Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

2

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

3

Mobile Alternative Fueling Station Locator  

SciTech Connect (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

4

Energy Department Launches Alternative Fueling Station Locator...  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

5

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

6

Alternative Fueling Station Locator | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

7

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

8

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

9

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

10

Alternative Fuels Data Center: Alternative Fueling Station Locator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Locator to someone by E-mail Share Alternative Fuels...

11

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

12

Alternative Fuels Data Center: Biodiesel Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Station Locations to someone by E-mail Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Station Locations Find biodiesel (B20 and above) fueling stations near an address or ZIP code

13

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

14

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

15

Alternative Fueling Station Locator App Provides Info at Your...  

Broader source: Energy.gov (indexed) [DOE]

Fueling Station Locator website. It provides information on more than 15,000 public and private alternative fueling stations throughout the United States. The app lists where...

16

Locating PHEV Exchange Stations in V2G  

E-Print Network [OSTI]

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

17

Dubuque generation station, Dubuque, Iowa  

SciTech Connect (OSTI)

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

18

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

19

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

20

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

22

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

23

Alternative Fueling Station Locator | Department of Energy  

Energy Savers [EERE]

your browser to a new version. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center Find alternative fueling stations near an...

24

Energy Department Launches Alternative Fueling Station Locator App |  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

25

Energy Department Launches Alternative Fueling Station Locator App |  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

26

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Ottawa Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Generating Station Biomass Facility Generating Station Biomass Facility Jump to: navigation, search Name Ottawa Generating Station Biomass Facility Facility Ottawa Generating Station Sector Biomass Facility Type Landfill Gas Location Ottawa County, Michigan Coordinates 42.953023°, -86.0937312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.953023,"lon":-86.0937312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Brent Run Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brent Run Generating Station Biomass Facility Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Peoples Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Peoples Generating Station Biomass Facility Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

The abundance and distribution of macro-invertebrates in the cooling-water canal system of the P. H. Robinson Generating Station located on Galveston Bay, Texas, with emphasis on the effect of supplemental cooling towers  

E-Print Network [OSTI]

and Goodyear 1972; Raney et al. 1973; Belts et al. 1974). There is aslo increasing awareness and concern for other power plant related problems such as mechanical and pressure stress due to entrainment through the condenser tubes, impingement upon intake... to determine the abundance, distribution and survival rate of macro- invertebrates present in the cooling-water canal system of Houston Lighting 6 Power Company's P. H. Robinson Generating Station. Surface and bottom, day and night collections were taken...

Margraf, F. Joseph

2012-06-07T23:59:59.000Z

33

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

34

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

35

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

36

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

37

Tri-Generation Success Story: World's First Tri-Gen Energy Station - Fountain Valley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tri-Generation Success Tri-Generation Success Story World's First Tri-Gen Energy Station- Fountain Valley The Fountain Valley energy station, supported in part by a $2.2 million grant from the Energy Department, is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility. Located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California, the unit is a combined heat, hydrogen, and power (CHHP) system that co-produces hydrogen in addition to electricity and heat, making it a tri-generation system. The hydrogen produced by the system

38

Energy Department Launches Alternative Fueling Station Locator App  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles.

39

EIS-0435: Modification of the Groton Generation Station Interconnection  

Broader source: Energy.gov (indexed) [DOE]

5: Modification of the Groton Generation Station 5: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota Summary This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 3, 2011 EIS-0435: Final Environmental Impact Statement

40

On-Site Hydrogen Generation & Refueling Station  

E-Print Network [OSTI]

Reforming based refueling station DOE Objectives Public education on hydrogen and fuel cells Evaluation cell & HCNG busses in commercial operation ­ Refueling fuel cell & HCNG street sweepers and cars Thermal Reforming of natural gas Demonstrate hydrogen fueling station #12;Performance goals 15 min per bus

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessment of district energy supply from Schiller Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the Public Service of New Hampshire Schiller Generating Station to supply district heating to potential customers. The project involved analysis of power plant retrofit and comparison of district heating cost to the cost of heat supplied with gas boilers for a housing development in close proximity to the Schiller Station.

Hitchko, M. [Public Service Company of New Hampshire, Portsmouth, NH (United States); Major, W. [Joseph Technology Corporation, Inc., Woodcliff Lake, NJ (United States)

1995-06-01T23:59:59.000Z

42

Check Out the New Alternative Fuel Station Locator | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator November 19, 2012 - 2:29pm Addthis Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles

43

"1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 "2. Byron Generating Station","Nuclear","Exelon Nuclear",2300 "3. LaSalle Generating Station","Nuclear","Exelon Nuclear",2238 "4. Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1785 "5. Quad Cities Generating Station","Nuclear","Exelon Nuclear",1774 "6. Dresden Generating Station","Nuclear","Exelon Nuclear",1734 "7. Powerton","Coal","Midwest Generations EME LLC",1538 "8. Elwood Energy LLC","Gas","Dominion Elwood Services Co",1350

44

Station location map and audio-magnetotelluric data log for Rye...  

Open Energy Info (EERE)

location map and audio-magnetotelluric data log for Rye Patch known geothermal resource area Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Station...

45

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

46

Multi-Period Planning for Electric Car Charging Station Locations: a Case of Korean Expressways  

Science Journals Connector (OSTI)

Abstract One of the most critical barriers to widespread adoption of electric cars is the lack of charging station infrastructure. Although it is expected that a sufficient number of charging stations will be constructed eventually, due to various practical reasons they may have to be introduced gradually over time. In this paper, we formulate a multi-period optimization model based on a flow-refueling location model for strategic charging station location planning. We also propose two myopic methods and develop a case study based on the real traffic flow data of the Korean Expressway network in 2011. We discuss the performance of the three proposed methods.

Sung Hoon Chung; Changhyun Kwon

2014-01-01T23:59:59.000Z

47

Optimal Location of Compressed Natural Gas (CNG) Refueling Station Using the Arc Demand Coverage Model  

Science Journals Connector (OSTI)

In this paper a model that locates Compressed Natural Gas (CNG) refueling stations to cover the full volume of vehicle flows is developed and applied. The model inputs consist of a road network include nodes and arcs, the volume of vehicle flows between ... Keywords: Compressed Natural Gas, Arc Demand Coverage Model, Optimal Location, Network

Abtin Boostani; Reza Ghodsi; Ali Kamali Miab

2010-05-01T23:59:59.000Z

48

Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations  

SciTech Connect (OSTI)

Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

Last, George V.

2014-02-01T23:59:59.000Z

49

Where the Rubber Meets the Road -- the Alternative Fuel Station Locator |  

Broader source: Energy.gov (indexed) [DOE]

Where the Rubber Meets the Road -- the Alternative Fuel Station Where the Rubber Meets the Road -- the Alternative Fuel Station Locator Where the Rubber Meets the Road -- the Alternative Fuel Station Locator August 10, 2010 - 2:32pm Addthis Dennis A. Smith Director, National Clean Cities Last week, this blog highlighted the highly efficient vehicles competing for the Automotive X Prize. The innovative designs on display in that competition may very well reflect the future of the auto industry, but there are many alternative vehicles already on the road, actively doing their part to cut emissions and improve efficiency. By decreasing the amount of petroleum we use for transportation and running our vehicles on alternative fuels, we can improve our country's social, economic, and environmental sustainability. However, those of us that drive

50

A metaheuristic approach for location of gas stations in a metropolitan area  

Science Journals Connector (OSTI)

The paper presents a metaheuristic model, which is developed to determine the location of gas stations in the state of Kuwait. The variables of this study cover requirements to high demand areas such as commercial areas, businesses as well as safety and environmental factors translated into minimum distances to sensitive entities and receptors. The developed methodology combines GIS with analytic hierarchy process (AHP) to weigh and overlay layers of interest on the base map of urban and suburban areas in Kuwait. The output on this process is a suitability map that contains feasible locations for future gas stations sites. Feasible locations are then fed into an optimisation routine to obtain the optimal sites. The methodology includes international and national standards and regulation including minimum allowable distance to existing gas stations, natural gas distributors, fire stations, educational institutions, governmental agencies and ministries, airport, residential areas, commercial areas, industrial areas, road network and others. 199 feasible locations were obtained in the State of Kuwait that abide with all regulation while satisfying demand of businesses and residents. The optimum was obtained from these feasible solutions by using an optimisation routine.

Esra Aleisa; Mehmet Savsar; Mohammed M. Al-Mashaan; Abrar Al-Jadi; Sarah A. Al-Sabah

2014-01-01T23:59:59.000Z

51

Tri-Generation Success Story: World's First Tri-Gen EnergyStation...  

Broader source: Energy.gov (indexed) [DOE]

Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley This Fuel Cell...

52

Modelling fly ash generation for UK power station coals  

SciTech Connect (OSTI)

An in-depth characterization has been made of three UK bituminous coals and the combustion products from these coals when burned at a power station and on a range of experimental combustion facilities. The coals were chosen to represent the range of ash compositions and slagging propensities found at UK power stations. CCSEM analysis of the pulverized coals has been performed to provide quantitative data on the size and chemical composition of individual mineral occurrences, and to determine the nature of the mineral-mineral and mineral-organic associations in the pulverized fuel. In a similar way the size and chemical composition of individual fly ash particle has been determined. The mineral-mineral association information has been used to predict the effects of mineral coalescence, the dominant mineral transformation process for UK power station coals. The CCSEM information correctly identifies the types of mineral-mineral association and hence the predicted effects of coalescence. The limitations of the information are inherent in the analysis of a cross-section, but useful information for the modelling of ash generation may still be obtained.

Wigley, F.; Williamson, J. [Imperial Coll., London (United Kingdom). Dept. of Materials

1996-12-31T23:59:59.000Z

53

Re: Potomac River Generating Station Department of Energy, Case No.  

Broader source: Energy.gov (indexed) [DOE]

No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of No. EO-05-01. Order No. 202-07-02: Pursuant to the Department of Energy's Order No. 202-05-3 issued December 20, 2005 ("DOE Potomac River Order"), Pepco has filed notice of the planned outages, in sequence during January 2006, of each of the two 230 kV circuits serving the downtown area of the District of Columbia. Earlier scheduled maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but a recent forced outage on one of the lines makes it imprudent to delay maintenance any longer. Department of Energy Order No. 202-05-03 Notice of Planned Outages, in Sequence During January 2006 More Documents & Publications Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages

54

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provideAnalysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs

Wong, Vincent

55

Re: Potomac River Generating Station Department of Energy Case No.  

Broader source: Energy.gov (indexed) [DOE]

Advanced Notice of Power Outages. Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No. 202-05-03: Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission outages that are scheduled for the upcoming months. In accordance with its internal procedures developed pursuant to the December 20, 2005 order in the captioned proceeding, Order No. 202-05-03 ("December 20 Order"), Pepco will provide advance notification of the outages to Mirant, PJM, the Department of Energy ("Department"), the Federal Energy Regulatory Commission, the Environmental Protection Agency,

56

Re: Potomac River Generating Station Department of Energy Case No.  

Broader source: Energy.gov (indexed) [DOE]

PEPCO is providing you with information regarding the planned PEPCO is providing you with information regarding the planned transmission maintenance outage Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: PEPCO is providing you with information regarding the planned transmission maintenance outage Docket No. EO-05-01. Order No. 202-07-02: Per your request, Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission maintenance outage scheduled for the upcoming weekend. Pepco notes that the scheduled maintenance activities are not associated with its new transmission line installation, but are routine maintenance activities resulting from a switch problem identified during

57

Re: Potomac River Generating Station Department of Energy, Case No.  

Broader source: Energy.gov (indexed) [DOE]

evised plan for evised plan for transmission outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Docket No. EO-05-01. Order No. 202-07-02: Potomac Electric Power Company ("Pepco") is providing you with the following information regarding the revised plan for transmission outages for the 230 kV circuits that are scheduled during the upcoming months. In accordance with its internal procedures developed pursuant to the December 20, 2005 order in the above-captioned proceeding, Order No. 202-05-03, and pursuant to the expanded notice required in Order No. 202-07-02, issued on January 31 Order, Pepco will provide advance notification of the outages to Mirant,

58

Notification of Planned 230kV Outage at Potomac River Generating Station |  

Broader source: Energy.gov (indexed) [DOE]

Notification of Planned 230kV Outage at Potomac River Generating Notification of Planned 230kV Outage at Potomac River Generating Station Notification of Planned 230kV Outage at Potomac River Generating Station Docket No. EO-05-01. In accordance with DOE Order No. 202-05-03 Pepco is required to provide notification of any and all 230kV planned outages at Potomac River Generating Station. On Tuesday February 20, 2007 Potomac Electric Power Company (Pepco) will be taking a planned outage on the 23106 high voltage circuit between the Palmer's Corner Substation and the Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating Station More Documents & Publications Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Special Environmental Analysis For Actions Taken under U.S. Department of

59

Microsoft Word - CX-RooseveltRadioStationGeneratorFY13_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

7, 2013 7, 2013 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Molly Kovaka Project Manager - TEP CSB-2 Proposed Action: Roosevelt Radio Station Emergency Generator Removal and Replacement Budget Information: Work Order # 300238 / 300235 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities Location: The proposed project area is approximately four miles north of Arlington, Oregon, in Klickitat County, Washington. T3N, R21E, Sec14 and Sec 6. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to maintain and improve the Roosevelt Radio Station. The proposed work includes removal and replacement of the existing 30-kilowatt

60

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-07-01T23:59:59.000Z

62

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of the world's first tri-generation station combined heat and power system that produces hydrogen in addition to heat and electricity.

63

Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013  

SciTech Connect (OSTI)

This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

Sprik, S.; Kurtz, J.; Peters, M.

2014-05-01T23:59:59.000Z

64

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network [OSTI]

?? This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

65

Tri-Generation Success Story: World's First Tri-Gen Energy StationFountain Valley  

Broader source: Energy.gov [DOE]

This Fuel Cell Technologies Office fact sheet describes the Fountain Valley energy station. Supported in part by a $2.2 million grant from the Energy Department, the Fountain Valley energy station is the worlds first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility.

