Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Second Generation Second Generation Biofuel Plant Depreciation Deduction Allowance to someone by E-mail Share Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Facebook Tweet about Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Twitter Bookmark Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Google Bookmark Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Delicious Rank Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on Digg Find More places to share Alternative Fuels Data Center: Second Generation Biofuel Plant Depreciation Deduction Allowance on AddThis.com...

2

Distributed Generation Biofuel Testing  

Science Conference Proceedings (OSTI)

This Technical Update report documents testing performed to assess aspects of using biofuel as an energy source for distributed generation. Specifically, the tests involved running Caterpillar Power Module compression ignition engines on palm methyl ester (PME) biofuel and comparing the emissions to those of the same engines running on ultra-low-sulfur diesel fuel. Fuel consumption and energy efficiency were also assessed, and some relevant storage and handling properties of the PME were noted. The tests...

2011-12-06T23:59:59.000Z

3

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network (OSTI)

sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

4

III. Commercial viability of second generation biofuel technology27  

E-Print Network (OSTI)

hectares (Mha) of land would be required to meet the EU target for biofuels (5.75 per cent of transport29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically

5

Combined Heat and Power in Biofuels Production and Use of Biofuels for Power Generation  

Science Conference Proceedings (OSTI)

The rise of the biofuels industry presents electric utilities with two types of opportunities: combined heat and power (CHP) applications in biofuel production facilities using topping and bottoming power generation cycles and the use of the biofuels as a fuel in electric power generation. This report reviews production processes for ethanol and biodiesel, including the prospects for CHP applications, and describes power generation opportunities for the use of biofuels in power production, especially in ...

2007-12-17T23:59:59.000Z

6

Alternative Fuels Data Center: Second Generation Biofuel Producer Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Second Generation Second Generation Biofuel Producer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on Google Bookmark Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on Delicious Rank Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Second Generation Biofuel Producer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Second Generation Biofuel Producer Tax Credit

7

Performance and Emissions of a Second Generation Biofuel -DME  

E-Print Network (OSTI)

Performance and Emissions of a Second Generation Biofuel - DME D. Kittelson1, W. Watts1, D. Bennett, 2010 #12;Performance and Emissions of a Second Generation Biofuel: DME · We started working on a three generation biofuel in July. · The program involves a variety of partners including ­ Chemrec ­ US EPA

Minnesota, University of

8

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network (OSTI)

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

9

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

10

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for  

E-Print Network (OSTI)

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

Kunst, Ljerka

11

New Investments to Accelerate Next Generation Biofuels | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments to Accelerate Next Generation Biofuels Investments to Accelerate Next Generation Biofuels New Investments to Accelerate Next Generation Biofuels July 1, 2013 - 12:00pm Addthis Image of a scientist studying one of three containers of biomass materials. Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The projects-located in Oklahoma, Tennessee, Utah, and Wisconsin-represent a $13 million Energy Department investment. "By partnering with private industry, universities and our national labs, we can increase America's energy security, bolster rural economic

12

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

Recanati, Catherine

13

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network (OSTI)

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

14

Biofuels from Sorghum: Plant-based Sesquiterpene Biofuels  

Science Conference Proceedings (OSTI)

PETRO Project: Chromatin will engineer sweet sorghuma plant that naturally produces large quantities of sugar and requires little waterto accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatins proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plantssimilar to the way in which it currently stores sugarand can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.

None

2012-01-01T23:59:59.000Z

15

Biofuels  

SciTech Connect

As David Rotman states in his article on biofuels, the conversion of biomass to liquid fuel is energy intensive--just like the conversion of coal or any other solid fuel to liquid fuel. That implies that the quantity of liquid fuel from biomass and the carbon dioxide released in the production process strongly depend upon the energy source used in the conversion process. Each year, the United States could produce about 1.3 billion tons of renewable biomass for use as fuel. Burning it would release about as much energy as burning 10 million barrels of diesel fuel per day. If converted to ethanol, the biomass would have the energy value of about five million barrels of diesel fuel per day. The remainder of the energy would be used by the biomass-to-liquids conversion plant. If a nuclear reactor or other energy source provides the energy for the biomass-to-liquids plants, the equivalent of over 12 million barrels of diesel fuel can be produced per day. If our goal is to end oil imports and avoid greenhouse-gas releases, we must combine biomass and nuclear energy to maximize biofuels production.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

16

Genomics of Plant-based Biofuels in the Journal Nature  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 3, 2008 DOE JGI Director Eddy Rubin Highlights the Genomics of Plant-based Biofuels in the Journal Nature WALNUT CREEK, CA-Genomics is accelerating improvements for converting plant biomass into biofuel-as an alternative to fossil fuel for the nation's transportation needs, reports Eddy Rubin, Director of the U.S. Department of Energy Joint Genome Institute (DOE JGI), in the August 14 edition of the journal Nature. In "Genomics of cellulosic biofuels," Rubin lays out a path forward for how emerging genomic technologies will contribute to a substantially different biofuels future as compared to the present corn-based ethanol industry-and in part mitigate the food-versus-fuel debate. The Nature Review is available for download (by subscription) at http://www.nature.com/.

17

Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official February 10, 2012 - 2:05pm Addthis WASHINGTON, D.C. - Today, U.S. Department of Energy Senior Advisor Peter Gage joined the President of Novozymes North America Adam Monroe and Associate Vice President of the Metropolitan Community College Bill Owen to visit the community college's Washington County Technology Center and tour the new Novozymes production plant in Blair, Nebraska. Gage highlighted the President's call to extend the Advanced Energy Manufacturing Tax Credit to help launch a new era of American energy fueled by homegrown and alternative energy resources and produced by American workers. He also emphasized the importance of providing America's

18

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production  

E-Print Network (OSTI)

it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, currentSecond Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable

Kudela, Raphael M.

19

Post-Secondary Curricula for Next-Generation Biofuels Released November 22, 20111 Request for Proposals  

E-Print Network (OSTI)

Post-Secondary Curricula for Next-Generation Biofuels Released November 22, 20111 Request for Proposals Post-Secondary Curricula for Next-Generation Biofuels PROPOSAL SUBMISSION DEADLINE: February 6 for curricula development in the area(s) of `next-generation' biofuels (e.g. new or emerging technologies

Farritor, Shane

20

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network (OSTI)

sugar yields for biofuel production. Nat Biotechnol 25(7):research seeks biofuel production from lignocellulose A keylignocellulosic biofuel production and highlight scientific

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture), which

Recanati, Catherine

22

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

Recanati, Catherine

23

An agent-based simulation model for the market diffusion of a second generation biofuel  

Science Conference Proceedings (OSTI)

Second generation biofuels are widely considered a promising energy alternative to conventional (fossil) fuels. Although they will not completely replace fossil fuels (e.g., due to the limited availability of biomass), these high-quality biofuels can ...

Elmar Kiesling; Markus Gnther; Christian Stummer; Lea M. Wakolbinger

2009-12-01T23:59:59.000Z

24

New Generation Biofuels Holdings Inc formerly H2Diesel | Open Energy  

Open Energy Info (EERE)

Generation Biofuels Holdings Inc formerly H2Diesel Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place Lake Mary, Florida Zip 32746 Product Florida-based developer of innovative biodiesel projects and technologies. References New Generation Biofuels Holdings Inc. (formerly H2Diesel)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Generation Biofuels Holdings Inc. (formerly H2Diesel) is a company located in Lake Mary, Florida . References ↑ "New Generation Biofuels Holdings Inc. (formerly H2Diesel)" Retrieved from "http://en.openei.org/w/index.php?title=New_Generation_Biofuels_Holdings_Inc_formerly_H2Diesel&oldid=349166"

25

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness the Hemicellulosic Fraction of Biomass into Biofuel F. Ben Chaabane and R. Marchal IFP Energies nouvelles the Hemicellulosic Fraction of Biomass into Biofuel -- Hemicelluloses are polymers composed mainly of C5 sugars

Recanati, Catherine

26

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels L. Fourage1 , J: Application to Biofuels -- Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks

Recanati, Catherine

27

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network (OSTI)

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness biofuels will have an important part to take in the energy transition as far as fuels are concerned. Using biofuels, the BTL route consists in the production of middle dis- tillates (Diesel and jet fuel) via

Recanati, Catherine

28

Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels  

E-Print Network (OSTI)

Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. ...

Rismani-Yazdi, Hamid

29

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network (OSTI)

How biotech can transform biofuels. Nat Biotechnol 26(2):J Somerville C. 2007. Biofuels. Curr Biol 17(4):R1159.biomass characteristics for biofuels. Curr Opin Biotechnol

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

30

TISSUE CULTURE AND TRANSFORMATION STUDIES OF JATROPHA CURCAS, A SECOND GENERATION BIOFUEL CROP.  

E-Print Network (OSTI)

??Jatropha curcas L. (Euphorbiaceae) is an important second generation biofuel crop. In a time when energy needs are coming to the forefront of our nations (more)

Tabatabai, Behnam

2011-01-01T23:59:59.000Z

31

Studying plant cell walls for better biofuels | OpenEI Community  

Open Energy Info (EERE)

Studying plant cell walls for better biofuels Studying plant cell walls for better biofuels Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 27 July, 2010 - 10:49 imported OpenEI A common garden plant known as zinnia may yield important results for better future biofuels. Current research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL) are focusing on the leaves of the zinnia plant, on the nanometer scale, to hopefully develop better biofuels than current biofuels. The researchers are trying to understand ways to break down lignin, the substance that cell walls are composed of. Lignin is tough to break down, so understanding the decomposition of it will help producing biofuels. The basic idea is that cellulose is composed of a polymer of sugars. If

32

Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

Not Available

2011-11-01T23:59:59.000Z

33

UNU-IAS Policy Report Biofuels in Africa  

E-Print Network (OSTI)

. Currently, liquid biofuels (e.g. bioethanol and biodiesel) produced from edible plants or animal fats/power generation (FAO, 2009; IEA, 2004). Currently, liquid biofuels (e.g. bioethanol and biodiesel) are by far) and conversion technology used, biofuels can be distinguished as first- and second-generation biofuels.2 First

34

Developing nanotechnology for biofuel and plant science applications  

SciTech Connect

This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

Valenstein, Justin

2012-06-20T23:59:59.000Z

35

PowerSHIFT Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

PowerSHIFT Biofuels LLC Jump to: navigation, search Name PowerSHIFT Biofuels LLC Place Wyoming Product Focused on biodiesel plants and power generation facilities in the US....

36

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

37

How do firms promote stability in an evolving technological system? : - The case of second generation biofuels in Norway.  

E-Print Network (OSTI)

??This thesis aims to increase the understanding of the formative phase of an evolving technological innovation system (TIS) related to second generation (2G) biofuels in (more)

Blomberg, Line Elisabeth

2008-01-01T23:59:59.000Z

38

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.8.2011]: Cyanobacteria, Biofuels and Next-Generation 7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs At Argonne National Laboratory's Structural Biology Center (SBC) scientists are investigating cyanobacteria in hopes of advancing alternative transportation fuels. For some background, cyanobacteria cells group themselves into long filaments that can contain dozens and even hundreds of cells -- and, like in humans, not all cyanobacteria cells are born the same. While most

39

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs At Argonne National Laboratory's Structural Biology Center (SBC) scientists are investigating cyanobacteria in hopes of advancing alternative transportation fuels. For some background, cyanobacteria cells group themselves into long filaments that can contain dozens and even hundreds of cells -- and, like

40

Energy Programs | Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Biofuels Harnessing the power of plants to fuel our future Page 1 of 2 BNL Researcher with corn Finding alternatives to corn-based ethanol is one of the major goals of Brookhaven's biofuels research effort. The effort to identify and tailor new energy sources from plant products could go a long way towards addressing our nation's future energy needs. Plants are efficient energy scavengers, using sunlight to convert carbon dioxide and water into carbohydrates and other products that fuel every living thing on Earth. When we burn fossil fuels to generate heat or electricity, we tap into this ancient source of energy, locked up long ago by the plants and animals that decayed to form those fuels. But dwindling supplies, high costs, and environmental consequences of fossil fuels, such

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)  

SciTech Connect

Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

Khanna, Madhu

2010-03-26T23:59:59.000Z

42

Energy 101 | Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101 | Biofuels 101 | Biofuels Energy 101 | Biofuels July 25, 2012 - 2:14pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this mean for me? Biofuels are a key part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy. To reduce our dependence on imported oil we need an all-out, all-of-the-above strategy to develop every available source of American energy. This includes investments in clean, renewable biofuels. So what exactly is biofuel? It's clean, renewable fuel produced from biomass -- organic material such as plants, residue from agriculture, and even algae. At the Energy Department, we are taking a number of steps to develop the next generation of biofuels - including our joint announcement today with

43

Visualizing how to turn plants into biofuel 71610  

In a paper appearing online in the journal Plant Physiology, a team from the ... National Renewable Energy Laboratory, has used four different ...

44

Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)  

E-Print Network (OSTI)

The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

Nielsen, David R.

45

of Biofuels Sustainable Feedstocks  

E-Print Network (OSTI)

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

46

Winning the Biofuel Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Future Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. This announcement is yet another sign of the rapid progress we are making in developing the next generation of biofuels that can help reduce our oil

47

AvAilAble for licensing Efficient biofuel for the next generation  

E-Print Network (OSTI)

are excluded. Target Price Biofuel Production System Resource Consumption at $2.19/gge Breakdown of Output FuelBiofuel Supply in the Western United States Nathan Parker1, Peter Tittmann1, Quinn Hart1, Mui Lay1 is to help the Western governors identify their options for promoting biofuels in their states: feedstock

Kemner, Ken

48

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

49

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

50

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

51

Ultimate Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ultimate Biofuels LLC Jump to: navigation, search Name Ultimate Biofuels LLC Place Ann Arbor, Michigan Zip 48108 Product Plans to develop sweet sorghum based ethanol plants....

52

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network (OSTI)

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

53

Biofuel Solutions | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Biofuel Solutions Place Colorado Product Defunct bioethanol plant developer, which had been developing one plant in Fairmont, Minnesota and...

54

Hampton Biofuels | Open Energy Information  

Open Energy Info (EERE)

Hampton Biofuels Place New York, New York Zip 10017 Product A start-up looking to develop a biodiesel plant in upstate New York. References Hampton Biofuels1 LinkedIn Connections...

55

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

56

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

57

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or â??clearing houseâ? for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

58

Assessing the Potential of Natural Microbial Communities to Improve a Second-Generation Biofuels Platform  

E-Print Network (OSTI)

Naturally occurring microbial communities from high-salt and/or high-temperature environments were collected from sites across the United States and Puerto Rico and screened for their efficacy in the MixAlco biofuel production platform. The MixAlco process, based on the carboxylate platform, is a sustainable and economically viable platform for converting lignocellulosic biomass to biofuels. Using a mixed culture of anaerobic organisms, lignocellulosic biomass is fermented into carboxylic acids, which are neutralized to their corresponding carboxylate salts. These salts can then be converted into a wide variety of chemical products and fuels (alcohols, gasoline, diesel, jet fuel). The central hypothesis is that microbial communities from relatively extreme environments, having evolved to withstand selection pressures similar to the conditions in the carboxylate platform, will exhibit high rates of biomass conversion. A total of 559 soil communities was screened as inocula in established laboratory-scale fermentations. We used pyrotag sequencing of 16S rRNA genes to characterize the bacterial components of the best-performing microbial communities. The best performing communities converted up to 3 times more biomass to acids than a standard marine community inoculum. The community analyses have allowed us to determine the extent to which the same functional types are favored during fermentation, at both laboratory and demonstration plant scales. In all cases, we observed a shift from the more diverse sediment community to post-fermentation communities with relatively low diversity dominated by organisms in the phylum Firmicutes, specifically Bacilli and Clostridia classes. Despite the fact that the inoculum sources were both geographically and ecologically diverse, all of the post-fermentation communities were more similar to each other in community structure than to the corresponding original inoculum community. In addition, studies of the sediments used as inocula revealed that environmental parameters, such as pH and water content, were significantly correlated with bacterial community composition. The wealth of data provided by current sequencing technologies allowed us to question whether communities with high process performances tend to achieve that performance with similar community structures.

