of HN-200 grout containers and compare that accuracy to the accuracy attainable by other methods of measurement. The methods of measurement to be compared include: Contact measurements on a grouted container (existing method); Measurements at 5 feet from the surface of a grouted container; Measurements at 10 feet from a grouted container; Measurements on contact with the surface of an ungrouted container; Measurements at 5 feet from the surface of an ungrouted container; and Measurements at 10 feet from the surface of an ungrouted container. Once the most accurate and useable method is determined, the precepts for an operating procedure will be provided for determining the Cs-137 content of newly generated and future HN-200 grout containers as well as the grouted legacy containers currently stored in B Cell.

  18. Methods for recovering a polar solvent from a fluid stream contaminated with at least one polar impurity

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Wendt, Daniel S.

    2012-11-13

    A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.

  19. Processing and analysis techniques involving in-vessel material generation

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  20. Processing and analysis techniques involving in-vessel material generation

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  1. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    SciTech Connect (OSTI)

    Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbone deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.

  2. Presidential Rapid Commercialization Initiative for mixed waste solvent extraction

    SciTech Connect (OSTI)

    Honigford, L.; Dilday, D.; Cook, D.; Sattler, J.

    1997-03-01

    Recently, the Fernald Environmental Management Project (FEMP) has made some major steps in mixed waste treatment which have taken it closer to meeting final remediation goals. However, one major hurdle remains for the FEMP mixed waste treatment program, and that hurdle is tri-mixed waste. Tri-mixed is a term coined to describe low-level waste containing RCRA hazardous constituents along with polychlorinated biphenyls (PCB). The prescribed method for disposal of PCBs is incineration. In mixed waste treatment plans developed by the FEMP with public input, the FEMP committed to pursue non-thermal treatment methods and avoid the use of incineration. Through the SITE Program, the FEMP identified a non-thermal treatment technology which uses solvents to extract PCBs. The technology belongs to a small company called Terra-Kleen Response Group, Inc. A question arose as to how can this new and innovative technology be implemented by a small company at a Department of Energy (DOE) facility. The answer came in the form of the Rapid Commercialization Initiative (RCI) and the Mixed Waste Focus Area (MWFA). RCI is a program sponsored by the Department of commerce (DOC), DOE, Department of Defense (DOD), US EPA and various state agencies to aid companies to market new and innovative technologies.

  3. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOE Patents [OSTI]

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  4. Radiation chemistry in solvent etxraction: FY2011 research

    SciTech Connect (OSTI)

    Bruce J. Mincher; Stephen P. Mezyk; Leigh R. Martin

    2011-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2011. The tasks assigned during FY 2011 included: (1) Continue measurements free radical reaction kinetics in the organic phase; (2) Continue development of an alpha-radiolysis program and compare alpha and gamma radiolysis for CMPO; (3) Initiate an effort to understand dose rate effects in radiation chemistry; and (4) Continued work to characterize TALSPEAK radiation chemistry, including the examination of metal complexed ligand kinetics. Progress made on each of these tasks is reported here. Briefly, the method developed to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution during FY10 was extended here to a number of compounds to better understand the differences between radical reactions in the organic versus aqueous phases. The alpha-radiolysis program in FY11 included irradiations of CMPO solutions with 244Cm, 211At and the He ion beam, for comparison to gamma irradiations, and a comparison of the gamma irradiation results for CMPO at three different gamma dose rates. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the latest in an effort to understand how metal complexation to ligands affects their reaction kinetics with free radicals.

  5. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  6. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  7. RESULTS OF IONSIV® IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES

    SciTech Connect (OSTI)

    DUNCAN JB; BURKE SP

    2008-07-07

    This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

  8. Solvent Hold Tank Sample Results for MCU-15-556-557-558. March 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-05-04

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-556, MCU-15-557, and MCU-15-558), pulled on 03/16/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-556-557-558 indicated a low concentration (~ 78 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides (as detected by the FTIR analysis). In addition, up to 21 microgram of mercury per gram of solvent (or 17.4 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  9. Application and results of whole-body autoradiography in distribution studies of organic solvents

    SciTech Connect (OSTI)

    Bergman, K.

    1983-01-01

    With the growing concern for the health hazards of occupational exposure to toxic substances attention has been focused on the organic solvents, which are associated with both deleterious nervous system effects and specific tissue injuries. Relatively little is known about the distribution of organic solvents and their metabolites in the living organism. Knowledge of the specific tissue localizations and retention of solvents and solvent metabolites is of great value in revealing and understanding the sites and mechanisms of organic solvent toxicity. Whole-body autoradiography has been modified and applied to distribution studies of benzene, toluene, m-xylene, styrene, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene and carbon disulfide. The high volatility of these substances has led to the development of cryo-techniques. Whole-body autoradiographic techniques applicable to the study of volatile substances are reviewed. The localizations of nonvolatile solvent metabolites and firmly bound metabolites have also been examined. The obtained results are discussed in relation to toxic effects and evaluated by comparison with other techniques used in distribution studies of organic solvents and their metabolites.

  10. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  11. MILESTONES AND FUTURE DIRECTIONS IN THE SOLVENT EXTRACTION OF CAESIUM

    SciTech Connect (OSTI)

    Moyer, Bruce A

    2011-01-01

    The remarkable development of solvent-extraction (SX) chemistry for caesium separation over the past half a century as driven by the needs of the nuclear industry now constitutes an instructive case study in exploring the limits of selectivity and cycle efficiency in SX. In this review, key milestones in the pursuit of both fundamentals and applications of caesium extraction will be highlighted along with a look at future prospects. The high-yield fission-product 137Cs constitutes a major fraction of the radioactivity in nuclear wastes, and in view of its heat production, environmental mobility, radiation hazard, and even uses as a radiation source, methods have long been sought for its separation. Toward this end, the evolving science has been challenged by daunting requirements for decontamination in the presence of high concentrations of competing cations, and demands for small footprint, modular design, and high throughput place a premium on selectivity and efficiency. Fortunately, the science has also benefited from the peculiar economics of nuclear separations, which have afforded the development of wonderfully sophisticated reagents. With its location in the lower left side of the periodic table, the Cs+ cation has the distinction of having the lowest charge density of any metal cation except short-lived francium. For practical purposes, Cs+ is thus the least hydrated and, in principle, the most directly extractable metal cation. Technologies employing liquid-liquid cation exchange with very large, durable anions like those from the dicarbollide family have therefore been quite effective based solely on solvation principles. Alternatively, researchers have turned to macrocyclic coordinating extractants, such as calix-crown ethers, following principles of molecular recognition, with dramatic results. Overall, strides continue along these lines, though it is apparent that caesium SX has reached a state of excellent fundamental understanding and technical maturity, evidenced by a suite of highly effective technologies.

