Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Generation capacity expansion in restructured energy markets.  

E-Print Network [OSTI]

??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion… (more)

Nanduri, Vishnuteja

2009-01-01T23:59:59.000Z

2

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

3

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

4

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

5

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect (OSTI)

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

6

Magnus expansion generator  

Science Journals Connector (OSTI)

A recursion formula for the Magnus expansion is presented which can be used to deduce higher-order terms and to investigate their properties. The application of this formula is illustrated with several examples which were motivated by NMR spectroscopy.

D. P. Burum

1981-10-01T23:59:59.000Z

7

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

8

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect (OSTI)

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

9

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

10

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.  

E-Print Network [OSTI]

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAF´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation

Boyer, Edmond

11

Capacity expansion analysis in a chemical plant using linear programming  

Science Journals Connector (OSTI)

An analysis of the fuel additive production process of a US mid-western chemical manufacturer is described. Material balance constraints for each potential bottleneck of the manufacturing process are included as part of a linear programming model. Several capacity expansion scenarios are evaluated. The optimal way of modifying and expanding manufacturing capacity to meet forecast demand is determined.

Kenneth H. Myers; Reuven R. Levary

1996-01-01T23:59:59.000Z

12

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

13

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

14

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

15

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

16

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

17

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

18

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

19

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

20

Zambia-Long-Term Generation Expansion Study | Open Energy Information  

Open Energy Info (EERE)

Zambia-Long-Term Generation Expansion Study Zambia-Long-Term Generation Expansion Study Jump to: navigation, search Logo: Zambia-Long-Term Generation Expansion Study Name Zambia-Long-Term Generation Expansion Study Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Implementation, GHG inventory, Background analysis Resource Type Software/modeling tools, Lessons learned/best practices Website http://www.dis.anl.gov/pubs/61 Country Zambia UN Region Eastern Africa References Zambia-Long-Term Generation Expansion Study[1] Abstract The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. Overview "The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint  

SciTech Connect (OSTI)

Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

2014-05-01T23:59:59.000Z

22

Regulatory Factors and Capacity-Expansion Planning in Global Chemical Supply Chains  

Science Journals Connector (OSTI)

In what follows, we first extensively review the existing work on capacity-expansion planning to highlight the scarcity of literature considering regulatory factors. ... The model determines new processes, expansion plans, and shutdown policies to maximize the net present value of a project given the forecasts of prices and demands of the chemicals over a long planning horizon. ... Using the sales forecast from the marketing division, the multinational company wishes to develop an optimum, strategic, and global capacity-expansion plan over a planning horizon of T fiscal years or periods (t = 1, 2, ..., T). ...

Hong-Choon Oh; I. A. Karimi

2004-05-28T23:59:59.000Z

23

Impact of GHG Emission Reduction on Power Generation Expansion Planning  

Science Journals Connector (OSTI)

In this work the impact of greenhouse gas (GHG) emission reduction on Power Generation Expansion Planning ... models, which also consider environmental constraints and GHG emission limits, is presented. After a s...

F. Careri; C. Genesi; P. Marannino; M. Montagna…

2012-01-01T23:59:59.000Z

24

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect (OSTI)

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

25

Wholesale price rebate vs. capacity expansion: The optimal strategy for seasonal products in a supply chain  

Science Journals Connector (OSTI)

Abstract We consider a supply chain in which one manufacturer sells a seasonal product to the end market through a retailer. Faced with uncertain market demand and limited capacity, the manufacturer can maximize its profits by adopting one of two strategies, namely, wholesale price rebate or capacity expansion. In the former, the manufacturer provides the retailer with a discount for accepting early delivery in an earlier period. In the latter, the production capacity of the manufacturer in the second period can be raised so that production is delayed until in the period close to the selling season to avoid holding costs. Our research shows that the best strategy for the manufacturer is determined by three driving forces: the unit cost of holding inventory for the manufacturer, the unit cost of holding inventory for the retailer, and the unit cost of capacity expansion. When the single period capacity is low, adopting the capacity expansion strategy dominates as both parties can improve their profits compared to the wholesale price rebate strategy. When the single period capacity is high, on the other hand, the equilibrium outcome is the wholesale price rebate strategy.

Kwei-Long Huang; Chia-Wei Kuo; Ming-Lun Lu

2014-01-01T23:59:59.000Z

26

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

27

Renewable energy capacity and generation | OpenEI  

Open Energy Info (EERE)

21 21 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281521 Varnish cache server Renewable energy capacity and generation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. The dataset uses gigawatts. The data is broken down into electric power capacity and generation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable energy capacity and generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB)

28

INVESTING IN NEW BASE LOAD GENERATING CAPACITY  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

game for investments in new regulated generating plants (e.g. as Florida is doing) * Fish or cut bait on wholesale and retail competition * Facilitate utility and IPP mergers...

29

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

30

AEO2011: Renewable Energy Generating Capacity and Generation | OpenEI  

Open Energy Info (EERE)

electric power capacity and generation. electric power capacity and generation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable energy capacity and generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

31

Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning  

SciTech Connect (OSTI)

This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

32

On Integrating Theories of International Economics in the Strategic Planning of Global Supply Chains and Dynamic Supply Chain Reconfiguration with Capacity Expansion and Contraction  

E-Print Network [OSTI]

of the dissertation deals with the DSCR model with capacity expansion and contraction. The strategic dynamic supply chain reconfiguration (DSCR) problem is to prescribe the location and capacity of each facility, select links used for transportation, and plan...

Lee, Chaehwa

2012-02-14T23:59:59.000Z

33

AEO2011: Renewable Energy Generating Capacity and Generation | OpenEI  

Open Energy Info (EERE)

generation of each renewable energy source. generation of each renewable energy source. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

34

Theoretical model for plasma expansion generated by hypervelocity impact  

SciTech Connect (OSTI)

The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4?mm on LY12 aluminum target thickness of 23?mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3?km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e})???v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

2014-09-15T23:59:59.000Z

35

Impact of unit commitment constraints on generation expansion planning with renewables  

E-Print Network [OSTI]

Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

Palmintier, Bryan Stephen

36

A review of Oil production capacity expansion costs for the Persian Gulf  

E-Print Network [OSTI]

The U.S. Energy Information Agency has recently published a report prepared by Petroconsultants, Inc. that addresses the cost of expanding crude oil production capacity in the Persian Gulf. A study on this subject is much ...

Adelman, Morris Albert

1996-01-01T23:59:59.000Z

37

Solar Valuation and the Modern Utility's Expansion into Distributed Generation  

Science Journals Connector (OSTI)

Residential solar's diffusion across the U.S. power grid is inspiring concern in the utility industry. Of particular debate have been net energy metering policies (NEM), which engender revenue losses and lead to cross-subsidization of solar customers by non-solar customers. An emerging alternative to NEM is the value of solar tariff (VOST), which is designed to pay residential solar generation based on a more nuanced benefit-cost analysis to determine the actual value of residential solar to utility operations.

Griselda Blackburn; Clare Magee; Varun Rai

2014-01-01T23:59:59.000Z

38

Capacity Value of PV and Wind Generation in the NV Energy System  

SciTech Connect (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2014-03-21T23:59:59.000Z

39

Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins  

E-Print Network [OSTI]

is the capital expenditure vector for the project with ??x?1i=0 Mxi = 1. For simplicity, the expenditure schedule uses a lagged 3Which in the case of natural gas match quite well with available future prices from ICE Futures Europe (out to 2017) but are arguably... capacity I(t), which is a parallel cascade of the four technology categories. Each single category is defined by a Delay Differential Equation (DDE): dIx dt = ? (?j ,?j)??x ?j?(t? ?j ? ?x)? ? (?j ,?j)??x ?j?(t? ?j ? ?x ? ?x), (1) where ?(t) is the Dirac...

Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

2012-04-25T23:59:59.000Z

40

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network [OSTI]

May 7, 2012 ... Abstract: We consider two game-theoretic models of the generation capacity expansion problem in liberalized electricity markets. The first is an ...

S. Wogrin

2012-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Competitive electricity markets and investment in new generating capacity  

E-Print Network [OSTI]

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

42

Did English generators play cournot? : capacity withholding in the electricity pool  

E-Print Network [OSTI]

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

Green, Richard

2004-01-01T23:59:59.000Z

43

E-Print Network 3.0 - atp generation capacity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atp generation capacity Page: << < 1 2 3 4 5 > >> 1 Asymmetric deceleration of ClpB or...

44

Preliminary estimates of electrical generating capacity of slim holes--a theoretical approach  

SciTech Connect (OSTI)

The feasibility of using small geothermal generators (< 1 MWe) for off-grid electrical power in remote areas or for rural electrification in developing nations would be enhanced if drilling costs could be reduced. This paper examines the electrical generating capacity of fluids which can be produced from typical slim holes (six-inch diameter or less), both by binary techniques (with downhole pumps) and, for hotter reservoir fluids, by conventional spontaneous-discharge flash-steam methods. Depending mainly on reservoir temperature, electrical capacities from a few hundred kilowatts to over one megawatt per slim hole appear to be possible.

Pritchett, John W.

1995-01-26T23:59:59.000Z

45

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5 kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shin’ya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

46

Computing confidence intervals on solution costs for stochastic grid generation expansion problems.  

SciTech Connect (OSTI)

A range of core operations and planning problems for the national electrical grid are naturally formulated and solved as stochastic programming problems, which minimize expected costs subject to a range of uncertain outcomes relating to, for example, uncertain demands or generator output. A critical decision issue relating to such stochastic programs is: How many scenarios are required to ensure a specific error bound on the solution cost? Scenarios are the key mechanism used to sample from the uncertainty space, and the number of scenarios drives computational difficultly. We explore this question in the context of a long-term grid generation expansion problem, using a bounding procedure introduced by Mak, Morton, and Wood. We discuss experimental results using problem formulations independently minimizing expected cost and down-side risk. Our results indicate that we can use a surprisingly small number of scenarios to yield tight error bounds in the case of expected cost minimization, which has key practical implications. In contrast, error bounds in the case of risk minimization are significantly larger, suggesting more research is required in this area in order to achieve rigorous solutions for decision makers.

Woodruff, David L..; Watson, Jean-Paul

2010-12-01T23:59:59.000Z

47

Development of High Expansion Ratio Helium Turbo Expander  

Science Journals Connector (OSTI)

The authors developed a high expansion ratio radial inflow turbine for a helium liquefier of 100 L/h capacity for use with a 70 MW superconductive generator. The following results were obtained from this devel...

N. Ino; A. Machida; K. Ttsugawa; Y. Arai; M. Matsuki…

1991-01-01T23:59:59.000Z

48

Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation  

Science Journals Connector (OSTI)

Many studies have shown the effect of different parameters on the expansion induced by delayed ettringite formation (DEF), but there is not...

X. Brunetaud; R. Linder; L. Divet; D. Duragrin; D. Damidot

2007-07-01T23:59:59.000Z

49

Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint  

SciTech Connect (OSTI)

A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

Urquhart, B.; Sengupta, M.; Keller, J.

2012-09-01T23:59:59.000Z

50

Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model  

Science Journals Connector (OSTI)

Nuclear power has long been a cornerstone of energy policy in Japan, a country with few natural resources of its own. However, following on from the Fukushima Daiichi accident, the Japanese government is now in the throes of reviewing its nuclear power policy. On the other hand, under continuing policies of greenhouse gas reduction, it is crucial to consider scenarios for the country to realize an economic, safe and low-carbon power generation system in the future. Therefore, in the present study, economic and environmental analysis was conducted on the power generation system in Japan up to 2030 using a multi-objective optimization methodology. Four nuclear power scenarios were proposed in light of the nuclear accident: (1) actively anti-nuclear; (2) passively negative towards nuclear; (3) conservative towards nuclear; and (4) active expansion of nuclear power. The obtained capacity mix, generation mix, generation cost, CO2 emissions and fuel consumption of the scenarios were compared and analysed. The obtained results show that the large scale penetration of PV (photovoltaic), wind and LNG (Liquefied Natural Gas) power can partly replace nuclear power, however, removing nuclear power entirely was not suggested from economic, environmental and energy security perspectives.

Qi Zhang; Benjamin C. Mclellan; Tetsuo Tezuka; Keiichi N. Ishihara

2012-01-01T23:59:59.000Z

51

Capacity payment impact on gas-fired generation investments under rising renewable feed-in — A real options analysis  

Science Journals Connector (OSTI)

Abstract We assess the effect of capacity payments on investments in gas-fired power plants in the presence of different degrees of renewable energy technology (RET) penetration. Low variable cost renewables increasingly make investments in gas-fired generation unprofitable. At the same time, growing feed-in from intermittent \\{RETs\\} amplifies fluctuations in power generation, thus entailing the need for flexible buffer capacity—currently mostly gas-fired power plants. A real options approach is applied to evaluate investment decisions and timing of a single investor in gas-fired power generation. We investigate the necessity and effectiveness of capacity payments. Our model incorporates multiple uncertainties and assesses the effect of capacity payments under different degrees of RET penetration. In a numerical study, we implement stochastic processes for peak-load electricity prices and natural gas prices. We find that capacity payments are an effective measure to promote new gas-fired generation projects. Especially in times of high renewable feed-in, capacity payments are required to incentivize peak-load investments.

Daniel Hach; Stefan Spinler

2014-01-01T23:59:59.000Z

52

E-Print Network 3.0 - additional generation capacity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Collection: Power Transmission, Distribution and Plants 5 AIRPORT TROUGHPUT CAPACITY LIMITS FOR DEMAND MANAGEMENT Vivek Kumar, Lance Sherry Summary: and additional costs...

53

On the exergetic capacity factor of a wind – solar power generation system  

Science Journals Connector (OSTI)

In the recent years, exergy analysis has become a very important tool in the evaluation of systems' efficiency. It aims on minimizing the energy related-system losses and therefore maximizing energy savings and helps society substantially to move towards sustainable development and cleaner production. In this paper, a detailed exergetic analysis aiming to identify the overall Exergetic Capacity Factor (ExCF) for a wind – solar power generation system was done. ExCF, as a new parameter, can be used for better classification and evaluation of renewable energy sources (RES). All the energy and exergy characteristics of wind and solar energy were examined in order to identify the variables that affect the power output of the hybrid system. A validated open source PV optimization tool was also included in the analysis, It was shown that parameters as e.g. air density or tracking losses, low irradiation losses play a crucial role in identifying the real and net wind and solar power output while planning new renewable energy projects and in fact do play a significant role on the wind – solar plant's overall exergetic efficiency. In specific, it was found that air density varies from site to site influencing productivity. A difference of 6.2% on the productivity because of the air density was calculated. The wind and solar potential around a mountainous area were studied and presented based on field measurements and simulations. Since the number and the size of RES projects, over the last few years, are continually increasing, and new areas are required, the basic idea behind this research, was not only to introduce ExCF, as a new evaluation index for RES, but also to investigate the combined use of wind and solar energy under the same area and the benefits coming out of this combination.