Hammett, Amy Jo Macbey

2011-08-01T23:59:59.000Z

59

Biofuels: Review of Policies and Impacts  

E-Print Network (OSTI)

Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

60

The Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

Dr. David A. Petti

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network (OSTI)

of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

62

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network (OSTI)

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels liquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

63

Biofuels | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biofuels (Redirected from - Biofuels) Jump to: navigation, search Biofuels are a wide range of fuels which are in some way derived from biomass. The term covers solid biomass, liquid fuels and various biogases.[1] Biofuels are gaining increased public and scientific attention, driven by factors such as oil price spikes and the need for increased energy security. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is

64

UNSUSTAINABLE PROPOSAL: THE PRODUCTION OF RAW MATERIALS FOR FUTURE BIOFUEL PROCESSING PLANTS IN ENTRE ROS  

E-Print Network (OSTI)

A number of international bodies, academic institutions and well-known civil society organisation are currently debating and consulting on the sustainable production of energy commodities. Discussions on the establishment of standards, sustainability criteria and certification will give the production of raw materials for biofuels an air of acceptability. But the discussions have ignored all the existing

Stella Semino; Lilian Joensen; Els Wijnstra

2007-01-01T23:59:59.000Z

65

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network (OSTI)

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

66

Designing the perfect plant feedstock for biofuel production: Using the whole buffalo to diversify fuels and products  

NLE Websites -- All DOE Office Websites (Extended Search)

ÔØ Å ÒÙ× Ö ÔØ ÔØ Å ÒÙ× Ö ÔØ Designing the perfect plant feedstock for biofuel production: Using the whole buffalo to diversify fuels and products B.L. Joyce, C.N. Stewart Jr. PII: S0734-9750(11)00138-8 DOI: doi: 10.1016/j.biotechadv.2011.08.006 Reference: JBA 6469 To appear in: Biotechnology Advances Received date: 21 April 2011 Revised date: 6 July 2011 Accepted date: 4 August 2011 Please cite this article as: Joyce BL, Stewart Jr. CN, Designing the perfect plant feed- stock for biofuel production: Using the whole buffalo to diversify fuels and products, Biotechnology Advances (2011), doi: 10.1016/j.biotechadv.2011.08.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting

67

NREL Breaks New Ground in Plant Pretreatment for Biofuels (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL researchers use imaging technologies to broaden NREL researchers use imaging technologies to broaden knowledge of plant cell wall structures and identify ideal pretreatment of plant material. Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and BioEnergy Science Center combined different microscopic imaging methods to gain a greater understanding of the relationships between biomass cell wall structure and enzyme digestibility. This breakthrough could lead to optimizing sugar yields and lowering the costs of making biofuels. Using the new approach, NREL researchers discovered the localization of the enzymes responsible for deconstruction of the cell wall polymers and the effects of enzyme action on the cell wall. Unlike traditional composition analysis, the new methods allow access to

68

Argonaut BioFuels | Open Energy Information  

Open Energy Info (EERE)

Argonaut BioFuels Jump to: navigation, search Name Argonaut BioFuels Place Virginia Product Manufacturer of wood pellets that has a plant in Virginia, US. References Argonaut...

69

US Biofuels Ltd Ohio | Open Energy Information  

Open Energy Info (EERE)

Ltd Ohio Jump to: navigation, search Name US Biofuels Ltd (Ohio) Place Columbus, Ohio Zip 43215 Product Builder of a bioethanol plant in Richmond, OH. References US Biofuels Ltd...

70

Transgenic perennial biofuel feedstocks and strategies for bioconfinem...  

NLE Websites -- All DOE Office Websites (Extended Search)

current availability of bioenergy feed- stocks are a major problem in next-generation biofuels. There are global economic, political and environmental pressures to increase biofuel...

71

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

72

Economics of Current and Future Biofuels  

Science Conference Proceedings (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

73

NREL Breaks New Ground in Plant Pretreatment for Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers use imaging technologies to broaden knowledge of plant cell wall structures and identify ideal pretreatment of plant material.

Not Available

2013-01-01T23:59:59.000Z

74

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Biofuels | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biofuels Jump to: navigation, search Biofuels are a wide range of fuels which are in some way derived from biomass. The term covers solid biomass, liquid fuels and various biogases.[1] Biofuels are gaining increased public and scientific attention, driven by factors such as oil price spikes and the need for increased energy security. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is

76

Engineering Better Plants for Biofuels | U.S. DOE Office of Science...  

Office of Science (SC) Website

content was much greater. The resulting plants were viable and grew normally. When biomass from these engineered plants was subjected to enzymatic digestion, more sugars were...

77

Biofuels International | Open Energy Information  

Open Energy Info (EERE)

Biofuels International Jump to: navigation, search Name Biofuels International Place Indiana Sector Biofuels Product Pittsburgh based biofuels project developer presently...

78

Alternative Fuels Data Center: Biofuels Feedstock Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Feedstock Biofuels Feedstock Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuels Feedstock Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuels Feedstock Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuels Feedstock Requirements on Google Bookmark Alternative Fuels Data Center: Biofuels Feedstock Requirements on Delicious Rank Alternative Fuels Data Center: Biofuels Feedstock Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuels Feedstock Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Feedstock Requirements Renewable fuel production plants operating in Louisiana and deriving ethanol from the distillation of corn must use corn crops harvested in

79

UPDATED: Energy Department Announces New Advance in Biofuel Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPDATED: Energy Department Announces New Advance in Biofuel UPDATED: Energy Department Announces New Advance in Biofuel Technology UPDATED: Energy Department Announces New Advance in Biofuel Technology March 7, 2011 - 12:00am Addthis U.S. Energy Secretary Steven Chu today congratulated a team of researchers at the Department's BioEnergy Science Center who have achieved yet another advance in the drive toward next generation biofuels: using bacteria to convert plant matter directly into isobutanol, which can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This research is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. "Today's announcement is yet another sign of the rapid progress we are

80

Toward Direct Biosynthesis of Drop-in Ready Biofuels in Plants: Rapid Screening and Functional Genomic Characterization of Plant-derived Advanced Biofuels and Implications for Coproduction in Lignocellulosic Feedstocks.  

E-Print Network (OSTI)

??Advanced biofuels that are drop-in ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in (more)

Joyce, Blake Lee

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biofuels and bio-products derived from  

E-Print Network (OSTI)

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Pittendrigh, Barry

82

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

83

Mesaba next-generation IGCC plant  

Science Conference Proceedings (OSTI)

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

84

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

DOE Green Energy (OSTI)

Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

85

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

86

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

87

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

Science Conference Proceedings (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

88

E3 BioFuels | Open Energy Information  

Open Energy Info (EERE)

BioFuels BioFuels Jump to: navigation, search Name E3 BioFuels Place Shawnee, Kansas Zip 66218 Product Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate the ethanol plant. Coordinates 42.746644°, -105.010904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.746644,"lon":-105.010904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels July 30, 2013 - 11:38am Addthis Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass....

90

BIOFUELS 3D Database  

Science Conference Proceedings (OSTI)

BIOFUEL Database. NIST Home. BIOFUEL 3-D Structures ( Help / Contact / Rate Our Product and Services / NIST privacy policy ). Search: ...

91

Engineering Biofuels from Photosynthetic Bacteria  

generate the fuel, which can be used directly or mixed with other fuels without further refining. This method may provide a means to affordably and efficiently produce biofuels that will reduce U.S. reliance on fossil fuels.

92

Biofuel impacts on water.  

DOE Green Energy (OSTI)

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

2011-01-01T23:59:59.000Z

93

Northeast Biofuels | Open Energy Information  

Open Energy Info (EERE)

Northeast Biofuels Jump to: navigation, search Name Northeast Biofuels Place United Kingdom Sector Biofuels Product Northeast biofuels is a cluster of companies and organisations...

94

Rusni Biofuels | Open Energy Information  

Open Energy Info (EERE)

Rusni Biofuels Jump to: navigation, search Name Rusni Biofuels Place Andhra Pradesh, India Sector Biofuels Product Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

95

ECCO Biofuels | Open Energy Information  

Open Energy Info (EERE)

ECCO Biofuels Jump to: navigation, search Name ECCO Biofuels Place Texas Sector Biofuels Product ECCO Biofuels manufactures biodiesel production facilities as well as produces...

96

Border Biofuels | Open Energy Information  

Open Energy Info (EERE)

Border Biofuels Jump to: navigation, search Name Border Biofuels Place Melrose, United Kingdom Zip TD6 OSG Sector Biofuels Product Biofuels business which went into administration...

97

A Survey of Databases for Analysis of Plant Cell Wall-Related Enzymes  

E-Print Network (OSTI)

Plant genetic engineering for biofuel production: towardspublications. Keywords Biofuel . Plant cell wall . Databasewalls, has advantages as a biofuel feedstock, compared with

Cao, Peijian; Jung, Ki-Hong; Ronald, Pamela C.

2010-01-01T23:59:59.000Z

98

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network (OSTI)

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Recanati, Catherine

99

Tarryn Miller: Fueling biofuel's promise  

NLE Websites -- All DOE Office Websites (Extended Search)

Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source, that's a step in the right direction." » Return to homepage Student intern driven to develop cyanobacteria as viable carbon-neutral energy source Biochemist Tarryn Miller has always loved plants. Raised in an agricultural community, the Los Alamos research assistant was

100

Acciona Biofuels | Open Energy Information  

Open Energy Info (EERE)

Acciona Biofuels Acciona Biofuels Jump to: navigation, search Name Acciona Biofuels Place Pamplona, Spain Zip 31002 Product A subsidiary of Acciona Energia, that specialises in the technological development of biofuel technology and power plants. Coordinates 42.81275°, -1.643754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81275,"lon":-1.643754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vogtle Electric Generating Plant ETE Analysis Review  

Science Conference Proceedings (OSTI)

Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

Diediker, Nona H.; Jones, Joe A.

2006-12-09T23:59:59.000Z

102

BIOFUELS FOR TRANSPORTATION  

E-Print Network (OSTI)

BIOFUELS FOR TRANSPORTATION Global Potential and Implications for Sustainable Agriculture (Fraunhofer-Institut für Solare Energiesysteme); Weber Amaral (Brazilian Biofuels Programme); Robert Anex (Iowa State University); Eliana Antoneli (Brazilian Biofuels Programme); Daniel Aronson (Petrobras

Bensel, Terrence G.

103

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

104

Production cost and supply chain design for advanced biofuels.  

E-Print Network (OSTI)

??The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly (more)

Li, Yihua

2013-01-01T23:59:59.000Z

105

Next Generation Nuclear Plant GAP Analysis Report  

DOE Green Energy (OSTI)

As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

2008-12-01T23:59:59.000Z

106

International Coastal Biofuels | Open Energy Information  

Open Energy Info (EERE)

Coastal Biofuels Coastal Biofuels Jump to: navigation, search Name International Coastal Biofuels Place Tazewell, Virginia Zip 24651 Sector Biofuels Product International Coastal Biofuels is a development stage biofuels company that has proposed a biodiesel plant for Wilmington, North Carolina and is currently in negotiations for a second site in South Carolina. Coordinates 37.116177°, -81.518678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.116177,"lon":-81.518678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

108

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuels Photo of a woman in goggles handling a...

109

OpenEI - Biofuels  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm350 en Biofuels Consumption and Production by Country (2000 - 2010) http:en.openei.orgdatasetsnode875

Total annual biofuels...

110

Biofuels Information at NIST  

Science Conference Proceedings (OSTI)

... Improved Reaction Data Heat Up the Biofuels Harvest (10/15/2012). New NIST Method Accelerates Stability Testing of Soy-Based Biofuel (10/15 ...

2011-10-17T23:59:59.000Z

111

US Biofuels Quality Update  

Science Conference Proceedings (OSTI)

... US Biofuels Quality Update Teresa L. Alleman ... 4 Biodiesel Station Locations Biodiesel is an advanced biofuel under RFS and is sold everywhere ...

2013-08-28T23:59:59.000Z

112

Thermophysical Properties of Biofuels  

Science Conference Proceedings (OSTI)

... The thermophysical properties of biofuels are required for the efficient design of every ... into the databases will be the modeling of biofuel blends and ...

2012-10-02T23:59:59.000Z

113

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network (OSTI)

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each source of biofuel · Potential for environmental impacts · Comparative results · Conclusions #12;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol

Blouin-Demers, Gabriel

114

Agave: a biofuel feedstock for arid and semi-arid environments  

DOE Green Energy (OSTI)

Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

2011-05-31T23:59:59.000Z

115

Hanford Waste Vitrification Plant hydrogen generation  

DOE Green Energy (OSTI)

The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K. [and others

1996-02-01T23:59:59.000Z

116

FACTSHEET: Energy Department Investments in Biofuels Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending $1 billion each day overseas for oil imports, we can invest in a growing domestic clean energy economy here in the U.S. At the Energy Department, we are taking a number of steps to develop the next generation of biofuels that can help reduce our dependence on foreign oil, create jobs, support

117

FACTSHEET: Energy Department Investments in Biofuels Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending $1 billion each day overseas for oil imports, we can invest in a growing domestic clean energy economy here in the U.S. At the Energy Department, we are taking a number of steps to develop the next generation of biofuels that can help reduce our dependence on foreign oil, create jobs, support

118

Biofuel Production  

E-Print Network (OSTI)

Copyright 2011 Hiroshi Sakuragi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. 1.

Hiroshi Sakuragi; Kouichi Kuroda; Mitsuyoshi Ueda

2010-01-01T23:59:59.000Z

119

SUBJECT: PRAIRIE ISLAND NUCLEAR GENERATING PLANT  

E-Print Network (OSTI)

Generating Plant. The enclosed report documents the inspection findings which were discussed on February 22, 2001, with you and other members of your staff. This inspection examined activities conducted under your license as they relate to safety and compliance with the Commissions rules and regulations and with the conditions of your license. The inspectors reviewed selected procedures and records, observed activities, and interviewed personnel. Based on the results of this inspection, the inspectors identified two issues of very low safety significance (Green). One of these issues was determined to involve a violation of NRC requirements. However, because of its very low safety significance and because it has been entered into your corrective action program, the NRC is treating the issue as a non-cited violation, in accordance with Section VI.A.1 of the NRCs Enforcement Policy. If you deny the non-cited violation, you should provide a response with the basis for your denial, within 30 days of the date of this inspection report, to the Nuclear Regulatory Commission, ATTN: Document Control Desk, Washington DC 20555-0001; with copies to the Regional Administrator,

Dear Mr. Sorensen; Roger D. Lanksbury

2001-01-01T23:59:59.000Z

120

THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM  

Science Conference Proceedings (OSTI)

Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphites thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical nuclear grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

William E. Windes; Timothy D. Burchell; Robert L. Bratton

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

122

North Brawley Power Plant Placed in Service; Currently Generating...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW;...

123

EIA - Updated Capital Cost Estimates for Electricity Generation Plants  

U.S. Energy Information Administration (EIA)

... by the costs has changed significantly. Prior estimates were for a highly efficient plant employing gasification and a combined cycle generator; the new ...