  12. Evaluation of Exxon donor solvent full-range distillate as a utility boiler

    Office of Scientific and Technical Information (OSTI)

    fuel. Final report (Technical Report) | SciTech Connect Technical Report: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report Citation Details In-Document Search Title: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler.

  13. Removing oxygen from a solvent extractant in an uranium recovery process

    DOE Patents [OSTI]

    Hurst, Fred J. (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN); Posey, Franz A. (Concord, TN)

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

  14. Automated apparatus for solvent separation of a coal liquefaction product stream

    DOE Patents [OSTI]

    Schweighardt, Frank K. (Upper Macungie, PA)

    1985-01-01

    An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  15. DIAMEX-SANEX Solvent Behavior under Continuous Degradation and Regeneration Operation

    SciTech Connect (OSTI)

    Bisel, I.; Cames, B.; Faucon, M.; Rudloff, D.; Saucerotte, B.

    2007-07-01

    The DIAMEX-SANEX process using the solvent HDEHP/DMDOHEMA/TPH was developed to manage minor actinide separation from lanthanides. The solvent stability as regard radiolysis and acidic hydrolysis has been studied both through batch tests and long term evolution in the MARCEL {gamma}-irradiation, involving alkali treatments. Most degradation products have been identified and quantified. However, unlike batch studies, there was no formation or accumulation of 'light' amide and/or amine and/or acidic compounds in the solvent when the flowsheet was tested. In these experimental conditions, remaining degradation products (monoamide, acidic amide and secondary diamide) do not affect the process performance. (authors)

  16. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-04-28

    In this study, an efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  17. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOE Patents [OSTI]

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  18. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Farthing, G. A.; Rimpf, L. M.

    2014-04-30

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. While previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.

  19. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  20. Analysis of consequences of postulated solvent fires in Hanford site waste tanks

    SciTech Connect (OSTI)

    Cowley, W.L., Westinghouse Hanford

    1996-08-12

    This document contains the calculations that support the accident analyses for accidents involving organic solvents. This work was performed to support the Basis for Interim Operation (BIO) and the Final Safety Analysis Report (FSAR) for Tank Waste Remediation Systems (TWRS).

  1. Catalysts and methods of increasing mass transfer rate of acid gas scrubbing solvents

    DOE Patents [OSTI]

    Remias, Joseph E.; Lippert, Cameron A.; Liu, Kunlei; Odom, Susan Anne; Burrows, Rachael Ann

    2016-02-23

    A novel transition metal trimer compound/catalyst is disclosed. A method of increasing the overall mass transfer rate of acid gas scrubbing solvents utilizing that catalyst is also provided.

  2. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  3. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOE Patents [OSTI]

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  4. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Yonker, Clement R. (Richland, WA); Hallen, Richard R. (Richland, WA); Baker, Eddie G. (Richland, WA); Bowman, Lawrence E. (Richland, WA); Silva, Laura J. (Richland, WA)

    1999-01-01

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  5. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00234_ID2580 (2).pdf (942 KB) Technology Marketing SummaryA series of ionic liquids (ILs) have recently been applied as new solvents for potentially effective separation of different

  6. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent extraction The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method

  7. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; Xue, Qifan; Liu, Feng; Russell, Thomas P.; Huang, Fei; Yip, Hin -Lap; Cao, Yong

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  8. Cesium iodide alloys

    DOE Patents [OSTI]

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  9. Cesium iodide alloys

    DOE Patents [OSTI]

    Kim, Hyoun-Ee; Moorhead, Arthur J.

    1992-01-01

    A transparent, strong CsI alloy havign additions of monovalent iodides. Although the perferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy.

  10. CESIUM EA [EA]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF AUTHENTICITY CERTIFICATE OF AUTHENTICITY I hereby certify that this transcript constitutes an accurate record of the full Council meeting of the National Coal Council held on November 14,2008 at the Westin Grand Hotel, Washington, D.C. Tran_001.pdf PDF icon CERTIFICATE OF AUTHENTICITY More Documents & Publications U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations Office of Information Resources Office of

  11. CESIUM EA [EA]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FINDING OF NO SIGNIFICANT IMPACT USE OF EXISTING BORROW AREAS HANFORD SITE, RICHLAND, WASHINGTON OCTOBER 2001 Environmental Assessment i October 2001 U.S. Department of Energy Finding of No Significant Impact This page intentionally left blank. Environmental Assessment ii October 2001 1 2 3 4

  12. CO{sub 2}-philic oligomers as novel solvents for CO{sub 2} absorption

    SciTech Connect (OSTI)

    Miller, Matthew B; Luebke, David R; Enick, Robert M

    2010-01-01

    Desirable properties for an oligomeric CO{sub 2}-capture solvent in an integrated gasification combined cycle (IGCC) plant include high selectivity for CO{sub 2} over H{sub 2} and water, low viscosity, low vapor pressure, low cost, and minimal environmental, health, and safety impacts. The neat solvent viscosity and solubility of CO{sub 2}, measured via bubble-point loci and presented on a pressure−composition diagram (weight basis), and water miscibility in CO{sub 2}-philic solvents have been determined and compared to results obtained with Selexol, a commercial oligomeric CO{sub 2} solvent. The solvents tested include polyethyleneglycol dimethylether (PEGDME), polypropyleneglycol dimethylether (PPGDME), polypropyleneglycol diacetate (PPGDAc), polybutyleneglycol diacetate (PBGDAc), polytetramethyleneetherglycol diacetate (PTMEGDAc), glyceryl triacetate (GTA), polydimethyl siloxane (PDMS), and perfluorpolyether (PFPE) that has a perfluorinated propyleneglycol monomer unit. Overall, PDMS and PPGDME are the best oligomeric solvents tested and exhibit properties that make them very promising alternatives for the selective absorption of CO{sub 2} from a mixed gas stream, especially if the absorption of water is undesirable.