66

"1. Mystic Generating Station","Gas","Boston Generating LLC",1968  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "1. Mystic Generating Station","Gas","Boston Generating LLC",1968 "2. Brayton Point","Coal","Dominion Energy New England, LLC",1545 "3. Canal","Petroleum","Mirant Canal LLC",1119 "4. Northfield Mountain","Pumped Storage","FirstLight Power Resources Services LLC",1080 "5. Salem Harbor","Coal","Dominion Energy New England, LLC",744 "6. Fore River Generating Station","Gas","Boston Generating LLC",688 "7. Pilgrim Nuclear Power Station","Nuclear","Entergy Nuclear Generation Co",685 "8. Bear Swamp","Pumped Storage","Brookfield Power New England",600

67

Staff Draft Report. Comparative Cost of California Central Station Electricity Generation Technologies.  

SciTech Connect (OSTI)

This Energy Commission staff draft report presents preliminary levelized cost estimates for several generic central-station electricity generation technologies. California has traditionally adopted energy policies that balance the goals of supporting economic development, improving environmental quality and promoting resource diversity. In order to be effective, such policies must be based on comprehensive and timely gathering of information. With this goal in mind, the purpose of the report is to provide comparative levelized cost estimates for a set of renewable (e.g., solar) and nonrenewable (e.g., natural gas-fired) central-station electricity generation resources, based on each technology's operation and capital cost. Decision-makers and others can use this information to compare the generic cost to build specific technology. These costs are not site specific. If a developer builds a specific power plant at a specific location, the cost of siting that plant at that specific location must be considered. The Energy Commission staff also identifies the type of fuel used by each technology and a description of the manner in which the technology operates in the generation system. The target audiences of this report are both policy-makers and anyone wishing to understand some of the fundamental attributes that are generally considered when evaluating the cost of building and operating different electricity generation technology resources. These costs do not reflect the total cost to consumers of adding these technologies to a resources portfolio. These technology characterizations do not capture all of the system, environmental or other relevant attributes that would typically be needed by a portfolio manager to conduct a comprehensive ''comparative value analysis''. A portfolio analysis will vary depending on the particular criteria and measurement goals of each study. For example, some form of firm capacity is typically needed with wind generation to support system reliability. [DJE-2005

Badr, Magdy; Benjamin, Richard

2003-02-11T23:59:59.000Z

68

Is central station generation becoming a white elephant  

SciTech Connect (OSTI)

Cost increases encourage the development of alternative sources of energy, and some of the alternatives currently under development lend themselves to moving the generation location back to load centers. In addition, some alternative sources have short lead times and minimal environmental impact, and are being subsidized through income tax policy. Alternative sources of energy have the potential for beginning to affect the usefulness of electric-generating plants and their high-voltage transmission networks before the end of this century. If this comes about, the electric utility industry may find its position similar to that of the telephone industry - with obsolete facilities not fully depreciated. The scenario discussed here would not come about all at once and may not come about at all. But it is the authors opinion that the chances are greater than fifty-fifty that it or something similar will affect the usefulness of bulk power supply systems sometime during the lifetime of generating units installed during the past ten years.

Ferguson, J.S.

1985-03-21T23:59:59.000Z

69

Notification of Planned 230kV Outage at Potomac River Generating Station |  

Broader source: Energy.gov (indexed) [DOE]

In accordance with DOE Order No. 202-05-03 Pepco is In accordance with DOE Order No. 202-05-03 Pepco is required to provide notification of any and all 230kV planned outages at Potomac River Generating Station. On Tuesday February 20, 2007 Potomac Electric Power Company (Pepco) will be taking a planned outage on the 23106 high voltage circuit between the Palmer's Corner Substation and the Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating Station More Documents & Publications Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Special Environmental Analysis For Actions Taken under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia

70

Biofouling control with ozone at the Bergen Generating Station  

SciTech Connect (OSTI)

The results of a study designed to evaluate the effectiveness of ozone as an alternative to chlorine for condenser biofouling control in a once-through cooling system are reported. Tests were conducted at PSE and G's Bergen Generating Station using a pilot-scale condenser system to simulate plant condenser operations. Three model condensers were operated under identical conditions with only the biocide treatment differing. Comparisons of ozone and chlorine were made and the minimum effective levels of each were determined by daily measurements of the heat transfer coefficient across the model condenser tubes and/or the water side pressure drop. Final evaluation was based on the mass of biofouling material collected from the tubewalls. Test results indicate that chlorine is capable of effective biofouling control when applied for 2 hours/day at a level as low as 0.1 mg/l. Ozone, applied on the same schedule, requires 0.5 mg/l for effective control. The results of this study are representative of only the Bergen site. Water quality at each particular site will influence the development of the biofouling organisms, the chemical reactions of the biocides, and therefore, the effectiveness of the treatment methodology. The results suggest that further examination of ozonation for biofouling control is warranted. Although much more costly than chlorine, its effects on indigenous ecosystems may prove ozone to be better suited for application at selected power plants. It must be emphasized, however, that much more information is necessary before ozone can be recommended as an environmentally acceptable alternative to chlorine.

Sugam, R.; Guerra, C.R.; DelMonaco, J.L.; Singletary, J.H.; Sandvik, W.A.

1980-11-01T23:59:59.000Z

71

Clean Cities Launches iPhone App for Alternative Fueling Station Locations  

Broader source: Energy.gov [DOE]

The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

72

Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station  

E-Print Network [OSTI]

at Stations 4 and 5 varied from 3. 0 to 4. 0 m. The substrate at these two stations was silt and clay, with a very high content of organic debris. Trinity Bay, Discharge Area Each of shoreline Stations 6, 9, 19, 21, and 24 were located at 1610 m (I mile...ABUNDANCE AND DISTRIBUTION OF MACRO-CRUSTACEANS IN THE INTAKE AND DISCHARGE AREAS BEFORE AND DURING EARLY OPERATION OF THE CEDAR BAYOU GENERATING STATION A Thesis by MONROE SCHMIDT Submitted to the Graduate College of Texas A&M University...

Schmidt, Monroe

1972-01-01T23:59:59.000Z

73

Alice Holt Forest The Forest Research Alice Holt Research Station is located in the centre of the Forest  

E-Print Network [OSTI]

on page 4. Tree species The range of conifer species represented across Alice Holt forest is shownAlice Holt Forest Factsheet 1 Location The Forest Research Alice Holt Research Station is located in the centre of the Forest (National Grid reference SU 813427). The Forest of some 850 hectares straddles

74

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-10-01T23:59:59.000Z

75

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

K. Payette; D. Tillman

2001-10-01T23:59:59.000Z

76

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

77

E-Print Network 3.0 - audio-magnetotelluric station location...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

;Questions: - How many stations are needed, and where should ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies...

78

Re: Potomac River Generating Station Department of Energy, Case...  

Broader source: Energy.gov (indexed) [DOE]

the downtown area of the District of Columbia. Earlier scheduled maintenance on these lines was postponed because of the shutdown of Mirant's Potomac River Generating Plant, but...

79

Notification of Planned 230kV Outage at Potomac River Generating Station  

Broader source: Energy.gov (indexed) [DOE]

Sent: Wednesday, May 16, 2007 4:49 PM To: #DOE_Notification@pepco.com Subject: Notification of Planned 230kV Outage at Potomac River Generating Station To Whom It May Concern: This morning Pepco and PJM observed that the generation at the Potomac River Generating Station was having difficulty matching the station generation requirement to the Potomac River area load. Mirant has also informed Pepco and PJM that several generating units were experiencing equipment problems which required them to reduce unit and total plant output. Based on these observations and information received from Mirant, Pepco has elected to cease the current work activities underway on xxxxx high voltage circuit and we will be placing this transmission line back in service this afternoon.

80

EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of district heating and cooling supply from Goudey Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the New York State Electric and Gas (NYSEG) Goudey Generating Station for district heating and cooling supply to the SUNY-Binghamton Campus. The project involved detailed analysis of the power plant retrofit, dispatch analysis of the retrofitted Goudey Station in the New York Power Pool, environmental and permitting assessment, retrofit analysis of the SUNY campus to low temperature hot water and economic analysis.

McIntire, M.E.; Hall, D.; Beal, D.J. [New York State Electric & Gas Corporation, Binghamton, NY (United States)] [and others

1995-06-01T23:59:59.000Z

82

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.

K. Payette; D. Tillman

2001-01-01T23:59:59.000Z

83

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

K. Payette; D. Tillman

2002-01-01T23:59:59.000Z

84

DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

K. Payette; D. Tillman

2004-06-01T23:59:59.000Z

85

Bruce Nuclear Generating Station B rapid cooldown test and validation of simulation model  

SciTech Connect (OSTI)

The SOPHT code was assessed against Bruce Nuclear Generating Station B commissioning data from a heat transport system rapid cooldown. It was found that (a) under a rapid upstream depressurization, the steam relief valves, like orifices, had a lower discharge coefficient than the corresponding steadystate value and (b) the flashing of water in the steam generators during depressurization causes the at-power boiling heat transfer correlations to overpredict the steam generator heat transfer.

Chang, Y.F.; Langan, M.D.; Sermer, P.; Watson, P.C.

1985-09-01T23:59:59.000Z

86

A computer model for optimizing the location of natural gas fueling stations  

Science Journals Connector (OSTI)

Abstract High levels of fine particulate matter and ozone in many major cities are causing increased respiratory problems, increased asthma attacks and premature death. Natural gas vehicles have been reported to emit up to 95% less particulate matter than diesel powered vehicles and up to 90% less ozone-producing carbon monoxide and reactive hydrocarbons. The adoption of natural gas vehicles, therefore, could play a large role in improving air quality in many cities. Because of the many costs associated with the introduction of a new fueling infrastructure, optimum distribution of fueling stations will play a major role in widespread use of natural gas vehicles, especially in the early stages of market penetration. A model was developed that can be used to optimize fueling station placement-based on traffic volume using a Monte Carlo algorithm. In particular, the Monte Carlo method allows for the placement of the fueling stations based upon their proximity to high volume traffic flow and the placement of all the fueling stations are optimized simultaneously. Traffic volume data from Pittsburgh, PA was used in the model simulations.

T.L. Kerzmann; G.A. Buxton; J. Preisser

2014-01-01T23:59:59.000Z

87

D.McNew/GettyIMaGes San Onofre Nuclear Generating Station, California.  

E-Print Network [OSTI]

D.McNew/GettyIMaGes San Onofre Nuclear Generating Station, California. CORRESPONDENCE Checklist be supplied by solar power plants covering about 36,000 square kilometres of land in the desert southwest,theycanberampedupquickly.Annualinstallationofwind- energy capacity in the United States has quadrupled from Counterpoint Not wanted, not needed J. Doyne

88

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables D.J. Hurlbut, S. Haase, C.S. Turchi, and K. Burman National Renewable Energy Laboratory Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No WFJ5.1000. Technical Report NREL/TP-6A20-54706 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Navajo Generating Station and

89

Potomac River Generating Station Dept. of Energy Case No. EO-05-01; September 8, 2005  

Broader source: Energy.gov (indexed) [DOE]

Craig A. Glazer Craig A. Glazer Vice President - Federal Government Policy PJM Washington Office (202) 393-7756 .FAX (202) 393-7741 e-mail: glazec@pjm.com CRITICAL ENERGY INFRASTRUCTURE INFORMATION HAS BEEN REMOVED FROM THIS SUBMITTAL FOR PRIVILEGED TREATMENT September 8, 2005 Lawrence Mansueti Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Rm. 8H-033 1000 Independence Avenue Washington, D.C. 20585 Re: Potomac River Generating Station Dept. of Energy Case No. EO-05-01 Dear Mr. Mansueti: PJM Interconnection, L.L.C. and PEPCO Holdings, Inc. is hereby providing you with additional information concerning reliability impacts under various system conditions associated with the unavailability of the Potomac River Generating Station to serve load in the D.C. area.

90

A practical design for an integrated HVDC unit - connected hydro-electric generating station  

SciTech Connect (OSTI)

To date, several authors (see reference list) have proclaimed benefits which can be achieved by integrating HVDC converter stations directly with generating units. The cost of a significant amount of plant and facilities found in conventional schemes is thereby eliminated. So far as is known however, no detailed studies have been done to quantify these benefits. This paper outlines the results of a study made recently by the Manitoba HVDC Research Centre to determine the practicality of such a scheme. To give credence to the results an actual hydro station design was used incorporating a HVDC thyristor valve scheme in a hypothetical situation. Financial and other benefits were determined for this example together with conclusions and recommendations for future specific projects and further areas of study.

Ingram, L. (Manitoba HVDC Research Centre, Winnipeg (CA))

1988-10-01T23:59:59.000Z

91

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navajo Generating Station Navajo Generating Station Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts David J. Hurlbut, Scott Haase, Gregory Brinkman, Kip Funk, Rachel Gelman, Eric Lantz, Christina Larney, David Peterson, Christopher Worley National Renewable Energy Laboratory Ed Liebsch HDR Engineering, Inc. Prepared under Task No. WFJ5.1000 Technical Report NREL/TP-6A20-53024 * Revised March 2012 Contract No. DE-AC36-08G028308 Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No. WFJ5.1000. ERRATA SHEET NREL REPORT/PROJECT NUMBER: NREL/TP-6A20-53024 DOE NUMBER: N/A TITLE: Navajo Generating Station and Air Visibility Regulations: Alternatives and

92

The Navy seeks to identify responsible sources and obtain information in regard to purchasing renewable power for Naval Air Station (NAS) Fallon, located in Fallon, NV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REQUEST FOR INFORMATION (RFI) for Renewable Generation REQUEST FOR INFORMATION (RFI) for Renewable Generation Opportunities at NAWS China Lake, NAS Fallon, MCAGCC 29 Palms, and MCAS Yuma The Department of Navy (DoN) intends to issue a Request for Proposal (RFP) in early 2009 for renewable energy generation opportunities at Naval Air Weapons Station (NAWS) China Lake, California; Naval Air Station (NAS) Fallon, Nevada; Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms, California, and Marine Corps Air Station (MCAS) Yuma, Arizona. The DoN will consider opportunities for the purchase of renewable power, developer wholesale generation, distributed generation, and the combination of those opportunities. Specifically, the Navy will provide Government land on these installations for large

93

Development of an HTS hydroelectric power generator for the hirschaid power station  

Science Journals Connector (OSTI)

This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

Ruben Fair; Clive Lewis; Joseph Eugene; Martin Ingles

2010-01-01T23:59:59.000Z

94

The development of a high reliability auxiliary power system for a coal-fired cycling generating station  

SciTech Connect (OSTI)

An auxiliary system for a fossil generating station is evolved based on operating and reliability criteria including the capabilities of switchgear and standard auxiliary transformer impedances. These criteria are used to design a flexible and reliable auxiliary power system for a cyclic duty power generating station. The effect of mechanical equipment selection on the auxiliary power system design is discussed. An economic comparison of single voltage versus dual-voltage is made. A one-line diagram of the resulting proposed system is included.