124

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

125

Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Biofuels America is the largest biofuels producer in the world -- accounting for 48 percent of global output. Learn how the Energy Department is investing in projects that address critical barriers to continued growth. America is the largest biofuels producer in the world -- accounting for 48 percent of global output. Learn how the Energy Department is investing in projects that address critical barriers to continued growth. Learn how the Energy Department is supporting research into biofuels, which could help improve our environment, grow our economy and reduce our dependence on foreign oil. Featured Secretary Moniz: Biofuels Important to America's Energy Future Watch the video of Secretary Moniz speaking about the importance of

126

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel suggests that infrastructure development was not a major limitation. Cellulosic-based advanced biofuel has

127

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network (OSTI)

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

128

For discussion purposes only Biofuel and Poverty Nexus  

E-Print Network (OSTI)

For discussion purposes only Biofuel and Poverty Nexus in Asia 13th Poverty and Environment Partnership Meeting Myo Thant Manila, 11 June 2008 #12;For discussion purposes only Interest in Biofuels has and policies · Number of countries · Different biofuel feedstock · Research on second generation technology #12

129

Algenol Biofuels | Open Energy Information  

Open Energy Info (EERE)

Algenol Biofuels Jump to: navigation, search Name Algenol Biofuels Place Bonita Springs, Florida Zip 34135 Sector Biofuels, Carbon Product Algenol is developing a process for the...

130

Shirke Biofuels | Open Energy Information  

Open Energy Info (EERE)

Shirke Biofuels Jump to: navigation, search Name Shirke Biofuels Place India Product Indian biodiesel producer. References Shirke Biofuels1 LinkedIn Connections CrunchBase...

131

United Biofuels | Open Energy Information  

Open Energy Info (EERE)

United Biofuels Jump to: navigation, search Name United Biofuels Place York, Pennsylvania Product Waste and animal fats to biofuel producer, switched to animal fats from soy in...

132

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

Plants and Enzymes for Biofuels Production. Science. 2007;Lignocellulose. Biotechnol. for Biofuels 2009; 2:11. KumarPretreatment. Biotechnol. for Biofuels 2010; 3:27. Lionetti

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

133

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

134

Keystone Biofuels | Open Energy Information  

Open Energy Info (EERE)

Keystone Biofuels Keystone Biofuels Jump to: navigation, search Name Keystone Biofuels Place Shiremanstown, Pennsylvania Product Biodiesel producer that runs a 3.7m liter plant in Pennsylvania. Coordinates 40.222825°, -76.956154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.222825,"lon":-76.956154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Heartland Biofuel | Open Energy Information  

Open Energy Info (EERE)

Heartland Biofuel Heartland Biofuel Jump to: navigation, search Name Heartland Biofuel Place Flora, Indiana Product Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates 32.54209°, -90.313692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54209,"lon":-90.313692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Supercomputers Tackle Biofuel Production Problems  

NLE Websites -- All DOE Office Websites (Extended Search)

V V E R C O M I N G P L A N T R E C A L C I T R A N C E Supercomputers Tackle BIOFUEL Production Problems If you have ever dealt with an uncooperative, fractious kid or a combative employee, you understand the meaning of "recalcitrance" - over-the-top stubbornness, disobedience, and noncompliance. But recalcitrance is not just a human trait - plants can be recalcitrant, too, and for them it is a matter of survival. Over millions of years, plants have evolved complex structural and chemical mechanisms to ward off assaults on their structural sugars by microbial and animal marauders. So it should be no surprise that when humans attempt to turn plant biomass into biofuels to meet our energy needs, we discover how stubborn and noncompliant our vegetative friends can be. Plant recalcitrance is one of

137

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

the long- established corn processing infrastructure. Cellulosic-based advanced biofuel has a target of 21Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel Infrastructure of biofuel sustainability. #12;

138

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel leveraged the long-established corn processing infrastructure. Cellulosic-based advanced biofuel has is being integrated into a national economic model of biofuel sustainability. Point of Contact: Michael R

139

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

140

Novare Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

Novare Biofuels Inc Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name Novare Biofuels Inc Address 2983 Sterling Ct Place Boulder, Colorado Zip 80301 Sector Biofuels Product Developing technology to create gasoline from plant material Website http://www.novarebiofuels.com Coordinates 40.028506°, -105.240494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.028506,"lon":-105.240494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy 101: Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Energy 101: Biofuels Addthis Below is the text version for the Energy: 101 Biofuels video: The video opens with "Energy 101: Biofuels." Time-lapse shot of airport traffic, followed by various shots of cars, trucks, airplanes, and trains in motion. We all know that it takes a lot of fuel to keep our country running, right? Cars, trucks, planes, trains... Shots of rural landscapes, followed by a shot of a biorefinery. What if we could develop a homegrown, renewable source for those fuels? Well, good news - we already are! Montage of biorefinery shots and shots of various feedstocks and harvesting. We can create clean, renewable transportation fuels from plants, trees, and a range of other organic materials - in other words, biomass. Shots of various feedstocks, followed by various laboratory and biorefinery

142

Plant monitoring techniques and second generation designs  

SciTech Connect

Chemical and instrumental monitoring techniques suitable for geothermal use are described in a manner to relate them to plant operational problems and downtime avoidance. The use of these techniques permits the detection of scaling, the onset of scaling, corrosion loss, current corrosion rates and incipient heat exchanger failure. Conceptual advances are noted which simplify the research techniques to approaches that should be usable even in some low-capital well-head type power plants. 10 refs., 8 figs.

Kindle, C.H.; Shannon, D.W.; Robertus, R.J.; Pierce, D.D.; Sullivan, R.G.

1985-03-01T23:59:59.000Z

143

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

144

West Biofuels | Open Energy Information  

Open Energy Info (EERE)

West Biofuels Jump to: navigation, search Name West Biofuels Place California Sector Biofuels Product West Biofuels LLC is a 2007 start-up company based in California with funding...

145

The Next Generation Nuclear Plant (NGNP) Project  

DOE Green Energy (OSTI)

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOEs project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

146

Biofuel Economics  

DOE Green Energy (OSTI)

As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.

Klein-Marcuschamer, Daniel; Holmes, Brad; Simmons, Blake; Blanch, Harvey

2011-07-15T23:59:59.000Z

147

Innovative Design of New Geothermal Generating Plants  

SciTech Connect

This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

1989-07-01T23:59:59.000Z

148

Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.  

Science Conference Proceedings (OSTI)

Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

Wang, M.; Huo, H.; Arora, S. (Energy Systems)

2011-01-01T23:59:59.000Z

149

The Science Behind Cheaper Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial chemicals. Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of

150

Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most...

151

Table 11b. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001...

152

Biofuels Overview CLIMATETECHBOOK  

E-Print Network (OSTI)

, officially propos- ing "reference targets" for the diffusion of biofuels does not pinpoint the way in which set a target for the penetration of biofuels: they establish that a quantity, such as Qo, has to be made up of 90% conventional fuel and 10% biofuel. Therefore, So + T now becomes Sf + T. The target can

153

New Neutrinos Algal Biofuels  

E-Print Network (OSTI)

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE biofuels to run our cars, but if it costs $10 per gallon and requires petroleum products for production seven billion people, the nation seeks a competitive alternative to crude oil. Biofuel is a popular

154

Biofuels and Transportation  

E-Print Network (OSTI)

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

155

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

156

Ceres: Making Biofuels Bigger and Better | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ceres: Making Biofuels Bigger and Better Ceres: Making Biofuels Bigger and Better Ceres: Making Biofuels Bigger and Better February 15, 2013 - 3:00pm Addthis A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc. A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc. Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. ARPA-E Summit Information You can see the listing of participating companies here. To learn more and register for the Summit, visit www.arpae-summit.com. Energy crops are plants that can be used to make biofuels. The ideal crop can be grown quickly and densely with as little input as possible from farmers on land that's otherwise unusable by agrarians. Once harvested, these energy crops can be converted into biofuel through

157

Ceres: Making Biofuels Bigger and Better | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ceres: Making Biofuels Bigger and Better Ceres: Making Biofuels Bigger and Better Ceres: Making Biofuels Bigger and Better February 15, 2013 - 3:00pm Addthis A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc. A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc. Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. ARPA-E Summit Information You can see the listing of participating companies here. To learn more and register for the Summit, visit www.arpae-summit.com. Energy crops are plants that can be used to make biofuels. The ideal crop can be grown quickly and densely with as little input as possible from farmers on land that's otherwise unusable by agrarians. Once harvested, these energy crops can be converted into biofuel through

158

Deadwood Biofuels LLC Kramer Energy Group | Open Energy Information  

Open Energy Info (EERE)

Deadwood Biofuels LLC Kramer Energy Group Deadwood Biofuels LLC Kramer Energy Group Jump to: navigation, search Name Deadwood Biofuels LLC (Kramer Energy Group) Place Rapid City, South Dakota Zip 57709 Product South Dakota-based start-up enterprise setting up pellet production plants. References Deadwood Biofuels LLC (Kramer Energy Group)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Deadwood Biofuels LLC (Kramer Energy Group) is a company located in Rapid City, South Dakota . References ↑ "Deadwood Biofuels LLC (Kramer Energy Group)" Retrieved from "http://en.openei.org/w/index.php?title=Deadwood_Biofuels_LLC_Kramer_Energy_Group&oldid=344117" Categories: Clean Energy Organizations

159

Biofuels: Review of Policies and Impacts  

E-Print Network (OSTI)

standards for biofuel production make little economic sense.to biofuels. While the biofuel production and consumptionand further increases in biofuel production are driven pri-

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

160

Northwest Missouri Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Northwest Missouri Biofuels LLC Jump to: navigation, search Name Northwest Missouri Biofuels, LLC Place St Joseph, Missouri Sector Biofuels Product Northwest Missouri Biofuels...

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Blackhawk Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blackhawk Biofuels LLC Jump to: navigation, search Name Blackhawk Biofuels, LLC Place Freeport, Illinois Zip 61032 Sector Biofuels Product Blackhawk Biofuels was founded by a local...

162

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

Tees Valley Biofuels Jump to: navigation, search Name Tees Valley Biofuels Place United Kingdom Sector Biofuels Product Company set up by North East Biofuels to establish an...

163

Biofuels Power Corp | Open Energy Information  

Open Energy Info (EERE)

Biofuels Power Corp Jump to: navigation, search Name Biofuels Power Corp Place The Woodlands, Texas Zip 77380 Sector Biofuels, Renewable Energy Product Biofuels Power Corp produces...

164

Mid America Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Mid America Biofuels LLC Jump to: navigation, search Name Mid-America Biofuels LLC Place Jefferson City, Missouri Zip 65102 Sector Biofuels Product Joint Venture of Biofuels LLC,...

165

Empire Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Empire Biofuels LLC Jump to: navigation, search Name Empire Biofuels LLC Place New York, New York Zip 13148 Sector Biofuels Product Empire Biofuels LLC (Empire) was founded in...

166

Algae Biofuels Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology More Documents & Publications Details of the FY 2013 Congressional Budget...

167

Blue Ridge Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Ridge Biofuels LLC Jump to: navigation, search Name Blue Ridge Biofuels LLC Place Asheville, North Carolina Zip 28801 Sector Biofuels Product Blue Ridge Biofuels is a worker...

168

US Canadian Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

Canadian Biofuels Inc Jump to: navigation, search Name US Canadian Biofuels Inc. Place Green Bay, Wisconsin Zip 54313 Sector Biofuels Product US Canadian Biofuels Inc is the wholly...

169

Definition: Biofuels | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Biofuels Biomass converted to liquid or gaseous fuels such as ethanol, methanol, hydrogen and methane; primarily used for transportation. A form of bioenergy.[1][2][3][4] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Liquid fuels and blending components produced from biomass (plant) feedstocks, used primarily for transportation., Bio fuels are liquid fuels that are produced of plant material or herbal remains., No reegle definition available Related Terms Bioenergy, Biomass, Ethanol, Biodiesel, energy, fossil fuels, fuel cell References ↑ http://www.nrel.gov/biomass/glossary.html ↑ http://topics.nytimes.com/top/news/business/energy-environment/biofuels/index.html?scp=1&sq=biomass&st=Search ↑ http://www.nrel.gov/docs/fy00osti/25876.pdf

170

Biofuels | OpenEI  

Open Energy Info (EERE)

Biofuels Biofuels Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

171

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Approach to Assessing Fuel Flexibility for Improved Generating Plant Profitability  

Science Conference Proceedings (OSTI)

This report presents the results of an EPRI study of fuel flexibility, a strategy that can increase a power plant's financial performance by matching choices regarding the type of coal burned at a generating station to fluctuations in the market price of electricity. The report presents detailed analytical information as well as conclusions drawn from the study, and includes a checklist utilities can use in evaluating the potential for a plant to benefit by adopting fuel flexibility.

1999-08-24T23:59:59.000Z

173

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure: Optimizing the Evolution of Cellulosic Biofuel The rapid limitation. Cellulosic-based advanced biofuel has a target of 21 billion gallons by 2022 and requires almost

174

Bioenergy plants in the United States and China  

NLE Websites -- All DOE Office Websites (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

175

Biofuel Crop Growth in Hawaii  

Science Conference Proceedings (OSTI)

Hawaii has had a renewable portfolio standard (RPS) law since 2001 that was recently updated. The aim is to generate 40% of the state's electricity from renewable sources by 2030. This project was originally conceived to gain information on the possible profitable production of oilseed in Hawaii for use as a renewable biofuel. The project involved research teams from Hawaii Agriculture Research Center (HARC), the University of Hawaii -Manoa (UHM), and University ...

2012-12-01T23:59:59.000Z

176

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

177

Turbine-Generator Topics for Plant Engineers: Residual Magnetism  

Science Conference Proceedings (OSTI)

The undesirable magnetization of components of rotating equipment used in the generation of electric power is a problem that has been recognized for many years; but wide understanding of the origins, detection techniques, remediation, and avoidance principles of residual magnetization has been lacking. As part of the series Turbine-Generator Topics for Plant Engineers, EPRI commissioned this report with the purpose of providing engineers active in the operation and maintenance of power ...

2013-08-23T23:59:59.000Z

178

Program on Technology Innovation: The Next Generation Nuclear Plant  

Science Conference Proceedings (OSTI)

This Technology Update documents the Next Generation Nuclear Plant (NGNP) project, which will demonstrate the design, licensing, construction, and operation of a new nuclear energy source using high-temperature gas-cooled reactor (HTGR) technology. This new non-emitting energy source is applicable to a broad range of uses, from generating electricity to providing high-temperature industrial process heat to producing hydrogen. The NGNP project is sponsored as part of the Energy Policy Act of 2005 and envi...

2008-12-15T23:59:59.000Z

179

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network (OSTI)

targets prior to the commercialization of second generation biofuels.Biofuels made from byproduct feedstocks, primarily molasses ethanol from Asia and the Caribbean, can contribute significantly to LCFS carbon intensity targets

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

180

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Polish plant beats the odds to become model EU generator  

SciTech Connect

Once a Soviet satellite, Poland is now transforming into a thoroughly modern nation. To support its growing economy, this recent European Union member country is modernizing its power industry. Exemplifying the advances in the Polish electricity generation market is the 460 MW Patnow II power plant - the largest, most efficient (supercritical cycle) and environmentally cleanest lignite-fired unit in the country. 3 photos.

Neville, A.

2009-03-15T23:59:59.000Z

182

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

183

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

184

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

185

Vercipia Biofuels | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Vercipia Biofuels Jump to: navigation, search Name Vercipia Biofuels Place Highlands County, Florida...

186

US Biofuels | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon US Biofuels Jump to: navigation, search Name US Biofuels Place Rome, Georgia Product Biodiesel...

187

Bently Biofuels | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Bently Biofuels Jump to: navigation, search Name Bently Biofuels Place Minden, Nevada Zip 89423...

188

Riksch Biofuels | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Riksch Biofuels Jump to: navigation, search Name Riksch Biofuels Place Crawfordsville, Iowa Zip 52621...

189

Piedmont Biofuels | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Piedmont Biofuels Jump to: navigation, search Name Piedmont Biofuels Place Chatham County, North...

190

Biofuel: a comparative case study .  