  13. Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes

    DOE Patents [OSTI]

    Nizamoff, Alan J.

    1980-01-01

    In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

  14. Developing and Testing an Alkaline-Side Solvent Extraction Process for Technetium Separation from Tank Waste

    SciTech Connect (OSTI)

    Leonard, Ralph A.; Conner, Cliff; Liberatore, Matthew W.; Bonnesen, Peter V.; Presley, Derek J.; Moyer, Bruce A.; Lumetta, Gregg J. )

    1998-11-01

    Engineering development and testing of the SRTALK solvent extraction process are discussed in this paper. This process provides a way to carry out alkaline-side removal and recovery of technetium in the form of pertechnetate anion from nuclear waste tanks within the DOE complex. The SRTALK extractant consists of a crown ether, bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6, in a modifier, tributyl phosphate, and a diluent, Isopar-L. The SRTALK flowsheet given here separates technetium form the waste and concentrates it by a factor of ten to minimize the load on downstream evaporator for the technetium effluent. In this work, we initially generated and correlated the technetium extraction data, measured the dispersion number for various processing conditions, and determined hydraulic performance in a single-stage 2-cm centrifugal contactor. Then we used extraction-factor analysis, single-stage contactor tests, and stage-to-stage process calculations to develop a SRTALK flowsheet . Key features of the flowsheet are (1) a low organic-to-aqueous (O/A) flow ratio in the extraction section and a high O/A flow ratio in the strip section to concentrate the technetium and (2) the use of a scrub section to reduce the salt load in the concentrated technetium effluent. Finally, the SRTALK process was evaluated in a multistage test using a synthetic tank waste. This test was very successful. Initial batch tests with actual waste from the Hanford nuclear waste tanks show the same technetium extractability as determined with the synthetic waste feed. Therefore, technetium removal from actual tank wastes should also work well using the SRTALK process.

  15. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  16. Cluster generator (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Cluster generator Title: Cluster generator Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow ...

  17. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, ... to burn Summary: Students build a simple digester to generate a quantity of gas to burn. ...

  18. Efficient Regeneration of Physical and Chemical Solvents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Tande, Brian; Seames, Wayne; Benson, Steve

    2013-05-31

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO{sub 2}) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO{sub 2} from flue gas) and a physical solvent (typical for pre- combustion capture of CO{sub 2} from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO{sub 2} from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO{sub 2} flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO{sub 2} permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO{sub 2} in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  19. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  20. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    SciTech Connect (OSTI)

    Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T.

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. Solvation with no dissolution destroys long-range structure. Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  1. Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen

    SciTech Connect (OSTI)

    Duerksen, J.H.; Eloyan, A.

    1995-12-31

    Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

  2. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  3. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    SciTech Connect (OSTI)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

  4. Development and demonstration of the TRUEX solvent extraction process

    SciTech Connect (OSTI)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.; Copple, J.M.; Dow, J.A.; Everson, L.; Hutter, J.C.; Leonard, R.A.; Nunez, L.; Regalbuto, M.C.; Sedlet, J.; Srinivasan, B.; Weber, S.; Wygmans, D.G.

    1993-03-01

    The Generic TRUEX Model (GTM) was developed for use in designing site and feed-specific TRUEX flowsheets and in estimating the space and cost requirements for installing a TRUEX process. This paper discusses data collected in support of the GTM and its use in (1) designing process flowsheets and (2) performing sensitivity analyses. Demonstration of the TRUEX process is underway at Argonne National Laboratory (ANL), where plutonium-containing analytical waste solutions generated at the DOE New Brunswick Laboratory (NBL) are being converted from TRU waste ({approximately}l g Pu/L), with no current means of disposal, to solutions that contain less than 10 nCi of transuranic elements per milliliter of waste solution. Results and implications of this demonstration are discussed in this paper.

  5. Development and demonstration of the TRUEX solvent extraction process

    SciTech Connect (OSTI)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.; Copple, J.M.; Dow, J.A.; Everson, L.; Hutter, J.C.; Leonard, R.A.; Nunez, L.; Regalbuto, M.C.; Sedlet, J.; Srinivasan, B.; Weber, S.; Wygmans, D.G.

    1993-01-01

    The Generic TRUEX Model (GTM) was developed for use in designing site and feed-specific TRUEX flowsheets and in estimating the space and cost requirements for installing a TRUEX process. This paper discusses data collected in support of the GTM and its use in (1) designing process flowsheets and (2) performing sensitivity analyses. Demonstration of the TRUEX process is underway at Argonne National Laboratory (ANL), where plutonium-containing analytical waste solutions generated at the DOE New Brunswick Laboratory (NBL) are being converted from TRU waste ([approximately]l g Pu/L), with no current means of disposal, to solutions that contain less than 10 nCi of transuranic elements per milliliter of waste solution. Results and implications of this demonstration are discussed in this paper.

  6. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  7. Protein-style dynamical transition in a non-biological polymer and a non-aqueous solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamontov, E.; Sharma, V. K.; Borreguero, J. M.; Tyagi, M.

    2016-03-15

    Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed.more » Ultimately, we conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.« less

  8. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    SciTech Connect (OSTI)

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  9. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    SciTech Connect (OSTI)

    Lee, Anita S; Eslick, John C; Miller, David C; Kitchin, John R

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  10. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  12. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  13. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  14. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors

    SciTech Connect (OSTI)

    Zhang, Shiming; Kumar, Prajwal; Nouas, Amel Sarah; Fontaine, Laurie; Tang, Hao; Cicoira, Fabio

    2015-01-01

    Organic electrochemical transistors based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) are of interest for several bioelectronic applications. In this letter, we investigate the changes induced by immersion of PEDOT:PSS films, processed by spin coating from different mixtures, in water and other solvents of different polarities. We found that the film thickness decreases upon immersion in polar solvents, while the electrical conductivity remains unchanged. The decrease in film thickness is minimized via the addition of a cross-linking agent to the mixture used for the spin coating of the films.