Jackowski, M.; Bailey, M.

1983-06-01T23:59:59.000Z

95

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents [OSTI]

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

96

EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

97

Assessment of Wind/Solar Co-located Generation in Texas  

SciTech Connect (OSTI)

This paper evaluates the opportunity to load co-located wind and solar generation capacity onto a constrained transmission system while engendering only minimal losses. It quantifies the economic and energy opportunities and costs associated with pursuing this strategy in two Texas locations ?¢???? one in west Texas and the other in south Texas. The study builds upon previous work published by the American Solar Energy Society (ASES) which illuminated the potential benefits of negative correlation of wind and solar generation in some locations by quantifying the economic and energy losses which would arise from deployment of solar generation in areas with existing wind generation and constrained transmission capacity. Clean Energy Associates (CEA) obtained and incorporated wind and solar resource data and the Electric Reliability Council of Texas (ERCOT)) load and price data into a model which evaluates varying levels of solar thermal, solar photovoltaic (PV) and wind capacity against an assumed transmission capacity limit at each of the two locations.

Steven M. Wiese

2009-07-20T23:59:59.000Z

98

Plume opacity investigation at a stoker-fired power generating station  

SciTech Connect (OSTI)

A public utility contacted the Conoco Coal Research Division through Consolidation Coal Company and requested technical assistance in determining the cause of a high plume opacity at one of their stoker-fired power generating stations. The sporadic occurrence of a high opacity plume (>20%) had been reported for several years. Although the utility was burning low sulfur coal, sulfuric acid mist had been suspected as the cause of the plume opacity; therefore, anhydrous ammonia had been injected into the flue gas at the ESP inlet plenums to control the plume opacity with some degree of success. However, for the last two years, the high plume opacity has occurred more frequently. The possible causes of the high plume opacity investigated were: 1) organic species emissions, 2) particulate mass loading, 3) particle size distribution, and 4) sulfuric acid emissions. The investigation included detailed sampling inside the boiler, stack, and plume areas. It was determined that the major cause of the high plume opacity was submicron particle growth at the stack exit due to sulfuric acid/water condensation. The larger particles more efficiently scattered light which resulted in the visible plume at the stack exit. The organic emissions and particulate mass loading in the stack flue gas had minimal effect on the high plume opacity. The fly ash size distribution would also have had minimal effect if the sulfuric acid had not been present.

Lewis, G.H.

1987-01-01T23:59:59.000Z

99

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION  

SciTech Connect (OSTI)

During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

K. Payette; D. Tillman

2001-04-01T23:59:59.000Z

100

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

SciTech Connect (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

102

Investigations of Alternative Steam Generator Location and Flatter Core Geometry for Lead-Cooled Fast Reactors  

SciTech Connect (OSTI)

This paper concerns two independent safety investigations on critical and sub-critical heavy liquid metal cooled fast reactors using simple flow paths. The first investigation applies to locating the steam generators in the risers instead of the down-comers of a simple flow path designed sub-critical reactor of 600 MW{sub th} power. This was compared to a similar design, but with the steam generators located in the downcomers. The transients investigated were Total-Loss-of-Power and unprotected Loss-Of-Flow. It is shown that this reactor peaks at 1041 K after 29 hours during a Total-Loss-Of-Power accident. The difference between locating the steam generators in the risers and the downcomers is insignificant for this accident type. During an unprotected Loss-Of-Flow accident at full power, the core outlet temperature stabilizes at 1010 K, which is 337 K above nominal outlet temperature. The second investigation concerns a 1426 MW{sub th} critical reactor where the influence of the core height versus the core outlet temperature is studied during an unprotected Loss-Of-Flow and Total-Loss-Of-Power accident. A pancake type core geometry of 1.0 m height and 5.8 m diameter, is compared to a compact core of 2 m height and 4.5 m diameter. Moderators, like BeO and hydrides, and their influence on safety coefficients and burnup swings are also presented. Both cores incinerate transuranics from spent LWR fuel with minor actinide fraction of 5%. We show that LFRs can be designed both to breed and burn transuranics from LWRs. It is shown that the hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. The computational fluid dynamics code STAR-CD was used for all thermal hydraulic calculations, and the MCNP and MCB for neutronics, and burn-up calculations. (authors)

Carlsson, Johan; Tucek, Kamil; Wider, Hartmut [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

2006-07-01T23:59:59.000Z

103

Analysis of ground motions at San Onofre Nuclear Generating Station April 9, 1968  

Science Journals Connector (OSTI)

...concrete mat foundation. The turbine generator, the plant auxiliary...transferred to the secondary turbine steam system by the steam generators...has resulted in a bothersome maintenance problem which requires replacement...self-sustMned Wineharger wind-generator to charge the batteries...

G. W. Housner; P. J. West; C. G. Johnson

104

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...  

Office of Environmental Management (EM)

to heat and electricity-in Fountain Valley. The system runs on natural gas and biogas generated by the Orange County Sanitation District's wastewater treatment facility....

105

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

Hoopingarner, K.R.; Vause, J.W.

1987-08-01T23:59:59.000Z

106

E-Print Network 3.0 - albright generating station Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cooling... and generator lube oil systems, (4) a 0.3 mile undergrounded transmission line from the project to ... Source: California Energy Commission Collection: Energy...

107

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study  

SciTech Connect (OSTI)

Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

1987-08-01T23:59:59.000Z

108

Propagation of the low-frequency noise generated by power station water-cooling towers  

Science Journals Connector (OSTI)

The propagation of low-frequency noise generated by air turbulent motion in water-cooling towers is investigated by the use of geometrical acoustics of moving media. It is shown that a cooling tower plum acts ...

Sergei P. Fisenko

1997-01-01T23:59:59.000Z

109

Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas  

E-Print Network [OSTI]

area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

St. Clair, Lou Ann

2012-06-07T23:59:59.000Z

110

US EPA Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites October 2007  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R-08/023 R-08/023 October 2007 Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites By: Gail Mosey, Donna Heimiller, Douglas Dahle, Laura Vimmerstedt, and Liz Brady-Sabeff National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Under Contract No. DE-AC36-99-GO10337 Through EPA IAG NO. DW89930254010 NREL/TP-640-41522 For: George Huffman, EPA Project Manager Sustainable Technology Division National Risk Management Research Laboratory U.S. Environmental Protection Agency Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development

111

Hot Plate Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature is limited to 200C in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released...

112

Possible Locations for Gas-Fired Power Generation in Southern Germany  

Science Journals Connector (OSTI)

Gas-fired power generation has not only grown continuously in Europe, ... . Significant transport capacities in a high pressure gas grid are required to guarantee stable generation of gas-fired electricity. The p...

Joachim Mller-Kirchenbauer

2013-01-01T23:59:59.000Z

113

High-pressure single-crystal X-ray diffraction facilities on station 9.8 at the SRS Daresbury Laboratory - hydrogen location in the high-pressure structure of ethanol  

Science Journals Connector (OSTI)

A new high-pressure single-crystal diffraction facility constructed on station 9.8 at the Synchrotron Radiation Source, Daresbury Laboratory, is described. Initial results on the low-melting-point compound ethanol are presented; diffraction data were of sufficient quality to enable H-atoms to be located.

Allan, D.R.

2001-01-01T23:59:59.000Z

114

EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

115

EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3 Salem, Essex County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

116

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

located at an existing gasoline station. One could use othere.g. co-locate with gasoline station, bus-yard, or officeequivalent to about 6% of gasoline stations in California 4.

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

117

Evaluation of wind energy potential and electricity generation at five locations in Jordan  

Science Journals Connector (OSTI)

Abstract Evaluation of the wind power from the knowledge of the mean monthly wind speeds of a typical year, and for five different locations in Jordan is analyzed and assessed. In addition, an investigation into the feasibility of using five different wind turbines of different rated power ranging from 100kW to 3000kW at each location to be employed in wind farms is examined. The data of the wind speeds over five years are fitted to the Weibull distribution, which is most frequently used and most appropriate, describing frequency distribution for wind moving over Jordan. The annual mean values of the wind speed and the frequency distributions were found for the five locations studied; Ras-Moneef, Azraq south; Safawi, Queen Alia Airport and Aqaba Airport. The locations included the eastern desert regions where wide plain lands are economically feasible to be used for wind farms. It is apparent from the results of the analysis that the highly promising sites of having good wind energy potential are Aqaba and Ras-Moneef, whereas, the desert sites of Safawi and Azraq South have only moderate potential and Queen Alia Airport have a lower potential. The annual mean values of the wind speed and power density of the observed and theoretical distributions are 5.5ms?1 and 160Wm?2 for Ras Moneef, 4.0ms?1 and 175Wm?2 for Azraq South, 4.5ms?1 and 94Wm?2 for Safawi, 3.13ms?1 and 31Wm?2 for Queen Alia Airport and 6.0ms?1 and 215Wm?2 for Aqaba Airport, respectively.

Handri D. Ammari; Saad S. Al-Rwashdeh; Mohammad I. Al-Najideen

2014-01-01T23:59:59.000Z

118

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

119

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

120

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

SciTech Connect (OSTI)

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

122

Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility  

SciTech Connect (OSTI)

A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

2014-03-21T23:59:59.000Z

123

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

e.g. co-locate with gasoline station, bus-yard, or officeintegrated into existing gasoline stations with 8 dispensersof a liquid H 2 and gasoline station layout. Figure 4-9:

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

124

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

SciTech Connect (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

2007-06-20T23:59:59.000Z

125

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

126

GIS Data Services Specialist Forest disturbance and carbon cycling Location: Newton Square, Pennsylvania (U.S. Forest Service Northern Research Station)  

E-Print Network [OSTI]

GIS Data Services Specialist ­ Forest disturbance and carbon cycling Location: Newton Square Geographic Information System (GIS) and data management support for developing spatial databases sets and in applying analysis techniques and models within a GIS framework. A Master's or PhD degree

Lichstein, Jeremy W.

127

Location-Aware Instant Search Ruicheng Zhong  

E-Print Network [OSTI]

to find a gas station nearby, she can issue a keyword query "gas station" to a LBS system, which returns the relevant gas stations by considering the user's location and keywords. Traditional spatial keyword search

Li, Guoliang

128

Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration  

SciTech Connect (OSTI)

High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

Larsen, R

2009-10-17T23:59:59.000Z

129

Seismic stations  

Science Journals Connector (OSTI)

In the previous chapters, the equipment used for seismic stations has been described. When putting this equipment out in the field, we have a seismic station. Unfortunately it is not as simple as just putting ...

Jens Havskov; Gerardo Alguacil

2004-01-01T23:59:59.000Z

130

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies Manager Ruben Tavares - Acting Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Deputy Director

Laughlin, Robert B.

131

Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution  

E-Print Network [OSTI]

city size, and gasoline station locations. By characterizingfuel than typical gasoline stations. As a result, it will bestreet networks and gasoline stations for (a) Sacramento (b)

Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

2006-01-01T23:59:59.000Z

132

Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems  

Science Journals Connector (OSTI)

Abstract This paper presents a novel quasi-oppositional teaching learning based optimization (QOTLBO) methodology in order to find the optimal location of distributed generator to simultaneously optimize power loss, voltage stability index and voltage deviation of radial distribution network. The basic disadvantage of the original teaching learning based optimization (TLBO) algorithm is that it gives a near optimal solution rather than an optimal one in a limited iteration cycles. In this paper, opposition based learning (OBL) and quasi OBL concepts are introduced in original TLBO algorithm for improving the convergence speed and simulation results of TLBO. In order to show the effectiveness and superiority, the proposed algorithms are tested on 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results of the proposed methods are compared with those obtained by other artificial intelligence techniques like GA/PSO, GA, PSO and loss sensitivity factor simulated annealing (LSFSA). The results show that the QOTLBO surpasses the other techniques in terms of solution quality.

Sneha Sultana; Provas Kumar Roy

2014-01-01T23:59:59.000Z

133

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

134

Temporal and spatial distribution of fishes in the upper Galveston Bay System with particular reference to the cooling water system of Cedar Bayou Generating Station  

E-Print Network [OSTI]

Salinity Temperature. Summary- Temperature and Salinity Influence. PH Dissolved Oxygen TREATMENT OF THE BIOLOGICAL DATA. Cluster Analysis Reduction, . Transformation and Standardization. Interpretation of Analysis 18 18 19 21 21 37 50 52... salinity at each station, monthly mean for all stations, and annual mean for each Trinity Bay offshore station before plant operation from November 1969 through November 1970. Page 23 Monthly mean bottom salinity at each station, monthly mean for all...