E-Print Network (OSTI)

??This project analyzes the governments role in the commercialization of biofuel by comparing biofuel commercialization efforts to those of nuclear power and nanotechnology commercialization. The (more)

Carter, Kasey

2013-01-01T23:59:59.000Z

191

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A steam generating plant for marine vessels includes a steam superheater (nuclear reactor, perhaps) from which steam is ducted to the point of use (heat exchanger, etc.). A steam generator receiving the condensed steam from the point of use uses steam from the superheater to evaporate the condensate. The superheated steam used in the evaporation is compressed by a turbo-compressor and directed into the superheater. The condensate evaporated in the generator is used to drive the turbo-compressor. (D.C.W.)

Kendon, M.H.

1963-07-03T23:59:59.000Z

192

DOE Science Showcase - Biofuels in the databases | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Biofuels in the databases DOE Science Showcase - Biofuels in the databases The new ScienceCinema provides access points where the term biofuels is spoken in DOE multimedia presentations. DOE Green Energy renewable energy portal offers biofuels related research. Science Accelerator returns results for biofuels from DOE resources with just one query: DOE Data Explorer DOE Information Bridge Energy Citations Database Federal R&D Project Summaries Biofuels in the news... Secretary Chu Announces up to $30 Million for Research to Advance the Next Generation of Biofuels, DOE News, December 14, 2010 New lignin 'lite' switchgrass boosts biofuel yield by more than one-third, ORNL News, Feb. 14, 2011 Challenges for biofuels: New life cycle assessment report from Energy Biosciences Institute, Eureka Alert, February 9, 2011

193

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network (OSTI)

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

194

Coal-fired power plants the next generation  

Science Conference Proceedings (OSTI)

Coal is today a very important source of energy and the resources are sufficient for a long period. To keep power generation with coal up-to-date in view of minimizing the pollution (especially the CO{sub 2}) and of better economy, we will have introduce new plant technologies. After a general overview three of these are presented and compared with the state-of-the-art PCF technology, in respect to plant efficiency, environmental impact, investment cost, cost of electricity, and unit size.

Schemenau, W.; Schoedel, J. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

195

Next Generation Nuclear Plant Materials Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

G. O. Hayner; E.L. Shaber

2004-09-01T23:59:59.000Z

196

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

Science Conference Proceedings (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energys (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTARs initial offering combines--for the first time--a gasification with CO2 capture process simulator with a combined-cycle power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industrys growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

197

Innovations: Making Biofuels More Efficient | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations: Making Biofuels More Efficient Innovations: Making Biofuels More Efficient Innovations: Making Biofuels More Efficient December 3, 2010 - 11:40am Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? Currently all biofuels rely on photosynthetic plants to convert energy from sunlight into usable fuel, but the overall efficiency of this is low. A new ARPA-E project is using thermophilic extremophiles -- microorganisms that grow optimally in temperatures above 160 deg F -- to produce a new highly efficient fuel. On Tuesday, Secretary Chu spoke of the need for new innovations to lead the U.S. into a new green economy. This project out of Energy's Advanced Research Projects Agency is an example of just that. Currently all biofuels rely on photosynthetic plants to convert energy from

198

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

199

Generator loss of field study for AEP's Rockport plant  

SciTech Connect

Generator loss of field (LOF) conditions occur rarely. However, when LOF and consequent out-of-step conditions occur, the resultant high currents and pulsating torques can damage the turbine-generator under some conditions. Also the electrical system near the disturbance can be impacted by abnormal levels and cyclic swings of power, VArs, and voltages. This article describes the computed performance of AEP's remotely-located 2600 MW Rockport plant after simulated LOF disturbances to one of its 1300 MW cross-compound units. It shows the transmission facilities near Rockport, as well as nearby plants. Because of this topology, LOF on one unit can significantly impact the adjacent Rockport unit, and the reactive power drain could impose a heavy burden on transmission, impacting local voltages.

Rana, R.D.; Schulz, R.P.; Heyeck, M.; Boyer, T.R. Jr. (American Electric Power, Inc., Canton, OH (USA))

1990-04-01T23:59:59.000Z

200

NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

Mark Holbrook

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biofuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Basics Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment. Current biofuels research focuses on new forms of biofuels such as ethanol and biodiesel, and on biofuels conversion processes. Ethanol Ethanol-an alcohol-is made primarily from the starch in corn grain. It is most commonly used as an additive to petroleum-based fuels to reduce toxic air emissions and increase octane. Today, roughly half of the gasoline sold in the United States includes 5%-10% ethanol.

202

Presentation 2.2: Biofuels -A Strategic Option for the Global Forest Sector? Michael Obersteiner  

E-Print Network (OSTI)

Presentation 2.2: Biofuels - A Strategic Option for the Global Forest Sector? Michael Obersteiner Generation Biofuels. We will close with a SWOT analysis of the forest sector vis-à-vis the oil industry the emerging big player on the biofuels market. 117 #12;#12;Michael Obersteiner & Sten Nilsson International

203

IMPROVEMENTS IN STEAM GENERATING PLANT AND AN IMPROVED METHOD OF GENERATING STEAM  

SciTech Connect

A steam generating plant, designed for heat transfer from a liquid metal (potassium, sodium, or their alloy) with reduced danger of explosion, is based on the fact that, if steam (especially superheated) rather than water contacts the liquid metal, the risk of explosion is much reduced. In this plant steam is superheated by heat transfer from liquid metal, the steam bsing generated by heat transfer between the superheated steam and water. Diagrams are given for the plant, which comprises a series of heat exchangers in which steam is superheated; part of the superheated steam is recycled to convert water into steam. Apart from the danger of a steam--liquid metal contact, the main danger is that the superheated steam might cool, coming to the saturated condition; this danger can be averted by setting up mceans for detecting low steam temperatures. (D.L.C.)

Zoller, R.E.

1960-09-01T23:59:59.000Z

204

Genes for Xylose Fermentation, Enhanced Biofuel Production in Yeast  

Efficient fermentation of cellulosic feedstocks is an essential step in the production of biofuel from plant materials. Glucose and xylose are the two most abundant monomeric carbohydrates found in hemicellulose. Saccharomyces cerevisiae, the yeast ...

205

UPDATED: Energy Department Announces New Advance in Biofuel Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to create a major new industry - one based on bio-material such as wheat and rice straw, corn stover, lumber wastes, and plants specifically developed for bio-fuel production that...

206

DOE grant to support enhanced biofuel crop design | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

& Discovery | Clean Energy | Research Highlights SHARE DOE grant to support enhanced biofuel crop design January 01, 2013 Xiaohan Yang works with a model plant for crassulacean...

207

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network (OSTI)

New Biofuels by Overcoming Biomass Recalcitrance Henrik Vibeenergy stored in plant biomass. The papers in this volumefeedstocks development and biomass deconstruction. Keywords

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

208

DOE grant to support enhanced biofuel crop design | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE grant to support enhanced biofuel crop design January 01, 2013 Xiaohan Yang works with a model plant for crassulacean acid metabolism (CAM) genomics research. January 2013....

209

US Biofuels Inc USB | Open Energy Information  

Open Energy Info (EERE)

US Biofuels Inc USB Jump to: navigation, search Name US Biofuels, Inc (USB) Place Delaware Sector Biofuels Product A Delaware corporation and a wholly owned subsidiary of...

210

Cassava, a potential biofuel crop in China  

E-Print Network (OSTI)

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

211

Greenergy Biofuels Limited | Open Energy Information  

Open Energy Info (EERE)

Greenergy Biofuels Limited Jump to: navigation, search Name Greenergy Biofuels Limited Place London, Greater London, United Kingdom Zip WC1V 7BD Sector Biofuels Product Imports,...

212

Development of Measurements and Standards for Biofuels  

Science Conference Proceedings (OSTI)

... have worked with biofuel experts from the US, EU, and Brazil, the world's major producers of biofuels, to harmonize biofuel specifications among ...

2013-02-11T23:59:59.000Z

213

Amereco Biofuels Corp | Open Energy Information  

Open Energy Info (EERE)

Amereco Biofuels Corp Jump to: navigation, search Name Amereco Biofuels Corp Place Phoenix, Arizona Zip 85028 Sector Biofuels Product Amereco pursues technologies that...

214

Category:Biofuels | Open Energy Information  

Open Energy Info (EERE)

Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

215

Aaditya Biofuels Ltd | Open Energy Information  

Open Energy Info (EERE)

Aaditya Biofuels Ltd Jump to: navigation, search Name Aaditya Biofuels Ltd. Place Gujarat, India Product Gujarat-based biodiesel producer. References Aaditya Biofuels Ltd.1...

216

NREL: Learning - Biofuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Basics Biofuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow it to be made from cellulose

217

Energy Basics: Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Learn more about biodiesel basics. Biofuel...

218

Biofuels Issues and Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Biofuels Issues and Trends Biofuels Issues and Trends October 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Biofuels Issues and Trends i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. October 2012 U.S. Energy Information Administration | Biofuels Issues and Trends ii Table of Contents

219

In Defense of Biofuels, Done Right  

SciTech Connect

Recent claims attibuting rising fuel costs and deforestation to biofuels are examined. Given a priority to protect biodiversity and ecosystem services, it is important to further explore the drivers for conversion of land at the frontier and to consider the effects, positive and negative, that U.S. biofuel policies could have in these areas. This means it is critical to distinguish between valid concerns calling for caution and alarmist criticisms that attribute complex problems solely to biofuels. This article discusses how plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation s indeed, the world s energy security while providing other benefits and reducing pressures on native ecosystems.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Lee, Russell [ORNL; Leiby, Paul Newsome [ORNL

2009-01-01T23:59:59.000Z

220

Borger Biofuels LLLP | Open Energy Information  

Open Energy Info (EERE)

Borger Biofuels LLLP Borger Biofuels LLLP Jump to: navigation, search Name Borger Biofuels LLLP Place Borger, Texas Product Developing a 110m gallon ethanol plant in Borger, Texas. Coordinates 35.66796°, -101.390419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.66796,"lon":-101.390419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear plant design and modification guidelines for PWR steam generator reliability  

Science Conference Proceedings (OSTI)

Operating experience gathered from PWR plant operation during the 1960's and 1970's has been incorporated into a series of design guidelines for secondary plant systems and steam generators. Specific guidelines included in this volume are: plant design for PWR steam generator inspection and nondestructive testing, revision 1; guidelines for design of steam generator blowdown systems, revision 1; plant design guidelines for layup and cleanup of steam, feedwater, and condensate systems, revision 1; design guidelines for plant secondary systems, revision 1 and plant design for steam generator replaceability, revision 1. The guidelines are intended to address those aspects of new plant design which will minimize corrosion damage to steam generators by controlling impurity ingress, facilitate steam generator nondestructive testing and provide for eventual replacement of steam generator if necessary. The guidelines, last revised in 1986, are primarily applicable to new plant construction, however, some of the guidelines may also be applicable to major backfits to existing plants.

Not Available

1991-09-01T23:59:59.000Z

222

New Biofuel Technology to Diversify U.S. Energy Portfolio | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Biofuel Technology to Diversify U.S. Energy Portfolio New Biofuel Technology to Diversify U.S. Energy Portfolio New Biofuel Technology to Diversify U.S. Energy Portfolio September 26, 2012 - 4:09pm Addthis Agrivida, a biotechnology firm, is developing a plants with enzymes that will help reduce the costs of biofuels. | Photo courtesy of Agrivida. Agrivida, a biotechnology firm, is developing a plants with enzymes that will help reduce the costs of biofuels. | Photo courtesy of Agrivida. Cori Sue Morris Communications Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Increased production of domestic biofuels could cut foreign oil imports by 33 percent over 15 years, resulting in increased energy security and independence. Biofuel production has the potential to create jobs for Americans in

223

New Biofuel Technology to Diversify U.S. Energy Portfolio | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Technology to Diversify U.S. Energy Portfolio Biofuel Technology to Diversify U.S. Energy Portfolio New Biofuel Technology to Diversify U.S. Energy Portfolio September 26, 2012 - 4:09pm Addthis Agrivida, a biotechnology firm, is developing a plants with enzymes that will help reduce the costs of biofuels. | Photo courtesy of Agrivida. Agrivida, a biotechnology firm, is developing a plants with enzymes that will help reduce the costs of biofuels. | Photo courtesy of Agrivida. Cori Sue Morris Communications Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Increased production of domestic biofuels could cut foreign oil imports by 33 percent over 15 years, resulting in increased energy security and independence. Biofuel production has the potential to create jobs for Americans in

224

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

225

Biofuels: Helping to Move the Industry to the Next Level | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level November 16, 2010 - 6:25pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What are the key facts? In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels. Yesterday, I had the pleasure of speaking to members of the cellulosic biofuels community and its value chain at the 5th Annual Cellulosic Biofuels Finance & Investment Forum in Washington, D.C. The Summit is dedicated to discussions on taking biofuels to the next level by first focusing on the policy, regulatory and financial solutions that will enable

226

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

227

Hydrogen Production from the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

228

Biofuel Production Initiative at Claflin University Final Report  

DOE Green Energy (OSTI)

For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

Chowdhury, Kamal

2011-07-20T23:59:59.000Z

229

World Biofuels Study  

DOE Green Energy (OSTI)

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01T23:59:59.000Z

230

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network (OSTI)

GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

231

BioFuels Atlas (Presentation)  

DOE Green Energy (OSTI)

Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

Moriarty, K.

2011-02-01T23:59:59.000Z

232

#LabChat Recap: The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Biofuels The Future of Biofuels #LabChat Recap: The Future of Biofuels September 27, 2012 - 4:51pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs #LabChat: The Future of Biofuels Brian Pfleger, a synthetic biologist and metabolic engineer from the Great Lakes Bioenergy Research Center, stepped into the #LabChat to answer questions about his work developing advanced biofuels. Moderating the #LabChat was John Greenler, director of education and outreach for the center. Storified by Energy Department · Thu, Sep 27 2012 14:48:51 Great Lakes Bioenergy Research Center is one of three Energy Department facilities not only trying to develop the next generation of biofuels, but rather, trying to develop a new generation of biofuels. They are

233

Engineering Biofuels from Photosynthetic Bacteria  

Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.

234

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

235

The Ecological Impact of Biofuels  

E-Print Network (OSTI)

well come from market-mediated LUC. Mitigating this impact requires targeting biofuel production Voluntary and mandatory biofuel targets for transport fuels in G8+5 countriesa Country/country grouping Africa Up to 8% by 2006 (V) (10% target under consideration) United Kingdom 5% biofuels by 2010 (M), 10

Kammen, Daniel M.

236

Biofuel and Bioenergy implementation scenarios  

E-Print Network (OSTI)

Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

237

Biofuels in Oregon and Washington  

E-Print Network (OSTI)

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

238

Danielle Goldtooth Paper #6 -Biofuels  

E-Print Network (OSTI)

Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

Lega, Joceline

239

HTGR power plant turbine-generator load control system  

SciTech Connect

A control system is disclosed for a high temperature gas cooled reactor power plant, wherein a steam source derives heat from the reactor coolant gas to generate superheated and reheated steam in respective superheater and reheater sections that are included in the steam source. Each of dual turbine-generators includes a high pressure turbine to pass superheated steam and an associated intermediate low pressure turbine to pass reheated steam. A first admission valve means is connected to govern a flow of superheated steam through a high pressure turbine, and a second admission valve means is connected to govern a flow of reheated steam through an intermediate-low pressure turbine. A bypass line and bypass valve means connected therein are connected across a second admission valve means and its intermediate-low pressure turbine. The second admission valve means is positioned to govern the steam flow through the intermediate-low pressure turbine in accordance with the desired power output of the turbine-generator. In response to the steam flow through the intermediate-low pressure turbine, the bypass valve means is positioned to govern the steam flow through the bypass line to maintain a desired minimum flow through the reheater section at times when the steam flow through the intermediate-low pressure turbine is less than such minimum. The power output of the high pressure turbine is controlled by positioning the first admission valve means in predetermined proportionality with the desired power output of the turbine-generator, thereby improving the accuracy of control of the power output of the high pressure turbine at low load levels.