  15. Upgrading heavy oils by non-catalytic treatment with hydrogen and hydrogen transfer solvent

    SciTech Connect (OSTI)

    Derbyshire, F.J.; Mitchell, T.O.; Whitehurst, D.D.

    1981-09-29

    Heavy liquid hydrocarbon oil, such as petroleum derived tars, predominantly boiling over 425/sup 0/C, are upgraded to products boiling below 425/sup 0/C, without substantial formation of insoluble char, by heating the heavy oil with hydrogen and a hydrogen transfer solvent in the absence of hydrogenation catalyst at temperatures of about 320/sup 0/C to 500/sup 0/C, and a pressure of 20 to 180 bar for 3 to 30 minutes. The hydrogen transfer solvents polycyclic compounds free of carbonyl groups, e.g., pyrene, and have a polarographic reduction potential which is less negative than phenanthrene and equal to or more negative than azapyrene.

  16. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  17. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  18. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Determine the amount ...

  19. Genetics of solvent-producing clostridia. Final technical report

    SciTech Connect (OSTI)

    1997-06-01

    Specific Aims 1 and 2 of the original project proposal were specifically addressed during this project period. This involved the development of the pCAK1 phagemid delivery vector, refinement of the C. acetobutylicum electroporation protocol, selection and characterization of the engB cellulase gene from C. cellulovorans and the introduction and successful expression of this heterologous engB gene from C. cellulovorans in C. acetobutylicum. The successful expression of a heterologous engB gene from C. cellulovorans in C. acetobutylicum ATCC 824 has important industrial significance for the utilization of cellulose by this ABE fermentation microorganism. Conversion efficiency testing of the developed recombinant strains in batch and continuous culture (Specific Aim 3) will be carried out once suitable strains have been developed which can utilize cellulose as sole carbon source. The functionality of pCAK1 in the E. coli host system, especially in generating ssDNA, in the absence of impairing E. coli cell viability, together with successful introduction of pCAK1 into C. acetobutylicum and C. perfringens is the basis for the construction of a M13-like genetic system for the genus Clostridium and is expected to allow for more sophisticated molecular genetic analysis of this genus.

  20. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  1. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes

    SciTech Connect (OSTI)

    Gu, S; Cai, R; Yan, YS

    2011-01-01

    A simple self-crosslinking strategy, without the needs of a separate crosslinker or a catalyst, is reported here. The crosslinking drastically lowers the water swelling ratio (e.g., 5-10 folds reduction) and provides excellent solvent-resistance. The self-crosslinked membrane (DCL: 5.3%) shows the highest IEC-normalized hydroxide conductivity among all crosslinked HEMs reported.

  2. The radiation chemistry of Cs-7SB, a solvent modifier used in Cs and Sr extraction

    SciTech Connect (OSTI)

    Mincher, B.J.; Martin, L.R.; Elias, G.; Mezyk, S.P.

    2008-07-01

    The solvent modifier 1-(2,2,3,3-tetrafluoro-propoxy)-3-(4-sec-butylphenoxy)-2-propanol, (Cs- 7SB) is used in conjunction with calixarenes and crown ethers dissolved in alkane diluents for the extraction of Cs and Sr from highly radioactive solutions. Its purpose is to solvate the ligands and the resulting ligand-metal complexes in the organic phase. Given this role, and its relatively high concentration in the formulations used for solvent extraction, radiolytic degradation of Cs-7SB might decrease the extraction efficiency of these elements as the solvent accumulates absorbed radiation dose. This work presents the results of studies of Cs-7SB using post-radiolysis gas chromatography with electron-capture detection and solvent-extraction distribution-ratio measurements. Also presented is the kinetic analysis of the bimolecular rate constant for the modifier's reaction with nitrogen trioxide and nitrogen dioxide radicals, major radiolytically-produced radical species in irradiated aqueous nitric acid. Although Cs-7SB was found to undergo reactions with nitrogen-centered radicals, little decrease in extraction efficiency was found. It is concluded the modifier, always present at concentrations much higher than the ligands, acts as a radical scavenger, protecting ligands from radiolytic attack. (authors)

  3. Energetics and dynamics of solvent reorganization in charge-transfer excited states

    SciTech Connect (OSTI)

    Kozik, M.; Sutin, N.; Winkler, J.R.

    1989-01-01

    The dynamics of solvation of the Ru(bpy){sub 2}(CN){sub 2} metal-to-ligand charge-transfer excited state have been examined in a series of aliphatic alcohols. Steady-state emission spectra recorded at low temperature ({approx} 10 K) and at room temperature were used to resolve internal-mode and solvent contributions to the emission bandshape. Time-resolved emission spectra were fit to a model that takes into account internal-mode distortions as well as time-dependent broadening and shifts in emission maxima. A single- exponential solvent relaxation function does not adequately describe the temporal development of the emission profile of Ru(bpy){sub 2}(CN){sub 2} in alcohols. The evolution of the emission spectrum is clearly biphasic, and can be reasonably fit with a biexponential function. The slower of the two relaxation times is comparable to the longest longitudinal relaxation time reported for the bulk solvent. These slower components, however, represent less than half of the overall approach to equilibrium. Local heating due to above-threshold excitation, and local solvent relaxation are two likely sources of the faster dynamics. 25 refs., 3 figs., 2 tabs.