Holt, Scott Allen

2012-06-07T23:59:59.000Z

135

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

136

Attachment 09 Station Location Area Maps  

E-Print Network [OSTI]

November 22, 2013 #12;PON13607 November 22, 2013 Berkeley #12;Beverly Hills PON13607 November 22, 2013 #12 Cañada Flintridge PON13607 November 22, 2013 #12;Laguna Beach PON13607 November 22, 2013 #12;Lake Forest November 22, 2013 #12;Saratoga PON13607 November 22, 2013 #12;Signal Hill PON13607 November 22, 2013 #12

137

The Value of Flexibility in Robust Location-Transportation Problem  

E-Print Network [OSTI]

production and distribution of products can be delayed until actual orders are ... such as hub locations, supplier locations, air freight hub locations, railway station

2014-11-24T23:59:59.000Z

138

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

139

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

SciTech Connect (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

140

Species composition, distribution and abundance of zooplankton (including ichthyoplankton) in the intake and discharge canals of a steam-electric generating station located on Galveston Bay, Texas  

E-Print Network [OSTI]

identification of zooplankton and to F. Joseph Nargraf for his help in designing programs for the Hewlett-Packard 9830A computer. I am grateful to Nr. Timothy L. Jones, of the Southwest Research Institute, Houston, arid to Nr. Richard D. Kalke...Xec. uh and Penaem he. tc(ecuh PaX. a@710M. WM spp. zoeae. . . . . . . . . . . . . . Ogg~d& l~+COER zoeae. . . . . . . . . . . . . . CaXXmeMha. sp. zoeae. . . . . . . . . . . . . . . . Ca. EEiee&M s pp. mega lops. . . . . . . . . . . . CaX&rt. e&M hap...

McAden, David Charles

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

142

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

143

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

144

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

145

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

146

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

147

Energy Department Applauds Worlds First Fuel Cell and Hydrogen Energy Station in Orange County  

Office of Energy Efficiency and Renewable Energy (EERE)

DOE issues the following statement in support of the commissioning of the worlds first tri-generation fuel cell and hydrogen energy station to provide transportation fuel to the public and electric power to an industrial facility, located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California.

148

Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Wilcox, S.; Andreas, A.

149

LOCATION OF BANKING AUTOMATIC TELLER MACHINES BASED ON CONVOLUTION  

E-Print Network [OSTI]

optimal location of gas stations, health care units, warehouses, police stations, and power plants, supermarkets, gas stations, and other high-traffic shopping areas are prime locations for ATM sites facilities", such as gas stations and automated teller machines [9]. Generally, customers do not regard

Aldajani, Mansour A.

150

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

151

Pilgrim Station | Open Energy Information  

Open Energy Info (EERE)

Station Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner ReunionPower/Exergy Developer Exergy Location Twin Falls County ID Coordinates 42.741336°, -114.865865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.741336,"lon":-114.865865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

153

Species composition, distribution, and abundance of macrobenthic organisms in the intake and discharge area of a steam-electric generating station before and during initial start-up  

E-Print Network [OSTI]

was used at 17 stations with soft substrates. A frame sampler was used at five stations with hard substrates, Each gear was used every 4 weeks, but alternately; with a 2-week-time interval between use of the dredge and frame. Data yielded by dif- ferent.... Mid-Bay was the second most produc- tive, followed by Tabb's Bay and Cedar Bayou which both yielded low numbers of species and individuals. Factors thought to cause these differences were: 1. the degree of pollution in each area, 2. the type...

Williams, Grady Edward

2012-06-07T23:59:59.000Z

154

Location management and Moving Objects Databases  

E-Print Network [OSTI]

wolfson@cs.uic.edu #12;2 Location based services Examples: Where closest gas station? How do I get there;13 Applications-- Summary · Geographic resource discovery-- e.g. "Closest gas station" · Digital Battlefield/trigger examples: · During the past year, how many times was bus#5 late by more than 10 minutes at station 20

Wolfson, Ouri E.

155

Alternative Fuels Data Center: About the Alternative Fueling Station Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Delicious Rank Alternative Fuels Data Center: About the Alternative Fueling Station Data on Digg Find More places to share Alternative Fuels Data Center: About the Alternative Fueling Station Data on AddThis.com... About the Alternative Fueling Station Data

156

Alternative Fuels Data Center: Alternative Fueling Station Counts by State  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on AddThis.com... Alternative Fueling Station Counts by State

157

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

158

Hydrogen Fueling Infrastructure Research and Station Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

contaminants from downstream sources - L2: must be integrated with <87.5 MPa and > -40C gas - L3: burden on vehicle OEM; many more cars than stations Possible HCD Location...

159

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

costs of cars with alternative fuels/engines." Energy Policyto the Choice of Alternative Fuels and Vehicles." Energyhydrogen; station location; alternative fuel; optimization

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

160

An integrated computer-based training simulator for the operative personnel of the 800-MW power-generating unit at the Perm District Power Station  

Science Journals Connector (OSTI)

The integrated computer-based training simulator for an 800-MW power-generating unit is described. Its capacities for training the personnel of the boiler-turbine and chemical departments are shown.

N. Yu. Pevneva; V. N. Piskov; A. N. Zenkov

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Control of Noise in Power Station Cooling Tower Systems  

Science Journals Connector (OSTI)

Power?station cooling tower systems must handle large volumes of water and air with large potential energy in the water flows and the requirement for large fans. To minimize the noise generated at power station sites use is made of efficient tower fill materials dual low?speed fans (which shifts the spectrum and lowers mid?frequency noise level) and barrier effects in tower location and orientation. Conventional noise control measures such as mufflers are avoided because of the required increase in pressure across the fan and the high initial cost for quieting large towers. The use of natural draft towers is discussed and it is shown that although the low?frequency noise may be reduced the noise levels at typical property line locations are of the same order of magnitude as that for conventional mechanical cooling towers. Since cooling towers at power stations are required as an environmental (thermal) pollution control measure a trade?off between temperature rise of local water supplies versus increases in community noise becomes a critical factor.

Lewis S. Goodfriend

1973-01-01T23:59:59.000Z

162

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

163

Schiller Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Station Biomass Facility Station Biomass Facility Jump to: navigation, search Name Schiller Station Biomass Facility Facility Schiller Station Sector Biomass Owner PSNH Location Portsmouth, New Hampshire Coordinates 43.0717552°, -70.7625532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0717552,"lon":-70.7625532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Timber Mountain Precipitation Monitoring Station  

SciTech Connect (OSTI)

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

165

SOUTH STATION TAmtrak, Commuter  

E-Print Network [OSTI]

SOUTH STATION TAmtrak, Commuter Rail, Bus Station, MBTA Red Line Knapp St. Kneeland St. Stuart St) T BOYLSTON (MBTA Green Line) T NEW ENGLAND MEDICAL CENTER (MBTA Orange Line) Boston Campus Accessibility Map

Dennett, Daniel

166

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

167

Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas  

Science Journals Connector (OSTI)

The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (~10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines.

Adam P Pacsi; Nawaf S Alhajeri; Mort D Webster; Michael E Webber; David T Allen

2013-01-01T23:59:59.000Z

168

Background noise spectra of global seismic stations  

SciTech Connect (OSTI)

Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

Wada, M.M.; Claassen, J.P.

1996-08-01T23:59:59.000Z

169

Early Station Costs Questionnaire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

170

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

171

Energy Department Launches Alternative Fueling Station Locator App  

Broader source: Energy.gov [DOE]

As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new...

172

Alternative Fuels Data Center: Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

your browser to a new version. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center Stationlocicon40r Go to mobile version...

173

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station Manual River Station Central Mill AL Tung Oil AL Corsis AL Innisfail Clump Point Tide TM Mourilyan Harbour TM 0 10 kilometres

Greenslade, Diana

174

Separating equipment for protecting field booster compressor stations  

Science Journals Connector (OSTI)

Possible alternatives of locating a gas separating unit in layouts of plants for preparing gas for transporting and for field booster compressor stations (BCS) are examined. Designs of a gas cleaning unit of the ...

B. S. Palei; V. A. Tolstov; A. P. Romashov

2013-09-01T23:59:59.000Z

175

Refueling Stations | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search TODO: Add description List of Refueling Stations Incentives Retrieved from "http:en.openei.orgwindex.php?titleRefuelingStations&oldid267188...

176

Revitalizing Liberty: Creating a Train StationCommunity CenterBusiness Incubator.  

E-Print Network [OSTI]

??This project will include a train station located in the Town of Liberty, instating a light rail line that will connect Liberty to the Middletown (more)

Baxter, Magan M.

2008-01-01T23:59:59.000Z

177

Clean Cities Launches iPhone App for Alternative Fueling Station...  

Office of Environmental Management (EM)

free app that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, E85, propane, and hydrogen. The National Renewable Energy...

178

Rawhide Energy Station, Fort Collins, Colorado  

SciTech Connect (OSTI)

The staff of Platte River Power Authority's Rawhide Energy Station have been racking up operating stats and an environmental performance record that is the envy of other plant managers. In the past decade Rawhide has enjoyed an equivalent availability factor in the mid to high 90s and an average capacity factor approaching 90%. Still not content with this performance, Rawhide invested in new technology and equipment upgrades to further optimise performance, reduce emissions, and keep cost competitive. The Energy Station includes four GE France 7EA natural gas-fired turbines totalling 260 MW and a 274 MW coal-fired unit located in northeastern Colorado. 7 figs.

Peltier, R.

2008-10-15T23:59:59.000Z

179

Location-aware active signage  

E-Print Network [OSTI]

Three-dimensional route maps, which depict a path from one location to another, can be powerful tools for visualizing and communicating directions. This thesis presents a client-server architecture for generating and ...

Nichols, Patrick James, 1981-

2004-01-01T23:59:59.000Z

180

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION COMMISSION Joel Klein Principal Author Ivin Rhyne Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender DeputyCann Please use the following citation for this report: Klein, Joel. 2009. Comparative Costs of California

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recent developments in HVDC convertor station design  

SciTech Connect (OSTI)

New requirements on HVDC convertor station performance have emerged during the past few years. The paper presents some of these requirements and shows how they have been met through equipment and system development. This development will result in a new generation of HVDC transmissions with still better performance than for the projects presently in operation.

Carlsson, L.

1984-08-01T23:59:59.000Z

182

EV Charging Stations Take Off Across America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

183

Washington DC's First Electric Vehicle Charging Station | Department of  

Broader source: Energy.gov (indexed) [DOE]

Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Shannon Brescher Shea Communications Manager, Clean Cities Program It's always exciting to attend a grand opening, especially when it represents a "first" for an entire region. Yesterday, the U.S. Department of Energy and the city of Washington, DC joined together to

184

EV Charging Stations Take Off Across America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

185

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network [OSTI]

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

186

Resilient design of recharging station networks for electric transportation vehicles  

SciTech Connect (OSTI)

As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

2011-08-01T23:59:59.000Z

187

Thermodynamics of a desalination system at nuclear power stations  

Science Journals Connector (OSTI)

Nuclear power engineering is developing steadily in industrial countries. This is caused by features of using nuclear fuel and high environmental safety of nuclear power stations. At the same time, the thermodynamic efficiency of nuclear power stations is lower than indices of thermal power stations operating on gas, coal or oil fuel. This efficiency does not usually exceed 30??35%. Hence more than 60% of the energy of nuclear fuel being used escapes into the environment through turbine condensers at nuclear power stations. Cogeneration turbines that reduce heat loss by 20??30% are used at thermal power stations for efficiency upgrading. However, cogeneration schemes have not found wide utility at nuclear power stations due to safety conditions. Thus, it is possible to use, in addition, a major part of nuclear fuel energy for desalination at nuclear power stations located on the coast. In this case, some main problems are solved: production of fresh water consumed by nuclear power station for technological purposes and sold to external consumers; upgrading of effectiveness of using nuclear fuel including the cost of steady operation of nuclear power stations at high loads; reduction of non-productive thermal pollutants from nuclear power stations into the environment. It is required to provide maximum upgrading of power station heat efficiency and high capacity of distillers when connecting desalination installations to the thermal scheme of nuclear power stations. The use of energy of the heat carrier's low-temperature flows being emitted by turbine condensers into the environment is of particular value. In this case, different thermodynamic analysis methods are used for the justification of optimal engineering solutions In the article under consideration some results of research of thermodynamics of cycles of nuclear power stations where thermal schemes includes different types of thermal desalination installations are given. From the analysis of thermodynamic processes carried out at nuclear power stations, recommendations related to improvement of desalination installations' thermal schemes providing power system efficiency upgrading have been obtained.

V.V. Slesarenko

2003-01-01T23:59:59.000Z

188

NREL: News - NREL Developed Mobile App for Alternative Fueling Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

713 713 NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. The Alternative Fueling Station Locator App, now available through Apple's App Store, allows iPhone users to select an alternative fuel and

189

Operational Experience in Nuclear Power Stations [and Discussion  

Science Journals Connector (OSTI)

...Operational Experience in Nuclear Power Stations...self-sustaining nuclear reaction to the present...time large-scale generation of electrical power from nuclear energy has become...the C.E.G.B. reactors have been in service...

1974-01-01T23:59:59.000Z

190

A computer program for HVDC converter station RF noise calculations  

SciTech Connect (OSTI)

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

191

Princeton Station Lewis  

E-Print Network [OSTI]

Dean Mathey Princeton Hospital Forrestal AOS PPPL Millstone Apts Dean Mathey Icahn 8:00 AM Mathey Princeton Hospital Forrestal AOS PPPL Millstone Apts Dean Mathey Icahn Order of Stops: Princeton Station; Lewis Lirbary; Dean Mathey; Princeton Hospital Forrestal AOS; PPPL

Singh, Jaswinder Pal

192

Ann Arbor Seismograph Station  

Science Journals Connector (OSTI)

...MEMBERSHIP COHM ITTEE Ross R. Heinrich...n~bers and changes or address should...seismograms, (2) a world-wide...Utah a 0.3 Bonneville lake beds Scoresbysund...Alaska 1.1 2.0 Graywacke...Stores, 221 North Grand Boulevard...SEISM and the name of the station...day of month (2) ml n2 sl s2...

James T. Wilson

193

Signature analysis of the primary components of the Koeberg nuclear power station / J.A. Bezuidenhout.  