G. Xydis

2013-01-01T23:59:59.000Z

54

Electricity investments and development of power generation capacities : An approach of the drivers for investment choices in Europe regarding nuclear energy.  

E-Print Network [OSTI]

??In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular… (more)

Shoai Tehrani, Bianka

2014-01-01T23:59:59.000Z

55

Investment strategies for capacity expansion.  

E-Print Network [OSTI]

??This thesis addresses a problem at the nexus of operations, strategy, and economics: in concentrated markets, on the one hand firms may need to expand… (more)

Yang, Shu-Jung Sunny

2007-01-01T23:59:59.000Z

56

Hybrid Generation Systems Planning Expansion Forecast: A Critical State of the Art Review  

E-Print Network [OSTI]

resources. In order to power system enhance reliability, efficiency and safety, renewable and nonrenewable, hydropower, geothermal, and biomass constitute a type of distributed electricity resources and have recently, these generation unit should be working together in two or more sources in the so-called hybrid system concept

Brest, Université de

57

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Journals Connector (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

58

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

59

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network [OSTI]

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

60

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network [OSTI]

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to… (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy and Capacity Valuation of Photovoltaic Power Generation in New York  

E-Print Network [OSTI]

Perez & Thomas E. Hoff, Clean Power Research for the Solar Alliance and the N r Energy Industry between peak demand and solar resource availability both downstate and upstate, the generation energy: What is the Value of PV? System Owners Utility Constituents Equipment cost Incentives benefit cost

Perez, Richard R.

62

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

63

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network [OSTI]

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

64

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

65

Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth  

Science Journals Connector (OSTI)

Abstract Load growth in a system is a natural phenomenon. With the increase in load demand, system power loss and voltage drop increases. Distributed generators (DGs) are one of the best solutions to cope up with the load growth if they are allocated appropriately in the distribution system. In this work, optimal size and location of multiple \\{DGs\\} are found to cater the incremental load on the system and minimization of power loss without violating system constraints. For this a predetermined annual load growth up to five years is considered with voltage regulation as a constraint. The particle swarm optimization with constriction factor approach is applied to determine the optimum size and location with multiple DGs. To see the effect of load growth on system, 33-node IEEE standard test case is considered. It is observed that with the penetration of multiple number of \\{DGs\\} in distribution system, there is great improvement in several distribution system parameters. Moreover, the loading capacity of distribution system is enhanced through DG placement and its techno-economic benefits are also established.

Khyati D. Mistry; Ranjit Roy

2014-01-01T23:59:59.000Z

66

Energy security and sustainable development implications for Guatemala of the Electricity Generation Expansion Plan 2014-2028.  

E-Print Network [OSTI]

?? Electricity consumption in Guatemala has been steadily increasing during the recent years, challenging the generation sector to keep up with the pace of electricity… (more)

Ochaeta Paz, Karen

2014-01-01T23:59:59.000Z

67

Robust capacity expansion solutions for telecommunication ...  

E-Print Network [OSTI]

?Orange Labs, R&D, France. †Ordecsys, place de ..... Unfortunately, those data are not available in practice, and very little information can be obtained on the ...

2010-08-03T23:59:59.000Z

68

Powering the people: India's capacity expansion plans  

SciTech Connect (OSTI)

India has become a global business power even though hundreds of millions of its citizens still live in poverty. To sustain economic growth and lift its people out of poverty, India needs more and more reliable power. Details of government plans for achieving those goals demonstrate that pragmatism may be in shorter supply than ambition and political will. 1 ref., 12 figs., 1 tab.

Patel, S.

2009-05-15T23:59:59.000Z

69

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network [OSTI]

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

70

Representation of the Solar Capacity Value in the ReEDS Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th...

71

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

72

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

73

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Lödding

2013-01-01T23:59:59.000Z

74

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

75

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

Wagner, L.M.; Strum, M.J.

1998-12-15T23:59:59.000Z

76

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

1998-01-01T23:59:59.000Z

77

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network [OSTI]

ity expansion problem in liberalized electricity markets. The first is an open loop equilibrium model, where generation companies simultaneously choose.

2012-05-06T23:59:59.000Z

78

APEX user`s guide - (Argonne production, expansion, and exchange model for electrical systems), version 3.0  

SciTech Connect (OSTI)

This report describes operating procedures and background documentation for the Argonne Production, Expansion, and Exchange Model for Electrical Systems (APEX). This modeling system was developed to provide the U.S. Department of Energy, Division of Fossil Energy, Office of Coal and Electricity with in-house capabilities for addressing policy options that affect electrical utilities. To meet this objective, Argonne National Laboratory developed a menu-driven programming package that enables the user to develop and conduct simulations of production costs, system reliability, spot market network flows, and optimal system capacity expansion. The APEX system consists of three basic simulation components, supported by various databases and data management software. The components include (1) the investigation of Costs and Reliability in Utility Systems (ICARUS) model, (2) the Spot Market Network (SMN) model, and (3) the Production and Capacity Expansion (PACE) model. The ICARUS model provides generating-unit-level production-cost and reliability simulations with explicit recognition of planned and unplanned outages. The SMN model addresses optimal network flows with recognition of marginal costs, wheeling charges, and transmission constraints. The PACE model determines long-term (e.g., longer than 10 years) capacity expansion schedules on the basis of candidate expansion technologies and load growth estimates. In addition, the Automated Data Assembly Package (ADAP) and case management features simplify user-input requirements. The ADAP, ICARUS, and SMN modules are described in detail. The PACE module is expected to be addressed in a future publication.

VanKuiken, J.C.; Veselka, T.D.; Guziel, K.A.; Blodgett, D.W.; Hamilton, S.; Kavicky, J.A.; Koritarov, V.S.; North, M.J.; Novickas, A.A.; Paprockas, K.R. [and others

1994-11-01T23:59:59.000Z

79

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

80

Increasing the Capacity of Existing Power Lines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

works with Idaho Power engineers to train system operators in the use of weather station data and software tools to generate transmission capacity operat- ing limits. The ability...

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

82

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

83

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets”, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions”, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

84

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

85

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

86

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

87

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

88

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

89

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

90

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

91

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

92

Query Expansion with an Automatically Generated Thesaurus  

Science Journals Connector (OSTI)

This paper describes a new method to automatically obtain a new thesaurus which exploits previously collected information. Our method ... a text collection, a set of source thesauri and other linguistic resources...

José R. Pérez-Agüera; Lourdes Araujo

2006-01-01T23:59:59.000Z

93

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

94

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

95

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

96

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

97

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

98

Why the IBEW supports expanding nuclear power generation in the USA  

Science Journals Connector (OSTI)

The International Brotherhood of Electrical Workers (IBEW) represents workers, many who work in the utility and power generation industries. The IBEW has been and continues to be a vocal supporter of the expansion of nuclear power generation in the USA. Five years ago, there was a general expectation that nuclear capacity would expand greatly. It did not, and in part the absence of more new nuclear construction is the natural outcome of a misguided energy market regulation system. We close with a set of priorities for rebuilding the energy regulatory scheme that would benefit our members and ratepayers and would, at the same time, lead to and require an expansion of nuclear power. The article describes the state of nuclear power in the USA today, the IBEW's role in the utility industry and nuclear power generation; the IBEW's priorities for the US energy market and why those priorities lead the IBEW to call for the expansion of nuclear power in the USA.

William Bill Riley

2013-01-01T23:59:59.000Z

99

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission...  

Buildings Energy Data Book [EERE]

Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and...

100

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

102

The Universe Adventure - Expansion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expansion: Chunk-by-Chunk Expansion: Chunk-by-Chunk A sample of the Universe. A very small portion of the Universe. In order to better understand the significance of expansion, let's look at a cubic sample of space. By considering a finite volume we can follow changes in the size of the Universe as we move forwards and backwards in time. Remember, only the size of the cube will change. The galaxies inside the cube stay the same size. This animation illustrates how our cubic piece of the Universe changes with time. If the Universe followed the simplest expansionary models, its size would increase linearly with time. The Universe would continue to expand at a constant rate forever. If you look at only a narrow time-slice of the Universe's history, it does, in fact, appear that this is how the Universe

103

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

104

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

105

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

106

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

107

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

108

Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm  

Science Journals Connector (OSTI)

Abstract Distribution feeders and substations need to provide additional capacity to serve the growing electrical demand of customers without compromising the reliability of the electrical networks. Also, more control devices, such as DG (Distributed Generation) units are being integrated into distribution feeders. Distribution networks were not planned to host these intermittent generation units before construction of the systems. Therefore, additional distribution facilities are needed to be planned and prepared for the future growth of the electrical demand as well as the increase of network hosting capacity by DG units. This paper presents a multiobjective optimization algorithm for the MDEP (Multi-Stage Distribution Expansion Planning) in the presence of \\{DGs\\} using nonlinear formulations. The objective functions of the MDEP consist of minimization of costs, END (Energy-Not-Distributed), active power losses and voltage stability index based on SCC (Short Circuit Capacity). A MPSO (modified Particle Swarm Optimization) algorithm is developed and used for this multiobjective MDEP optimization. In the proposed MPSO algorithm, a new mutation method is implemented to improve the global searching ability and restrain the premature convergence to local minima. The effectiveness of the proposed method is tested on a typical 33-bus test system and results are presented.

Jamshid Aghaei; Kashem M. Muttaqi; Ali Azizivahed; Mohsen Gitizadeh

2014-01-01T23:59:59.000Z

109

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

110

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

111

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

112

Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agencys 11-state marketing area. Southeastern has Certified...

113

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Nuclear Generation and Generating Capacity Data Released: September 26, 2014 Data for: July 2014 Next Release: October 2014 Year Capacity and Generation by State and Reactor...

114

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

115

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies tooïç place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

116

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

117

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

118

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

Science Journals Connector (OSTI)

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is \\{HFC134a\\} and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio.

Soo-Yong Cho; Chong-Hyun Cho; Chaesil Kim

2008-01-01T23:59:59.000Z

119

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

SciTech Connect (OSTI)

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

Cho, Soo-Yong [Department of Mechanical and Aerospace Engineering (ReCAPT), Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Cho, Chong-Hyun [School of Mechanical and Aerospace Engineering, Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Kim, Chaesil [Department of Mechanical Engineering, Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea)

2008-09-15T23:59:59.000Z

120

Inhomogeneity implies accelerated expansion  

Science Journals Connector (OSTI)

The Einstein equations for an inhomogeneous irrotational dust universe are analyzed. A set of mild assumptions, all of which are shared by the standard Friedmann-Lemaitre-Robertson-Walker–type scenarios, results in a model that depends only on the distribution of scalar spatial curvature. If the shape of this distribution is made to fit the structure of the present Universe, with most of the matter in galaxy clusters and very little in the voids that will eventually dominate the volume, then there is a period of accelerated expansion after cluster formation, even in the absence of a cosmological constant.

Harald Skarke

2014-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Efficiency enhancements for evolutionary capacity planning in distribution grids  

Science Journals Connector (OSTI)

In this paper, we tackle the distribution network expansion planning (DNEP) problem by employing two evolutionary algorithms (EAs): the classical Genetic Algorithm (GA) and a linkage-learning EA, specifically a Gene-pool Optimal Mixing Evolutionary Algorithm ... Keywords: capacity planning, distribution networks, electricity, linkage learning, optimal mixing

Ngoc Hoang Luong; Marinus O.W. Grond; Han La Poutré; Peter A.N. Bosman

2014-07-01T23:59:59.000Z

122

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network [OSTI]

In theory, competitive electricity markets can provide incentives for efficient investment in generating capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generating capacity can sign...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

123

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

124

Panama Canal capacity analysis  

SciTech Connect (OSTI)

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

125

Thermal Expansion of Confined Water  

Science Journals Connector (OSTI)

Typical results for expansion measurements on the bulk liquid, reported in ref 3, agreed with the handbook values with errors DOE Contract DEFG 02-97ER45642. ...

Shuangyan Xu; George W. Scherer; T. S. Mahadevan; Stephen H. Garofalini

2009-03-10T23:59:59.000Z

126

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM  

E-Print Network [OSTI]

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM Sergey Loyka School by the laws of electromagnetism on achievable MIMO channel capacity in its general form. Our approach is a two expansion of a generic electromagnetic wave combined with Nyquist sampling theorem in the spatial domain, we

Loyka, Sergey

127

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

128

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

129

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

130

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

131

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

132

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS):  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, -LEDS Resource Type: Webinar Website: eeredev.nrel.gov/_proofs/video/2013_EC-LEDS/ Cost: Free References: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation[1] Overview A webinar on distributed generation, presented by the National Renewable Energy Laboratory, with funding from the U.S. Agency for International Development. This webinar covers the basics of distributed generation, with an emphasis

133

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

134

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

135

Prediction methods for capacity of drag anchors in clayey soils  

E-Print Network [OSTI]

A drag anchor is a marine foundation element, which is penetrated into the seabed by dragging in order to generate a required capacity. The holding capacity of a drag anchor in a particular soil condition is developed by soil resistance acting...

Yoon, Yeo Hoon

2002-01-01T23:59:59.000Z

136

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

137

Crossroads Expansion | Open Energy Information  

Open Energy Info (EERE)

Expansion Expansion Jump to: navigation, search Name Crossroads Expansion Facility Crossroads Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer RES Americas Energy Purchaser Oklahoma Gas & Electric Coordinates 36.021°, -98.667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.021,"lon":-98.667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Clocking the Early Universe's Expansion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 NERSC PI: David...

139

Thermal expansion of SOFC materials  

Science Journals Connector (OSTI)

A short overview is given for the thermal expansion of solid oxide fuel cell materials. The thermomechanical compatibility of state-of-the-art materials is compared with alternative, new materials. With these ...

F. Tietz

1999-01-01T23:59:59.000Z

140

Why Are We Talking About Capacity Markets? (Presentation)  

SciTech Connect (OSTI)

Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

Milligan, M.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS  

E-Print Network [OSTI]

the need for new peaking generation capacity and associated transmission and distribution capacity. By reducing capacity, generation and infrastructure costs, it can lower total power costs and customer bills wholesale power spot markets more competitive and efficient and less subject to the abuse of market power

142

Honeywell triples capacity for low GWP blowing agent  

Science Journals Connector (OSTI)

Honeywell reports that it has tripled production capacity for its low global-warming-potential (GWP) product HFO-1234ze to meet the growing need for the material, which is used in multiple foam and aerosol applications. The production expansion was made at Honeywell's small-scale HFO-1234ze manufacturing facility at its Buffalo Research Lab in Buffalo, NY, USA, and was achieved through equipment upgrades and overall productivity improvements during the past 18 months.