  4. Solvent Refined Coal (SRC) process. Quarterly technical progress report, January 1979-March 1979

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) Project by the Pittsburg and Midway Coal Mining Co. for the Department of Energy for the period January 1, 1979 to March 31, 1979. Activities included the operation and modification of the Solvent Refined Coal Pilot Plant at Fort Lewis, Washington; the Process Development Unit P-99 at Harmarville, Pennsylvania; and research at Merriam Laboratory in Merriam, Kansas. The Pilot Plant processed Powhatan No. 5 Coal in the SRC-II mode of operation studying the effect of coal particle size and system temperature on coal slurry blending and the effect of carbon monoxide concentration in the reaction feed gas on process yields. January and February were spent completing installation of a fourth High Pressure Separator on Process Development Unit P-99 to better simulate operating conditions for the proposed Demonstration Plant. During March, one run was completed at P-99 feeding Pittsburgh Seam Coal from the Powhatan No. 5 Mine. Merriam investigations included a study of the effect of iron containing additives on SRC-I operation, the addition of carbon monoxide to the feed gas, utilization of a hydrogenated solvent (Cresap process solvent) in the SRC-I mode under both normal and short residence time operating conditions, and development of a simulated distillation technique to determine the entire boiling range distribution of product oils.

  5. Method of forming single crystals of beta silicon carbide using liquid lithium as a solvent

    DOE Patents [OSTI]

    Lundberg, Lynn B.

    1982-01-01

    A method of growing single crystals of beta SiC from solution using molten lithium as a solvent for polycrystalline SiC feed material. Reasonable growth rates are accomplished at temperatures in the range of about 1330.degree. C. to about 1500.degree. C.

  6. EIS-0069: Solvent Refined Coal-II Demonstration Project, Fort Martin, Monongalia County, West Virginia

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with the construction and short-term operation of a 6,000-tons-per-stream-day-capacity facility that will demonstrate the technical operability, economic viability, and environmental acceptability of the solvent refined coal process at Fort Martin, West Virginia.

  7. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  10. Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed

    DOE Patents [OSTI]

    Fant, B. T. (Kingwood, TX); Miller, John D. (Baytown, TX); Ryan, D. F. (Friendswood, TX)

    1982-01-01

    An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

  11. Solar thermoelectric generator

    DOE Patents [OSTI]

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  12. Irreversible Wash Aid Additive for Cesium Mitigation: Phase II. Selection and/or Modification of COTS Field Portable Waste Water Systems

    SciTech Connect (OSTI)

    Kaminski, Michael; Mertz, Carol; Kivenas, Nadia; Magnuson, Matthew

    2015-01-01

    After an accidental or malicious release of radioactivity, large urban areas may be contaminated, compromising response efforts by first responders and law enforcement officials. In addition, some public services (e.g., drinking water and wastewater treatment, electrical power distribution, etc.) may be disrupted. In such an event, it may be important to deploy mitigation efforts in certain areas to restore response activities and public services (Fig. S-1). This report explores the state-of-the-art approach for a system to rapidly return critical infrastructure components to service following a cesium-137 (Cs-137) radiological dispersal device (RDD) release while avoiding the spread of Cs-137 beyond its original deposition area and minimizing the amount of Cs-137-contaminated wastewater. Specifically, we describe a wash system consisting of chemical additives added to fire hydrant water and irreversible solid sequestering agents added as the water is collected and treated for recycle in situ. The wash system is intended to be a rapidly deployable, cost-effective means of mitigating an urban setting for the purpose of restoring critical infrastructure and operational activities after a radiological release.

  13. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    SciTech Connect (OSTI)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  14. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  15. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  16. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  17. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  18. Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Generation Southeastern’s Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agency’s 11-state marketing area. Southeastern has Certified System Operators, meeting the criteria set forth by the North American Electric Reliability Corporation. Southeastern's Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting

  19. Next Generation Materials:

    Energy Savers [EERE]

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  20. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  1. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA) [Livermore, CA

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity.

  2. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  3. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, K.

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity. 2 figs.

  4. Thermophotovoltaic energy generation

    DOE Patents [OSTI]

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  5. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software http://eln.lbl.gov/sne_traffic_gen.html

  6. " Generation, by Program Sponsorship...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Total Inputs of Energy for Heat, Power, and Electricity" " Generation, by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, ...

  7. " Generation by Program Sponsorship...

    U.S. Energy Information Administration (EIA) Indexed Site

    A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, ...

  8. NEGATIVE GATE GENERATOR

    DOE Patents [OSTI]

    Jones, C.S.; Eaton, T.E.

    1958-02-01

    This patent relates to pulse generating circuits and more particularly to rectangular pulse generators. The pulse generator of the present invention incorporates thyratrons as switching elements to discharge a first capacitor through a load resistor to initiate and provide the body of a Pulse, and subsequently dlscharge a second capacitor to impress the potential of its charge, with opposite potential polarity across the load resistor to terminate the pulse. Accurate rectangular pulses in the millimicrosecond range are produced across a low impedance by this generator.

  9. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  10. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  11. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  12. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  13. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  14. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  15. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  18. Waste oils utilized as coal liquefaction solvents on differing ranks of coal

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Liang, J.

    1995-12-31

    To determine the feasibility of using different waste oils as solvent media for coals of differing rank, oil from automobile crankcases, oil derived from the vacuum pyrolysis of waste rubber tires, and oil derived from the vacuum pyrolysis of waste plastics, have been heated to 430{degrees}C with coal in tubing reactors a hydrotreated for 1 hour. Analysis of the solvents indicates the presence of heavy metals in the waste automobile oil. Analysis of the plastic oil shows the presence of iron and calcium. The analysis of the tire oil shows the presence of zinc. Conversion yields are compared and results of analysis for the presence of metals in the liquid products are reported.

  19. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOE Patents [OSTI]

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  20. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOE Patents [OSTI]

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  1. Method of filtering a target compound from a first solvent that is above its critical density

    DOE Patents [OSTI]

    Phelps, Max R. [Richland, WA; Yonker, Clement R. [Kennewick, WA; Fulton, John L. [Richland, WA; Bowman, Lawrence E. [Richland, WA

    2001-07-24

    The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.

  2. Unsaturated Phosphazenes as Co-Solvents for Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Mason K Harrup; Harry W. Rollins; David K. Jamison; Eric J Dufek; Kevin L Gering; Thomas A Luther

    2014-07-01

    This paper covers the synthesis and use of a related family of cyclic phosphazene solvents containing terminal unsaturations. A brief synopsis on the synthesis and purification of these compounds is given. Data will be presented that covers physical and chemical properties of the phosphazenes as well as the properties when blended at various level with representative organic carbonate baseline solvents. Cycling data will be presented using commercially available electrode couples (LRMR/C) as well as studies focusing on cell performance at early lifetime as well as after repeated cycles. Conclusions regarding the effect of the unsaturated phosphazene compounds and their interaction with various alkyl carbonates, and their effect on cell performance will be presented.