E-Print Network [OSTI]

??In line with its commitment to safe nuclear power generation, the Koeberg Nuclear Power Station (KNPS) replaced the outdated vibration monitoring system with a modern (more)

Bezuidenhout, Jandr Albert

2010-01-01T23:59:59.000Z

194

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

195

Genesee Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Station Biomass Facility Power Station Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMS/Fortistar Location Flint, Michigan Coordinates 43.0125274°, -83.6874562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0125274,"lon":-83.6874562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Boralex Chateaugay Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Boralex Chateaugay Power Station Biomass Facility Boralex Chateaugay Power Station Biomass Facility Jump to: navigation, search Name Boralex Chateaugay Power Station Biomass Facility Facility Boralex Chateaugay Power Station Sector Biomass Location Franklin County, New York Coordinates 44.5926135°, -74.3387798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5926135,"lon":-74.3387798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Toyon Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Toyon Power Station Biomass Facility Toyon Power Station Biomass Facility Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Elk City Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Elk City Station Biomass Facility Elk City Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas County, Nebraska Coordinates 41.3148116°, -96.195132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3148116,"lon":-96.195132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Genesee Power Station LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Genesee Power Station LP Biomass Facility Genesee Power Station LP Biomass Facility Jump to: navigation, search Name Genesee Power Station LP Biomass Facility Facility Genesee Power Station LP Sector Biomass Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Penrose Power Station Biomass Facility Penrose Power Station Biomass Facility Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Archbald Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Archbald Power Station Biomass Facility Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type Landfill Gas Location Lackawanna County, Pennsylvania Coordinates 41.4421199°, -75.5742467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4421199,"lon":-75.5742467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Department of Energy Helping Americans Find Alternative Fuel Stations |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Helping Americans Find Alternative Fuel Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information available online in a variety of formats, including web applications, mobile applications, widgets, APIs, and raw data files on the Alternative Fuels Data Center (AFDC) site. These tools enable users to leverage the data to find fuel stations, post custom fueling location maps on their own websites, or access data for web

203

Quantitative Analysis of Station Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Station Analysis of Station Hydrogen * Role of ENAA (Engineering Advancement Association of Japan) - To manage the construction and operation of hydrogen stations in national project, JHFC Project - To act as secretariat of ISO/TC197 (Hydrogen technologies) committee of Japan Kazuo Koseki Chief Secretary of ISO/TC197 of Japan ENAA Yokohama Daikoku Station (Desulfurized Gasoline) Yokohama Asahi Station (Naphtha) Senju Station (LPG) Kawasaki Station (Methanol) Yokohama Asahi Station Naphtha PSA Compressor Storage Tanks Dispenser Reformer Buffer Tank 25 MPa 35 MPa 1073 K 0.8 MPa Inlet : 0.6 MPa Outlet : 40 MPa Vent Stack 40 MPa Result of Quantitative Analysis Concentration. vol.ppm Min.Detect Analysis Impurity Gasoline Naphtha LPG Methanol Conc. Method CO 0.05 0.06 0.02 0.06 0.01 GC-FID

204

Station Instruction Cooperative  

E-Print Network [OSTI]

$0 INSTITUTE OF MUSEUM/LIBRARY SV $0 $0 $0 $135,575 $0 $135,575 NATIONAL AERO & SPACE ADMIN $971General Research Experiment Station Instruction Public Service Cooperative Extension Total $96,610,455 23,968,233 14,198,142 ARRA 6,188,801 Public Service (PS) 33,400,117 45,534,482 34,497,464 39

Arnold, Jonathan

205

Pacific Southwest Research Station Publications  

E-Print Network [OSTI]

Bulletins 1- 28 1965-1989 Soil- Vegetation Tables -- 1965-1980 Solar Irradiation and Shadow Length Tables-1971 1938 California Forest and Range Experiment Station Annual Report 1939 California Forest and Range Experiment Station Annual Report 1940 California Forest and Range Experiment Station Annual Report 1951

Standiford, Richard B.

206

A SpatioTemporal Placement Model for Caching Location Dependent Queries Anand Murugappan and Ling Liu  

E-Print Network [OSTI]

objects of the location queries are still ob- jects such as gas stations, restaurants, or moving objects is driving on the I85 North highway at 60 mph speed, and wants to find the nearest gas stations within certain range. If the query is asking for gas stations within 5 miles, then the spatial validity

Liu, Ling

207

Background: Long-Term Daily and Monthly Climate Records from Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background: Long-Term Daily and Monthly Climate Records from Stations Background: Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at

208

Categorical Exclusion Determination Form Proposed Action Title: (0473-1510) Texas Engineering Experiment Station -  

Broader source: Energy.gov (indexed) [DOE]

rtm nt n rgy rtm nt n rgy Categorical Exclusion Determination Form Proposed Action Title: (0473-1510) Texas Engineering Experiment Station - Robust Adaptive Topology Control (RATC) Program or Pield Office: Advanced Research Projects Agency - Energy Location(s) (City/County/State): Texas, Arizona, California, New Jersey, and Tennessee. Proposed Action Description: Funding will support development an algorithmic Topology Control software to enable real-time, automated control over the transmissions lines within the electricity grid during unexpected power supply interruptions caused by intermittent availability of renewable generation sources, and cascading network failures due to extreme operating conditions or malicious attacks. Proposed work consists of (1) developing a fast, adaptive topology control algorithm to identify actions that will mitigate effects of unexpected

209

Weather Station Emergency Instructions  

E-Print Network [OSTI]

Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt to clean up a spill to an armed assailant, run away from the subject Hide - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter

de Leon, Alex R.

210

High speed imager test station  

DOE Patents [OSTI]

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

Yates, G.J.; Albright, K.L.; Turko, B.T.

1995-11-14T23:59:59.000Z

211

High speed imager test station  

DOE Patents [OSTI]

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

Yates, George J. (Santa Fe, NM); Albright, Kevin L. (Los Alamos, NM); Turko, Bojan T. (Moraga, CA)

1995-01-01T23:59:59.000Z

212

Advanced Resin Cleaning System (ARCS) at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Steam generation system in-core components can undergo serious material degradation by a variety of corrosion-related phenomena. These phenomena are largely controlled by boiler water (i.e. reactor water) chemistry which is strongly impacted by the performance of the condensate system mixed bed ion exchange units. In Boiling Water Reactors (BWR), the mixed bed ion exchange units not only provide protection from ionic contaminants, but also remove insoluble corrosion products by filtration/adsorption. These insoluble corrosion products removed by the ion exchange units must then be periodically cleaned from the resin bed by some process external to the BWR primary water loop. A unique resin cleaning process called the {open_quotes}Advanced Resin Cleaning System{close_quotes} (ARCS) was developed in the late 1980`s by members of CENTEC-XXI, located in Santa Clara, CA. This system, which has been successfully operated for several years at a Pressurized Water Reactor is highly efficient for removal of both insoluble corrosion products and anion/cation resin fines, and generates significantly less waste water than other cleaning methods. The ARCS was considered the most attractive method for meeting the demanding and costly resin cleaning needs of a BWR. A {open_quotes}Tailored Collaboration{close_quotes} project was initiated between EPRI, Entergy Operations (Grand Gulf Station), and CENTEC-XXI to demonstrate the {open_quotes}Advanced Resin Cleaning System{close_quotes} in a BWR.

Asay, R.H.; Earls, J.E.; Naughton, M.D. [Centec 21, Inc., Santa Clara, CA (United States)

1996-10-01T23:59:59.000Z

213

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

214

Darlington tritium removal facility and station upgrading plant dynamic process simulation  

SciTech Connect (OSTI)

Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D{sub 2}O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

Busigin, A. [NITEK USA, Inc., 6405 NW 77 PL, Parkland, FL 33067 (United States); Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A. [Ontario Power Generation Nuclear, Box 4000, Bowmanville, ON L1C 3Z8 (Canada)

2008-07-15T23:59:59.000Z

215

Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

classification) NREL National Renewable Energy Laboratory RFP request for proposals SMR steam methane reformer SOTA state of the art (referring to station classification) TAR...

216

Lunar Base Thermoelectric Power Station Study  

Science Journals Connector (OSTI)

Under NASAs Project Prometheus the Nuclear Space Power Systems Program the Jet Propulsion Laboratory Pratt & Whitney Rocketdyne and Teledyne Energy Systems have teamed with a number of universities under the Segmented Thermoelectric Multicouple Converter (STMC) Task to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in?situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept we will examine the benefits and requirements for a hermetically?sealed reactor thermoelectric power station module suspended within a man?made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station at its 100?m exclusion zone radius were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development deployment operation and disposal of the unit.

William Determan; Patrick Frye; Jack Mondt; Jean?Pierre Fleurial; Ken Johnson; Gerhard Stapfer; Michael Brooks; Ben Heshmatpour

2006-01-01T23:59:59.000Z

217

Lunar Base Thermoelectric Power Station Study  

SciTech Connect (OSTI)

Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

Determan, William; Frye, Patrick [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard [Pratt and Whitney Rocketdyne Inc., P.O. Box 7922, Canoga Park, CA 91309 (United States); Brooks, Michael; Heshmatpour, Ben [Teledyne Energy Systems, Inc., 10707 Gilroy Rd, Hunt Valley, MD 21031 (United States)

2006-01-20T23:59:59.000Z

218

Station design using orifice meters  

SciTech Connect (OSTI)

This paper reports that proper meter station design using gas orifice meters must include consideration of a number of factors to minimize operation and maintenance problems while obtaining the best accuracy over the life of the station. A station should provide accuracy, be safe, functional, economical and free of undue maintenance. It should comply with all codes, reports and specifications but most of all it should be able to comply with terms set forth in the contract. All measuring stations should be designed with considerations of growth or reductions in volume. It should be attractive and built to last for many years.

Upp, E.L. (Daniel Industries, Inc., Houston, TX (United States))

1992-07-01T23:59:59.000Z

219

Celilo Converter Station - October 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safer and ecologi- cally improved. The new thyristors eliminate reliance on mercury for power conversion. Asbestos has been removed from the station. Old, noisy, maintenance-in-...

220

Hanford Meteorological Station - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS...

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wind Conditions in a Fjordlike Bay and Predictions of Wind Speed Using Neighboring Stations Employing Neural Network Models  

Science Journals Connector (OSTI)

This paper evaluates the applicability of neural networks for estimating wind speeds at various target locations using neighboring reference locations along the south coast of Newfoundland, Canada. The stations were chosen to cover a variety of ...

Jens J. Currie; Pierre J. Goulet; Andry W. Ratsimandresy

2014-06-01T23:59:59.000Z

222

Library Locations Locations other than Main Library  

E-Print Network [OSTI]

Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

223

STANDARD OPERATING PROCEDURE Location(s): ___________________________________________________  

E-Print Network [OSTI]

of as hazardous waste. 8. Decontamination: Specific instructions: For light contamination of small areas or items12.1 STANDARD OPERATING PROCEDURE for PHENOL Location(s): ___________________________________________________ Chemical(s): Phenol Specific Hazards: May be fatal if inhaled. Harmful if absorbed through skin. Harmful

Pawlowski, Wojtek

224

Find Alternative Fueling Stations and Learn Something, Too | Department of  

Broader source: Energy.gov (indexed) [DOE]

Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too July 20, 2009 - 7:00pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory A couple of weeks ago it was hybrid electric vehicle week and, always one to be fashionably late, I thought I'd jump in and talk about some of our fun vehicle-related tools. It's probably pretty obvious from the sorts of posts I've done in the past, but I love interactive tools and applications on the Web. EERE has a number of interesting applications and gadgets, and today I thought I'd talk about a few hiding in the Alternative Fuels and Advanced Vehicles Data Center (hereafter referred to as the AFDC.) First off: the Alternative Fueling Station Locator (also available for

225

Temporal Analysis of Incompatible Land-Use and Land-Cover: The Proximity between Residential Areas and Gas Stations in Bucharest Suburban Area  

Science Journals Connector (OSTI)

Incompatible land-use and land-cover indicate the trend in territorial planning and generate instability and conflicts leading to degradation in terms of environmental quality. Urban landscape structure of Bucharest suburban area has changed lately, especially due to expansion of residential areas, increasing the risks of a chaotic urban development. The consequences of this residential expansion have led to malfunctions, outlining a disadvantage area due to environmental problems. In this context, residential areas are frequently located in the proximity of gas stations in Bucharest suburban area. This paper presents the relation between residential areas and gas stations in order to evaluate causes that led to their proximity. Results have pointed out using a number of 60 gas stations (21 gas stations in residential areas and 39 in non-residential areas) the causes and the temporal dynamics of locational conflicts, suggesting that unplanned development and residential agglomeration are the main consequences of territorial conflicts. In this respect of incompatible land-use and land-cover expansion, it is required an evaluation and hierarchy in order to start new coherent plans of space development.

Cristian Ioan Ioj?; Constantina Alina Tudor

2012-01-01T23:59:59.000Z

226

NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of Homeland Security's (DHS) National Protection and Programs Directorate contacted the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the locations of federally owned fueling infrastructure in

227

Microsoft Word - CX_MerrittRadioStationUpgrade_2013.docx  

Broader source: Energy.gov (indexed) [DOE]

8, 2013 8, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Merritt Radio Station Upgrade Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Winton, Chelan County, WA Township 26N, Range 16E, and Section 2 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade its Merritt Radio Station in the Wenatchee River Ranger District of the Okanogan-Wenatchee National Forest (USFS). The proposed radio station upgrade would replace the existing communication building, electrical service, and propane tank with a new building and propane tank in adjacent locations on the

228

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

480 kg/day natural gas reformation station. The table belowReciprocating gas compressor Electrolyzer Station: Thisfor reformer-type stations (natural gas), however, is more

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

229

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

230

Fuel Station Procedure Applicability All  

E-Print Network [OSTI]

Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

Moore, Paul A.

231

Station Costs Pinch Other Programs  

Science Journals Connector (OSTI)

...station. The overruns, encountered by Boeing Co. in its role as general contractor, mean...And he promised a skeptical panel that Boeing has the overruns under control...station. The overruns, encountered by Boeing Co. in its role as general contractor...