Braytenbah, A.S.; Jaegtnes, K.O.

1976-12-28T23:59:59.000Z

240

Alternative Fuels Data Center: Biofuels Quality Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Quality Biofuels Quality Specifications to someone by E-mail Share Alternative Fuels Data Center: Biofuels Quality Specifications on Facebook Tweet about Alternative Fuels Data Center: Biofuels Quality Specifications on Twitter Bookmark Alternative Fuels Data Center: Biofuels Quality Specifications on Google Bookmark Alternative Fuels Data Center: Biofuels Quality Specifications on Delicious Rank Alternative Fuels Data Center: Biofuels Quality Specifications on Digg Find More places to share Alternative Fuels Data Center: Biofuels Quality Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Quality Specifications The Tennessee Department of Agriculture may inspect and test biofuels under

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

242

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

sizable increases in biofuel production need not result ina reasonable level of biofuel production that avoids pushing26 Appendix A - Biofuel Production

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

243

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

244

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

245

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

246

Major DOE Biofuels Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Slide 1 Major DOE Biofuels Project Locations...

247

Next Generation Nuclear Plant Methods Technical Program Plan  

Science Conference Proceedings (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2010-12-01T23:59:59.000Z

248

Next Generation Nuclear Plant Methods Technical Program Plan  

Science Conference Proceedings (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2007-01-01T23:59:59.000Z

249

Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498  

Science Conference Proceedings (OSTI)

One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

2010-09-01T23:59:59.000Z

250

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

251

GM's Perspective on Advanced Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GM's Perspective on Advanced Biofuels GM's Perspective on Advanced Biofuels Bioufuels GM GM's Perspective on Advanced Biofuels More Documents & Publications Algae Biofuels...

252

Near-zero emissions combustor system for syngas and biofuels  

SciTech Connect

A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

253

Fulcrum Biofuels LLc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 1848 - 1848 Environmental Assessment DOE/EA - 1848 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO FULCRUM SIERRA BIOFUELS, LLC FOR A WASTE-TO-ETHANOL FACILITY IN MCCARRAN, STOREY COUNTY, NEVADA U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 June 2011 Table of Contents Environmental Assessment DOE/EA - 1848 i

254

Agriculture - Sustainable biofuels Redux  

SciTech Connect

Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research; Dale, Virginia H [ORNL; Doering, Otto C. [Purdue University; Hamburg, Steven P [Brown University; Melillo, Jerry M [ORNL; Wander, Michele M [University of Illinois, Urbana-Champaign; Parton, William [Colorado State University, Fort Collins

2008-10-01T23:59:59.000Z

255

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

256

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

257

Microsoft Word - biofuels1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

MEDIA CONTACT Larisa Brass MEDIA CONTACT Larisa Brass Communications and External Relations (865) 574-4163 (865) 385-5271 cell ORNL- le d te am win s DOE b io e n e r g y ce nt er OAK RIDGE, Tenn., June 26, 2007 - A team led by Oak Ridge National Laboratory has won an award from the Department of Energy for a $125 million bioenergy research center that will seek new ways to produce biofuels. Funded by the Department of Energy's Office of Science, the DOE Bioenergy Science Center will be located on the ORNL campus in a new facility funded by the state and owned by the University of Tennessee. The center will employ the interdisciplinary expertise of the team's partners in biology, engineering and agricultural science and commercialization to develop processes for converting plants including switchgrass

258

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

259

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

260

Nuclear Plant Design and Modification Guidelines for PWR Steam Generator Reliability  

Science Conference Proceedings (OSTI)

Operating and maintenance experience relative to PWR steam generator reliability has produced a variety of "lessons learned." This information has been incorporated in a series of guidelines to aid utilities in major plant modifications and new plant construction.

1991-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

To make biofuels, or not to make biofuels:That is the question.  

Science Conference Proceedings (OSTI)

In the past five years or so, opinion regarding the manufacture of biofuels has swung between approval and disapproval, and back again. First-generation fuels in particular, which are made from materials that can also serve as human or animal food, were in

262

Biofuels Program Plan, FY 1992--FY 1996. Executive summary  

DOE Green Energy (OSTI)

This five-year program plan describes the goals and philosophy of the US Department of Energy`s (DOE) Biofuels Systems Division (BSD) program and the BSD`s major research and development (R&D) activities for fiscal years (FY) 1992 through 1996. The plan represents a consensus among government and university researchers, fuel and automotive manufacturers, and current and potential users of alternative fuels and fuel additives produced from biomass. It defines the activities that are necessary to produce versatile, domestic, economical, renewable liquid fuels from biomass feedstocks. The BSD program focuses on the production of alternative liquid fuels for transportation-fuels such as ethanol, methanol, biodiesel, and fuel additives for reformulated gasoline. These fuels can be produced from many plant materials and from a significant portion of the wastes generated by municipalities and industry. Together these raw materials and wastes, or feedstocks, are called biomass.

Not Available

1993-01-01T23:59:59.000Z

263

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network (OSTI)

Uncertainty can be either an opportunity or a risk. Every construction project begins with the expectation of project performance. To meet the expectation, construction projects need to be managed through sound risk assessment and management beginning with the front-end of the project life cycle to check the feasibility of a project. The Construction Industry Institutes (CII) International Project Risk Assessment (IPRA) tool has been developed, successfully used for a variety of heavy industry sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks associated with NPP projects, the goal of this thesis is to develop tailored risk framework for NPP projects that leverages and modifies the existing IPRA process. The IPRA has 82 elements to assess the risks associated with international construction projects. The modified IPRA adds five major issues (elements) to consider the unique risk factors of typical NPP projects based upon a review of the literature and an evaluation of the performance of previous nuclear-related facilities. The modified IPRA considers the sequence of NPP design that ultimately impacts the risks associated with plant safety and operations. Historically, financial risks have been a major chronic problem with the construction of NPPs. This research suggests that unstable regulations and the lack of design controls and oversight are significant risk issues. This thesis includes a consistency test to initially validate whether the asserted risks exist in actual conditions. Also, an overall risk assessment is performed based on the proposed risk framework for NPP and the list of assessed risk is proposed through a possible scenario. After the assessment, possible mitigation strategies are also provided against the major risks as a part of this thesis. This study reports on the preliminary findings for developing a new risk framework for constructing nuclear power plants. Future research is needed for advanced verification of the proposed elements. Follow-on efforts should include verification and validation of the proposed framework by industry experts and methods to quantify and evaluate the performance and risks associated with the multitude of previous NPP projects.

Yeon, Jaeheum 1981-

2012-12-01T23:59:59.000Z

264

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

265

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

266

Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques  

DOE Patents (OSTI)

A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

Wroblewski, David (Mentor, OH); Katrompas, Alexander M. (Concord, OH); Parikh, Neel J. (Richmond Heights, OH)

2009-09-01T23:59:59.000Z

267

Alternative Fuels Data Center: Biofuels Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Google Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Delicious Rank Alternative Fuels Data Center: Biofuels Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Incentive The Mississippi Department of Agriculture and Commerce (Department) provides incentive payments to qualified ethanol and biodiesel producers

268

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

269

Performance Calculations and Optimization of a Fresnel Direct Steam Generation CSP Plant with Heat Storage.  

E-Print Network (OSTI)

?? This master thesis deals with the performance calculations of a 9MW linear Fresnel CSP plant withdirect steam generation built by the Solar Division of (more)

Schlaifer, Perrine

2013-01-01T23:59:59.000Z

270

Biofuel Biofuel OutlookOutlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Source: Hart Energys Global Biofuels Center, June 2012 Latin America: More countries push for mid-and higher level ethanol blends Ethanol Biodiesel Ethanol & Biodiesel

271

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network (OSTI)

fuel cells10­12 . These systems generate electricity under mild conditions through the oxidation the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal, vibra- tions or body movements to generate power for an implanted device are limited because

Recanati, Catherine

272

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

273

Property:EIA/861/OperatesGeneratingPlant | Open Energy Information  

Open Energy Info (EERE)

OperatesGeneratingPlant OperatesGeneratingPlant Jump to: navigation, search This is a property of type Boolean. Description: Operates Generating Plant Entity operates power generating plants (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/OperatesGeneratingPlant" Showing 25 pages using this property. (previous 25) (next 25) A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + Akiachak Native Community Electric Co + true + Alabama Municipal Elec Authority + true + Alabama Power Co + true + Alaska Electric & Energy Coop + true + Alaska Electric Light&Power Co + true + Alaska Energy Authority + true +

274

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network (OSTI)

10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

275

Assessment of next generation nuclear plant intermediate heat exchanger design.  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on shell and straight tube and printed circuit heat exchangers.

Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

2008-10-17T23:59:59.000Z

276

Biofuels: Review of Policies and Impacts  

E-Print Network (OSTI)

and Ashish Shrestha. Biofuels: Markets, targets and impacts.2003/30, which set a target of 2% of biofuels to be used inthe 2005 target with 3.86% and 2.11% of biofuels use in

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

277

Complexity and Systems Biology of Microbial Biofuels  

E-Print Network (OSTI)

Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

Rand, David

278

Biofuels: Review of Policies and Impacts  

E-Print Network (OSTI)

Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

279

CleanTech Biofuels | Open Energy Information  

Open Energy Info (EERE)

CleanTech Biofuels Place St. Louis, Missouri Zip 63130 Sector Biofuels Product CleanTech Biofuels holds exclusive licenses to a pair of technologies for converting municipal solid...

280

DuPont Biofuels | Open Energy Information  

Open Energy Info (EERE)

DuPont Biofuels Jump to: navigation, search Name DuPont Biofuels Place Wilmington, Delaware Zip 19898 Product Biofuel technology development subsidiary of DuPont. Co-developing...

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pan Am Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

Biofuels Inc Jump to: navigation, search Name Pan-Am Biofuels Inc Place Park City, Utah Zip 84068 Product Utah-based jatropha oil feedstock producer. References Pan-Am Biofuels...

282

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

283

Engineering Biofuels from Photosynthetic Bacteria  

interdisciplinary target molecule selection and testing ... Engineering Biofuels from Photosynthetic Bacteria (IN 09001) November 2012 tdc_es_in09001_1112_mn

284

Other Biofuels | OpenEI  

Open Energy Info (EERE)

Upload data GDR Community Login | Sign Up Search Facebook icon Twitter icon Other Biofuels Dataset Summary Description The UK Department of Energy and Climate Change (DECC)...

285

Constraints on algal biofuel production.  

E-Print Network (OSTI)

??The aspiration for producing algal biofuel is motivated by the desire to replace conventional petroleum fuels, produce fuels domestically, and reduce greenhouse gas emissions. Although, (more)

Beal, Colin McCartney

2011-01-01T23:59:59.000Z

286

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

DOE Green Energy (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

287

Updated Capital Cost Estimates for Electricity Generation Plants  

Reports and Publications (EIA)

This paper provides information on the cost of building new electricity power plants. These cost estimates are critical inputs in the development of energy projections and analyses.

Michael Leff

2010-11-18T23:59:59.000Z

288

Available Technologies: High Energy Gamma Generator  

Biofuels; Biotechnology & Medicine. ... In addition, it can simultaneously use two or more target materials to generate photons with discrete energies.

289

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

290

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

291

USDA Biofuels R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D More Documents & Publications Algae Biofuels Technology Details of the FY 2013 Congressional Budget Request...

292

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network (OSTI)

compiles data on power plant operations and characteristicscharacteristics (e.g. power plant unit, state, grid controlBaseCase contains hourly power-plant unit-level information

Bushnell, James B.; Wolfram, Catherine

2005-01-01T23:59:59.000Z

293

Biofuels: Review of Policies and Impacts  

E-Print Network (OSTI)

energy markets: the German biodiesel market. DARE Discussioncosts and bene?ts of biodiesel and ethanol biofuels.Keywords: Biofuels; Ethanol; Biodiesel JEL Codes: Q16; Q42

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

294

Engineering Biofuels from Photosynthetic Bacteria | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to...

295

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here youll find marketing summaries of biomass and biofuels technologies available for licensing ...

296

Synergy Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Synergy Biofuels LLC Jump to: navigation, search Name Synergy Biofuels LLC Place Dryden, Virginia Zip...

297

Pinnacle Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Pinnacle Biofuels Inc Jump to: navigation, search Name Pinnacle Biofuels, Inc. Place Crossett, Arkansas...

298

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

299

Alternative Fuels Data Center: Biofuels Commercialization Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Commercialization Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Commercialization Grants on Facebook Tweet about Alternative Fuels Data Center:...

300

Thermostabilized enzyme created for biofuels production  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermostabilized enzyme created for biofuels production Thermostabilized enzyme created for biofuels production These enzymes might serve as biocatalysts for carbon sequestration...

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

United Biofuels Private Limited | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon United Biofuels Private Limited Jump to: navigation, search Name United Biofuels Private Limited Place Tamil Nadu, India...

302

Alternative Fuels Data Center: Biofuels Industry Development...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Industry Development Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Industry Development Grants on Facebook Tweet about Alternative Fuels Data...

303

Middle Georgia Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Middle Georgia Biofuels Jump to: navigation, search Name Middle Georgia Biofuels Place East Dublin, Georgia Zip 31027...

304

Midwestern Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Midwestern Biofuels LLC Jump to: navigation, search Name Midwestern Biofuels LLC Place South Shore, Kentucky Zip 41175 Sector Biomass Product Kentucky-based biomass energy pellet...

305

2nd International Conference on Biofuel Standards  

Science Conference Proceedings (OSTI)

... Masahiko Numata, NMIJ/AIST, Japan, " Prospects of Biofuels in Japan & Preliminary Studies on Biofuel CRMs by the National Metrology Institute of ...

2013-05-15T23:59:59.000Z

306

Biofuels of Colorado LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels of Colorado LLC Place Denver, Colorado Zip 80216 Product Biodiesel producer in Denver, Colorado. References Biofuels of Colorado LLC1 LinkedIn Connections CrunchBase...

307

BlackGold Biofuels | Open Energy Information  

Open Energy Info (EERE)

BlackGold Biofuels Jump to: navigation, search Name BlackGold Biofuels Place Philadelphia, Pennsylvania Zip 19107 Product Philadelphia-based developer of a waste...

308

Biofuels America Inc | Open Energy Information  

Open Energy Info (EERE)

Biofuels America Inc Jump to: navigation, search Name Biofuels America Inc Place Memphis, Tennessee Zip 38126 Product Tennessee-based company that has proposed building a...

309

United Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

United Biofuels Inc Jump to: navigation, search Name United Biofuels Inc Place Plover, Wisconsin Zip 54467 Sector Biomass Product Wisconsin-based manufacturer and distributor of...

310

Biofuels Year-in-Review 2011  

U.S. Energy Information Administration (EIA)

Cellulosic Biofuels Projects in Procurement, Capacity and Startup Dates Tony Radich, Advanced Biofuels Workshop, August 1, 2012 22 million gallons 2012 19 KiOR 11

311

Vehicle Technologies Office: Research on Biofuels Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Biofuels Infrastructure and End-Use Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits,...

312

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

313

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

314

Engineering Plants for Tolerance to Multiple Abiotic Stresses by Overexpression of AtSAP13 Protein and Optimization of Crambe abyssinica as a Biofuel Crop in Western Massachusetts.  

E-Print Network (OSTI)

??Abiotic stresses such as drought, salt and exposure to toxic metals adversely affect the growth and productivity of crop plants and are serious threats to (more)

Vaine, Evan

2010-01-01T23:59:59.000Z

315

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor Operational Status Tables (Information and data on nuclear power reactors Generation: by State and Reactor. Annual Energy Review, ...