  3. Neurobehavioural effects of industrial mixed solvent exposure in Chinese printing and paint workers

    SciTech Connect (OSTI)

    Ng, T.P.; Ong, S.G.; Lam, W.K.; Jones, G.M. )

    1990-11-01

    Neurobehavioural symptoms and performance tests were evaluated in a group of 78 workers exposed to mixed organic solvents (printers, paint sprayers and paint production workers) and a referent group of 145 unexposed subjects (nonproduction factory workers and volunteer postal workers). Both groups were administered a structured symptoms questionnaire and eight neurobehavioural tests for psycho-motor function, visual and auditory memory. An excess of symptoms of fatigue, irritability, depression, poor memory, sleep disturbances and symptoms suggestive of autonomic dysfunction was found in the exposed group. Neurobehavioural test performance was generally worse, and performance on tests of psycho-motor function (choice reaction test and digit symbol) and auditory memory (digit span and associate learning) was significantly poorer in the exposed group. The findings support the view that apparently healthy and actively employed workers exposed to mixed solvents show neurobehavioural deficits.

  4. Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products

    SciTech Connect (OSTI)

    Elliot B. Kennel

    2006-12-31

    This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

  5. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    SciTech Connect (OSTI)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  6. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhengguo; Dong, Qingfeng; Bi, Cheng; Shao, Yuchuan; Yuan, Yongbo; Huang, Jinsong

    2014-08-26

    Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. Thus, the carrier diffusion length of MAPbI3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

  7. Prediction of enhanced solvent-induced enantioselectivity for a ring opening with a bifurcating reaction path

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carpenter, Barry K.; Harvey, Jeremy N.; Glowacki, David R.

    2014-12-11

    Classical molecular dynamics simulations are reported for the deazetisation and ring opening of meso-2,3-difluoro-2,3-dimethyldiazocyclopropane in three solvents: CHCl3, CHFClBr and CH3CH(OH)CF3 (TFIPA). In this study, the achiral reactant leads to enantiomeric allene products, and the question addressed in the study is whether either of the chiral, enantiomerically pure solvents can induce significant enantiomeric excess in the products. The direct dynamics calculations use an empirical valence bond potential for the solute, with empirical parameters optimised against M06-2X/cc-pVTZ density functional results. The results reveal that the exothermic N2 loss and ring opening promote transient strong solvent–solute interactions within the first ~100 fsmore » of the reaction. Because of the bifurcating reaction path, these interactions occur at time when the “decision” about which enantiomer of the product to form has yet to be made (at least for many of the trajectories). Hence, it is possible in principle that the solvent could exert a larger-than-normal influence on the course of the reaction. In fact, the results reveal no such effect for CHFClBr but do predict that TFIPA should induce 15.2 ± 2.1% enantiomeric excess. This is roughly an order of magnitude larger than solvent-induced enantiomeric excesses found experimentally in reactions where the conversion of reactant(s) to enantiomeric products occur over separate transition states.« less

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  9. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals

    SciTech Connect (OSTI)

    Fischer, S.; Crotty, A.; Kilina, S.; Ivanov, I.; Tretiak, S

    2012-01-01

    We examine in detail the impact of passivating ligands (i.e., amines, phosphines, phosphine oxides and pyridines) on the electronic and optical spectra of Cd{sub 33}Se{sub 33} quantum dots (QDs) using density functional theory (DFT) and time-dependent DFT (TDDFT) quantum-chemical methodologies. Most ligand orbitals are found deep inside in the valence and conduction bands of the QD, with pyridine being an exception by introducing new states close to the conduction band edge. Importantly, all ligands contribute states which are highly delocalized over both the QD surface and ligands, forming hybridized orbitals rather than ligand-localized trap states. In contrast, the states close to the band gap are delocalized over the QD atoms only and define the lower energy absorption spectra. The random detachment of one of ligands from the QD surface results in the appearance of a highly localized unoccupied state inside the energy gap of the QD. Such changes in the electronic structure are correlated with the respective QD-ligand binding energy and steric ligand-ligand interactions. Polar solvent significantly reduces both effects leading to delocalization and stabilization of the surface states. Thus, trap and surface states are substantially eliminated by the solvent. Polar solvent also blue-shifts (e.g., 0.3-0.4 eV in acetonitrile) the calculated absorption spectra. This shift increases with an increase of the dielectric constant of the solvent. We also found that the approximate single-particle Kohn-Sham (KS) approach is adequate for calculating the absorption spectra of the ligated QDs. Besides a systematic blue-shift, the KS spectra are in very good agreement with their respective counterparts calculated with the more accurate TDDFT method.

  10. Coprocessing of coal and heavy petroleum crudes and residua: a solvent evaluation and a parametric study

    SciTech Connect (OSTI)

    Curtis, C.W.; Guin, J.A.; Tsai, K.J.; Pass, M.C.

    1984-01-01

    This study has investigated the combined hydroprocessing of coal with petroleum solvents consisting of heavy and reduced crudes and residua to determine the feasibility of simultaneous upgrading of both materials to lighter products. Six hydrogen-rich heavy petroleum materials have been processed with Illinois No. 6 coal at 400/sup 0/C and 425/sup 0/C for 30 minutes under three reaction conditions: a N/sub 2/ atmosphere, a H/sub 2/ atmosphere and a H/sub 2/ atmosphere using hydrotreating extrudates. Liquefaction of bituminous coal can be achieved in the petroleum solvents with coal conversion being dependent upon the reaction conditions. Noncatalytic coal conversions of 45 to 50% are achieved in a H/sub 2/ atmosphere. Addition of a catalyst increases conversion to near 70%. Only approximately 35% conversion is obtained in a N/sub 2/ atmosphere. In the catalytic environment substantial conversions to pentane soluble material occur. Hydrotreatment and extraction of the solvent prior to coprocessing increases the amount of coal conversion and, in some cases, increases the amount of pentane soluble material produced. The influence of the solvent appears to be related to the molecular weight, viscosity and Conradson Carbon number of the petroleum materials. Evaluation of the reaction parameters of temperature, hydrogen pressure, time and catalyst extrudate size for coprocessing has been undertaken. Based on the production of pentane soluble oil and coal conversion, feasible parameters are established: 425/sup 0/C, 1250 psig H/sub 2/ pressure at ambient temperature, long reaction time and a hydrogenation catalyst with a small particle size. Combined processing is shown to be sensitive to catalyst extrudate size, with powdered catalyst giving substantially more oil yield and coal conversion than the extrudates. 6 references, 11 figures, 4 tables.