Andrew Lawler

1997-09-26T23:59:59.000Z

232

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

233

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

234

Investment and Upgrade in Distributed Generation under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

235

Contaminant-Generation Mechanisms  

Science Journals Connector (OSTI)

In the last chapter, the areas where contaminants are generated were discussed. Knowing the location of contaminant generation is helpful in controlling that contamination, but understanding the mechanisms is ...

Alvin Lieberman

1992-01-01T23:59:59.000Z

236

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station Withthe hydrogen costs from the HSCM for electrolysis stations

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

237

Fuzzy Synthetic Evaluation of Gas Station Safety  

Science Journals Connector (OSTI)

Based on the comprehensive analysis of hazard factors and evaluation indexes in gas stations, gas station safety is assessed in a fuzzy synthetic ... comprehensive evaluation, the specific safety level of gas stations

Xiaohua Hao; Xiao Feng

2010-01-01T23:59:59.000Z

238

Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II  

SciTech Connect (OSTI)

Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

TIAX, LLC

2005-05-04T23:59:59.000Z

239

Franklin Heating Station | Open Energy Information  

Open Energy Info (EERE)

Station Jump to: navigation, search Name: Franklin Heating Station Place: Minnesota References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility...

240

Hydrogen at the Fueling Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mini cogeneration stations: Foreign experience  

Science Journals Connector (OSTI)

The prospects of using autonomous power and heat supply systems are analyzed. The economic advantages of mini cogeneration power stations equipped with gas piston, diesel, or gas turbine units are shown. Examples...

V. R. Kotler

2006-08-01T23:59:59.000Z

242

The Effect of Obstacles Close to the Anemometer Mask located on a Building  

Open Energy Info (EERE)

The Effect of Obstacles Close to the Anemometer Mask located on a Building The Effect of Obstacles Close to the Anemometer Mask located on a Building on Wind Flow in the WAsP Model Dataset Summary Description (Abstract): Wind Atlas Analysis and Application Program (WAsP) is a powerful software package which is used for wind energy assessment for any location using the data of a nearby location under the same climatic condition. In this work WAsP has been used to predict potential areas of Kutubdia, an Island of Bangladesh, for installation of wind generators. As the mast is on the roof of Bangladesh Meteorological Department (BMD) station the hill effect has been introduced. If full heights of obstacles are used the predicted speed for another location becomes high and therefore the height parameter of the obstacles has been adjusted. It appears that those with height below or equal to the slope should not be considered and an obstacle with height greater then the slope should be taken as around h/2 where h is the height above the slope towards the wind direction. The computation shows that the speed difference for one year period between the measured and predicted annual values is 0.3m/s.

243

Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies  

Science Journals Connector (OSTI)

To become a mass-market product, compressed natural gas (CNG) cars will need a dense network of filling stations. The Swiss natural gas industry plans to invest in 350 additional CNG stations to supplement the existing 50 sites. Costbenefit analysis is used to define the optimal locations for these among the existing 3470 petrol filling stations. It is found using two simulations looking at equitable location of sites and socially optimal ones, that the investment in additional CNG infrastructure is unlikely to be socially advantageous.

Martin Frick; K.W. Axhausen; Gian Carle; Alexander Wokaun

2007-01-01T23:59:59.000Z

244

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect (OSTI)

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

245

EIS-0415: Deer Creek Station Energy Facility Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

246

Reversible micromachining locator  

DOE Patents [OSTI]

This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

Salzer, L.J.; Foreman, L.R.

1999-08-31T23:59:59.000Z

247

DOE - Office of Legacy Management -- Norfolk Naval Station - VA 05  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Norfolk Naval Station - VA 05 Norfolk Naval Station - VA 05 FUSRAP Considered Sites Site: NORFOLK NAVAL STATION (VA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium fire at the Fire Fighters School for AEC contractors. VA.05-3 VA.05-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials handled VA.05-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium VA.05-2 Radiological Survey(s): Yes - Health and Safety Monitoring during operations only VA.05-2 Site Status: Eliminated from consideration under FUSRAP

248

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.87.9m/s at the three stations. Evaluation of monthly wind energy density at 10m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70m A.G.L. lie between 333 and 377W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

249

Hazardous waste assessment and reduction options in an auto service station  

SciTech Connect (OSTI)

A hazardous waste assessment was performed and options for reduction of waste antifreeze and car wash wastewater were studied for Thompson`s Freeway Amoco, a gasoline station with a small repair shop and car wash, located in Duluth, Minnesota. In 1992, 1,310 gallons of waste aqueous antifreeze solution (50 vol% ethylene glycol, 50 vol% water), 6,580 gallons of waste oil, 138 gallons of waste parts washer solvent, and 2,702 lbs of waste oil filters, all classified as hazardous waste, were generated by this and three other sister stations of similar size under the same ownership. In addition, 779,810 gallons of car wash wastewater, not classified as hazardous waste, were also produced and discharged into the sewer. Various options were studied for reductions in waste antifreeze and car was wastewater by recycling and reuse. The economic evaluations are presented with the conclusions that on-site recycling of antifreeze is viable but not car wash wastewater recycling.

Baria, D.N.; Dorland, D.; Miller, K.C. [Univ. of Minnesota, Duluth, MN (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

250

Analysis of the fuel efficiency of gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A technique for evaluating the fuel efficiency of the combined generation of electricity and heat at a gas-turbine cogeneration station is presented. The effects the regeneration degree of the gas-turbine cycle a...

V. I. Evenko; A. S. Strebkov

2006-10-01T23:59:59.000Z

251

City of College Station, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Station College Station Place Texas Utility Id 3940 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Rider - HED (Higher Education Discount) Commercial Industrial Industrial Industrial - Primary Service Industrial Industrial - Time of use Industrial Large Commercial - Schedule LP -2 - On-Peak/Off-Peak rider Commercial Large Commercial - Schedule LP -2 - Primary Service Commercial

252

Determining Optimal Locations for New Wind Energy Development in Iowa.  

E-Print Network [OSTI]

??The purpose of this research is to generate the most accurate model possible for predicting locations most suitable for new wind energy development using a (more)

Mann, David

2011-01-01T23:59:59.000Z

253

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

254

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

255

Entrance Maze Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entrance Maze Locations Entrance Maze Locations for the Storage Ring Tunnel Martin Knott LS-83 2/17/87 The Purpose of this note is to document the locations and decision rationale of the entrance mazes for the APS storage ring. There are a total of seven entrance mazes, four on the infield side and three on the operating floor side of the ring. Three of the infield mazes are associated with infield buildings, one in the Extraction Building and one each in the two RF Buildings. These three were located to provide convenient passage between the technical buildings and the storage ring components associated with those buildings. The Extraction Building maze allows passage between the positron beam transfer area and the storage ring two sectors upstream of the injection

256

Reading Room Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOIA Offices and Reading Rooms FOIA Offices and Reading Rooms FOIA Office Locations Our FOIA Officers are located at various sites throughout the DOE complex, each with responsibility for records located at or under the jurisdiction of the site. We recommend that you send your request directly to that specific site. This will shorten the processing time. However, if you do not know which location has responsive records, you may either call the Headquarters FOIA office at (202) 586-5955 to determine the appropriate office, or mail the request to the Headquarters FOIA office. Other records are publicly available in the facilities listed below: Headquarters U.S. Department of Energy FOIA/Privacy Act Group 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 202-586-5955 Fax: 202-586-0575

257

Location linked information  

E-Print Network [OSTI]

This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

Mankins, Matthew William David, 1975-

2003-01-01T23:59:59.000Z

258

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by the more than 700 independent drilling contractors throughout the Free World.

Not Available

1984-03-01T23:59:59.000Z

259

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by more than 700 independent drilling contractors throughout the Free World.

Not Available

1983-09-01T23:59:59.000Z

260

University of Washington Seismograph Stations  

Science Journals Connector (OSTI)

...MEMBERSHIP COHM ITTEE Ross R. Heinrich...n~bers and changes or address should...seismograms, (2) a world-wide...Utah a 0.3 Bonneville lake beds Scoresbysund...Alaska 1.1 2.0 Graywacke...Stores, 221 North Grand Boulevard...SEISM and the name of the station...day of month (2) ml n2 sl s2...

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

262

Optimal command generation for maneuvering the space station  

E-Print Network [OSTI]

with linearly appearing bounded controls. It was shown that on average, the run time for the control eliminated differential inclusion method was one-sixth that of the collocation method. ' One method y'ves a higher accuracy, while the other gives faster... and positive in the direction of vehicle motion. The z-axis points to the nadir, and the y-axis is normal to the orbit plane and completes the right-handed orthogonal system. 15 This can be seen in Figure 2. 2. The angular velocity of LVLH relative...

Bryson, Amy Louise

2012-06-07T23:59:59.000Z

263

Re: Potomac River Generating Station Department of Energy Case...  

Broader source: Energy.gov (indexed) [DOE]

Order No. 202-05-03: Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the...

264

Re: Potomac River Generating Station Department of Energy Case...  

Broader source: Energy.gov (indexed) [DOE]

Per your request, Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the...

265

Re: Potomac River Generating Station Department of Energy, Case...  

Broader source: Energy.gov (indexed) [DOE]

on January 31 Order, Pepco will provide advance notification of the outages to Mirant, PJM, the Department of Energy ("Department"), the Federal Energy Regulatory Commission, the...

266

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

267

CHOOSING A CHARGING STATION USING SOUND IN COLONY ROBOTICS GARY PARKER, CONNECTICUT COLLEGE, USA, PARKER@CONNCOLL.EDU  

E-Print Network [OSTI]

locations. One possibility is to provide autonomous charging stations fueled through solar power. This paper of analog computer to help compute, considering each station's distance and available energy, the best amplitude is reduced by obstacles, yet it can still be heard. In other words, if an object with dimensions

Parker, Gary B.

268

a r r i o r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION  

E-Print Network [OSTI]

Admissions Parking Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION 7046 70127012 1155 10331033 1150 1039 1038

Carver, Jeffrey C.

269

location | OpenEI  

Open Energy Info (EERE)

location location Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (5 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

270

Pine Tree Growth Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pine Tree Growth Locations Pine Tree Growth Locations Name: Amielee Location: N/A Country: N/A Date: N/A Question: Why do pine trees not grow south of the equator? Replies: Dear Amielee, The natural distribution of the pines is the northern hemisphere: http://phylogeny.arizona.edu/tree/eukaryotes/green_plants/embryophytes/conif ers/pinaceae/pinus/pinus.html However, pines have become introduced into the southern hemisphere through cultivation: http://www.woodweb.com/~treetalk/Radiata_Pine/wowhome.html Sincerely, Anthony R. Brach, Ph.D. Hi Amielee Some pine trees do live south of the equator but we (I live in Australia) do not have the huge forests of native conifers that you have in the northern hemisphere. Even in the northern hemisphere conifers are only found in two forest types: 1. Tiaga

271

Analysis on Current Status of the Gas Filling Station Networks Website |  

Open Energy Info (EERE)

Analysis on Current Status of the Gas Filling Station Networks Website Analysis on Current Status of the Gas Filling Station Networks Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis on Current Status of the Gas Filling Station Networks Website Focus Area: Natural Gas Topics: Potentials & Scenarios Website: www.gashighway.net/default.asp?sivuID=25922&component=/modules/bbsView Equivalent URI: cleanenergysolutions.org/content/analysis-current-status-gas-filling-s Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website provides country level analyses of natural gas fueling station networks, the need for further fueling stations and their optimal locations in certain countries. Proposed network expansion strategies are based on available information on vehicle travel patterns and geographic

272

DOE - Office of Legacy Management -- Marysville AEC Ore Buying Station - UT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marysville AEC Ore Buying Station - Marysville AEC Ore Buying Station - UT 05 FUSRAP Considered Sites Site: Marysville AEC Ore Buying Station (UT.05 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

273

DOE - Office of Legacy Management -- Monticello AEC Ore Buying Station - UT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monticello AEC Ore Buying Station - Monticello AEC Ore Buying Station - UT 03A FUSRAP Considered Sites Site: Monticello AEC Ore Buying Station (UT.03A ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

274

DOE - Office of Legacy Management -- Riverton AEC Ore Buying Station - WY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Riverton AEC Ore Buying Station - Riverton AEC Ore Buying Station - WY 0-03 FUSRAP Considered Sites Site: Riverton AEC Ore Buying Station (WY.0-03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

275

DOE - Office of Legacy Management -- Mexican Hat AEC Ore Buying Station -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AEC Ore Buying Station AEC Ore Buying Station - UT 0-02 FUSRAP Considered Sites Site: Mexican Hat AEC Ore Buying Station (UT.0-02) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The ideal scenario was to accumulate a sufficient stockpile of ore and

276

DOE - Office of Legacy Management -- Globe Cutter AEC Ore Buying Station -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Globe Cutter AEC Ore Buying Station Globe Cutter AEC Ore Buying Station - AZ 03 FUSRAP Considered Sites Site: Globe (Cutter) AEC Ore Buying Station (AZ.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

277

DOE - Office of Legacy Management -- Blue Water AEC Ore Buying Station - NM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blue Water AEC Ore Buying Station - Blue Water AEC Ore Buying Station - NM 0-02 FUSRAP Considered Sites Site: Blue Water AEC Ore Buying Station (NM.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

278

DOE - Office of Legacy Management -- Tuba City AEC Ore Buying Station - AZ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AEC Ore Buying Station - AEC Ore Buying Station - AZ 0-02A FUSRAP Considered Sites Site: Tuba City AEC Ore Buying Station (AZ.0-02A) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The ideal scenario was to accumulate a sufficient stockpile of ore and

279

DOE - Office of Legacy Management -- White Canyon AEC Ore Buying Station -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

White Canyon AEC Ore Buying Station White Canyon AEC Ore Buying Station - UT 04 FUSRAP Considered Sites Site: White Canyon AEC Ore Buying Station (UT.04) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

280

DOE - Office of Legacy Management -- Crooks Gap AEC Ore Buying Station - WY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crooks Gap AEC Ore Buying Station - Crooks Gap AEC Ore Buying Station - WY 0-02 FUSRAP Considered Sites Site: Crooks Gap AEC Ore Buying Station (WY.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

University Location Project Description  

Broader source: Energy.gov (indexed) [DOE]

Location Project Description Location Project Description Boise State University Boise, Idaho Boise State University has undertaken a study of the structural setting and geothermal potential at Neal Hot Springs that will integrate geology, geochemistry, and geophysics to analyze the site on the western Snake River plain. Boise State will determine if Neal Hot Springs sustains the necessary rock dilation and conduit pathways for hydrothermal fluid flow and successful geothermal development. The result will be new data acquisition, including a deep geophysical survey and fault surface data. Colorado School of Mines Golden, Colorado Colorado School of Mines will conduct an investigation near Homedale, Idaho, an area that straddles volcanic rock and unconsolidated sediments.