2011-01-01T23:59:59.000Z

143

Financing Co-generation Projects  

E-Print Network [OSTI]

profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet...

Young, R.

1982-01-01T23:59:59.000Z

144

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

145

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

146

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

147

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

148

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

149

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

150

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

151

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Broader source: Energy.gov (indexed) [DOE]

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

152

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

153

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

154

Increasing the renewable energy sources absorption capacity of the Macedonian energy system  

Science Journals Connector (OSTI)

Macedonian energy sector is the main emitter of greenhouse gases with share of about 70% in the total annual emissions. Also 70%–75% of emissions are associated with the electricity generation due to the predominant role of the lignite fuelled power plants. Recently the government has adopted a strategy for the use of renewable energy sources (RES) which identifies a target of 21% of final energy consumption from RES by 2020. In this paper analyses are conducted in order to investigate to which extent and in which way the absorption capacity of the power system for RES electricity can be improved. For this purpose combining various conventional and RES technologies including pump storage hydro power plant and revitalisation of the existing lignite power plants six scenarios for the power system expansion are developed by making use of EnergyPLAN model. Critical excess of electricity analyses are conducted in order to identify the maximal penetration of wind electricity. The results have shown that in the exiting capacities maximal penetration of wind electricity in 2020 is 13% of total electricity consumption. The revitalization of the existing lignite power plants and building of pump storage power plant would increase the wind penetration. Furthermore the developed scenarios are comparatively assessed in terms of the associated greenhouse gases emissions and import of electricity.

2013-01-01T23:59:59.000Z

155

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network [OSTI]

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges… (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

156

generating | OpenEI  

Open Energy Info (EERE)

generating generating Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

157

LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION  

SciTech Connect (OSTI)

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very vulnerable. Each of these obstacles can be overcome when there is a common goal and vision shared by all parties and adequate funds are provided to accomplish the task. The upgrading and expansion of this facility and the construction of a similar facility on the Far East coast of Russia will enable the Russians to sign the London Convention dumping prohibition. This project is one of the first waste management construction projects in the north-west of Russia with foreign contribution. Its success may open for additional co-operative projects with Russia in the future.

BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

2000-03-01T23:59:59.000Z

158

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect (OSTI)

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

159

generation | OpenEI  

Open Energy Info (EERE)

generation generation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

160

Mirror Film Company Has 'Concentrated' Plans for Expansion | Department of  

Broader source: Energy.gov (indexed) [DOE]

Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion September 10, 2010 - 1:19pm Addthis Lorelei Laird Writer, Energy Empowers In concentrating solar power, glass is king-but it's fighting to hold on to its crown. The reflectivity of glass mirrors makes them a great choice for focusing sunlight onto a heat generator. However, the glass mirrors can be expensive and heavy -- reducing their ability to compete with conventional energy sources. ReflecTech Inc. has an option: a silvered polymer-based film that does the same job, but with half the weight and cost. Using that film, the company can make 100,000 square feet of mirror panels per year at its factory in Arvada, Colo. Through an Advanced Manufacturing 48C tax credit through the Recovery Act,

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

First mideast capacity planned  

SciTech Connect (OSTI)

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

162

Generation adequacy: Who decides?  

SciTech Connect (OSTI)

As part of a project for the Edison Electric Institute, the authors examined the commercial and reliability aspects of investments in new generation. This article reviews historical data and projections on new generating capacity, discusses the pros and cons of alternative ways to maintain adequacy, and quantifies the effects of mandating minimum planning-reserve margins versus reliance on market prices to stimulate investments in new generation.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

163

Adaptive capacity and its assessment  

SciTech Connect (OSTI)

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

164

Evaluation of absorption/stripping for second phase expansion of KG gas cracker  

SciTech Connect (OSTI)

This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

NONE

1995-12-01T23:59:59.000Z

165

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

166

Cosmic antifriction and accelerated expansion  

Science Journals Connector (OSTI)

We explain an accelerated expansion of the present Universe, suggested from observations of supernovae of type Ia at high redshift, by introducing an antifrictional force that is self-consistently exerted on the particles of the cosmic substratum. Cosmic antifriction, which is intimately related to “particle production,” is shown to give rise to an effective negative pressure of the cosmic medium. While other explanations for an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy in addition to “standard” cold dark matter (CDM) we resort to a phenomenological one-component model of CDM with internal self-interactions. We demonstrate how the dynamics of the cold dark matter model with a cosmological constant may be recovered as a special case of cosmic antifriction. We discuss the connection with two-component models and obtain an attractor behavior for the ratio of the energy densities of both components which provides a possible phenomenological solution to the coincidence problem.

Winfried Zimdahl; Dominik J. Schwarz; Alexander B. Balakin; Diego Pavón

2001-08-03T23:59:59.000Z

167

1/N expansion in noncommutative quantum mechanics  

SciTech Connect (OSTI)

We study the 1/N expansion in noncommutative quantum mechanics for the anharmonic and Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence properties, but for the Coulombian potential, we found a divergent large N expansion when using the usual noncommutative generalization of the potential. We proposed a modified version of the noncommutative Coulombian potential which provides a well-behaved 1/N expansion.

Ferrari, A. F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Rua Santa Adelia, 166, 09210-170, Santo Andre, SP (Brazil); Gomes, M.; Stechhahn, C. A. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo - SP (Brazil)

2010-08-15T23:59:59.000Z

168

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Broader source: Energy.gov (indexed) [DOE]

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

169

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Broader source: Energy.gov (indexed) [DOE]

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

170

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

171

Indian Policy and Westward Expansion  

E-Print Network [OSTI]

Transition in Indian Policy, 1840-48 85 First settlements in Oregon—Oregon Trail, roads and military- posts—Santa Fé Trail and the southwestern commerce—Pur chase of right of way for Oregon Trail recommended—Organi zation of Oregon and Nebraska proposed...—Effect on Indian policy. Development of the Four Great Factors, 1848-5J? 40 Westward Expansion and Settlement of the Pacific Coast 41 Summary o£ early period—Population when organized—Oregon emigration after 1848—California emigration after 1848—Re lation...

Malin, James Claude

1921-11-01T23:59:59.000Z

172

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

173

QUANTITY AND CAPACITY EXPANSION DECISIONS FOR ETHANOL IN NEBRASKA AND A MEDIUM SIZED PLANT.  

E-Print Network [OSTI]

??Corn-based ethanol is the leader of sustainable sources of energy in the United States due to the abundance of corn and the popularity of ethanol-gasoline… (more)

Khoshnoud, Mahsa

2012-01-01T23:59:59.000Z

174

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

175

High thermal expansion, sealing glass  

DOE Patents [OSTI]

A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

Brow, R.K.; Kovacic, L.

1993-11-16T23:59:59.000Z

176

High Capacity Immobilized Amine Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

177

Table 2. Ten Largest Plants by Generation Capacity, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "1. Northeastern","Coal","Public Service Co of Oklahoma",1815 "2. Muskogee","Coal","Oklahoma Gas & Electric Co",1524 "3. Seminole","Gas","Oklahoma Gas & Electric Co",1504 "4. Kiamichi Energy Facility","Gas","Kiowa Power Partners LLC",1178 "5. Redbud Power Plant","Gas","Oklahoma Gas & Electric Co",1160 "6. Oneta Energy Center","Gas","Calpine Central L P",1086 "7. Riverside","Gas","Public Service Co of Oklahoma",1070 "8. Sooner","Coal","Oklahoma Gas & Electric Co",1046 "9. GRDA","Coal","Grand River Dam Authority",1010

178

VALUATION OF POWER GENERATION INVESTMENTS IN DEREGULATED CAPACITY MARKETS .  

E-Print Network [OSTI]

??Electricity is a very unique product that has yet to become efficiently storable, and it is uniform in its nature independent of what technology is… (more)

Balci, Huseyin

2008-01-01T23:59:59.000Z

179

Thermal expansion and lattice dynamics of RB66 compounds at low temperatures  

SciTech Connect (OSTI)

Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

Novikov, V V [Petrovsky Bryansk State University; Avdashchenko, D V [Petrovsky Bryansk State University; Mitroshenkov, N V [Petrovsky Bryansk State University; Matovnikov, A V [Petrovsky Bryansk State University; Budko, Serguei L [Ames Laboratory

2014-10-01T23:59:59.000Z

180

Cosmic Growth History and Expansion History  

E-Print Network [OSTI]

of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation

Linder, Eric V.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of Externally Pressurized Thrust Bearing for High Expansion Ratio Expander  

Science Journals Connector (OSTI)

The authors developed an expander for a helium liquefier of 100 L/h liquefaction capacity used for a superconducting generator. This paper focuses on the development of the shaft-bearing system, which uses a t...

N. Ino; A. Machida; K. Tsugawa; Y. Arai; H. Hashimoto…

1991-01-01T23:59:59.000Z

182

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

183

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

184

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network [OSTI]

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

185

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

186

Hybrid Zero-capacity Channels  

E-Print Network [OSTI]

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

187

Building Regulatory Capacity for Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

188

GENCOs multiperiod expansion model in a competitive electricity market  

Science Journals Connector (OSTI)

Over the past two decades, several countries have restructured their electricity industry by significantly reducing the government's role in the ownership and management of energy sector. The generation sector was the first activity of the vertically integrated industry to be open for the competition and therefore, it presents the highest level of competitiveness and experience. In the new restructured electricity markets, the objective of each generation company (GENCO) is to maximise its total expected profit over a planning horizon while following the grid-code and system operators' directive for the safe operation of the power system. In the expansion plan of generating companies, the problem is to be reformulated incorporating several uncertainty factors such as demand growth, the volatility of market prices for electricity and fuels, delay in project completion, financial constraints, etc. In this paper, a long-term multi-period expansion model for a generation company operating in the deregulated electricity industry is presented. The effectiveness of the proposed approach is demonstrated on numerical examples.

Daniel Hernández-González; Guillermo Gutiérrez-Alcaraz; S.N. Singh

2012-01-01T23:59:59.000Z

189

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

SciTech Connect (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

190

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

191

Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones  

E-Print Network [OSTI]

The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...

Oppedisano, Michael

2013-12-20T23:59:59.000Z

192

Multipole Expansion Model in Gravitational Lensing  

E-Print Network [OSTI]

Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.

T. Fukuyama; Y. Kakigi; T. Okamura

1997-01-31T23:59:59.000Z

193

1992 Annual Capacity Report. Revision 1  

SciTech Connect (OSTI)

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

194

The struggle for safe nuclear expansion in China  

Science Journals Connector (OSTI)

Abstract After a temporary halt following the Fukushima nuclear disaster in March 2011, China resumed its fast, yet cautious, expansion of nuclear energy programme. Nuclear energy is considered as part of the general strategy to deal with the challenges of energy security and climate change and to advance with ‘state of the art’ technology in its development. This article briefly discusses recent development in and driving forces behind nuclear industry in China, and several challenges it has been facing: how to adopt, adapt, standardise and indigenise whose technologies, and how to address the shortage of qualified nuclear engineers, scientists, skilled labour force and qualified regulators. More importantly, it argues that safe and secure nuclear development requires consistent policies and effective regulations. Therefore, it is crucial to build policy and regulatory capacities based on coordination, planning and management of government agencies and the industry.

Y.C. Xu

2014-01-01T23:59:59.000Z

195

Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity  

SciTech Connect (OSTI)

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading or areal power density (APD). However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis requires the use of a computer model that describes the time-dependent temperature distributions of the rock from the dissipation of the heat through the repository system. If variations from the current Yucca Mountain repository design were to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow non-uniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers. This paper investigates options (3) and (4) for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was needed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition. Under the high temperature operating mode (HTOM), the relevant thermal design limits are: (1) the rock temperature midway between adjacent drifts must remain below the local boiling point (96 deg. C); and (2) the rock temperature at drift walls must remain below 200 deg. C. As the work involves a large number of calculations, examining the compliance within thermal design limits, the capability to perform efficient mountain-scale heat-transfer analyses was necessary. A related topic of importance in this investigation was also the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable and understanding the uncertainty in the interpretation of the results is important. The concept of variable drift spacing and variable drift thermal loading was investigated with respect to possible capacity expansion of the Yucca Mountain repository. Also, a computer model was developed for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty. (authors)

Li, Jun; Nicholson, Mark; Proctor, W. Cyrus; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States)

2007-07-01T23:59:59.000Z

196

Thermal capacity of composite floor slabs  

Science Journals Connector (OSTI)

AbstractObjective Thermal building simulation tools take account of the thermal capacity of the walls and floors by a one-dimensional characterization. The objective was to obtain thermal equivalent parameters for ribbed or composite slab elements that can be input into one-dimensional models. Method Transient finite element calculations (FEM) were used to establish the heat transfer to and from composite floors using four deck profiles and for daily heating cycles in compartments with defined heat gains and operating conditions. Results The performance of composite slabs was compared to a concrete flat slab for a typical office in the UK and Germany. It was shown that a deep ribbed slab generates a maximum heat flux of 30.5 W/m2 for a 5 °C temperature variation about the mean, and that the daily heat absorbed by a typical composite slab was 220 Wh/m2 floor area. Conclusions Using the thermal capacity of the ribbed floor slabs, the comfort conditions defined in terms of the number of hours over 25 °C are acceptable for many classes of offices. Practical implications Thermally equivalent properties of ribbed slabs can be used in conventional software to predict the thermal performance.

B. Doering; C. Kendrick; R.M. Lawson

2013-01-01T23:59:59.000Z

197

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production areas to U.S. markets. In addition, it examines the amount of additional capacity proposed for development during the next several years and to what degree various proposed projects will improve the deliverability of natural gas to key market areas. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. james.tobin@eia.doe.gov

198

Optimum Capacity Allocation of DG Units Based on Unbalanced Three-phase Optimal Power Flow  

E-Print Network [OSTI]

of distributed generation (DG). Some positive support benefits of DG installation are system energy loss distribution system planning is necessary. Adnan Anwar and H. R. Pota are with the School of Engineering for determining opti- mum generation capacity of multiple distributed generation (DG) units is presented

Pota, Himanshu Roy

199

Using heat demand prediction to optimise Virtual Power Plant production capacity  

E-Print Network [OSTI]

1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker is really produced by the fleet of micro- generators. When using micro Combined Heat and Power micro distributed electricity generation (micro-generation e.g. solar cells, micro Combined Heat and Power (micro

Al Hanbali, Ahmad

200

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen plant expansion using oxygen secondary reforming  

SciTech Connect (OSTI)

As crude oil feedstocks become heavier and more sour, the H/sub 2/ demands of a refinery increase. Heavier sour crudes require more H/sub 2/ for hydrodesulfurization, hydrocracking and hydrotreating to produce the lighter, high quality products currently in demand. In most cases, this additional H/sub 2/ requirement is satisfied by the generation of on purpose H/sub 2/. The on purpose H/sub 2/ demand is typically satisfied by steam methane reforming (SMR). The conventional SMR process, utilizing shift, CO/sub 2/ removal, and methanation for H/sub 2/ purification, can produce 90 to 98% pure H/sub 2/ at 150 to 400 psig at an energy efficiency of 410 Btu (HHV)/SCF H/sub 2/. An SMR process employing shift and pressure swing adsorption (PSA) for H/sub 2/ purification can produce H/sub 2/ at a purity up to 99.999% and an energy efficiency of 390 Btu (HHV)/SCF H/sub 2/. Two options available for satisfying an increased on purpose H/sub 2/ demand are the addition of a new SMR plant and the debottlenecking of an existing SMR. A new SMR plant is the most capital-intensive means of expanding H/sub 2/ capacity.