316

Commercial second-generation PFBC plant transient model: Task 15  

Science Conference Proceedings (OSTI)

The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

White, J.S.; Getty, R.T.; Torpey, M.R.

1995-04-01T23:59:59.000Z

317

Advanced Biofuels Workshop  

Gasoline and Diesel Fuel Update (EIA)

August 1, 2012 August 1, 2012 In Attendance U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 Adam Sieminski EIA Terry Higgins Hart Downstream Energy Services Peter Ryus RSB Services Foundation Zia Haq DOE Robert Kozak Atlantic Biomass Conversion Leticia Phillips UNICA/Brazillian Sugarecane Industry Assoc. Paul Kamp Leifmark, LLC/Inbicon Biomass Steve Gerber Fiberight Joanne Ivancic Advanced Biofuels USA John G. Cowie Agenda 2020 Technology Alliance Jeff Hazle American Fuel & Petrochemical Manufacturers Bryan Just American Petroleum Institute Barry Bernfeld Bunge Global Agribusiness Michael Corbin CLF Partners International LLC Paul Grabowski DOE, Office of Biomass Program

318

Biofuels: Project summaries  

DOE Green Energy (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

319

Alternative Fuels Data Center: Biofuel Quality Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Quality Biofuel Quality Program to someone by E-mail Share Alternative Fuels Data Center: Biofuel Quality Program on Facebook Tweet about Alternative Fuels Data Center: Biofuel Quality Program on Twitter Bookmark Alternative Fuels Data Center: Biofuel Quality Program on Google Bookmark Alternative Fuels Data Center: Biofuel Quality Program on Delicious Rank Alternative Fuels Data Center: Biofuel Quality Program on Digg Find More places to share Alternative Fuels Data Center: Biofuel Quality Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Quality Program The Washington State Department of Agriculture (WSDA) Biofuels Quality Program tests and assesses biofuel quality and quantity to resolve any

320

Alternative Fuels Data Center: Biofuels Procurement Preference  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Procurement Biofuels Procurement Preference to someone by E-mail Share Alternative Fuels Data Center: Biofuels Procurement Preference on Facebook Tweet about Alternative Fuels Data Center: Biofuels Procurement Preference on Twitter Bookmark Alternative Fuels Data Center: Biofuels Procurement Preference on Google Bookmark Alternative Fuels Data Center: Biofuels Procurement Preference on Delicious Rank Alternative Fuels Data Center: Biofuels Procurement Preference on Digg Find More places to share Alternative Fuels Data Center: Biofuels Procurement Preference on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Procurement Preference State and county agency contracts awarded for the purchase of diesel fuel must give preference to bids for biofuels or blends of biofuel and

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Biofuels Production Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Production Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Production Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Grants The Biofuels Production Incentive Grant Program provides grants to producers of advanced biofuels, specifically fuels derived from any

322

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The Biofuels Study Commission (Commission) was established to study the feasibility and effectiveness of incentives that promote the development and use of advanced biofuels in the state, including production credits,

323

Alternative Fuels Data Center: Biofuel Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Infrastructure Biofuel Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuel Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuel Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuel Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Biofuel Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Biofuel Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuel Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Infrastructure Grants The Arizona Biofuel Conversion Program distributes grants to encourage the use of biofuels in the state and to promote the development of fueling

324

LC Biofuels | Open Energy Information  

Open Energy Info (EERE)

LC Biofuels LC Biofuels Jump to: navigation, search Name LC Biofuels Place Richmond, California Sector Biofuels Product Biofuels producer that owns and operatres a 1.3m facility in Richmond, California. Coordinates 37.5407°, -77.433654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5407,"lon":-77.433654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

WHEB Biofuels | Open Energy Information  

Open Energy Info (EERE)

WHEB Biofuels WHEB Biofuels Jump to: navigation, search Name WHEB Biofuels Place London, United Kingdom Sector Biofuels Product Ethanol producer that also invests in emerging biofuels production technologies. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

CPS Biofuels | Open Energy Information  

Open Energy Info (EERE)

CPS Biofuels CPS Biofuels Jump to: navigation, search Name CPS Biofuels Place Cary, North Carolina Zip 27513 Sector Biofuels Product R&D company that is developing a new process to produce biofuels from vegetable oils and fats Coordinates 35.78933°, -78.781169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.78933,"lon":-78.781169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Solix Biofuels | Open Energy Information  

Open Energy Info (EERE)

Solix Biofuels Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name Solix Biofuels Address 430 B. North College Ave Place Fort Collins, Colorado Zip 80524 Sector Biofuels Product Makes biocrude through closed-pond algae bioreactors Website http://www.solixbiofuels.com/ Coordinates 40.5932386°, -105.0766501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5932386,"lon":-105.0766501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Cobalt Biofuels | Open Energy Information  

Open Energy Info (EERE)

Cobalt Biofuels Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name Cobalt Biofuels Address 500 Clyde Avenue Place Mountain View, California Zip 94043 Sector Biofuels Product Biofutanol and green electricity Year founded 2005 Number of employees 11-50 Phone number 650 230 0740 Website http://www.cobaltbiofuels.com/ Coordinates 37.3985482°, -122.0469839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3985482,"lon":-122.0469839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Abundant Biofuels | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biofuels Jump to: navigation, search Name Abundant Biofuels Place Monterey, California Sector Biofuels Product Abundant Biofuels plans to develop biodiesel feedstock plantations, refineries, and distribution channels in one or more Caribbean, Central American, or South American countries. Coordinates 38.413256°, -79.582974° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.413256,"lon":-79.582974,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A nuclear power plant is designed using a heavy-watermoderated, steam- cooled reactor. In this plant, feed water is heated by the moderator and reactor steam to form feed steam, which is then superheated by superheated reactor steam and expanded through a nozzle. The feed steam issuing from the nozzie has added to it the superheated reactor steam, and the resulting steam is compressed, heated further in the reactor, and part of it passed to the turbine. (D.L.C.)

Bauer, S.G.; Jubb, D.H.

1962-10-10T23:59:59.000Z

331

AVESTAR Center for operational excellence of electricity generation plants  

SciTech Connect

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energys National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

Zitney, S.

2012-01-01T23:59:59.000Z

332

Examination of Heat Recovery Steam Generator (HRSG) Plants  

Science Conference Proceedings (OSTI)

Previous EPRI reports have documented problems associated with operation and maintenance of complex heat recovery steam generators (HRSGs). The EPRI report Heat Recovery Steam Generator Tube Failure Manual (1004503) provides information about known HRSG tube failures and necessary steps that can be taken to diagnose and prevent similar problems. The EPRI report Delivering High Reliability Heat Recovery Steam Generators (1004240) provides guidance for continued and reliable operation of HRSGs from initial...

2005-11-30T23:59:59.000Z

333

EIA - Updated Capital Cost Estimates for Electricity Generation Plants  

U.S. Energy Information Administration (EIA)

Almost all of these factors can vary by region, as do capacity factors for renewable generation, operations and maintenance costs associated with individual ...

334

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network (OSTI)

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

335

Analysis of advanced biofuels.  

SciTech Connect

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

336

Biofuels: 1995 project summaries  

DOE Green Energy (OSTI)

Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

NONE

1996-01-01T23:59:59.000Z

337

How Sweet It Is: Agrivida's Next-Gen Sugar Biofuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sweet It Is: Agrivida's Next-Gen Sugar Biofuel Sweet It Is: Agrivida's Next-Gen Sugar Biofuel How Sweet It Is: Agrivida's Next-Gen Sugar Biofuel December 8, 2011 - 3:03pm Addthis Agrivida's President and co-founder Mike Raab. His company is using ARPA-E funding to develop a new method for converting plant biomass into useful feedstock for the production of biofuels. | Photo courtesy of ARPA-E. Agrivida's President and co-founder Mike Raab. His company is using ARPA-E funding to develop a new method for converting plant biomass into useful feedstock for the production of biofuels. | Photo courtesy of ARPA-E. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? Innovative projects sponsored by ARPA-E are changing the way we produce and use energy.

338

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

339

Letter to NEAC to Review the Next Generation Nuclear Plant Activities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NEAC to Review the Next Generation Nuclear Plant to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative;  NGNP is to be used to generate electricity, to produce hydrogen or (to do) both;  The Idaho National Laboratory (INL) will be the lead national lab for the project;  NGNP will be sited at the INL in

340

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets  

E-Print Network (OSTI)

May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

Noble, James S.

342

The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities  

SciTech Connect

The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A ??multi-method? or ??mixed method? research methodology was employed for each case study.

Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

2013-02-11T23:59:59.000Z

343

Biofuels Process Engineering School of Engineering  

E-Print Network (OSTI)

and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate and water; to date, the demand on these resources to meet the national biofuel target has rarely been the biofuel target, about 26.5 million hectares of land and over 90 km3 of water (of evapotranspiration

344

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network (OSTI)

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

345

LIHD biofuels: toward a sustainable future  

E-Print Network (OSTI)

LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

Palmer, Michael W.

346

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network (OSTI)

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

347

Biochemistry is the study of chemical reactions within a living cell with applications ranging from pharmaceuticals to biofuels. We study the molecules that make up life! Our major aligns well with  

E-Print Network (OSTI)

from pharmaceuticals to biofuels. We study the molecules that make up life! Our major aligns well and climate change (biofuels/plant biotechnology). Career opportunities with the Bachelor of Science degree

Logan, David

348

Power Plant Electrical Reference Series, Volume 1: Electric Generators  

Science Conference Proceedings (OSTI)

This comprehensive and practical guide to electric power apparatus and electrical phenomena provides an up-to-date source book for power plant managers, engineers, and operating personnel. Aiding in the recognition and prevention of potential problems, the 16-volume guide can help utilities save staff time and reduce operating expenses.

1988-05-01T23:59:59.000Z

349

CAES (conventional compressed-air energy storage) plant with steam generation: Preliminary design and cost analysis  

Science Conference Proceedings (OSTI)

A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstrated the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.

Nakhamkin, M.; Swensen, E.C.; Abitante, P.A. (Energy Storage and Power Consultants, Mountainside, NJ (USA))

1990-10-01T23:59:59.000Z

350

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The Florida Department of Management Services (DMS), in coordination with the Florida Department of Transportation (DOT), must conduct an analysis of fuel additives and biofuels DOT uses through its central fueling

351

Alternative Fuels Data Center: Voluntary Biofuels Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Voluntary Biofuels Voluntary Biofuels Program to someone by E-mail Share Alternative Fuels Data Center: Voluntary Biofuels Program on Facebook Tweet about Alternative Fuels Data Center: Voluntary Biofuels Program on Twitter Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Google Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Delicious Rank Alternative Fuels Data Center: Voluntary Biofuels Program on Digg Find More places to share Alternative Fuels Data Center: Voluntary Biofuels Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Biofuels Program In place of the formal Biodiesel Blend Mandate, the Massachusetts Department of Energy Resources (DOER) will launch a voluntary biofuels

352

Alternative Fuels Data Center: State Biofuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Biofuel Study to State Biofuel Study to someone by E-mail Share Alternative Fuels Data Center: State Biofuel Study on Facebook Tweet about Alternative Fuels Data Center: State Biofuel Study on Twitter Bookmark Alternative Fuels Data Center: State Biofuel Study on Google Bookmark Alternative Fuels Data Center: State Biofuel Study on Delicious Rank Alternative Fuels Data Center: State Biofuel Study on Digg Find More places to share Alternative Fuels Data Center: State Biofuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Biofuel Study The Hawaii Department of Business, Economic Development and Tourism (Department) conducted a study on the conditions and policies needed to expand biofuel production in Hawaii with the goal of displacing a

353

Alternative Fuels Data Center: Biofuels Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Tax Exemption Biofuels Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuels Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuels Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuels Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuels Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuels Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuels Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Tax Exemption Biodiesel or other biofuels produced by an individual from feedstocks grown on the individual's property and used in the individual's own vehicle are

354

Alternative Fuels Data Center: Biofuel Loan Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Loan Program Biofuel Loan Program to someone by E-mail Share Alternative Fuels Data Center: Biofuel Loan Program on Facebook Tweet about Alternative Fuels Data Center: Biofuel Loan Program on Twitter Bookmark Alternative Fuels Data Center: Biofuel Loan Program on Google Bookmark Alternative Fuels Data Center: Biofuel Loan Program on Delicious Rank Alternative Fuels Data Center: Biofuel Loan Program on Digg Find More places to share Alternative Fuels Data Center: Biofuel Loan Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Loan Program The Biofuels Partnership in Assisting Community Expansion (PACE) Loan Program provides an interest buy down of up to 5% below the note rate to biodiesel, ethanol, or green diesel production facilities; livestock

355

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The Minnesota Department of Agriculture (Department) must pursue available resources to promote and increase the production and use of biofuels in the state. These efforts should include increasing the availability of E85 fuel

356

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

357

Pacific basin biofuel workshop report: November 1984  

SciTech Connect

The Hawaii Natural Energy Institute (HNEI), in cooperation with the State Department of Planning and Economic Development, and industry, sponsored the Pacific Basin Biofuel Workshop on November 1 and 2, 1984. The purpose of the workshop was to identify issues or problems that should be addressed, to prioritize plant species that grow rapidly in the local climate, and to formulate a plan of action for the development of Hawaii's biomass resources, for possible Pacific-wide implementation. The workshop discussions are summarized and conclusions and recommendations are presented.

1984-01-01T23:59:59.000Z

358

Biofuel News, Winter 1998, Vol. 2, No. 1  

DOE Green Energy (OSTI)

This issue of Biofuels News contains two articles. The first focuses on the art and science of bioenergy project financing using the example of three companies planning biomass-to-ethanol plants. The second highlights the objectives and activities of the five Regional Biomass Energy Programs (RBEP) within the US DOE.

Woodward, S.

1999-03-04T23:59:59.000Z

359

International Trade of Biofuels (Brochure)  

DOE Green Energy (OSTI)

In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

Not Available

2013-05-01T23:59:59.000Z

360

Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)  

Science Conference Proceedings (OSTI)

An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

Not Available

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Other Route to Biofuels | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

The Other Route to Biofuels The Other Route to Biofuels Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.18.13 The Other Route to Biofuels Scientists identify key genes for increasing oil in plant leaves. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Using genomics, Brookhaven researchers found a means to significantly increase oils in plant leaves-which could greatly enhance the energy content of plants as biofuel feedstocks. Photo courtesy of iStockphoto Using genomics and a range of other techniques, Brookhaven researchers found a means to significantly increase oils in plant leaves-which

362

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network (OSTI)

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

363

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

364

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

365

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

366

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

367

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

368

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development  

E-Print Network (OSTI)

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

Minnesota, University of

369

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End AmericasService Koplow D. 2006. Biofuels - At What Cost? Governement

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

370

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network (OSTI)

yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

Dunlop, Mary

2012-01-01T23:59:59.000Z

371

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

Creating Markets For Green Biofuels Kalaitzandonakes, N. ,Creating Markets For Green Biofuels US Dept. ofCreating Markets for Green Biofuels: Measuring and improving

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

372

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network (OSTI)

Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels, Journal of Quantitativeconverted into liquid biofuels [5053]. On the other hand,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

373

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

374

Model estimates food-versus-biofuel trade-off  

E-Print Network (OSTI)

D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

375

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

Fortman, J.L.

2011-01-01T23:59:59.000Z

376

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

Eggert, Anthony

2007-01-01T23:59:59.000Z

377

The Economics of Trade, Biofuel, and the Environment  

E-Print Network (OSTI)

agriculture and in biofuel production that improve feedstockagricultural or biofuel production, requires a tax paymentemissions from biofuel production increases. Therefore, the

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

378

Can feedstock production for biofuels be sustainable in California?  