282

An Efficient Algorithm for Optimizing Base Station Site Selection to Cover a Convex Square Region in Cell Planning  

Science Journals Connector (OSTI)

It is gradually more significant to optimally select base stations in the design of cellular networks, as the customers stipulate cheaper and better wireless services. From a set of prospective site locations, a ...

Williamjeet Singh; Jyotsna Sengupta

2013-09-01T23:59:59.000Z

283

Property:UtilityLocation | Open Energy Information  

Open Energy Info (EERE)

UtilityLocation UtilityLocation Jump to: navigation, search Property Name UtilityLocation Property Type Boolean Description Indicates this is the "mailing" location of the Utility. Usually is Yes if the information from EIA Form 861 File1_a is on the page. Pages using the property "UtilityLocation" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + true + 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + AP Holdings LLC + true + APN Starfirst, L.P. + true + APNA Energy + true + Accent Energy Holdings, LLC + true +

284

Optimizing heat integration in a flexible coalnatural gas power station with CO2 capture  

Science Journals Connector (OSTI)

Abstract Computational optimization is used to simultaneously determine the design and planned operating profile of a flexible coalnatural gas power station with CO2 capture, under a CO2 emission performance standard. The facility consists of a coal-fired power station undergoing retrofit with CO2 capture. The CO2 capture energy demand is provided by a specially designed combined cycle gas turbine (CCGT). The heat recovery steam generator (HRSG) component of the CCGT is modeled and optimized in detail, with explicit treatment of the discrete aspects of the HRSG configuration, including the number and sequential arrangement of HRSG internal components. Variable facility operations are represented by discrete operating modes selected based on the electricity priceduration curve. Two objectives, the minimization of capital requirement and the maximization of net present value, are considered in a bi-objective mixed-integer nonlinear programming formulation. Pareto frontiers, which define the optimal tradeoffs between these two objectives, are generated for six scenarios constructed from recent historical data from West Texas, the United Kingdom, and India. For a 440MW coal plant in a scenario based on 2011 West Texas data, the minimum effective net present cost required for the retrofit (which meets the CO2 emission performance standard) varies from $278 to 383million, and the minimum total capital investment requirement ranges from $346 to 517million. The variations in these optimized values correspond to the range of the Pareto frontier within the bounds of the problem. The net present cost of the retrofit is less than the present value of the existing coal plant, $476million, indicating that a retrofit is preferred over decommissioning. In the case of very low energy prices, however, decommissioning is shown to be the preferred option. The UK and India scenarios demonstrate that optimal designs can vary greatly depending upon location-specific economic conditions.

Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky

2014-01-01T23:59:59.000Z

285

7.1.1. Fernbahnhof / Rail Station  

E-Print Network [OSTI]

.1.1.4.7 Gasversorgung des Fernbahnhofs / Gas Supply of Rail Station 7.1.1.4.7.1 Gasversorgung des Fernbahnhofs 77.1.1. Fernbahnhof / Rail Station 7.1.2. ?PNV-Bahnhof / Public Transport Station 7.1.3. Busbahnhof / Bus Station 7.1.4. Taxianlagen / Taxi Stand 7.1.5. Sonstige Passagiergebäude / Other passenger

Berlin,Technische Universität

286

International Space Station Program Overview  

E-Print Network [OSTI]

International Space Station Program Overview 1 #12;BerthingDock MRM1 / FGB Nadir DC1 / MLM / RS Node SM Aft MRM2 / SM-Zenith Node 1 Nadir Node 2 Nadir Node 2 Zenith 2013 2014 2015 May Jun Jul Aug Sep the line (Dock on 5/1/13) HTV4 (7/20/13 ­ 8/19/13) Pre-Decisional, For Internal Use Only Date Color Key

287

Computer Lab Information Location  

E-Print Network [OSTI]

M340 Computer Lab Information · Location: The computer labs accessible to you are Weber 205 it is recommended that you save your files on a floppy when you are finished. · There is another directory, g:\\m340 to the saved files you have to add the directory to the Matlab path. To do this type addpath g:\\m340

Dangelmayr, Gerhard

288

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

the experience of gasoline stations. Driven by the notion "percentages of existing gasoline stations, for a successfulsubset of the existing gasoline station network [14]. These

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

289

Improved approximation algorithms for a capacitated facility location problem  

E-Print Network [OSTI]

that ordinary randomized rounding rarely generates a feasible solution to the associated set covering problemImproved approximation algorithms for a capacitated facility location problem Fabi'an A. Chudak. There is a set of demand locations that require service from facilities; there is a set of locations at which

Keinan, Alon

290

MHK Technologies/Vert Network Power Station | Open Energy Information  

Open Energy Info (EERE)

Network Power Station Network Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vert Network Power Station.jpg Technology Profile Primary Organization Vert Labs LLP Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Vert Network is 1st cost effective wave power system that brings profit with the current level of pricing for renewable electricity The technology of Vert Network is based on an array of plastic floats that produce compressed air from the torque that is created from levers attached to the floats The compressed air is then sent to the shore by rubber pipe which is significantly cheaper and easier to maintain than underwater copper cables Consequently the generation is done on land using a standard turbine generator rather than requiring highly bespoke and overly robust generation devices which have to be specially designed for the marine environment and require specialist skills to maintain The marine based device is therefore made entirely from plastic carbon fibre and rubber so all the components are made from standard materials using mouldings and can be produced very cheaply VERT Labs estimates show that it can provide electricity at about 0 10 kWh When VERT Labs reache

291

Kananaskis Field Station Emergency Instructions  

E-Print Network [OSTI]

Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt to clean up a spill assailant, run away from the subject Hide - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter

de Leon, Alex R.

292

Meteorology: typical meteorological data for selected stations in Ghana  

Open Energy Info (EERE)

data for selected stations in Ghana data for selected stations in Ghana from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations> (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

293

The ALTCRISS project on board the International Space Station  

E-Print Network [OSTI]

The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13.

M. Casolino; F. Altamura; M. Minori; P. Picozza; C. Fuglesang; A. Galper; A. Popov; V. Benghin; V. M. Petrov; A. Nagamatsu; T. Berger; G. Reitz; M. Durante; M. Pugliese; V. Roca; L. Sihver F. Cucinotta; E. Semones; M. Shavers; V. Guarnieri; C. Lobascio; D. Castagnolo; R. Fortezza

2007-08-20T23:59:59.000Z

294

Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station  

SciTech Connect (OSTI)

During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

2012-06-01T23:59:59.000Z

295

The effect of precooling inlet air on CHP efficiency in natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Almost all pressure reduction stations in Iran use expansion valves to reduce the natural gas pressure, which leads to wasting large amount of exergy. In this paper, a system is proposed which includes the modification of a conventional pressure reduction station with the addition of a turbo expander and a gas turbine for power recovery and generation. The next step is investigating the effect of heat exchanger on proposed combined heat and power system. The objective of the simulation is first to investigate the effects of modifying components performance equations on system efficiency and performance at a set operating condition. Secondly, to conduct feasibility study of using a heat exchanger at gas pressure reduction station to boost station efficiency in terms of energy saving and economic value. The result demonstrates that by precooling inlet air of gas turbine, station efficiency increases specially when the turbine works at full load.

Mahyar Kargaran; Mahmoood Farzaneh-Grod; Mohammad Saberi

2013-01-01T23:59:59.000Z

296

Taipei terminal rail station : casting an urban gateway  

E-Print Network [OSTI]

Access is a key issue in the design of railway stations. The evolution of the train station typology, has resulted in many types of stations based on the development of the stations' access. Since rail travel on a larger ...

Tsai, May Deanna

1991-01-01T23:59:59.000Z

297

White House Station, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

House Station, New Jersey: Energy Resources House Station, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.62093°, -74.76123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.62093,"lon":-74.76123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Microsoft Word - LakesideRadioStation_PropertyTransfer_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Joan Kendall Joan Kendall Project Manager, TERR-3 Proposed Action: Sale of Lakeside Radio Station Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.24 - Property Transfers Location: Lakeside (Coos County), Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to sell a communications facility known as the Lakeside Radio Station to the Central Lincoln People's Utility District (Central Lincoln). Components of this facility include a building with air conditioning, a nitrogen tank, a communications tower, and easement rights for the building, three beam paths, and an access road. In 2008, BPA and Central Lincoln reached an agreement to transfer ownership of some of the

299

Bendersville Station-Aspers, Pennsylvania: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bendersville Station-Aspers, Pennsylvania: Energy Resources Bendersville Station-Aspers, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9770375°, -77.2230383° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9770375,"lon":-77.2230383,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Huntington Station, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Station, New York: Energy Resources Station, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8534318°, -73.4115091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8534318,"lon":-73.4115091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kaneohe Station, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaneohe Station, Hawaii: Energy Resources Kaneohe Station, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.44882°, -157.760696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.44882,"lon":-157.760696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Microsoft Word - CX_TunkRadioStationUpgrade_2012.docx  

Broader source: Energy.gov (indexed) [DOE]

May 30, 2012 May 30, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Tunk Mountain Radio Station Upgrade Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19- Siting/construction/operation of microwave/radio communication towers Location: Synarep, Okanogan County, WA Township 35N, Range 29E, and Section 8 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade its Tunk Mountain Radio Station in the Tonasket Ranger District of the Okanogan-Wenatchee National Forest. BPA is coordinating with the U.S. Forest Service (USFS) to ensure the existing land use permit is

303

Port Jefferson Station, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Station, New York: Energy Resources Station, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9253764°, -73.0473284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9253764,"lon":-73.0473284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Microsoft Word - CX_MetalineRadioStationUpgrade_2012.docx  

Broader source: Energy.gov (indexed) [DOE]

July 11, 2012 July 11, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Metaline Radio Station Upgrade Project Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19- Siting/construction/operation of microwave/radio communication towers Location: Metaline Falls, Pend Orielle County, WA Township 40N, Range 43E, Section 31 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade its Metaline Radio Station in the Sullivan Lake Ranger District of the Colville National Forest. BPA is coordinating with the US Forest Service (USFS) to ensure the existing land use agreement is modified to adequately address

305

Microsoft Word - Noxon Radio Station Upgrade CX.doc  

Broader source: Energy.gov (indexed) [DOE]

5, 2011 5, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum David Tripp - TEP-CSB-1 Proposed Action: Noxon Radio Station Upgrade Project Budget Information: Work Order # 00254987 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." Location: Sanders County, Montana - Section 33, Township 26 North, Range 32 West of the Noxon Rapids Dam Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace the existing building at Noxon Radio Station with a new 650 square foot building. The existing building, especially the floor, is deteriorating

306

Final_Tech_Session_Schedule_and_Location.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Mitigation & Mitigation Terrestrial Sequestration & Mitigation Fourth Annual Conference on Carbon Capture and Sequestration Fourth Annual Conference on Carbon Capture and Sequestration Arlington, Virginia Arlington, Virginia G. Philip Robertson G. Philip Robertson Dept. of Crop & Soil Sciences Dept. of Crop & Soil Sciences and W.K. Kellogg Biological Station and W.K. Kellogg Biological Station Michigan State University Michigan State University Main Strategies to Stabilize Atmospheric CO 2 Improve efficiency Renewable energy sources Identify CO 2 sinks and sequestration rates Terrestrial Aquatic Geologic Soils Plants Reduce fossil Fuel consumption Strategies Source C.W. Rice Potential CO 2 Stabilization Options Rapidly Deployable * Biomass co-fire electric generation * Cogeneration (small scale)

307

Exergoeconomic Evaluation of Desalinated Water Production in Pipeline Gas Station  

Science Journals Connector (OSTI)

Abstract Pipelines transporting gas often are thousands of kilometers long, a number of compressor stations are needed, which consume a significant amount of energy. To improve the efficiency of the compressor stations, the high temperature exhaust gases from the gas turbines which drive the compressors are used for producing steam or other motive fluid in a heat recovery steam generator (HRSG). The steam or other vapor is then used to drive a turbine, which in turn drives other compressors or other applications. This paper is to discuss the techno-economic evaluation of different desalination process using the exhaust of 25 MW gas turbine in gas station. MED, MSF and RO desalination systems have been considered. Nadoshan pipeline gas stations with 25 MW gas turbine drivers in Iran were considered as a case study. In this regard, the simulation has been performed in Thermoflex Software. Moreover, the computer code has been developed for thermodynamic simulation and exergoeconomic analysis. Finally, different scenarios have been evaluated and comprised in view of economic, exergetic and exergoeconomic.

M.H. Khoshgoftar Manesh; S. Khamis Abadi; H. Ghalami; M. Amidpour

2012-01-01T23:59:59.000Z

308

Location leaks on the GSM air interface Denis Foo Kune, John Koelndorfer, Nicholas Hopper, Yongdae Kim  

E-Print Network [OSTI]

and their mobile nature, those phones listen to broadcast communications that could reveal their physical location area, or absent from a large area by simply listening on the broadcast GSM channels. With a combination, an incoming voice call for a mobile station requires the network to locate that device and allocate

Minnesota, University of

309

Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real  

E-Print Network [OSTI]

of a Mini-Hydro Power Generator to the Rural Grid The UK distribution network has been significantly exten1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators

Harrison, Gareth

310

Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica (Poster)  

SciTech Connect (OSTI)

This poster summarizes the analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Available data were obtained on the wind resources, power plant conditions, load, and component cost. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities.