  11. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  12. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  13. Application of a catalyst deactivation model for hydrotreating solvent refined coal feedstocks

    SciTech Connect (OSTI)

    Nalitham, R.V.

    1983-10-01

    A simple kinetic model, including a first-order catalyst deactivation rate, is applied to upgrading of coal-derived feedstocks prepared from two solvent refined coal fractions. A catalyst deactivation mechanism is proposed which involves the adsorption and surface reaction of coke precursors on catalytic active sites. The effect of feedstock composition, temperature and pressure on kinetic parameters, and in particular the catalyst deactivation rate, is determined.

  14. A quantitative approach to the characterization of cumulative and average solvent exposure in paint manufacturing plants

    SciTech Connect (OSTI)

    Ford, D.P.; Schwartz, B.S.; Powell, S.; Nelson, T.; Keller, L.; Sides, S.; Agnew, J.; Bolla, K.; Bleecker, M. )

    1991-06-01

    Previous reports have attributed a range of neurobehavioral effects to low-level, occupational solvent exposure. These studies have generally been limited in their exposure assessments and have specifically lacked good estimates of exposure intensity. In the present study, the authors describe the development of two exposure variables that quantitatively integrate industrial hygiene sampling data with estimates of exposure duration--a cumulative exposure (CE) estimate and a lifetime weighted average exposure (LWAE) estimate. Detailed occupational histories were obtained from 187 workers at two paint manufacturing plants. Historic industrial hygiene sampling data for total hydrocarbons (a composite variable of the major neurotoxic solvents present) were grouped according to 20 uniform, temporally stable exposure zones, which had been defined during plant walk-through surveys. Sampling at the time of the study was used to characterize the few zones for which historic data were limited or unavailable. For each participant, the geometric mean total hydrocarbon level for each exposure zone worked in was multiplied by the duration of employment in that zone; the resulting products were summed over the working lifetime to create the CE variable. The CE variable was divided by the total duration of employment in solvent-exposed jobs to create the LWAE variable. The explanatory value of each participant's LWAE estimate in the regression of simple visual reaction time (a neurobehavioral test previously shown to be affected by chronic solvent exposure) on exposure was compared with that of several other exposure variables, including exposure duration and an exposure variable based on an ordinal ranking of the exposure zones.

  15. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  16. Phase behavior of nanoparticle/diblock copolymer in a selective solvent.

    SciTech Connect (OSTI)

    Lo, C.-T.; Lee, B.; Winans, R. E.; Thiyagarajan, P.

    2007-01-01

    Solvents used for controlling the self-assembly of polymer nanocomposites have a strong influence on the order-disorder and order-order transition temperatures. We have investigated the phase behavior of complexes composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) and thiol-terminated PS stabilized Au nanoparticles in toluene-d (a good solvent for PS) by using small-angle neutron scattering. We observe that the morphologies of the neat and nanoparticle-containing polymer solutions strongly depend on the concentration of nanoparticles and temperature. Comparison of the phase diagrams of the neat and nanoparticle-containing polymer solutions as a function of temperature clearly shows dramatic shifts in the order-disorder and order-order transition temperatures. This dramatic effect can be understood by a model wherein the added nanoparticles that sequester in the preferred PS domains increase the interfacial curvature, leading to the observed changes in the nanostructure of the complex. Some effects are similar to those of the selective solvent such as toluene on the nanostructure of PS-PVP. Knowledge gained from these studies on the effects of nanoparticle concentration and temperature on the phase behavior of the polymer nanocomposites will be valuable for tailoring the physical properties of novel nanocomposites.

  17. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture

    SciTech Connect (OSTI)

    Eckert, Charles; Liotta, Charles

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  18. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO{sub 2} Capture

    SciTech Connect (OSTI)

    Charles Eckert; Charles Liotta

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  19. Intrinsic in situ anaerobic biodegradation of chlorinated solvents at an industrial landfill

    SciTech Connect (OSTI)

    Lee, M.D.; Mazierski, P.F.; Buchanan, R.J. Jr.; Ellis, D.E.; Sehayek, L.S.

    1995-12-31

    The DuPont Necco Park Landfill in Niagara Falls, New York, is contaminated with numerous chlorinated solvents at concentrations of up to hundreds of mg/L in the groundwater. An extensive monitoring program was conducted to determine if intrinsic anaerobic biodegradation was occurring at the site, to determine what might limit this activity, and to characterize this activity with depth and distance away from the landfill. It was determined that anaerobic microbial activity was occurring in all zones, based upon the presence of intermediate products of the breakdown of the chlorinated solvents and the presence of final metabolic end products such as ethene and ethane. Aerobic, iron-reducing, manganese-reducing, sulfate-reducing, and methanogenic redox conditions were identified at the site. High levels of nitrogen and biodegradable organic compounds were present in most areas to support cometabolic anaerobic microbial activity against the chlorinated solvents. Intrinsic biodegradation is clearly evident and is effective in reducing the concentrations of chlorinated organic in the groundwater at the site. Groundwater modeling efforts during development of a site conceptual model indicated that microbial degradation was necessary to account for the downgradient reduction of chlorinated volatile organic compounds as compared to chloride, a conservative indicator parameter.