Snyder, G.D.; Wang, S.I.

1986-01-01T23:59:59.000Z

202

High capacity immobilized amine sorbents  

DOE Patents [OSTI]

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

203

Comparison of LOLE and EUE-Based Wind Power Capacity Credits by Probabilistic Production Simulation  

Science Journals Connector (OSTI)

To mitigate the global climate change and environmental issues, wind power generation is growing at a startling pace around the world. The wind power capacity credit can be used to measure the contribution of wind

Shaohua Zhang; Chen Zhao; Xue Li

2012-01-01T23:59:59.000Z

204

Ocotillo Wind I Expansion | Open Energy Information  

Open Energy Info (EERE)

I Expansion I Expansion Jump to: navigation, search Name Ocotillo Wind I Expansion Facility Ocotillo Wind I Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pattern Energy Developer Pattern Energy Energy Purchaser San Diego Gas & Electric Location Ocotillo CA Coordinates 32.76302656°, -116.0466957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.76302656,"lon":-116.0466957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Century Wind Project Expansion | Open Energy Information  

Open Energy Info (EERE)

Project Expansion Project Expansion Jump to: navigation, search Name Century Wind Project Expansion Facility Century Wind Project Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Wright and Hamilton Counties IA Coordinates 42.509141°, -93.682151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.509141,"lon":-93.682151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Design Under Uncertainty Employing Stochastic Expansion Methods  

E-Print Network [OSTI]

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) meth- ods and ability to produce functional representations of stochastic variability. PCE estimates coefficients with both techniques for general probabilistic analysis problems. Once PCE or SC representations have been

207

Low expansion superalloy with improved toughness  

DOE Patents [OSTI]

A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.

Smith, D.F.; Stein, L.I.; Hwang, I.S.

1995-06-20T23:59:59.000Z

208

ARM - Lesson Plans: Thermal Expansion of Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of sea water expands. It is this thermal expansion of the ocean water which makes the sea level rise. Recently, it was asked why a bunsen burner was heating the Erlenmeyer flask in...

209

Meteorological Network Expansion Using Information Decay Concept  

Science Journals Connector (OSTI)

A generalized network design methodology was developed by using the basic entropy concept introduced by Shannon in communication engineering. In order to select potential sites for meteorological network expansion purposes, the meteorological ...

Tahir Husain; Mustafa A. Ukayli; Hasin U. Khan

1986-03-01T23:59:59.000Z

210

Flat Ridge 2 Expansion | Open Energy Information  

Open Energy Info (EERE)

Flat Ridge 2 Expansion Flat Ridge 2 Expansion Jump to: navigation, search Name Flat Ridge 2 Expansion Facility Flat Ridge 2 Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Arkansas Electric Cooperative Corp Location Sharon KS Coordinates 37.383239°, -98.334088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.383239,"lon":-98.334088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Ultracold Plasma Expansion in a Magnetic Field  

Science Journals Connector (OSTI)

We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high-voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (magnetic field (up to 70 G). We observe that the expansion velocity scales as B-1/2, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.

X. L. Zhang; R. S. Fletcher; S. L. Rolston; P. N. Guzdar; M. Swisdak

2008-06-13T23:59:59.000Z

212

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network [OSTI]

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong… (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

213

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

214

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

215

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network [OSTI]

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

216

Fair capacity sharing of multiple aperiodic servers  

E-Print Network [OSTI]

For handling multiple aperiodic tasks with different temporal requirements, multiple aperiodic servers are used. Since capacity is partitioned statically among the multiple servers, they suffer from heavy capacity exhaustions. Bernat and Burns...

Melapudi, Vinod Reddy

2002-01-01T23:59:59.000Z

217

Can Science and Technology Capacity be Measured?  

E-Print Network [OSTI]

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

218

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

Internal Markets for Supply Chain Capacity Allocation David McAdams and Thomas W. Malone Sloan David McAdams & Thomas Malone #12;Internal Markets for Supply Chain Capacity Allocation David Mc ("internal markets") to help allocate manufacturing capacity and determine the prices, delivery dates

219

Effects of restraint on expansion due to delayed ettringite formation  

Science Journals Connector (OSTI)

Delayed ettringite formation (DEF) is a chemical reaction that causes expansion in civil engineering structures. The safety level of such damaged structures has to be reassessed. To do this, the mechanical conditions acting on DEF expansions have to be analysed and, in particular, the variation of strength with expansion and the effect of restraint on the DEF expansion. This paper highlights several points: DEF expansion is isotropic in stress-free conditions, compressive stresses decrease DEF expansion in the direction subjected to restraint and lead to cracks parallel to the restraint, and expansion measured in the stress-free direction of restrained specimens is not modified. Thus restraint causes a decrease of the volumetric expansion and DEF expansion under restraint is anisotropic. Moreover, the paper examines the correlation between DEF expansion and concrete damage, providing data that can be used for the quantification of the effect of stresses on DEF induced expansion.

Hassina Bouzabata; Stéphane Multon; Alain Sellier; Hacène Houari

2012-01-01T23:59:59.000Z

220

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect (OSTI)

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

222

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

223

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

224

METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS  

E-Print Network [OSTI]

METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS OVER THE FIELD OF LAURENT SERIES in a large class of Oppenheim expansions of Laurent series, including Luroth, Engel, Sylvester expansions properties fail to hold. Key Words and Phrases Oppenheim expansions, Laurent series, #12;nite #12;eld

Fan, Ai-Hua

225

Forward Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Forward Expansion Wind Farm Forward Expansion Wind Farm Facility Forward Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Alliant- Wisconsin Public Service-Madison Gas & Electric- Wisconsin Public Power Location Dodge and Fond du Lac Counties WI Coordinates 43.631519°, -88.556421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.631519,"lon":-88.556421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

DOE/EA-0845 Environmental Assessment Expansion  

Broader source: Energy.gov (indexed) [DOE]

45 45 Environmental Assessment Expansion of the Idaho National Engineering Laboratory Research Center March 1994 U.S. Department of Energy MASTER DOE Idaho Operations Office Idaho Falls, Idaho _.OJ Oi_lll_lHl:lUTION OF TFII$O_r, UM_._T _ U_LJ_!_3'_ [6450-01] U.S. DEPARTMENT OF ENERGY FINDINGOF NO SIGNIFICANT IMPACT . FOR EXPANSION OF THE IDAHONATIONALENGINEERING LABORATORY RESEARCH CENTER AGENCY: Department of Energy ACTION: Findingof No Significant Impact(FONSI) SUMMARY: The Department of Energy(DOE)has prepared an environmental assessment (EA),DOE/EA-0845, for expansion and upgrade of facilities at the IdahoNationalEngineering Laboratory (INEL)Research Center(IRC)in Idaho Falls,Idaho. Construction and operation of proposed facilities wouldnot causesignificant environmental impacts. Basedon the analysesin the EA, DOE has determined that the proposedactionis

227

Tri-State Generation and Transmission Association's Springverville unit 3 earns POWER's highest honor  

SciTech Connect (OSTI)

It is said that pioneers take the arrows. In the case of Springerville Unit 3 - a 418 MW(net) expansion of a Tucson Electric Power facility in Arizona and the first pulverized coal-fired units built in the US in more than decade, the arrows were many. Although Tri-State (the developer), Tuscon Electric (the host), and Bechtel Power (the EPC contractor) were wounded by delayed deliveries of major equipment, bankruptcy of a major supplier, and a labor shortage, the companies showed their pioneering spirit and completed the project ahead of schedule. For ushering in a new generation of clean and desperately needed baseload capacity, Springerville Unit 3 is POWER magazine's 2006 Plant of the Year. 9 figs.

Peltier, R.

2006-09-15T23:59:59.000Z

228

Kampung Capacity Local Solutions for  

E-Print Network [OSTI]

to come from a mixture of locally managed small-scale hydroelectricity, biogas generators and accompanying productivity and development. Political attention often comes to these communities only when larger national a larger development agenda. We examine the local and large-scale energy service debate in villages (or

Kammen, Daniel M.

229

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

230

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

231

Expansion Capital Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Expansion Capital Partners LLC Expansion Capital Partners LLC Jump to: navigation, search Name Expansion Capital Partners LLC Address One Embarcadero Center, Suite 4100 Place San Francisco, California Zip 94111 Region Bay Area Product Venture capital firm that invests in expansion-stage, clean technology enterprises Year founded 2001 Phone number (415) 788-8802 Website http://www.expansioncapital.co Coordinates 37.794497°, -122.39962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.794497,"lon":-122.39962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Stateline Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stateline Expansion Wind Farm Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Walla Walla County OR Coordinates 46.012769°, -118.751528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.012769,"lon":-118.751528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

24 February 1999 Determining Age, Expansion and  

E-Print Network [OSTI]

To Be Younger Than Its Oldest Stars (See Fact #3). 2.) A Universe That Enlarges with Accelerating Expansion (See that of "pure" vacuum space, and the measured capacitance will increase as more and more particles are placed, vapors, nuclear particles, (quarks, wimps, and neutrinos, if they existed separately) or any

Tesfatsion, Leigh

234

Intrepid Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Intrepid Expansion Wind Farm Intrepid Expansion Wind Farm Jump to: navigation, search Name Intrepid Expansion Wind Farm Facility Intrepid Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Buena Vista & Sac Counties IA Coordinates 42.483311°, -95.308807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.483311,"lon":-95.308807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Exploiting External Collections for Query Expansion  

Science Journals Connector (OSTI)

A persisting challenge in the field of information retrieval is the vocabulary mismatch between a user’s information need and the relevant documents. One way of addressing this issue is to apply query modeling: to add terms to the original query ... Keywords: Query modeling, blog post retrieval, external expansion

Wouter Weerkamp; Krisztian Balog; Maarten de Rijke

2012-11-01T23:59:59.000Z

236

Major PM expansion at Universal-Cyclops features new consolidation process  

SciTech Connect (OSTI)

A major expansion of powder-metallurgy facilities at Bridgeville, PA., has been recently announced by Universal-Cyclops Speciality Steel Div., Cyclops Corp. Production capacity for high-temperature alloys initially will be increased to two million pounds. Included in the planned project will be expansion of vacuum-induction melting (VIM), gas atomization, screening, blending, degassing, and handling capabilities. Air-atmosphere sintering furnaces will be installed to consolidate powder preforms by Universal-Cyclops' patented CAP (Consolidation by Atmospheric Pressure) process. Production from the new facility will serve the aircraft gas-turbine market. After chemical activation, the powder is placed in glass molds which are then evacuated and sealed. The filled molds are placed in a refractory container, surrounded by sand, and the entire assembly is heated in conventional air atmosphere electric or gas-fired furnace to temperatures over 2000/degree/F.

Not Available

1981-12-01T23:59:59.000Z

237

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

238

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

239

Randomized discrepancy bounded local search for transmission expansion planning  

SciTech Connect (OSTI)

In recent years the transmission network expansion planning problem (TNEP) has become increasingly complex. As the TNEP is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the TNEP. Existing approaches are often tightly coupled to the approximation choice. Until recently these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing this question. DBLS encapsulates the complexity of power flow modeling in a black box that may be queried for information about the quality of proposed expansions. In this paper, we propose a randomization strategy that builds on DBLS and dramatically increases the computational efficiency of the algorithm.

Bent, Russell W [Los Alamos National Laboratory; Daniel, William B [Los Alamos National Laboratory

2010-11-23T23:59:59.000Z

240

EEI/DOE Transmission Capacity Report  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quantum capacity of channel with thermal noise  

E-Print Network [OSTI]

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

242

216-B-3 expansion ponds closure plan  

SciTech Connect (OSTI)

This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

Not Available

1994-10-01T23:59:59.000Z

243

The Potential Benefits of Distributed Generation and the Rate-Related  

Broader source: Energy.gov (indexed) [DOE]

The Potential Benefits of Distributed Generation and the The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion More Documents & Publications The potential benefits of distributed deneration and rate-related issues that may impede issues its expansion. June 2007 Notice of inquiry and request for Information - Study of the potential benefits of distributed generation: Federal Register Notice Volume 71, No.

244

Controlling the bullwhip with transport capacity constraints  

Science Journals Connector (OSTI)

The bullwhip effect can be costly to companies in terms of capacity-on costs and stock-out costs. This paper examines the possibilities for controlling the bullwhip effect with transport capacity management in the supply chain. The goal is to examine how inventories and service levels react to transport capacity constraints in a simulated supply chain that is prone to the bullwhip effect. By controlling the transport capacities, the companies may be able to reduce the impacts of demand amplification and inventory variations. Thus, there may be significant practical implications of the findings for logistics managers in today's volatile business environments.