E-Print Network (OSTI)

extent of po- tential biofuel production in California areglobal increases in biofuel production have raised ques-for sustainable biofuel production. This discussion has been

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

379

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

case studies of specific biofuel production pathways using aenvironmental impacts of biofuel production and use are notimpacts. In addition, biofuel production facilities can use

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

380

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network (OSTI)

pumps. Furthermore, for biofuel production from renewablecontinue to increase biofuel production titers, it will befor improving microbial biofuel production using a synthetic

Dunlop, Mary

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The effect of biofuel on the international oil market  

E-Print Network (OSTI)

and estimate that biofuel production in 2007 increased fuelcompetitive. About 50% of biofuel production costs come fromelasticity is above 8.5, biofuel production meets the RFS2

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

382

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network (OSTI)

The rapid rise in biofuel production is driven by governmentprices. Globally, biofuel production is dominated bysoybeans) and current biofuel production processes are many

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

383

Genetic and biotechnological approaches for biofuel crop improvement.  

E-Print Network (OSTI)

engineering for biofuel production: towards affordablebiomass feedstocks for biofuel production. Genome Biol 2008,sugar yields for biofuel production. Nat Biotechnol 2007,

Vega-Snchez, Miguel E; Ronald, Pamela C

2010-01-01T23:59:59.000Z

384

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

Fortman, J. L.

2010-01-01T23:59:59.000Z

385

Model estimates food-versus-biofuel trade-off  

E-Print Network (OSTI)

associ- ated with biofuel production and model the effectspolicymakers blame biofuel production mandates for the foodfood crisis struck as biofuel production, driven largely by

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

386

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

Eggert, Anthony

2007-01-01T23:59:59.000Z

387

PPC Worley and Independence Biofuels JV | Open Energy Information  

Open Energy Info (EERE)

PPC Worley and Independence Biofuels JV Jump to: navigation, search Name PPC, Worley and Independence Biofuels JV Place Pennsylvania Sector Biofuels Product JV between PPC, Worley...

388

Los Alamos technology strikes a chord with algal biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of...

389

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

390

Can feedstock production for biofuels be sustainable in California?  

E-Print Network (OSTI)

tolife.org/biofuels. [US EPA] US Environmental Protection19. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

391

Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths versus Facts A fact sheet about the myth versus facts about biofuels and...

392

Biofuels Center of North Carolina | Open Energy Information  

Open Energy Info (EERE)

Biofuels Center of North Carolina Jump to: navigation, search Name Biofuels Center of North Carolina Place Oxford, North Carolina Zip 27565 Sector Biofuels Product State-funded,...

393

Model estimates food-versus-biofuel trade-off  

E-Print Network (OSTI)

D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

394

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

Fortman, J.L.

2011-01-01T23:59:59.000Z

395

Major DOE Biofuels Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Program Major DOE Biofuels Project Locations in the United States Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations...

396

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

Figures Figure 1: General Biofuel Pathway With Inputs andcase studies of specific biofuel production pathways using aenvironmental impacts of biofuel production and use are not

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

397

Can feedstock production for biofuels be sustainable in California?  

E-Print Network (OSTI)

and extent of po- tential biofuel production in CaliforniaRegulations versus science. Biofuel Bio- product Refining 3:wastewaters may be used in biofuel feedstock production of

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

398

Main Generator and Exciter Life Cycle Management Plans at STARS Nuclear Plants  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This CD is a compilation of six optimum LCM plans for the main generators and exciters at the six STARS plants and also contains a generic LCM information "sourcebook" for generators.

2003-09-30T23:59:59.000Z

399

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

400

Life Cycle Management Plan for Main Generator and Exciter at Callaway Nuclear Plant: Generic Version  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides Ameren UE with an optimized LCM plan for the main generator and exciter at Callaway Plant.

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SG Biofuels | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biofuels Jump to: navigation, search Name SG Biofuels Address 132. N. El Camino Real Place Encinitas, California Zip 92024 Sector Biofuels Product Specializes in cultivating and processing Jatropha (a shrub) to produce biodiesel, energy, and bioplastics Website http://www.sgfuel.com/ Coordinates 33.0468773°, -117.2596637° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0468773,"lon":-117.2596637,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Biofuels: A Petroleum Industry Perspective  

U.S. Energy Information Administration (EIA)

9Biofuels, including ethanol are an important resource ... The limits of ethanol If all US corn production was used for ethanol. U.S. Corn Use 2006-2007 Source: USDA.

403

Propel Biofuels | Open Energy Information  

Open Energy Info (EERE)

Propel Biofuels Propel Biofuels Jump to: navigation, search Name Propel Biofuels Address 4444 Woodland Park Ave North Place Seattle, Washington Zip 98103 Sector Biofuels Product Sells biodiesel and E85 ethanol blends Website http://www.propelfuels.com/con Coordinates 47.6606589°, -122.344595° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6606589,"lon":-122.344595,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Multiphase Flow Modeling of Biofuel Production Processes  

Science Conference Proceedings (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

405

Table 2. Ten Largest Plants by Generation Capacity, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "1. Northeastern","Coal","Public Service Co of Oklahoma",1815 "2. Muskogee","Coal","Oklahoma Gas & Electric Co",1524 "3. Seminole","Gas","Oklahoma Gas & Electric Co",1504 "4. Kiamichi Energy Facility","Gas","Kiowa Power Partners LLC",1178 "5. Redbud Power Plant","Gas","Oklahoma Gas & Electric Co",1160 "6. Oneta Energy Center","Gas","Calpine Central L P",1086 "7. Riverside","Gas","Public Service Co of Oklahoma",1070 "8. Sooner","Coal","Oklahoma Gas & Electric Co",1046 "9. GRDA","Coal","Grand River Dam Authority",1010

406

Seattle Biodiesel aka Seattle BioFuels | Open Energy Information  

Open Energy Info (EERE)

Seattle Biodiesel aka Seattle BioFuels Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name Seattle Biodiesel (aka Seattle BioFuels) Place Seattle, Washington Sector Renewable Energy Product Subsidiary of Imperium Renewables which operates the 19m liter Seattle biodiesel plant. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

From Processing Juice to Producing Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of the chemicals company INEOS -- is on schedule to begin construction this fall on the new Indian River BioEnergy Center near Vero Beach, Florida. The INEOS facility -- which was formerly a grapefruit processing plant for Ocean Spray -- will produce nearly eight million gallons of bioethanol per year from renewable biomass including yard, wood and vegetable waste. As part of the American Recovery and Reinvestment Act, the Department of Energy awarded cost-share grants to 19 integrated biorefinery projects throughout the country. INEOS Bio was selected to for a matching grant of up to $50 million, which will fund the construction for the new center.

408

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

Hydrogen H2 Producing Algae Biofuel Feedstocks Sugar andalgae are known to produce large amounts of fatty acids and have been proposed as biofuel

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

409

Earls Nook Limited Formerly Biofuels Corporation Plc | Open Energy  

Open Energy Info (EERE)

Earls Nook Limited Formerly Biofuels Corporation Plc Earls Nook Limited Formerly Biofuels Corporation Plc Jump to: navigation, search Name Earls Nook Limited (Formerly Biofuels Corporation Plc) Place Teeside, United Kingdom Zip TS23 4EA Sector Biofuels Product Biofuels Corporation produces biodiesel, glycerine and potassium sulphate, and is building several plants in Teesside. Coordinates 34.609016°, -82.774818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.609016,"lon":-82.774818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Alternative Fuels Data Center: Advanced Biofuel Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Biofuel Advanced Biofuel Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Biofuel Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Biofuel Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Biofuel Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Biofuel Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Biofuel Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Biofuel Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Biofuel Incentives The North Dakota Industrial Commission's Renewable Energy Program provides matching grants and other forms of assistance to support research and

411

Alternative Fuels Data Center: Biofuels Production Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Production Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Production Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Promotion The state legislature supports the Federal "25 x 25" initiative, under which 25% of the total energy consumed in the United States by 2025 would

412

Alternative Fuels Data Center: Biofuels Blender Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Blender Biofuels Blender Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blender Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blender Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Google Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Delicious Rank Alternative Fuels Data Center: Biofuels Blender Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blender Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blender Requirements Blenders of ethanol and gasoline and biodiesel and diesel fuels outside of the bulk transfer terminal system must obtain a blender's license and are

413

Alternative Fuels Data Center: Biofuels Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Tax Deduction Biofuels Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Biofuels Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Biofuels Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Biofuels Tax Deduction on Google Bookmark Alternative Fuels Data Center: Biofuels Tax Deduction on Delicious Rank Alternative Fuels Data Center: Biofuels Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Biofuels Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Tax Deduction A business and occupation tax deduction is available for the sale or distribution of biodiesel or E85 motor fuel. This deduction is available until July 1, 2015. (Reference Revised Code of Washington 82.04.4334

414

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Best Biofuels LLC Place Austin, Texas Zip 78746 Sector Biofuels Product Best Biofuels is developing and commercialising vegetable oils and ethanol as fuel. References Best Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Best Biofuels LLC is a company located in Austin, Texas . References ↑ "Best Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Best_Biofuels_LLC&oldid=342683" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

415

Alternative Fuels Data Center: Biofuels Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Biofuels Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Infrastructure Grants The Renewable Fuel Infrastructure Program provides financial assistance to qualified E85 and biodiesel retailers. Cost-share grants are available for

416

Alternative Fuels Data Center: Reduced Biofuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Biofuels Tax Reduced Biofuels Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Biofuels Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Biofuels Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Google Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Delicious Rank Alternative Fuels Data Center: Reduced Biofuels Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Biofuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Biofuels Tax A tax of $0.12 per gallon is imposed on gasoline containing at least 70% ethanol (E70) and diesel fuel containing at least 5% biodiesel (B5). This is a $0.07 discount compared to the conventional gasoline tax of $0.19 per

417

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The New Jersey Assembly urges the U.S. Congress to maintain the federal Renewable Fuels Standard, which will increase the production of domestic renewable fuel, enhance consumer choice, improve the economy, increase

418

Alternative Fuels Data Center: Biofuels Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Research Biofuels Research Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Research Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Research Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Research Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Research Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Research Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Research Grants The Colorado Office of Economic Development administers the Bioscience Discovery Evaluation Grant Program (Program), which provides grants to

419

Alternative Fuels Data Center: Biofuels Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Google Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Delicious Rank Alternative Fuels Data Center: Biofuels Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Incentive Qualified ethanol and biodiesel producers are eligible for production incentives on a per gallon basis. To be eligible for the incentive, the

420

Alternative Fuels Data Center: Biofuels Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Research Biofuels Research Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Research Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Research Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Research Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Research Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Research Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Research Grants The Connecticut Department of Economic and Community Development administers a fuel diversification grant program to provide funding to

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Biofuels Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Use Biofuels Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Use Requirement State-owned diesel-powered vehicles and equipment must use a biodiesel blend that contains at least 2% biodiesel (B2), where available, as long as

422

Alternative Fuels Data Center: Biofuel Use Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Use Biofuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Biofuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Biofuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuel Use Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Use Requirements To reduce fossil fuel dependence and statewide greenhouse gas emissions, New Jersey state departments, agencies, offices, universities, and colleges

423

Development of Cellulosic Biofuels (LBNL Summer Lecture Series)  

DOE Green Energy (OSTI)

Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

Somerville, Chris (Director, Energy Biosciences Institute)

2007-06-20T23:59:59.000Z

424

Lead Risk Minimization Program at Palisades Generating Plant  

Science Conference Proceedings (OSTI)

Lead-assisted stress corrosion cracking (PbSCC) can affect all steam generator tubing materials in current use. The state-of-knowledge regarding lead transport, the effects of lead on tube degradation, and possible PbSCC mitigation measures were summarized in the Pressurized Water Reactor Lead Sourcebook: Identification and Mitigation of Lead in PWR Secondary Systems (EPRI 1013385). The Sourcebook outlines several actions that could be taken by utilities to assess and reduce the risk of PbSCC. This repor...

2008-12-08T23:59:59.000Z

425

PetroSun Biofuels China | Open Energy Information  

Open Energy Info (EERE)

PetroSun Biofuels China Jump to: navigation, search Name PetroSun Biofuels China Place China Sector Biofuels Product PetroSun Biofuels China is a wholly owned subsidiary of...

426

From Biomass to Biofuels: NREL Leads the Way  

DOE Green Energy (OSTI)

This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

Not Available

2006-08-01T23:59:59.000Z

427

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

428

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs  

DOE Green Energy (OSTI)

A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

2008-03-01T23:59:59.000Z

429

Co-Generation at a Practical Plant Level  

E-Print Network (OSTI)

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle and back pressure turbine exhausting to useful process, identifies potential energy savings. Process Power Recovery: Replacing pressure reducing valve with steam turbine produces mechanical or electrical energy in conjunction with process heat. Steam vs. Electric Motor: Comparison of electric motor operating cost with steam turbines to show that cost-savings depend on application. Waste Heat Recovery: The addition of a steam turbine can justify waste heat projects that were previously not feasible on an economic basis.

Feuell, J.

1980-01-01T23:59:59.000Z

430

Aurora BioFuels Inc | Open Energy Information  

Open Energy Info (EERE)

Aurora BioFuels Inc Aurora BioFuels Inc Jump to: navigation, search Name Aurora BioFuels Inc. Place Alameda, California Zip 94502 Sector Biofuels, Renewable Energy Product California-based renewable energy company exploring new sources of feedstock for the production of biofuels. The firm focus on the utilization of microalgae to generate bio-oil, which can be converted into biodiesel. Coordinates 37.766585°, -122.244739° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.766585,"lon":-122.244739,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

432

Methods for the economical production of biofuel from biomass  

DOE Patents (OSTI)

Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

2013-04-30T23:59:59.000Z

433

Refueling Infrastructure-Status of Biofuels and Investigations  

Science Conference Proceedings (OSTI)

... DOE Labs work with manufacturers to determine methods to deploy biofuels into existing ... Guidance - Compatibility Of UST Systems With Biofuel ...

2013-08-28T23:59:59.000Z

434

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-08-19T23:59:59.000Z

435

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-12-02T23:59:59.000Z

436

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

437

ENERGY GENERATION RESEARCH PIER Energy Generation Research  

E-Print Network (OSTI)

..................... 9 Figure 3: Dairy Biogas Digesters Developed During 2000s in California ....................... 8 Table 6: Livestock Manure Biogas Power Plants Developed in California for new applications of bioenergy, including electricity, biogas, and biofuels. · Maximize

438

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

439

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Prices and Oil Consumption Would Increase Without Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

440

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network (OSTI)

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Momentum Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

Momentum Biofuels Inc Momentum Biofuels Inc Place League City, Texas Zip 77573 Sector Biofuels Product Momentum Biofuels, a Texas-based company that is developing a business in the production, marketing, and distribution of alternative fuels, with an current emphasis on biodiesel fuel. References Momentum Biofuels Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Momentum Biofuels Inc is a company located in League City, Texas . References ↑ "Momentum Biofuels Inc" Retrieved from "http://en.openei.org/w/index.php?title=Momentum_Biofuels_Inc&oldid=348911" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

442

Biofuels Atlas (United States) | Open Energy Information  

Open Energy Info (EERE)

Biofuels Atlas (United States) Biofuels Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios Website: maps.nrel.gov/biomass Equivalent URI: cleanenergysolutions.org/content/biofuels-atlas-united-states,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance Biofuels Atlas is an interactive map that allows users to compare biomass feedstocks and biofuels by location. Users may select from and apply biomass data layers to a map as well as query and download biofuels and feedstock data. The state zoom function summarizes state energy use and infrastructure for traditional and bioenergy power, fuels, and resources. The tool also calculates the biofuels potential for a given area.

443

Energy 101 | Biofuels | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

| Biofuels Energy 101 | Biofuels July 25, 2012 - 2:14pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this mean for...

444

Energy 101: Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Biofuels Energy 101: Biofuels August 16, 2013 - 12:11pm Addthis Learn how biomass is converted into clean, renewable transportation fuels to power our cars, trucks,...