  20. Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents

    SciTech Connect (OSTI)

    Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei; Schenter, Gregory K.; Parab, Kshitij K.; Autrey, Thomas

    2014-05-08

    Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) and 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  1. Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less

  2. Coupling a transient solvent extraction module with the separations and safeguards performance model.

    SciTech Connect (OSTI)

    DePaoli, David W.; Birdwell, Joseph F.; Gauld, Ian C.; Cipiti, Benjamin B.; de Almeida, Valmor F.

    2009-10-01

    A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  3. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  4. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  5. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. [Castro Valley, CA; Page, Ralph H. [Castro Valley, CA; Ebbers, Christopher A. [Livermore, CA; Beach, Raymond J. [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  6. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  7. Mann 3600 Pattern Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mann 3600 Pattern Generator Description: The GCA Mann 3600 pattern generator is designed for patterning standard 5" x 5" mask plates for use in optical lithography. Pattern designs are created in AutoCAD. The AutoCAD file is then converted into binary format, which can be fractured into data read by the pattern generator. The illumination source for exposures is a high pressure Hg arc lamp. The light is filtered and projected onto a shutter, which controls the exposure dose. A set of

  8. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  9. PULSE SYNTHESIZING GENERATOR

    DOE Patents [OSTI]

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  10. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  11. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  12. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  13. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  14. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  15. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  16. Denison Dam Historical Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 (MWh) Denison Dam Historical Generation

  17. Scram signal generator

    DOE Patents [OSTI]

    Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  18. Relativistic electron beam generator

    DOE Patents [OSTI]

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  19. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  20. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  1. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  2. Compact Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2007-02-02

    The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less

  3. Variations in the structure of aromatic solvents under the influence of microadditives of the C{sub 60} fullerene

    SciTech Connect (OSTI)

    Ginzburg, B. M. Tuichiev, Sh.

    2007-02-15

    The structural ordering of aromatic solvents is investigated using wide-angle X-ray diffraction. It is shown that the degree of structural ordering of aromatic solvents at room temperature decreases in the following sequence: benzene, toluene, and n-xylene. The introduction of the C{sub 60} fullerene ({approx}0.001%) into these solvents leads to an increase in the degree of their ordering. Upon introduction of the fullerene, the degree of structural ordering increases significantly in n-xylene and only slightly in toluene and remains virtually unchanged in benzene. An analysis of the small-angle X-ray diffraction patterns of C{sub 60} fullerene solutions in benzene likewise demonstrates that the introduction of the fullerene into benzene leads to an insignificant change in the degree of structural ordering of this solvent. The specific features of the structure and behavior of benzene upon interaction with C{sub 60} fullerene additives are discussed.

  4. Fuel cell generator

    DOE Patents [OSTI]

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  5. Solvent hold tank sample results for MCU-15-802-803-804-805-806-807 August monthly sample

    SciTech Connect (OSTI)

    Fondeur, F. F.; Jones, D. H.

    2016-01-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-802-803-804-805-806-807), pulled on 08/31/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-802-803-804-805-806-807 indicated a low concentration (~ 45 % of nominal) of the suppressor (TiDG) and a slightly lower than nominal concentration of the modifier (Cs-7SB) in the solvent. The extractant (MaxCalix) concentration was at its nominal value. Based on this current monthly sample, the levels of TiDG, MaxCalix, and modifier were sufficient for continuing operation without adding a trim during that time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the next few months. This monthly sample’s rheology, as determined by Hydrogen Nuclear Magnetic Resonance (H-NMR), is consistent with the rheology of the standard NGS solvent made in the lab (Scratch solvent 5/14/2014). No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 16.7 micrograms of mercury per gram of solvent (or 14 μg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  6. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture

    SciTech Connect (OSTI)

    Kasai, Yukako; Yoshida, Norio Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water–acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is −10.6 kcal mol{sup −1}. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol{sup −1}. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  7. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  8. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  9. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  10. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  11. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  12. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  13. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    SciTech Connect (OSTI)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two advanced cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced double matrix stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  14. Evaluating paint-sludge chars for adsorption of selected paint solvents

    SciTech Connect (OSTI)

    Kim, B.R.; Kalis, E.M.; Salmeen, I.T.; Kruse, C.W.; Demir, I.; Rostam-Abadi, M.; Carlson, S.L.

    1996-06-01

    At Ford, a study had been carried out to investigate the technical feasibility of converting paint sludge to activated char and reusing the char in paint spray-booth water to capture paint solvents from spray-booth air. As part of the study, several chars were made from a paint sludge and six dried paints to evaluate their effectiveness as adsorbents by conducting a series of liquid-phase adsorption experiments. Three commonly-used paint solvents and p-nitrophenol were selected as adsorbates. The three paint solvents were toluene, 2-methyl-1-propanol (iso-butanol), and 2-butoxyethanol (butylcellosolve). In this paper, the results of the pyrolysis and adsorption experiments are presented along with practical implications. The primary findings include the following: (1) Black-paint chars showed substantially larger surface area and higher adsorption capacity (based on total weight) than white-paint chars which had high ash contents due to the white pigment, titanium dioxide; (2) the adsorption capacity of the paint-sludge char was between those of black-paint and white-paint chars, and was 5--20% that of a commercial activated carbon; (3) titanium dioxide in white-paint chars did not improve the chars` affinity for hydrophilic compounds such as 2-methyl-1-propanol and 2-butoxyethanol; (4) coal could be added to paint sludge to improve the quality of the resulting char and to reduce ash content; and (5) the pyrolysis of paint sludge could present an attractive opportunity for reusing and recycling a waste product for pollution abatement and as a vehicle component.

  15. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, Robert J.

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  16. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  17. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  18. Electrically conductive doped block copolymer of polyacetylene and polyisoprene. [Soluble in organic solvents

    DOE Patents [OSTI]

    Aldissi, M.

    1984-06-27

    An electrically conductive block copolymer of polyisoprene and polyacetylene and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I/sub 2/ to give it an electrical conductivity in the metallic regime.

  19. Ferric ion as a scavenging agent in a solvent extraction process

    DOE Patents [OSTI]

    Bruns, Lester E.; Martin, Earl C.

    1976-01-01

    Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.

  20. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    SciTech Connect (OSTI)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.