Jouni Juntunen; Jari Juga

2009-01-01T23:59:59.000Z

245

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

246

Increasing water holding capacity for irrigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

247

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect (OSTI)

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

248

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

249

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

250

Notice of Study Availability - Potential Benefits of Distributed Generation  

Broader source: Energy.gov (indexed) [DOE]

Study Availability - Potential Benefits of Distributed Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Federal Register Notice of availability of a study of the potential benefits of distributed generation and rate-related issues that may impede their expansion, and request for public comment. Study of the Potential Benefits of Distributed Generation and Rate- Related Issues That May Impede Their Expansion More Documents & Publications Notice of inquiry and request for Information - Study of the potential

251

Event:Enhancing Capacity for Low Emission Development Strategies (EC-LEDS):  

Open Energy Info (EERE)

Emission Development Strategies (EC-LEDS): Emission Development Strategies (EC-LEDS): Distributed Generation Jump to: navigation, search Calendar.png Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation: 1:00pm-2:00pm MST on 2012/12/20 A webinar on distributed generation, presented by the National Renewable Energy Laboratory, with funding from the U.S. Agency for International Development. This webinar will cover the basics of distributed generation, with an emphasis on renewable generation technologies and their benefits. Two case studies from the Philippines and India will be presented. Event Details Name Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Date 2012/12/20 Time 1:00pm-2:00pm MST Tags LEDS, Training, CLEAN

252

Dynamic Time Expansion and Compression Using Nonlinear Waveguides  

DOE Patents [OSTI]

Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi

2004-06-22T23:59:59.000Z

253

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network [OSTI]

reinforcement, remote loads more economically served by small-scale generation than by distribution system. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

254

Stresses generated in cooling viscoelastic ice shells: Application to Europa  

E-Print Network [OSTI]

Stresses generated in cooling viscoelastic ice shells: Application to Europa F. Nimmo Department to cooling and the expansion of the shell due to the ice-water volume change. The former effect generates Citation: Nimmo, F. (2004), Stresses generated in cooling viscoelastic ice shells: Application to Europa, J

Nimmo, Francis

255

On Quantum Capacity and its Bound  

E-Print Network [OSTI]

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

256

Energy Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

257

Expansion and Collapse in the Cosmic Web  

Science Journals Connector (OSTI)

We study the kinematics of the gaseous cosmic web at high redshift using Ly? forest absorption in multiple QSO sight lines. Observations of the projected velocity shifts between Ly? absorbers common to the lines of sight to a gravitationally lensed QSO and three more widely separated QSO pairs are used to directly measure the expansion of the cosmic web in units of the Hubble velocity, as a function of redshift and spatial scale. The lines of sight used span a redshift range from about 2 to 4.5 and represent transverse scales from the subkiloparsec range to about 300 h physical kpc. Using a simple analytic model and a cosmological hydrodynamic simulation, we constrain the underlying three-dimensional distribution of expansion velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The shape of the shear distribution and its width (14.9 km s-1 rms for a physical transverse separation of 61 h kpc at z = 2, 30.0 km s-1 for 261 h kpc at z = 3.6) are found to be in good agreement with the IGM undergoing large-scale motions dominated by the Hubble flow, making this one of the most direct observations possible of the expansion of the universe. However, modeling the Ly? clouds with a simple "expanding pancake" model, the average expansion velocity of the gaseous structures causing the Ly? forest in the lower redshift (z ~ 2) smaller separation (61 kpc) sample appears about 20% lower than the local Hubble expansion velocity. In order to understand the observed velocity distribution further we investigated the statistical distribution of expansion velocities in cosmological Ly? forest simulations. The mean expansion velocity in the (z ~ 2, separation ~ 60 kpc) simulation is indeed somewhat smaller than the Hubble velocity, as found in the real data. We interpret this finding as tentative evidence for some Ly? forest clouds breaking away from the Hubble flow and undergoing the early stages of gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of Ly? forest clouds at all redshifts from 2 to 3.8 expand with super-Hubble velocities, typically about 5%-20% faster than the Hubble flow. This behavior is explained if most Ly? forest clouds in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. The significant difference seen in the velocity distributions between the high- and low-redshift samples may conceivably reflect actual peculiar deceleration, the differences in spatial scale, or our selecting higher densities at lower redshift for a given detection threshold for Ly? forest lines. We also investigate the alternative possibility that the velocity structure of the general Ly? forest could have an entirely different, local origin, as expected if the Ly? forest were produced or at least significantly modified by galactic feedback, e.g., winds from star-forming galaxies at high redshift. However, we find no evidence that the observed distribution of velocity shear is significantly influenced by processes other than Hubble expansion and gravitational instability. To avoid overly disturbing the IGM, galactic winds may be old and/or limp by the time we observe them in the Ly? forest, or they may occupy only an insignificant volume fraction of the IGM. We briefly discuss the observational evidence usually presented in favor of an IGM afflicted by high-redshift extragalactic superwinds and find much of it ambiguous. During the hierarchical buildup of structure, galaxies are expected to spill parts of their interstellar medium and to heat and stir the IGM in ways that make it hard to disentangle this gravitational process from the effects of winds.

Michael Rauch; George D. Becker; Matteo Viel; Wallace L. W. Sargent; Alain Smette; Robert A. Simcoe; Thomas A. Barlow; Martin G. Haehnelt

2005-01-01T23:59:59.000Z

258

Low thermal expansion seal ring support  

DOE Patents [OSTI]

Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)

2000-01-01T23:59:59.000Z

259

Tests for the Expansion of the Universe  

E-Print Network [OSTI]

Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.

Lopez-Corredoira, Martin

2015-01-01T23:59:59.000Z

260

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

262

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

263

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

264

Low temperature expansion for the Ising model  

Science Journals Connector (OSTI)

On simple cubic lattices, we compute the low-temperature expansion for the energy of the Ising model through 50 excited bonds in three dimensions and 44 excited bonds in four dimensions. We also give the magnetization through 42 excited bonds. Our method is a recursive enumeration of states with given energies on a set of finite lattices with generalized helical boundary conditions. A linear combination of such lattices cancels finite volume effects.

Gyan Bhanot; Michael Creutz; Jan Lacki

1992-09-28T23:59:59.000Z

265

Accelerating cosmological expansion from shear viscosity  

E-Print Network [OSTI]

The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

Floerchinger, Stefan; Wiedemann, Urs Achim

2014-01-01T23:59:59.000Z

266

Shock compression and expansion in central collisions  

SciTech Connect (OSTI)

Physics of central symmetric reactions of heavy nuclei, in the beam energy range from few tens of MeV to a couple of GeV per nucleon, is discussed. Within transport simulations, it is shown that shock fronts perpendicular to the beam axis form in the head-on reactions. The fronts propagate into projectile and target and they separate hot compressed matter from normal matter. With an increase of the impact parameter, the angle of inclination of fronts relative to the beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to the shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows, after the shocks traverse nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions and mean-energy components, and further shapes of spectra and mean energies of different particles emitted into any one direction, and also particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion-multiplicity in central reactions, may be identified with the energy of collective expansion.

Danielewicz, P. [Univ. of Washington, Seattle, WA (United States). Institute for Nuclear Theory]|[Michigan State Univ., East Lansing, MI (United States)

1995-01-01T23:59:59.000Z

267

Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint  

SciTech Connect (OSTI)

Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

Ibanez, E.; Milligan, M.

2014-04-01T23:59:59.000Z

268

Modeling Operational Constraints imposed by Renewable Generation  

E-Print Network [OSTI]

investments on ­ Generation, Transmission ­ Fuel & Transportation infrastructure · Capacity · Location · Year Regulation data and Net Load change data ­ ex: ERCOT 2. Function of variability in (Net load + Generation schedule + Tie line frequency) · ex: CAISO, NREL, Xcel MN & Wind Logics 3. Fit regression model

Daniels, Thomas E.

269

Statement from Energy Secretary Samuel W. Bodman on the Expansion...  

Broader source: Energy.gov (indexed) [DOE]

the Expansion of the Strategic Petroleum Reserve to 1.5 Billion Statement from Energy Secretary Samuel W. Bodman on the Expansion of the Strategic Petroleum Reserve to 1.5 Billion...

270

Clean Technology for Diesel Expansion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology for Diesel Expansion Clean Technology for Diesel Expansion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE...

271

ORIGINAL PAPER Crystal chemistry, thermal expansion, and Raman spectra  

E-Print Network [OSTI]

along the brucite­forsterite join, linear regression gives a systematic linear decrease in expansivity expansion Á Iron effect Introduction The dense hydrous magnesium silicate (DHMS) minerals along the brucite

Jacobsen, Steven D.

272

Earth pressures and deformations in civil infrastructure in expansive soils  

E-Print Network [OSTI]

This dissertation includes the three major parts of the study: volume change, and lateral earth pressure due to suction change in expansive clay soils, and design of civil infrastructure drilled pier, retaining wall and pavement in expansive soils...

Hong, Gyeong Taek

2008-10-10T23:59:59.000Z

273

Thermal and electrostrictive expansion characteristics of MLC (Multilayer Ceramic) capacitors  

SciTech Connect (OSTI)

We have measured by strain gauge technique, in-plane thermal expansivity (coefficient of thermal expansion) as a function of temperature and electrostrictive expansion as a function of applied DC voltage for ceramic capacitors with X7R, NPO and N1500 dielectrics. Multilayer Ceramic (MLC) capacitor materials from two commercial suppliers were evaluated. Thermal expansivities of these materials were compared to polyimide-quartz boards and alumina ceramic substrates. 4 refs., 9 figs., 1 tab.

Chanchani, R.; Hall, C.A.

1991-01-01T23:59:59.000Z

274

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect (OSTI)

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

275

Exploring Small-Scale Meat Processing Expansions in Iowa  

E-Print Network [OSTI]

Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader

Debinski, Diane M.

276

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

277

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

278

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

279

Ethylene capacity tops 77 million mty  

SciTech Connect (OSTI)

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

280

Generation Planning (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

West Foster Creek Expansion Project 2007 HEP Report.  

SciTech Connect (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

282

Lattice-structures and constructs with designed thermal expansion coefficients  

SciTech Connect (OSTI)

A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

Spadaccini, Christopher; Hopkins, Jonathan

2014-10-28T23:59:59.000Z

283

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,027 14,659 15,177 15,289 15,373 15,724 1985-2013 Operable Capacity (Calendar...

284

Information capacity of a single photon  

Science Journals Connector (OSTI)

Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarization states of single photons has been widely used as these states form a natural closed two-state qubit. However, photons are able to encode much more—in principle, infinite—information via the continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding channel.

Peter P. Rohde; Joseph F. Fitzsimons; Alexei Gilchrist

2013-08-09T23:59:59.000Z

285

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

286

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

287

Tripling the capacity of wireless communications using  

E-Print Network [OSTI]

channels of electric-®eld polarization for wireless communication. In order to make our statements more................................................................. Tripling the capacity of wireless .............................................................................................................................................. Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth

288

Heat Capacity as A Witness of Entanglement  

E-Print Network [OSTI]

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

289

Ising expansion for the Hubbard model  

Science Journals Connector (OSTI)

We develop series expansions for the ground state properties of the Hubbard model by introducing an Ising anisotropy into the Hamiltonian. For the two-dimensional square lattice half-filled Hubbard model, the ground state energy, local moment, sublattice magnetization, uniform magnetic susceptibility, and spin stiffness are calculated as a function of U/t, where U is the Coulomb constant and t is the hopping parameter. Magnetic susceptibility data indicate a crossover around U?4 between spin density wave antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte Carlo simulations, random phase approximation result, and mean-field solutions are also made.

Zhu-Pei Shi and Rajiv R. P. Singh

1995-10-01T23:59:59.000Z

290

Accelerating cycle expansions by dynamical conjugacy  

E-Print Network [OSTI]

Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed.

Ang Gao; Jianbo Xie; Yueheng Lan

2011-06-06T23:59:59.000Z

291

Calculations of Surface Thermal-Expansion  

E-Print Network [OSTI]

, the quasiharmon- ic approximation (plus the Lennard-Jones potential) predicts values of e???which are too large. " The monic approximation (plus the Lennard- Jones poten- 0 20 40 TEMPERATURE T 60 FIG. 9. Surface thermal expansion for Xe. tial) thus tend... to cancel, so that our results are more accurate than those obtained in more rigorous calcu- lations based on the quasihar monic approximation. The bulk results shown in Figs. 1-6 were ob- tained for a slab having a (111)surface orientation...

KENNER, VE; Allen, Roland E.

1973-01-01T23:59:59.000Z

292

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

293

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

294

Central Appalachia: Coal mine productivity and expansion  

SciTech Connect (OSTI)

Coal mine productivity is a key determinant of coal prices and vice versa. This report, focusing on supplies of very low sulfur coal in the eastern United States, presents alternative scenarios of how the price-productivity relationship may evolve in response to growing utility demand. It also documents the next tier of projects where the coal industry is prepared to expand capacity. 19 refs., 14 figs., 6 tabs.

Suboleski, S.C.; Frantz, R.L.; Ramani, R.V.; Rao, G.P. (Pennsylvania State Univ., University Park, PA (United States). Mining Engineering Section); Price, J.P. (Resource Dynamics Corp., Vienna, VA (United States))

1991-09-01T23:59:59.000Z

295

Is Hubble's Expansion due to Dark Energy  

E-Print Network [OSTI]

{\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.

R. C. Gupta; Anirudh Pradhan

2010-10-19T23:59:59.000Z

296

Perturbation Expa]nsion in Dynamical Nuclear Field Theory and Its Relation with Boson Expansion Theory  

Science Journals Connector (OSTI)

......Perturbation Expa]nsion in Dynamical Nuclear Field Theory and Its Relation...April 1990. With the Dynamical Nuclear Field Theory (DNFT) in the...vibrational mode of a spherical nuclear system. Due to the effects...coupling strength and boson energy fails at full self-consistency......

Teruo Kishimoto; Tetsuo Kammuri

1990-09-01T23:59:59.000Z

297

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network [OSTI]

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

298

Increasing the Capacity of Existing Power Lines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand...

299

Simulation of single acting natural gas Reciprocating Expansion Engine based on ideal gas model  

Science Journals Connector (OSTI)

Abstract The potential energy of high pressure gas destroyed in natural gas pressure reduction stations during pressure reduction when it passes through throttling valves. One way to recover this energy is to use a Reciprocating Expansion Engine coupled with a generator. The expansion engine is able to produce electricity as pressure decreases by recovering the potential energy. Although the expansion engine has been utilized in pressure reduction points for some time but it has not been analyzed for performance enhancement yet. In this work an advanced numerical simulation has been presented for the thermodynamic modeling of Natural Gas Single Acting Reciprocating Expansion Engine under various working conditions for high pressure ranges. The simulation has been carried out to understand the effects of various parameters and to improve performance of the engine. A range of geometric parameters such as suction diameter, piston diameter, crank radius, connecting rod length, speed were covered in this research. Because of the physical and numerical difficulties of the problem, the natural gas is assumed as an ideal gas.

Mahmood Farzaneh Gord; Mohsen Jannatabadi

2014-01-01T23:59:59.000Z

300

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

302

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

303

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

304

Los Alamos Neutron Science Center gets capacity boost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of...

305

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

306

Guatemala-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies...

307

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

308

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

309

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

310

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

311

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

312

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

313

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

314

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

315

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

316

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

317

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

318

EMPIRE ULTIMATE EXPANSION: RESONANCES AND COVARIANCES.  

SciTech Connect (OSTI)

The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing.

HERMAN,M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; PIGNI, M.T.; KAWANO, T.; CAPOTE, R.; ZERKIN, V.; TRKOV, A.; SIN, M.; CARSON, B.V.; WIENKE, H. CHO, Y.-S.