445

Cassava, a potential biofuel crop in China  

E-Print Network (OSTI)

as a biomass for biofuel production and some of its economiceconomic viability of biofuel production is the efficiencybiofuel; metabolic engineering; China Abstract Cassava is ranking as fifth among crops in global starch production.

Jansson, C.

2010-01-01T23:59:59.000Z

446

Vehicle Technologies Office: Research on Biofuels Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research on Biofuels Infrastructure and End-Use to someone by E-mail Share Vehicle Technologies Office: Research on Biofuels Infrastructure and End-Use on Facebook Tweet about...

447

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Helping to Train Operators for Next Generation of National Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

448

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Helping to Train Operators for Next Generation of Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

449

The importance of combined cycle generating plants in integrating large levels of wind power generation  

Science Conference Proceedings (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

450

4 International Conference on Biofuels Standards: Current ...  

Science Conference Proceedings (OSTI)

... sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels ...

2012-11-20T23:59:59.000Z

451

Looking Ahead Biofuels, H2, & Vehicles  

Biogas Lipids/ Oils. Gasification. Pyrolysis & Liquefaction Hydrolysis Wide Range of Biofuel Technologies * Blending Products Anaerobic Digestion Upgrading ...

452

Biomass and Biofuels Success Stories - Energy Innovation ...  

Biomass and Biofuels Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and ...

453

Biomass and Biofuels Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Biomass and Biofuels Technologies Available for Licensing - Energy Innovation ...

454

Potential for Biofuels from Algae (Presentation)  

DOE Green Energy (OSTI)

Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

Pienkos, P. T.

2007-11-15T23:59:59.000Z

455

Legislating Biofuels in the United States (Presentation)  

DOE Green Energy (OSTI)

Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

Clark, W.

2008-07-01T23:59:59.000Z

456

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

457

Algal Biofuels Research Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

458

Destructive Examination of Tube R31C66 From the Ginna Nuclear Plant Steam Generator  

Science Conference Proceedings (OSTI)

Like some other PWR steam generators, the Ginna plant has experienced loss of steam pressure for several years. Deposits of up to 8 mils thick have been found and may explain the steam pressure loss. In addition, destructive and nondestructive examinations found a through-wall crack in the roll transition of a hot leg tube removed from this plant as well as shallow intergranular attack (IGA) in the tubesheet crevice region.

1991-07-01T23:59:59.000Z

459

Greenlight Biofuels | Open Energy Information  

Open Energy Info (EERE)

Greenlight Biofuels Greenlight Biofuels Place Charlottesville, Virginia Product Charlottesville-based company that develops, builds, owns and operates biofuel facilities in North America. Coordinates 38.03213°, -78.477529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.03213,"lon":-78.477529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Austin Biofuels | Open Energy Information  

Open Energy Info (EERE)

Austin Biofuels Austin Biofuels Jump to: navigation, search Name Austin Biofuels Place Austin, Texas Product Supplies pure and blended biodiesel to all of Texas. It has benefited from support from the Clean Energy Incubator, an Austin-based Incubator fund. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biofuels from Microalgae and Seaweeds  

DOE Green Energy (OSTI)

8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

2010-03-01T23:59:59.000Z

462

Yokayo Biofuels | Open Energy Information  

Open Energy Info (EERE)

Yokayo Biofuels Yokayo Biofuels Jump to: navigation, search Name Yokayo Biofuels Place Ukiah, California Zip 95482 Product California-based biodiesel producer and distributor with operations across Northern California. Coordinates 45.13416°, -118.932809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.13416,"lon":-118.932809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Socio-economic dynamics of biofuel  

E-Print Network (OSTI)

a first target of a 2-percent-share of biofuels in the energy consumption of the European Union by 2005, which then was not met. The target for 2010 is 5.75 percent biofuels. #12;2 Socio-economic dynamics their initial targets for the mandatory use of biofuels and enacted by-laws for a certified sustainability

464

Liquid Biofuels Strategies and Policies in selected  

E-Print Network (OSTI)

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

465

Biofuels and indirect land use change  

E-Print Network (OSTI)

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

466

Legislating Biofuels in the United States  

E-Print Network (OSTI)

Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

467

School of Engineering and Science Algae Biofuels  

E-Print Network (OSTI)

School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

Fisher, Frank

468

How sustainable are current transport biofuels?  

E-Print Network (OSTI)

How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

469

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network (OSTI)

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009 bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State

470

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

Science Conference Proceedings (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

471

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

472

Turbine-Generator Topics for Power Plant Engineers: Synchronous Generator Voltage Regulator Basics  

Science Conference Proceedings (OSTI)

This material is intended for the new engineer, the control room operator, management, or the non-engineer. The basics of a synchronous generator excitation system; the fundamentals of the voltage regulator; and its controls and functions are discussed. The typical exciter types are covered, but not in detail. There is also basic information on voltage regulator maintenance issues. Put simply, the excitation system is made up of three basic component systems. The voltage regulator monitors the synchronou...

2012-02-16T23:59:59.000Z

473

CONCEPTUAL DESIGN AND ECONOMICS OF A NOMINAL 500 MWe SECOND-GENERATION PFB COMBUSTION PLANT  

SciTech Connect

Research has been conducted under United States Department of Energy Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48 percent, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler, and the combustion of carbonizer syngas in a gas turbine combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design and an economic analysis was previously prepared for this plant. When operating with a Siemens Westinghouse W501F gas turbine, a 2400psig/1000 F/1000 F/2-1/2 in. Hg. steam turbine, and projected carbonizer, PCFB, and topping combustor performance data, the plant generated 496 MWe of power with an efficiency of 44.9 percent (coal higher heating value basis) and a cost of electricity 22 percent less than a comparable PC plant. The key components of this new type of plant have been successfully tested at the pilot plant stage and their performance has been found to be better than previously assumed. As a result, the referenced conceptual design has been updated herein to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine. The use of this advanced gas turbine, together with a conventional 2400 psig/1050 F/1050 F/2-1/2 in. Hg. steam turbine increases the plant efficiency to 48.2 percent and yields a total plant cost of $1,079/KW (January 2002 dollars). The cost of electricity is 40.7 mills/kWh, a value 12 percent less than a comparable PC plant.

A. Robertson; H. Goldstein; D. Horazak; R. Newby

2003-09-01T23:59:59.000Z

474

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network (OSTI)

The United States' Biofuel Policies and Compliance Water Impacts of Biofuel Extend Beyond Irrigation." for assessing sustainable biofuel production."

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

475

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network (OSTI)

sustainable biofuel production." Ecotoxicology Dimensions in Biofuel Production. Rome, Italy, UN resource impact of biofuel production and trade By Kevin

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

476

Turbine-Generator Topics for Power Plant Engineers: Fundamentals of Electromagnetic Signature Analysis  

Science Conference Proceedings (OSTI)

Electromagnetic signature analysis (EMSA) is the process used to evaluate the electromagnetic interference (EMI) generated by abnormalities in almost any energized power plant equipmentfrom cable connections to broken rotor bars in a motor to the isolated phase bus and generator step-up transformer. EMSA will detect any defect that involves EMI, noise, arcing, corona, partial discharge, gap discharge, sparking or microsparking, or any combination of these.With EMSA, every signal ...

2013-02-15T23:59:59.000Z

477

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

478

Estimates of US biofuels consumption, 1990  

DOE Green Energy (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

479

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network (OSTI)

-in Hybrid Electric Vehicles Results of two Reports from the National Research Council Joan Ogden and Mike11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Ramage DOE Light-Duty Vehicle Workshop July 26, 2010 #12;22 COMMITTEE ON ASSESSMENT OF RESOURCE NEEDS

480

Steam Generator Management Program: Applicability of EDF's Steam Generator Blockage Ratio Estimation Method to Plant Shutdown Transients  

Science Conference Proceedings (OSTI)

Electricit de France (EDF) has developed a technique that it uses to estimate the level of deposit buildup on steam generator tube support plates at its pressurized water reactor (PWR) units in France. The technique could potentially be of use to other PWR operators, but it needs to be carefully evaluated to determine what adaptations would be necessary to enable it to be used accurately at other plants. This report documents work undertaken by the Electric Power Research Institute (EPRI) and EDF to det...

2012-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "generation biofuel plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper  

SciTech Connect

This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

Pete Jordan

2010-09-01T23:59:59.000Z

482

Design Features and Technology Uncertainties for the Next Generation Nuclear Plant  

Science Conference Proceedings (OSTI)

This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

2004-06-01T23:59:59.000Z

483

NREL: News Feature - NREL Breaks Down Walls for Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Breaks Down Walls for Biofuels NREL Breaks Down Walls for Biofuels November 30, 2009 Researchers at the National Renewable Energy Laboratory (NREL) and ethanol producers are racing to come up with ways to make ethanol from cellulosic biomass that are cheaper and easier to produce than current methods. But they are hitting a wall. Cell walls in plants are making the production of cellulosic ethanol a challenge. So researchers are creating their own computer program to help model and break down the tiny fibers of cellulose - or fibrils - found in plant cells. Although ethanol is becoming more available to consumers, NREL is working closely with the U.S. Department of Energy (DOE) to meet a quickly approaching goal to produce competitively priced ethanol for $1.50 per gallon by 2012. Why the rush? DOE believes this is the price at which

484

Martin Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Center Solar Power Plant Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation Solar Energy Center Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer FPL Energy Location Martin County, Florida Coordinates 27.051214°, -80.553389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.051214,"lon":-80.553389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Verde Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

Biofuels Inc Biofuels Inc Jump to: navigation, search Name Verde Biofuels Inc Place Fountain Inn, South Carolina Product The company is a biodiesel producer and distributor. References Verde Biofuels Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Verde Biofuels Inc is a company located in Fountain Inn, South Carolina . References ↑ "Verde Biofuels Inc" Retrieved from "http://en.openei.org/w/index.php?title=Verde_Biofuels_Inc&oldid=352788" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

486

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

487

NREL: Biomass Research - Microalgal Biofuels Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Microalgal Biofuels Capabilities Microalgal Biofuels Capabilities Research into producing microalgal biofuels for transportation has been revitalized at NREL. Because algae have the potential to produce the feedstock for a number of transportation fuels-biodiesel, "green" diesel and gasoline, and jet fuel-NREL has developed strong capabilities in producing biofuels from microalgae. Through standard procedures for microalgal biofuels analysis, NREL helps scientists and researchers understand more about the chemical composition of algae. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the microalgae-to-biofuels conversion process. NREL's capabilities in microalgal biofuels R&D include: Why is algal research important? Algae have the potential to produce the feedstock for transportation fuels.

488

Biofuels Issues and Trends - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Full report Biofuels Issues and Trends Release date: October 15, 2012 (updated October 18, 2012 for cellulosic production and October 23, 2012 for RSF2 volume clarification) Highlights Biofuels is a collective term for liquid fuels derived from renewable sources, including ethanol, biodiesel, and other renewable liquid fuels. This report focuses on ethanol and biodiesel, the most widely available biofuels. From 2009 to the middle of 2012, the U.S. biofuels industry increased its output and prepared to meet an expanded Renewable Fuel Standard (RFS2),1 which requires increasing volumes of biofuels use. In 2011, the biofuels industry transitioned away from tax incentives for non-cellulosic biofuels, which expired at the end of 2011. Annual ethanol and biodiesel consumption, production, imports, and exports during 2009-11

489

Central Texas Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Central Texas Biofuels LLC Place Giddings, Texas Zip 78942 Product Biodiesel producer in Giddings, Texas. References Central Texas Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Texas Biofuels LLC is a company located in Giddings, Texas . References ↑ "Central Texas Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Central_Texas_Biofuels_LLC&oldid=343385" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

490

Alternative Fuels Data Center: Biofuel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Use Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Use Requirement State agencies must take all reasonable actions to develop the infrastructure necessary to increase the availability and use of E85 and biodiesel throughout the state. Employees using state-owned vehicles are

491

Flambeau River Biofuels | Open Energy Information  

Open Energy Info (EERE)

Flambeau River Biofuels Flambeau River Biofuels Jump to: navigation, search Name Flambeau River Biofuels Place Park Falls, Wisconsin Sector Biomass Product A subsidiary of Flambeau River Papers LLC that plans to develop a Fischer Tropsch diesel project in Park Falls, Wisconsin that will process residual wood biomass from forest and agricultural sources. References Flambeau River Biofuels[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Flambeau River Biofuels is a company located in Park Falls, Wisconsin . References ↑ "Flambeau River Biofuels" Retrieved from "http://en.openei.org/w/index.php?title=Flambeau_River_Biofuels&oldid=345407" Categories: Clean Energy Organizations

492

Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellulosic Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment Lee Lynd 1,2 and Mark Laser 1 1 Thayer School of Engineering, Dartmouth College, Hanover, USA 2 BioEnergy Science Center, Oak Ridge, USA 2.1 Our Place in History The two most profound societal transformations in history have been spawned by radical shifts in human- kind's use of natural resources. The agricultural revolution, which spanned about two millennia beginning around 4000 BC, saw hunter-gatherer societies subsisting on wild plants and animals being largely dis- placed by those cultivating the land to produce crops and domesticated livestock. The industrial revolution followed, beginning around 1700 and lasting roughly two hundred years, during which time preindustrial agricultural societies gave way to those harnessing precious metals and fossil energy to develop sophisti- cated economies centered

493

Hanford Waste Vitrification Plant hydrogen generation study: Formation of ammonia from nitrate and nitrate in hydrogen generating systems  

DOE Green Energy (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed for the Departrnent of Energy (DOE) to immobilize pretreated highly radioactive wastes in glass for permanent disposal in the HWVP, formic acid is added to the waste before vitrification to adjust glass redox and melter feed rheology. The operation of the glass melter and durability of the glass are affected by the glass oxidation state. Formation of a conductive metallic sludge in an over-reduced melt can result in a shortened melter lifetime. An over-oxidized melt may lead to foaming and loss of ruthenium as volatile RuO{sub 4}. Historically, foaming in the joule heated ceramic melter has been attributed to gas generation in the melt which is controlled by instruction of a reductant such as formic acid into the melter feed. Formic acid is also found to decrease the melter feed viscosity thereby facilitating pumping. This technical report discusses the noble metal catalyzed formic acid reduction of nitrite and/or nitrate to ammonia, a problem of considerable concern because of the generation of a potential ammonium nitrate explosion hazard in the plant ventilation system.

King, R.B.; Bhattacharyya, N.K.

1996-02-01T23:59:59.000Z

494

Design Option of Heat Exchanger for the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTGRS) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTGRS to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTGRS and hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTGRS to hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger are very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and thermal stress analyses of a printed circuit heat exchanger, helical coil heat exchanger, and shell/tube heat exchanger.

Eung Soo Kim; Chang Oh

2008-09-01T23:59:59.000Z

495

Cooldown control system for a combined cycle electrical power generation plant  

SciTech Connect

This patent describes a combined cycle electrical power plant including a steam turbine, a heat recovery steam generator for supplying steam to the steam turbine, a gas turbine for supplying heat to the heat recovery steam generator. The steam generator and gas turbine both produce electrical power under load, and the gas turbine has a control circuit determining the operation therof. A cooldown control system is described for the power generation plant. The system comprises: first means for detecting one of a steaming condition and a non-steaming condition in the heat recovery steam generator; second means responsive to the steaming condition and to a gas turbine STOP signal for reducing the load of the gas turbine toward a minimum load level; third means responsive to the non-steaming condition and to the minimum load level being reached for generating a STOP command and applying the STOP command to the control circuit of the gas turbine, thereby to indicate a sequence of steps to stop the gas turbine.

Martens, A.; Snow, B.E.

1987-01-27T23:59:59.000Z

496

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

497

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

498

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

499

Alternative Fuels Data Center: Biofuels Production Facility Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Facility Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Facility Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Production Facility Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Facility Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Facility Grants The Renewable Fuels Development Program provides grants for the

500

Alternative Fuels Data Center: Biofuels Production Property Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Property Tax Exemption