2007-04-22T23:59:59.000Z

319

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

320

OMV studies ethylene expansion in Germany  

SciTech Connect (OSTI)

OMV(Vienna) is evaluating plans to debottleneck its ethylene plant at Burghausen from 310,000 m.t./year to at least 400,000 m.t./year. Senior v.p. Jochen Berger says OMV is studying the limits to which the cracker can be expanded. {open_quotes}We`re pretty sure we can go to 400,000 m.t./year, but in two months we`ll have a better idea,{close_quotes} says Berger. The expansion will also depend on the future requirements of downstream operations at the Burghausen site, which include OMV plastics subsidiary PCD`s high-density polyethylene and polypropylene units and the vinyl chloride monomer and polyvinyl chloride units operated by Hoechst-Wacker joint venture Vinnolit.

NONE

1996-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Critical point anomalies include expansion shock waves  

SciTech Connect (OSTI)

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

322

Cumulant expansion for studying damped quantum solitons  

Science Journals Connector (OSTI)

The quantum statistics of damped optical solitons is studied using cumulant-expansion techniques. The effect of absorption is described in terms of ordinary Markovian relaxation theory, by coupling the optical field to a continuum of reservoir modes. After introduction of local bosonic field operators and spatial discretization, pseudo-Fokker-Planck equations for multidimensional s-parametrized phase-space functions are derived. These partial differential equations are equivalent to an infinite set of ordinary differential equations for the cumulants of the phase-space functions. Introducing an appropriate truncation condition, the resulting finite set of cumulant evolution equations can be solved numerically. Solutions are presented in a Gaussian approximation and the quantum noise is calculated, with special emphasis on squeezing and the recently measured spectral photon-number correlations [Spälter et al., Phys. Rev. Lett. 81, 786 (1998)].

Eduard Schmidt; Ludwig Knöll; Dirk-Gunnar Welsch

1999-03-01T23:59:59.000Z

323

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

324

Energy Infrastructure Events and Expansions Year-in-Review 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Events and Expansions Year-in-Review 2011 Infrastructure Events and Expansions Year-in-Review 2011 Energy Infrastructure Events and Expansions Year-in-Review 2011 The 2011 Year-in-Review (YIR) provides a summary of significant energy disruptions and infrastructure changes that occurred in the United States throughout 2011. The focus is on the United States, but international events that impacted the United States are also reported. The 2011 YIR is based primarily on information reported in the Energy Assurance Daily (EAD) between January 1, 2011 and December 31, 2011. Energy Infrastructure Events and Expansions Year-in-Review 2011.pdf More Documents & Publications Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) Energy Infrastructure Events and Expansions Year-in-Review 2010

325

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

326

DOE mixed waste treatment capacity analysis  

SciTech Connect (OSTI)

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

327

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg…

2014-01-01T23:59:59.000Z

328

Ethical receptive capacity and teaching business ethics  

Science Journals Connector (OSTI)

In this study, we proposed the ethical receptive capacity (ERC) perspective on teaching business ethics. The ERC perspective was developed on two premises: the separation of personal moral values and professional ethics, and the path dependent nature of professional ethics, such that individuals in the early stage of their profession have higher ERC (i.e., individuals' capacity to receive ethical contents) and thus are more receptive to new ethical contents prescribed to them. The experimental results in this study supported the ERC perspective, suggesting that business ethics education should be introduced to students as early as possible in their business programme.

Chanchai Tangpong; Michael D. Michalisin; Jin Li

2012-01-01T23:59:59.000Z

329

The effect of rain on freeway capacity  

E-Print Network [OSTI]

. The procedure used was basically a process of selection and processing of data from historical records. The facility used as a source of traific information was t' he Gulf Freeway in Houston, Texas, and rs. infall records were obtained from the Weather... to separate acceptable data, and the accepted capacity figures were related to the weather condition of wet or dry which prevs. iled on the relevant occs. sion. The results showed that rain does have a significant effect on freevray capacity which is very...

Jones, Edward Roy

2012-06-07T23:59:59.000Z

330

High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989  

SciTech Connect (OSTI)

One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

Atallah, S.; Shah, J.N.; Peterlinz, M.E.

1990-05-01T23:59:59.000Z

331

Española entrepreneur breaks ground; expansion will create 50...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Espaola entrepreneur breaks ground; expansion will create 50 new jobs Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:...

332

Small distance expansion for radiative heat transfer between curved objects  

E-Print Network [OSTI]

We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest order proximity transfer approximation. The range of validity of such expansion depends on temperature as well as material properties. Generally, the expansion converges faster for the derivative of the transfer than for the transfer itself, which we use by introducing a near-field adjusted plot. For the case of a sphere and a plate, the logarithmic correction to the leading term has a very small prefactor for all materials investigated.

Vladyslav A. Golyk; Matthias Krüger; Alexander P. McCauley; Mehran Kardar

2012-10-12T23:59:59.000Z

333

Heat Flow Database Expansion for NGDS Data Development, Collection...  

Open Energy Info (EERE)

Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project...

334

Observational evidence for poleward expansion of the Hadley circulation  

Science Journals Connector (OSTI)

How the Hadley circulation changes in response to global climate ... consistent and statistically significant poleward expansion of the Hadley circulation in the past few decades is ... independent observational ...

Yongyun Hu ???; Chen Zhou ? ?; Jiping Liu ???

2011-01-01T23:59:59.000Z

335

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

336

On the Use of Pade Forms for Postprocessing Polynomial Expansion  

E-Print Network [OSTI]

... postprocessing the Gegenbauer expansion using the Pade forms. This work was done in collaboration with Laura Lurati (IMA/Boeing) and Sidi Kaber (Paris VI).

337

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

338

Use of third-generation biofuels in self-contained power generation systems based on contemporary steam piston engines  

Science Journals Connector (OSTI)

An alternative concept is studied for third-generation biofuel production and use in low capacity self-contained cogeneration installations, making it possible to optimize the whole production cycle for conver...

V. G. Sister; E. M. Ivannikova; A. I. Yamchuk…

2013-07-01T23:59:59.000Z

339

Power, Capacity, and Efficiency of Pumps  

Science Journals Connector (OSTI)

Power, Capacity, and Efficiency of Pumps ... p. motor through a 40-foot head, friction head included, efficiency of the pump being 50 per cent, join the 40 (column A ) with the 50 per cent (column E ) and locate the intersection with column C . ...

W. F. SCHAPHORST

1940-08-10T23:59:59.000Z

340

Building Environmental Health Capacity in Allegheny County  

E-Print Network [OSTI]

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

342

Fagatele Bay National Marine Sanctuary GIS Capacity  

E-Print Network [OSTI]

Report, configuration notes American Samoa Spatial Data Infrastructure Maps GIS Data CDs Operating System, a number of issues regarding map projections and datums were resolved allowing GIS users to processFagatele Bay National Marine Sanctuary GIS Capacity Binder Index Background 2 Hardware, Software

Wright, Dawn Jeannine

343

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network [OSTI]

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

344

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva hydropower is relatively important (Papua New Guinea, Fiji and Samoa · The traditional use of wind energy has indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga

345

Partial energies fluctuations and negative heat capacities  

E-Print Network [OSTI]

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-08-03T23:59:59.000Z

346

Detonative Propagation and Accelerative Expansion of the Crab Nebula Shock Front  

Science Journals Connector (OSTI)

The accelerative expansion of the Crab Nebula’s outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected.

Yang Gao and Chung K. Law

2011-10-18T23:59:59.000Z

347

Possible Locations for Gas-Fired Power Generation in Southern Germany  

Science Journals Connector (OSTI)

Gas-fired power generation has not only grown continuously in Europe, ... . Significant transport capacities in a high pressure gas grid are required to guarantee stable generation of gas-fired electricity. The p...

Joachim Müller-Kirchenbauer…

2013-01-01T23:59:59.000Z

348

Wireless Network Capacity Management: A Real Options Approach  

E-Print Network [OSTI]

capacity, market price of risk, investment timing option 1 Introduction Wireless networks are now regarded

Forsyth, Peter A.

349

The Effect of Temperature on Capacity and Power in Cycled Lithium Ion Batteries  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) tested six Saft America HP-12 (Generation 2000), 12-Ah lithium ion cells to evaluate cycle life performance as a power assist vehicle battery. The cells were tested to investigate the effects of temperature on capacity and power fade. Test results showed that five of the six cells were able to meet the Power Assist Power and Energy Goals at the beginning of test and after 300,000 cycles using a Battery Size Factor of 44.3 cells. The initial Static Capacity tests showed that the capacities of the cells were stable for three discharges and had an average of 16.4 Ah. All the cells met the Self-Discharge goal, but failed to meet the Cold Cranking goal. As is typical for lithium ion cells, both power and capacity were diminished during the low-temperature Thermal Performance test and increased during the high-temperature Thermal Performance test. Capacity faded as expected over the course of 300,000 life cycles and showed a weak inverse relationship to increasing temperature. Power fade was mostly a result of cycling while temperature had a minor effect compared to cycle life testing. Consequently, temperature had very little effect on capacity and power fade for the proprietary G4 chemistry.

Jeffrey R. Belt

2005-03-01T23:59:59.000Z

350

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

351

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics  

E-Print Network [OSTI]

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li an estimate on the effective pyroelectric and thermal expansion coefficients of fer- roelectric ceramics, and thermal-medical diagnostics (Cross, 1993). A ceramic made of pyroelectric grains does not necessarily

Li, Jiangyu

352

Expansion of a plasma cloud into the solar wind  

E-Print Network [OSTI]

Three-dimensional (3D) hybrid particle-in-cell (PIC) simulations, with kinetic ions and fluid electrons, of a plasma cloud expansion in the solar wind are presented, revealing the dynamics of the expansion, with shock formation, magnetic field compression, and the solar wind ions deflection around the plasma bubble. The similarities of this system with a magnetosphere are also pointed out.

Gargaté, L; Bingham, R; Silva, L O

2008-01-01T23:59:59.000Z

353

ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION  

E-Print Network [OSTI]

ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION HANS RINGSTR at an accelerated rate. As a consequence, it is of interest to prove that cosmological solutions to Ein- stein's equations with accelerated expansion are future stable. That is the topic of the present contribution

Ringström, Hans

354

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

355

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

4: Expansion of Active Borrow Areas, Hanford Site, Richland, 4: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

356

Tanzania Energy Development and Access Expansion Project | Open Energy  

Open Energy Info (EERE)

Energy Development and Access Expansion Project Energy Development and Access Expansion Project Jump to: navigation, search Name of project Tanzania Energy Development and Access Expansion Project Location of project Tanzania Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2007 Organization World Bank Website http://documents.worldbank.org Coordinates -6.369028°, 34.888822° References The World Bank[1] The objective of the Energy Development and Access Expansion Project of Tanzania is to improve the quality and efficiency of the electricity service provision in the three main growth centers of Dar es Salaam, Arusha, and Kilimanjaro and to establish a sustainable basis for energy access expansion. The project is consistent with the latest Joint Assistance Strategy (2007-2010) by specifically supporting the goals of the

357

Energy Infrastructure Events and Expansions Year-in-Review 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Events and Expansions Year-in-Review 2010 Infrastructure Events and Expansions Year-in-Review 2010 Energy Infrastructure Events and Expansions Year-in-Review 2010 The Year-in-Review provides an overview of the events that occurred in 2010: disruptions and additions to energy infrastructure in the United States as well as international events of importance to U.S. energy supplies. The report is the culminating analysis of all of the 2010 issues of the Energy Assurance Daily (EAD). Energy Infrastructure Events and Expansions Year-in-Review 2010.pdf More Documents & Publications Energy Infrastructure Events and Expansions Year-in-Review 2011 Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons - August 2010 Comparing the Impacts of the 2005 and 2008 Hurricanes on U.S. Energy

358

Generating Unit Retirements in the United States by State, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

359

Generating Unit Retirements in the United States by State, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

360

Generating Unit Retirements in the United States by State, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Generating Unit Retirements in the United States by State, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

362

Generating Unit Retirements in the United States by State, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

363

Generating Unit Retirements in the United States by State, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

364

Generating Unit Retirements in the United States by State, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

365

Generating Unit Retirements in the United States by State, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

366

Assessing the Control Systems Capacity for Demand Response in California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Control Systems Capacity for Demand Response in California the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type Report LBNL Report Number LBNL-5319E Year of Publication 2012 Authors Ghatikar, Girish, Aimee T. McKane, Sasank Goli, Peter L. Therkelsen, and Daniel Olsen Date Published 01/2012 Publisher CEC/LBNL Keywords automated dr, controls and automation, demand response, dynamic pricing, industrial controls, market sectors, openadr Abstract California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

367

Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay  

Science Journals Connector (OSTI)

We report on the application of a simple and versatile antioxidant capacity assay for dietary polyphenols, vitamin C and vitamin E utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic ox...

Re?at Apak; Kubilay Güçlü; Mustafa Özyürek; Saliha Esin Çelik

2008-04-01T23:59:59.000Z

368

annual generation | OpenEI  

Open Energy Info (EERE)

generation generation Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

369

High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications  

SciTech Connect (OSTI)

Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

Dillon, A. C.

2012-01-01T23:59:59.000Z

370

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

371

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

372

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect (OSTI)

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

373

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

374

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

375

Local gravitational physics of the Hubble expansion  

E-Print Network [OSTI]

We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's clock), to x^0=t+1/2 Ht^2 for photons, where H is the Hubble constant. Thus, motion of a test particle is non-uniform when its world line is parametrized by time t. NASA JPL Orbit Determination Program presumes that motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the solar system analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of frequency is proportional to the Hubble constant H that may open an access to the measurement of this fundamental cosmological parameter in the solar system radiowave experiments.

Sergei Kopeikin

2015-01-21T23:59:59.000Z

376

Calculations of Heat-Capacities of Adsorbates  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

377

Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater  

Science Journals Connector (OSTI)

A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.

X.Q. Kong; D. Zhang; Y. Li; Q.M. Yang

2011-01-01T23:59:59.000Z

378

Problems of regional energy provision in the energy strategy of Russia to 2030 and prospects for low-capacity nuclear power plant development  

Science Journals Connector (OSTI)

One problem of energy policy is stimulation of comprehensive development of a regional power supply, including power generation by low-capacity nuclear power plants in the regions where such sources could be comp...

N. I. Voropai; O. V. Marchenko; V. A. Stennikov

2012-03-01T23:59:59.000Z

379

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

380

Monthly Generation System Peak (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Photon generator  

DOE Patents [OSTI]

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

382

Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility  

SciTech Connect (OSTI)

We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14}?W/cm{sup 2} is used to compress copper up to ?8?Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N. [Russian Federal Nuclear Center – VNIIEF, Sarov (Russian Federation); Fortov, V. E.; Levashov, P. R.; Minakov, D. V. [Joint Institute for High Temperatures, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny (Russian Federation)

2014-01-21T23:59:59.000Z

383

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

384

Infinite Randomness Expansion and Amplification with a Constant Number of Devices  

E-Print Network [OSTI]

We present a device-independent randomness expansion protocol, involving only a constant number of non-signaling quantum devices, that achieves \\emph{infinite expansion}: starting with $m$ bits of uniform private randomness, the protocol can produce an unbounded amount of certified randomness that is $\\exp(-\\Omega(m^{1/3}))$-close to uniform and secure against a quantum adversary. The only parameters which depend on the size of the input are the soundness of the protocol and the security of the output (both are inverse exponential in $m$). This settles a long-standing open problem in the area of randomness expansion and device-independence. The analysis of our protocols involves overcoming fundamental challenges in the study of \\emph{adaptive} device-independent protocols. Our primary technical contribution is the design and analysis of device-independent protocols which are \\emph{Input Secure}; that is, their output is guaranteed to be secure against a quantum eavesdropper, \\emph{even if the input randomness was generated by that same eavesdropper}! The notion of Input Security may be of independent interest to other areas such as device-independent quantum key distribution.

Matthew Coudron; Henry Yuen

2014-04-01T23:59:59.000Z

385

Energy performance of direct expansion air handling unit in office buildings  

Science Journals Connector (OSTI)

Abstract Buildings and their occupants generate a large amount of carbon emissions. In Korea, buildings contribute to about 30% of the total greenhouse gases emissions, and the proportion has been rapidly increasing to the level of the developed counties (i.e., more than 40% of the total emissions. A direct expansion air handling unit, of which a refrigerant is directly delivered to the heating and cooling, has a potential to save cooling and heating energy use, compared to water-based central air conditioning systems. The aim of this study is to compare heating and cooling energy uses of an identical office building but with different air conditioning systems, i.e. direct expansion and water-based air conditioning systems. Dynamic building energy simulations that reflect the actual use of a monitored building and its air handling unit operation have been conducted in this study. Simulation results show good agreement with the actual energy consumption obtained from the field measurements of the building. Our study quantifies the amount of cooling and heating energy uses saved by a direct expansion air handing unit and reveals reasons for this savings, i.e. higher energy efficiency of the unit and reduction in pump and fan energy demands.

Geun Young Yun; Jongdae Choi; Jeong Tai Kim

2014-01-01T23:59:59.000Z

386

Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion  

SciTech Connect (OSTI)

The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.

Ying, Leong [Princeton Gamma-Tech Instruments, 303C College Road East, Princeton, NJ 07030 (United States)

2010-09-30T23:59:59.000Z

387

Multipole expansions of electromagnetic fields using Debye potentials  

Science Journals Connector (OSTI)

The Debye potentials are introduced by giving new derivations of the multipole expansions of the magnetostatic and electrostatic fields. Simplified derivations of the multipole expansions of the electrodynamic fields are then given. The radiated energy momentum and angular momentum are all calculated in the same manner i.e. using the proper transport equations. The questions of uniqueness and completeness of the Debye potential representations of the fields are discussed. In the Appendices are collected together some useful vector fieldtheorems and operator identities involving the angular momentum operator and also simplified derivations of the spherical harmonic expansions of the static and dynamic Green functions.

C. G. Gray

1978-01-01T23:59:59.000Z

388

Modeling the effects of demand response on generation expansion planning in restructured power systems  

Science Journals Connector (OSTI)

Demand response is becoming a promising field of study ... . More attention has recently been paid to demand response programs. Customers can contribute to the operation of power systems by deployment demand response

Mahdi Samadi; Mohammad Hossein Javidi…

2013-12-01T23:59:59.000Z

389

Pressure rise generated by the expansion of a local gas volume in a closed vessel  

Science Journals Connector (OSTI)

...rise for partial combustion in closed spherically...ratios of specific heats that were unequal...temperature-dependent specific heats and equilibrium...velocity of three hydrocarbon-air mixtures...expression for partial combustion, Luijten et al...constant specific heats and constant burned...

2009-01-01T23:59:59.000Z

390

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

391

Generation Technologies  

E-Print Network [OSTI]

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

392

Capacity computations of right-turn-on-red using the Highway Capacity Manual  

SciTech Connect (OSTI)

Right-turn-on-red (RTOR) is a traffic control strategy at signalized intersections that allows vehicles to turn right during red phases provided they do not impede the vehicles and pedestrians in green phases. RTOR is primarily a delay and energy conservation measure. Several studies that examined the impact of RTOR on vehicular delays have shown the potential of reducing fuel consumption by about 5 percent on urban streets. The reduction of delay and fuel consumption is related to extra capacity because RTOR allows vehicles to pass through an intersection in red phases. The extra capacity can be significant if an exclusive right-turn lane is provided. The 1985 {ital Highway Capacity Manual} (HCM) provides a powerful technique for evaluating how well an intersection will operate. This technique, however, is less successful in dealing with intersections where RTOR movement is permitted because it requires the analyst to supply RTOR volumes. This situation has led to a need for a formula to compute RTOR capacity. This paper proposes a method to calculate this capacity.

Luh, J.Z. (Langan Engineering Associates, NJ (US)); Lu, Y.J. (Concordia Univ., Loyola Campus, Montreal, PQ (Canada))

1990-04-01T23:59:59.000Z

393

Hydrogen storage capacities of nanoporous carbon calculated by density functional and Møller-Plesset methods  

Science Journals Connector (OSTI)

The hydrogen storage capacities of nanoporous carbons, simulated as flat graphene slit pores, have been calculated using a quantum-thermodynamical model. The model is applied for several interaction potentials between the hydrogen molecules and the graphitic walls that have been generated from density functional theory (DFT) and second-order Møller-Plesset (MP2) calculations. The hydrogen storage properties of the pores can be correlated with the features of the potential. It is shown that the storage capacity increases with the depth of the potential, De. Moreover, the optimal pore widths, yielding the maximum hydrogen storage capacities, are close to twice the equilibrium distance of the hydrogen molecule to one graphene layer. The experimental hydrogen storage capacities of several nanoporous carbons such as activated carbons (ACs) and carbide-derived carbons (CDCs) are well reproduced within the slit pore model considering pore widths of about 4.9–5.1?Å for the DFT potential and slightly larger pore widths (5.3–5.9?Å) for the MP2 potentials. The calculations predict that nanoporous carbons made of slit pores with average widths of 5.8–6.5?Å would yield the highest hydrogen storage capacities at 300 K and 10 MPa.

I. Cabria; M. J. López; J. A. Alonso

2008-08-13T23:59:59.000Z

394

On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids  

SciTech Connect (OSTI)

The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

Sai Venkata Ramana, A., E-mail: asaivenk@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2014-04-21T23:59:59.000Z

395

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

396

Ensuring Generation Adequacy in Competitive Electricity Markets  

E-Print Network [OSTI]

RESERVE OBLIGATIONS AND CAPACITY MARKETS The eastern poolsFormal or informal capacity markets that allow trading ofof capacity payments. The capacity markets prompted by the

Oren, Shmuel S.

2003-01-01T23:59:59.000Z

397

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Broader source: Energy.gov (indexed) [DOE]

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

399

DOE Announces Expansion and Solicitation for Entrepreneur in Residence  

Broader source: Energy.gov (indexed) [DOE]

Expansion and Solicitation for Entrepreneur in Expansion and Solicitation for Entrepreneur in Residence Program DOE Announces Expansion and Solicitation for Entrepreneur in Residence Program November 19, 2008 - 4:58pm Addthis Entrepreneurs Accelerate Deployment of Advanced Clean Energy Technologies from DOE's Labs to the Marketplace WASHINGTON - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced a competitive solicitation for five venture capital firms to participate in the expansion of DOE's Entrepreneur in Residence (EIR) program, that aims to accelerate deployment and commercialization of advanced clean energy technologies from DOE's National Laboratories. EIR furthers President Bush's comprehensive strategy to reduce our nation's dependence on foreign oil and reduce greenhouse gas emissions by empowering

400

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |  

Broader source: Energy.gov (indexed) [DOE]

Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, DuPont created 70 new operational

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Partnership in Assisting Community Expansion (PACE) Program (North Dakota)  

Broader source: Energy.gov (indexed) [DOE]

Partnership in Assisting Community Expansion (PACE) Program (North Partnership in Assisting Community Expansion (PACE) Program (North Dakota) Partnership in Assisting Community Expansion (PACE) Program (North Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Loan Program The Partnership in Assisting Community Expansion (PACE) Program is available to finance the purchase of equipment or real estate, as well as term working capital. In conjunction with community support, the program provides an interest buy down that can reduce the borrower's rate of interest by as much as 5%. This buy down can mean an interest savings of approximately $462,000 over the term of the loan. In return, the borrower

402

Financial Analysis of Electric Sector Expansion Plans (FINPLAN) | Open  

Open Energy Info (EERE)

Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial Analysis of Electric Sector Expansion Plans (FINPLAN) Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Market analysis Resource Type: Software/modeling tools Website: www-tc.iaea.org/tcweb/abouttc/strategy/Thematic/pdf/presentations/ener References: Overview of IAEA PESS Models [1] "In developing countries, financial constraints are often the most important obstacle to implementing optimal electricity expansion plans. FINPLAN helps assess the financial viability of plans and projects. It takes into account different financial sources - including export credits,

403

Major Business Expansion Bond Program (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

404

Train track expansions of measured foliations February 16, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher February 16, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 47 3 Train tracks 49 3.1 Pretracks

Mosher, Lee

405

Train track expansions of measured foliations December 28, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher December 28, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 53 3 Train tracks 55 3.1 Pretracks

Mosher, Lee

406

Lattice Boltzmann boundary conditions via singular forces: irregular expansion analysis  

E-Print Network [OSTI]

Lattice Boltzmann boundary conditions via singular forces: irregular expansion analysis. We benchmark the method on lattice Boltzmann flows past a rigid disk, comparing its numerical performances with standard boundary condition approaches. Key words: lattice Boltzmann method, boundary

407

Query Expansion Using a Collection Dependent Probabilistic Latent Semantic Thesaurus  

Science Journals Connector (OSTI)

Many queries on collections of text documents are too short to produce informative results. Automatic query expansion is a method of adding terms to the query without interaction from the user in order to obtain ...

Laurence A. F. Park; Kotagiri Ramamohanarao

2007-01-01T23:59:59.000Z

408

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP  

Science Journals Connector (OSTI)

We study the resolution complexity of Tseitin formulas over arbitrary rings in terms of combinatorial properties of graphs. We give some evidence that an expansion of a graph is a good characterization of the ...

Dmitry Itsykson; Vsevolod Oparin

2013-01-01T23:59:59.000Z

409

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project  

Broader source: Energy.gov [DOE]

Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office

410

On the Born-Oppenheimer expansion for polyatomic molecules  

Science Journals Connector (OSTI)

We consider the Schrödinger operatorP(h) for a polyatomic molecule in the semiclassical limit where the mass ratioh 2 of electronic to nuclear mass tends to zero. We obtain WKB-type expansions of ...

M. Klein; A. Martinez; R. Seiler; X. P. Wang

411

Pressure recovery in a radiused sudden expansion Barton L. Smith  

E-Print Network [OSTI]

Pressure recovery in a radiused sudden expansion Barton L. Smith Abstract Experiments on a steady were motivated by a similar study for oscillatory flow in the same geometry. Smith and Swift (2003

Smith, Barton L.

412

How are Feynman graphs resumed by the Loop Vertex Expansion?  

E-Print Network [OSTI]

The purpose of this short letter is to clarify which set of pieces of Feynman graphs are resummed in a Loop Vertex Expansion, and to formulate a conjecture on the $\\phi^4$ theory in non-integer dimension.

Vincent Rivasseau; Zhituo Wang

2010-06-23T23:59:59.000Z

413

Parametric study of relay seismic capacity  

Science Journals Connector (OSTI)

An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic capacity of a relay may depend on various parameters related to the design or the input motion. In order to investigate the effect of these parameters on the seismic fragility level, BNL has conducted a relay test program. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. The testing has been performed at Wyle Laboratories. This paper discusses the methodology used for testing and presents a brief summary of important test results.

K. Bandyopadhyay; C. Hofmayer

1992-01-01T23:59:59.000Z

414

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

415

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

416

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

417

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

418

A reduction theorem for capacity of positive maps  

E-Print Network [OSTI]

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

419

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network [OSTI]

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

420

Storage and capacity rights markets in the natural gas industry  

E-Print Network [OSTI]

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Economics and Design of Capacity Markets for the Power Sector  

Science Journals Connector (OSTI)

Capacity markets are a means to assure resource adequacy. The need for a capacity market stems from several market failures the most prominent of which is the absence of a robust demand-side. Limited demand response

Peter Cramton; Axel Ockenfels

2012-06-01T23:59:59.000Z

422

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

to improve rate performance * Optimize composition (Li- and Mn composition) and synthesis conditions * Evaluation of electrochemical properties (capacity, cycling performance...

423

Effect of ettringite morphology on DEF-related expansion  

Science Journals Connector (OSTI)

In this study, time dependent ettringite formation in heat-cured mortars has been investigated. In order to clarify the effect of formation place and morphology of ettringite on expansion, secondary electron images of cracked surfaces of mortars at three ages were analysed by SEM–EDS. Also, the X-ray microtomography analysis has been performed to observe the crack formation. The expansive role of delayed formed ettringite was related with its time dependent morphology as a function of formation place. From these observations, mechanism of ettringite reformation after heat curing has been proposed. Alumina rich species were the primary sources of ettringite formation as the starting nuclei. At later ages, if S and Al sources are readily available, the mentioned alumina rich nuclei will grow up and build ball ettringite. At long term, ball type ettringites (non-expansive) converted to massive type (expansive). These conversions can only take places if the form of available space is narrow (preformed micro-cracks). Massive ettringites exert pressure in these narrow spaces and cause expansion of mortar. If the form of the available space is spherical (entrapped air voids) ball ettringites preserve their initial form and do not cause any expansion.

Kamile Tosun; Bülent Baradan

2010-01-01T23:59:59.000Z

424

Weak locking capacity of quantum channels can be much larger than private capacity  

E-Print Network [OSTI]

We show that it is possible for the so-called weak locking capacity of a quantum channel [Guha et al., PRX 4:011016, 2014] to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels, and hence a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution (QKD): the older, naive one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper's information. Assuming an additivity conjecture for constrained minimum output Renyi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.

Andreas Winter

2014-03-25T23:59:59.000Z

425

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines  

E-Print Network [OSTI]

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines running title: Channel Capacity of Molecular Machines Thomas D. Schneider version = 5.76 of ccmm.tex 2004 Feb 3 Version 5.67 was submitted 1990 December 5 Schneider, T. D. (1991). Theory of molecular machines. I. Channel capacity

Schneider, Thomas D.

426

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

427

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

428

Biogass Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Another internet tool by: Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle, produce large amounts of biogas. The biogas is produced not by the cow or elephant, but by billions of microor- ganisms living in its digestive system. Biogas also develops in bogs and at the bottom of lakes, where decaying organic matter builds up under wet and

429

Capacity Value of Wind Plants and Overview of U.S. Experience (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview and summary of the capacity value of wind power plants, based primarily on the U.S. experience. Resource adequacy assessment should explicitly consider risk. Effective load carrying capability (ELCC) captures each generators contribution to resource adequacy. On their own, reserve margin targets as a percent of peak can't capture risks effectively. Recommend benchmarking reliability-based approaches with others.

Milligan, M.

2011-08-01T23:59:59.000Z

430

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

431

Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract  

E-Print Network [OSTI]

We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

Yuri Lawryshyn; Sebastian Jaimungal

432

Multi-region capacity planning model with contracts of varying duration under uncertainty : a satellite capacity acquisition case study  

E-Print Network [OSTI]

This paper highlights the issues associated with and presents a modeling framework for long-term capacity planning problems constrained in a similar fashion to satellite capacity acquisition. Although ambiguities exist, ...

Lydiard, John M., IV

2014-01-01T23:59:59.000Z

433

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

434

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

435

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

436

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

437

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

438

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

439

Hypersonic expansion of the Fokker--Planck equation  

SciTech Connect (OSTI)

A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order.

Fernandez-Feria, R.

1989-02-01T23:59:59.000Z

440

Mini-biomass electric generation  

SciTech Connect (OSTI)

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

442

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

443

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

444

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

445

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

446

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

447

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

448

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

449

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

450

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

451

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

452

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

453

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

454

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

455

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

456

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

457

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

458

Tax Exemption for Wind Energy Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tax Exemption for Wind Energy Generation Tax Exemption for Wind Energy Generation Tax Exemption for Wind Energy Generation < Back Eligibility Utility Savings Category Wind Buying & Making Electricity Program Info Start Date 7/2001 State West Virginia Program Type Corporate Exemption Rebate Amount Reduction of Business and Occupations (BandO) tax from 40% to 12% of generating capacity Provider West Virginia Division of Energy In March 2007, West Virginia enacted legislation ([http://www.legis.state.wv.us/Bill_Text_HTML/2007_SESSIONS/RS/BILLS/sb441... SB 441]) amending its tax law concerning the business and operation (B&O) tax for wind turbines. Although SB 441 increased the taxable value of wind turbine generating capacity, the taxation level is still significantly lower than that of most other types of electricity generation. For most

459

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

460

The NASA CSTI High Capacity Power Program  

SciTech Connect (OSTI)

The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

Winter, J.M.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utility Solar Generation Valuation Methods  

SciTech Connect (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

462

Introduction Minimal generation  

E-Print Network [OSTI]

Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

St Andrews, University of

463

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

464

EIS-0404: Los Vaqueros Reservoir Expansion Project, California | Department  

Broader source: Energy.gov (indexed) [DOE]

404: Los Vaqueros Reservoir Expansion Project, California 404: Los Vaqueros Reservoir Expansion Project, California EIS-0404: Los Vaqueros Reservoir Expansion Project, California Summary This EIS/Environmental Impact Report was prepared by the Department of the Interior (Bureau of Reclamation, Mid-Pacific Region) and the Contra Costa Water District to evaluate the environmental impacts of a proposal to enlarge the existing Los Vaqueros Reservoir in Contra Costa County, California. DOE's Western Area Power Administration (Western) was a cooperating agency because it has jurisdiction over transmission facilities that were expected to be relocated under the proposed action. Based on project changes, however, Western has no action and therefore will not adopt the EIS or issue a ROD. Public Comment Opportunities No public comment opportunities available at this time.

465

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG 88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES Comment Period Ends: 03/03/14 DOCUMENTS AVAILABLE FOR DOWNLOAD January 10, 2014

466

Heat Flow Database Expansion for NGDS Data Development, Collection and  

Open Energy Info (EERE)

Database Expansion for NGDS Data Development, Collection and Database Expansion for NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Data Development, Collection, and Maintenance Project Description In particular the efforts on document and core digitization, the recovery of the BEG geopressure data developed during the approximately $200 million project by DOE in the 1970-1980, the EGS data from the Fenton Hill experiments, and meta-data associated with US thermal mapping are crucial to be performed at this point because they are otherwise in danger of deterioration or complete loss.

467

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction  

Broader source: Energy.gov (indexed) [DOE]

8: Cameron Pipeline Expansion Project and Cameron LNG 8: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 13, 2012 EIS-0488: Notice of Intent to Prepare an Environmental Impact Statement

468

Microsoft Word - MunroControlCenterExpansionCX.docx  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Joseph Bebee TESF-CSB-2 Proposed Action: Munro Control Center Expansion Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.15 Support Buildings Location: Spokane, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The proposed project includes a 30,000 square foot (sf) expansion to the east side of the existing building and a total of 53,500 sf of additional paved surfaces for access roads and parking to the north. All proposed activities would be on previously disturbed BPA property. The expansion of the existing Munro Control Center is to provide an alternate facility that would support critical BPA functions in the case of a major

469

Horse Hollow Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horse Hollow Expansion Wind Farm Horse Hollow Expansion Wind Farm Facility Horse Hollow Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Market Location Near Abilene TX Coordinates 32.243193°, -100.265633° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.243193,"lon":-100.265633,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Century Expansion (4Q07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Century Expansion (4Q07) Wind Farm Century Expansion (4Q07) Wind Farm Facility Century Expansion (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 42.495789°, -93.652368° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495789,"lon":-93.652368,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Cluster expansion, multichannel scattering, and the optical potential  

Science Journals Connector (OSTI)

This paper investigates approximate solutions for the few-body multichannel reaction problem. In the context of the three-body scattering problem, we extend the cluster expansion formalism that is based on the Karlsson-Zeiger integral equations. The decoupling scheme developed by Bollé and Kuzmichev is modified to extract the elastic channel optical potential. The utility and rate of convergence of the cluster expansion is tested in a model three-boson problem. The interactions for the model problem are chosen to include elastic, inelastic, and rearrangement channels. It is found that only a few terms of the cluster expansion are needed to reproduce the exact three-body solutions and that cusp singularity effects which appear in the phase shift at channel thresholds are accounted for accurately.NUCLEAR REACTIONS Three-body problem. Cluster representations. Optical potential. Threshold singularities. Approximation methods.

D. Eyre; T. A. Osborn; J. P. Svenne

1981-12-01T23:59:59.000Z

472

E-Print Network 3.0 - affecting energy capacity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reserves provided by the block with capacity... , which, in turn, impacts the capacity markets, be they energy or ancillary services markets, is adequacy... capacity ofsellers'...

473

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

474

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect (OSTI)

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

475

Evaluating Wind Power Generating Capacity Adequacy Using MCMC Time Series Model.  

E-Print Network [OSTI]

??In recent decades, there has been a dramatic increase in utilizing renewable energy resources by many power utilities around the world. The tendency toward using… (more)

Almutairi, Abdulaziz

2014-01-01T23:59:59.000Z

476

Generating day-of-operation probabilistic capacity scenarios from weather forecasts  

E-Print Network [OSTI]

Airport, Boston Logan International Airport, Chicago O’Hareairports: Boston Logan International Airport (BOS), ChicagoAirport (LAX), Boston Logan International Airport (BOS) and

Buxi, Gurkaran

2012-01-01T23:59:59.000Z

477

Computer simulation and capacity evaluation of Panama Canal alternatives  

SciTech Connect (OSTI)

The Operating Characteristics and Capacity Evaluation (OCCE) Study was one of the components of a group of studies of future alternatives to the Panama Canal, sponsored by a study commission formed by the governments of Panama, the US and Japan. The basic tool in the conduct of the study was the Waterway Analysis Model (WAM), developed originally by the US Army Corps of Engineers for use on the US inland waterway system and adapted under OCCE for study of Panama Canal alternatives. The study synthesized the many alternative plans for the Canal proposed historically into four basic groups: High-Rise Lock Canal, Low-Rise Lock Canal, Sea-Level Canal and Status Quo Canal. For economy, the sea-level cases were based on, essentially, a single-lane canal, in conjunction with the status quo canal. Hydraulic and navigation studies indicted that to achieve safe navigation, tide gates or locks would be required to control currents that would otherwise be generated by the differences in tides between the two oceans. The alternatives studied in detail are illustrated in the body of the paper.

Rosselli, A.T. [TAMS Consultants, Inc., New York, NY (United States); Bronzini, M.S. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis; Weekly, D.A. [Army Corps of Engineers, Huntington, WV (United States). Navigation Planning Center

1994-12-31T23:59:59.000Z

478

Existing Generating Unit in the United States by State and Energy Source, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

479

Existing Generating Unit in the United States by State and Energy Source, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

480

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

SciTech Connect (OSTI)

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation capacity expansion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bethe-Brueckner-Goldstone Expansion in Nuclear Matter  

Science Journals Connector (OSTI)

The equation of state of symmetric nuclear matter at zero temperature is calculated up to the three hole-line level of approximation in the Bethe-Brueckner-Goldstone expansion. Both the standard and the continuous choices for the single particle auxiliary potential are considered. The resulting equation of state shows independence from the choice of the auxiliary potential to a high degree of accuracy. This result gives strong evidence for the convergence of the expansion and establishes the nuclear matter saturation curve for the adopted nucleon-nucleon interaction, the Argonne v14 potential.

H. Q. Song; M. Baldo; G. Giansiracusa; U. Lombardo

1998-08-24T23:59:59.000Z

482

O(4) Expansion of Off-Shell Scattering Amplitudes  

Science Journals Connector (OSTI)

Using an off-mass-shell approach, we develop a method for the O(4) expansion of the scattering amplitude for two unequal-mass, arbitrary-spin particles. General-spin spherical harmonics for O(4) are constructed. With the aid of these spherical harmonics, the M amplitude is decomposed into O(4) partial waves. The prescription for obtaining the on-mass-shell helicity states from the O(4) partial waves is given. This O(4) expansion, which is valid even away from t=0, is useful in simplifying the Bethe-Salpeter equation.

W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R. Snider

1968-12-25T23:59:59.000Z

483

Derivative expansion at small mass for the spinor effective action  

SciTech Connect (OSTI)

We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.

Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Huet, Adolfo [Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan 58040 (Mexico); Hur, Jin [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Min, Hyunsoo [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)

2011-05-15T23:59:59.000Z

484

Non-minimal Kinetic coupling to gravity and accelerated expansion  

E-Print Network [OSTI]

We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

L. N. Granda

2009-11-19T23:59:59.000Z

485

Relic gravitational waves and the cosmic accelerated expansion  

E-Print Network [OSTI]

The possibility of reconstructing the whole history of the scale factor of the Universe from the power spectrum of relic gravitational waves (RGWs) makes the study of these waves quite interesting. First, we explore the impact of a hypothetical era -right after reheating- dominated by mini black holes and radiation that may lower the spectrum several orders of magnitude. Next, we calculate the power spectrum of the RGWs taking into account the present stage of accelerated expansion and an hypothetical second dust era. Finally, we study the generalized second law of gravitational thermodynamics applied to the present era of accelerated expansion of the Universe.

German Izquierdo

2006-01-10T23:59:59.000Z

486

Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions  

E-Print Network [OSTI]

The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

Tabors, Richard D.

1991-01-01T23:59:59.000Z

487

Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice  

E-Print Network [OSTI]

Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case

Tennessee, University of

488

Identifying and Characterizing Candidate Areas for Siting New Nuclear Capacity in the United States  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) staff recently completed an internal 'Energy Assurance' study examining the key issues associated with the country's energy needs for the future focusing on generation sources, baseload options, transmission and distribution, reduction of greenhouse gases, and overall energy security issues. In examining the various generation sources including nuclear power and renewables, one principal finding was that 300 GW(e) of new nuclear electrical generating capacity would be needed by 2050. With that need, the initial, obvious question is can 300 GW(e) of nuclear capacity be sited in the United States? In an attempt to address that question as well as others, ORNL initiated a 'National Electric Generation Siting Study,' which is to be a multiphase study to address several key questions related to our national electrical energy supply. The initial phase of this study is to examine the nuclear option. This paper summarizes the approach developed for screening sites, the methodology employed that includes spatial modeling, and preliminary results using the southeast United States to demonstrate the usefulness of the overall approach as a test case.

Mays, Gary T [ORNL] [ORNL; Jochem, Warren C [ORNL] [ORNL; Greene, Sherrell R [ORNL] [ORNL; Belles, Randy [ORNL] [ORNL; Cetiner, Mustafa Sacit [ORNL] [ORNL; Hadley, Stanton W [ORNL] [ORNL

2009-01-01T23:59:59.000Z

489

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

490

Capacity Building Project with Howard University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Capacity Building Project with Howard University Capacity Building Project with Howard University Capacity Building Project with Howard University The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of Energy (DOE) facilities and in Washington, DC, the DOE Headquarters host community. The primary focus is on environmental justice communities-low-income and minority communities. Capacity Building Project with Howard University More Documents & Publications National Conference of Black Mayors, Inc. Capacity Building Project with Howard University The State of Environmental Justice in America 2010 Conference Environmental Justice at the U.S. Department of Energy - A Decade of

491

Microsoft Word - GasCapacityReport3-17.doc  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available from natural gas wells considering limitations of the production, gathering, and transportation systems. Surplus or unutilized capacity is the difference between the effective productive capacity and the actual production. This report contains projections of natural gas effective productive capacity in the Lower-48 States for 2003 and is based on prices and production forecasts in EIA's February 2003 Short Term Energy Outlook (STEO). The analysis projects an average surplus capacity of 5.6 Bcf/d in 2003 under STEO Base

492

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

493

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

494

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

495

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 Operable Capacity (Calendar Day) 17,814 17,815 17,815 17,815 17,815 17,818 1985-2013 Operating 17,005 17,228 17,239 17,450 17,439 17,623 1985-2013 Idle 809 587 576 365 376 195 1985-2013 Operable Utilization Rate (%) 85.8 88.2 91.7 92.6 91.5 90.7 1985-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 11/27/2013

496

Ukraine-Capacity Building for Low Carbon Growth | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations Development Programme Sector Energy,...

497

Thailand-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) AgencyCompany Organization United States Agency for International Development, United States Environmental...

498

Information capacity and resolution in an optical system  

Science Journals Connector (OSTI)

The concept of invariance of information capacity is discussed and applied to the resolution of an optical system. Methods of obtaining superresolution in microscopy are discussed, and...

Cox, I J; Sheppard, C J R

1986-01-01T23:59:59.000Z

499

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

500

John S. Wright Forestry Center Room Sizes, Capacities, and Rates  

E-Print Network [OSTI]

Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765