Baring-Gould, E. I.; Robichaud, R.; McLain, K.

2005-05-01T23:59:59.000Z

311

Clean Cities: Coalition Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

312

Clean Cities: Coalition Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

313

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

314

Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing  

SciTech Connect (OSTI)

In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are primarily the result of spurious identification and incorrect association of phases, and of excessive variability in estimates for the velocity and direction of incoming seismic phases. The mitigation of these causes has led to the development of two complimentary techniques for classifying seismic sources by testing detected signals under mutually exclusive event hypotheses. Both of these techniques require appropriate calibration data from the region to be monitored, and are therefore ideally suited to mining areas or other sites with recurring seismicity. The first such technique is a classification and location algorithm where a template is designed for each site being monitored which defines which phases should be observed, and at which times, for all available regional array stations. For each phase, the variability of measurements (primarily the azimuth and apparent velocity) from previous events is examined and it is determined which processing parameters (array configuration, data window length, frequency band) provide the most stable results. This allows us to define optimal diagnostic tests for subsequent occurrences of the phase in question. The calibration of templates for this project revealed significant results with major implications for seismic processing in both automatic and analyst reviewed contexts: one or more fixed frequency bands should be chosen for each phase tested for. the frequency band providing the most stable parameter estimates varies from site to site and a frequency band which provides optimal measurements for one site may give substantially worse measurements for a nearby site. slowness corrections applied depend strongly on the frequency band chosen. the frequency band providing the most stable estimates is often neither the band providing the greatest SNR nor the band providing the best array gain. For this reason, the automatic template location estimates provided here are frequently far better than those obtained by analysts. The second technique is that of matched field processing whereby spatial covariance

Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

2007-01-30T23:59:59.000Z

315

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

316

Tin City Long Range Radar Station Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tin City Long Range Radar Station Wind Farm Tin City Long Range Radar Station Wind Farm Jump to: navigation, search Name Tin City Long Range Radar Station Wind Farm Facility Tin City Long Range Radar Station Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tin City Long Range Radar Station Developer Tanadgusix Corp. Energy Purchaser Tin City Long Range Radar Station Location Nome AK Coordinates 65.559372°, -167.949686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.559372,"lon":-167.949686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Test Cell Location  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mazda 3 i-Stop Mazda 3 i-Stop Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop Vehicle Dynamometer Input Document Date 11/20/2012 Advanced Powertrain Research Facility Test weight [lb] 3250 Vehicle Dynamometer Input Document Date 11/20/2012 Revision Number 1 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3250 31.2 Target B [lb/mph] Target C [lb/mph^2] 0.462 0.014 Test Fuel Information - Vehicle equipped with with i-Stop package - Manual Transmission - All tests completed in ECO mode - EPA shift schedule modified based on vehicle shift light activity Revision Number 1 Notes: Fuel type EPA Tier II EEE Gasoline Test Fuel Information - Vehicle equipped with with i-Stop package

318

Locations Everyone: Lights, Camera, Action!  

Science Journals Connector (OSTI)

Locations Everyone: Lights, Camera, Action! ... Harvard Institute of Proteomics Harvard Medical School ...

Robert F. Murphy; Joshua LaBaer

2008-12-05T23:59:59.000Z

319

Stridsvagn 122 och Remote Weapon Station.  

E-Print Network [OSTI]

?? Den hr uppsatsen behandlar stridsvagn122 och Remote Weapon Station (RWS). Det finns ett verkansglapp mellan dagens kalibrar 120 mm och 7,62 mm. Observationsmjligheterna i (more)

Sellberg, Martin

2010-01-01T23:59:59.000Z

320

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS  

Broader source: Energy.gov [DOE]

Several National Laboratory contractors have asked whether appropriated funds may be used to reimburse cost of installing electric vehicle recharging stations and to pay electricity bill costs...

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Fueling Infrastructure Research and Station Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry...

322

Hydrogen Fueling Infrastructure Research and Station Technology...  

Energy Savers [EERE]

Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

323

New Buildings at the Fire Research Station  

Science Journals Connector (OSTI)

... THE new buildings of the Fire Research Station A of the Joint Fire Research Organization of the Department ... chemicals will be studied in the new chemical engineering laboratory.

D. I. LAWSON

1961-01-14T23:59:59.000Z

324

Turbine-generator replacement study  

SciTech Connect (OSTI)

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

325

Watch out for the Baboons: Three weeks at a research station in a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watch out for the Baboons: Three weeks at a research station in a Watch out for the Baboons: Three weeks at a research station in a rainforest in Uganda Speaker(s): Donald Grether Date: April 24, 2009 - 12:00pm Location: 90-3122 Don and his wife Becky, their son Greg and his wife Debra, their two daughters Briana and Paria (ages 12 and 4), and son Wiley (age 2) spent most of February 2009 going to, staying in, and returning from Uganda. Greg and Debra were the UCLA faculty leaders of a group of 15 undergraduates, two graduate students, and one postdoc on a biology field trip. At times Don and Becky were in-effect running a day care center at the research station while Greg and Debra were working with the students. However, it was seldom dull as in a sense the rainforest came to the research station: baboons, monkeys, an antelope, birds, lizards, and

326

DOE - Office of Legacy Management -- Salt Lake City AEC Ore Buying Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AEC Ore Buying AEC Ore Buying Station - UT 0-03 FUSRAP Considered Sites Site: Salt Lake City AEC Ore Buying Station (UT.0-03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The ideal scenario was to accumulate a sufficient stockpile of ore and

327

DOE - Office of Legacy Management -- U S Bureau of Mines Reno Station - NV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reno Station - Reno Station - NV 06 FUSRAP Considered Sites Site: U.S. BUREAU OF MINES RENO STATION (NV.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. BOM Metallurgy Research Center, Dept of the Interior NV.06-1 Location: 1605 Evans Avenue , Reno , Nevada NV.06-1 NV.06-2 Evaluation Year: 1987 NV.06-1 Site Operations: Research and development activities involving uranium. NV.06-2 Site Disposition: Eliminated - Potential for contamination remote NV.06-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NV.06-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to U.S. BUREAU OF MINES RENO STATION NV.06-1 - Memorandum/Checklist; Wallo to the File; Subject: U.S.

328

Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Naval Air Station Area (Sabin, Et Al., 2010) Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) Exploration Activity Details Location Fallon Naval Air Station Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes As was mentioned previously, the Navy signed a development contract with Ormat in 2005 to produce power from a potential resource on the SE corner of the main side portion of NAS Fallon. Additionally the GPO began additional exploration activities on the Bombing Range 16 in collaboration with the Great Basin Center for Geothermal Energy. The introduction of $9.1M of Recovery Act funds in early 2009 led to a broadening as well as an

329

DOE - Office of Legacy Management -- Burris Park Field Station - CA 10  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burris Park Field Station - CA 10 Burris Park Field Station - CA 10 FUSRAP Considered Sites Site: Burris Park Field Station (CA.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Kingsburg , California CA.10-1 Evaluation Year: 1987 CA.10-2 Site Operations: Site owned and operated by Univ. of CA conducted experiments on decontamination of soils containing Strontium-90. CA.10-1 Site Disposition: Eliminated - Adequate remediation activities performed by the University of California CA.10-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Strontium CA.10-1 Radiological Survey(s): Yes CA.10-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Burris Park Field Station

330

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

331

MERCURY SPECIATION SAMPLING AT NEW CENTURY ENERGY'S VALMONT STATION  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the ''Mercury Study Report to Congress'' and ''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units''. The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam electric generating units. Although these reports did not state that mercury controls on coal-fired electric power stations would be required given the current state of the art, they did indicate that the EPA views mercury as a potential threat to human health. Therefore, it was concluded that mercury controls at some point may be necessary. EPA also indicated that additional research/information was necessary before any definitive statement could be made. In an effort to determine the amount and types of mercury being emitted into the atmosphere by coal-fired power plants, EPA in late 1998 issued an information collection request (ICR) that required all coal-fired power plants to analyze their coal and submit the results to EPA on a quarterly basis. In addition, about 85 power stations were required to measure the speciated mercury concentration in the flue gas. These plants were selected on the basis of plant configuration and coal type. The Valmont Station owned and operated by New Century Energy in Boulder, Colorado, was selected for detailed mercury speciation of the flue gas as part of the ICR process. New Century Energy, in a tailored collaboration with EPRI and the U.S. Department of Energy, contracted with the Energy & Environmental Research Center (EERC) to do a study evaluating the behavior of mercury at the Valmont Station. The activities conducted at the Valmont Station by the EERC not only included the sampling needed to meet the requirements of the ICR, but involved a much more extensive mercury research program. The following objectives for the sampling at New Century Energy's Valmont Station were accomplished: (1) Successfully complete all of the mercury sampling and reporting requirements of the ICR. (2) Determine the variability in mercury concentrations at the stack using mercury continuous emission monitors (CEMs). (3) Calculate mercury mass balances and emission rates. (4) Determine the mercury concentration in the fly ash as a function of particle size. (5) Determine the impact of a fabric filter on mercury emissions for a western bituminous coal.

Dennis L. Laudal

2000-04-01T23:59:59.000Z

332

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station WithAnalysis: Electrolysis, 30 kg/day, grid Hydrogen Cost ($/kg)the hydrogen costs from the HSCM for electrolysis stations

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

333

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual Tide TM Bulgun Ck AL Bingil Bay The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL Russell

Greenslade, Diana

334

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL RussellR Babinda Clyde Rd AL Central Mill AL

Greenslade, Diana

335

Machine tool locator  

DOE Patents [OSTI]

Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

Hanlon, John A. (Los Alamos, NM); Gill, Timothy J. (Stanley, NM)

2001-01-01T23:59:59.000Z

336

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4: Energy Station Grid electricity Cogen Heat Exhaust (CO2)Recycled Reformate Grid electricity Cogen Heat Electricity

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

337

EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information  

Open Energy Info (EERE)

EUHYFIS Hydrogen Filling Station Consortium EUHYFIS Hydrogen Filling Station Consortium Jump to: navigation, search Name EUHYFIS (Hydrogen Filling Station Consortium) Place Oldenburg, Germany Zip 26123 Sector Hydro, Hydrogen Product Oldenburg-based, consortium of the Bauer Kompressoren, Casale Chemicals and PLANET (Planungsgruppe Energie und Technik) with the objective to provide hydrogen infrastructure. Coordinates 53.138699°, 8.21144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.138699,"lon":8.21144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Daily Reporting Rainfall Station MULGRAVE-RUSSELL RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Station Telemetry Rainfall Station Telemetry River Station Revised: Nov 2011 MAP 111.1 FLOOD WARNING ulgraveR The Boulders TM RussellR Clyde Rd AL Babinda Bucklands TM Daradgee McAvoy Br AL 0 5 10 kilometres

Greenslade, Diana

339

Oben: Die Station im Watt bei Spiekeroog.  

E-Print Network [OSTI]

Oben: Die Station im Watt bei Spiekeroog. Unten: Ausschnitt des innen begeh- baren Pfahlrohrs mit Ossietzky Universität Oldenburg Meeresdaten rund um die Uhr: Die Station im Watt Von Rainer Reuter In autumn Rückseiten- watt und offener Nordsee. Die Umwelt zu beobachten und verläss- liche Messungen zu gewinnen, ist

Oldenburg, Carl von Ossietzky Universität

340

Test Cell Location  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chrysler 300 Chrysler 300 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4250 38.61 Target B [lb/mph] Target C [lb/mph^2] 0.8894 0.01105 3.6L VVT Port-injected V-6 8 speed Transmission Revision Number 3 Notes: Test Fuel Information 3.6L VVT Port-injected V-6 8 speed Transmission Fuel type Tier II EEE HF437 3.6L VVT Port-injected V-6 8 speed Transmission Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18490 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Data Transmission and Base-Station Placement for Optimizing Network Lifetime  

E-Print Network [OSTI]

processing and storage capabilities and lim- ited power/energy (battery life). The information gathered- station. Considering the battery limitations of the sensors, our goal is to find an optimum location- tion, Optimization, Matching 1. INTRODUCTION Recent advances in building powerful, highly integrated

Efrat, Alon

342

Successes, Challenges, Lessons Learned in Land Use Planning Efforts Adjacent to an LRT Station  

E-Print Network [OSTI]

;Case Study: Location Project Site 50th Street/ Minnehaha Park LRT Station LRT Electrical Substation for rehabilitation 2004 ·!Hiawatha LRT began operating in June ·!Electrical Substation installed on site 2005 ·!City ·!Hiawatha LRT began operating in June ·!Electrical Substation installed on site 2005 ·!City opens

Minnesota, University of

343

Installation for a nuclear power station with staggered swimming pools  

SciTech Connect (OSTI)

In an installation for a nuclear power station comprising a ''reactor building'' with a first swimming pool for handling of fuel units and a fuel building with a second swimming pool for the transfer, storage and deactivation of the units, the second swimming pool is located at a lower level than that of the first and is connected to the first by an intermediate auxiliary chamber filled with water and located under the first swimming pool. The auxiliary chamber is connected by a vertical pipeline to the first swimming pool and by a horizontal connecting pipeline to the second swimming pool. Each of the pipelines is provided with a shut-off valve, with interlocking means which prevents the simultaneous opening of the two valves. There is negligible dead space around a conveyor basket for fuel units when it is in the vertical or horizontal pipelines.

Gigou, R.

1982-12-28T23:59:59.000Z

344

ESBWR response to an extended station blackout/loss of all AC power  

SciTech Connect (OSTI)

U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

Barrett, A. J.; Marquino, W. [New Plants Engineering, GE Hitachi Nuclear Energy, M/CA 75, 3901 Castle Hayne Road, Wilmington, NC 28402 (United States)

2012-07-01T23:59:59.000Z

345

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikolskii

2007-08-01T23:59:59.000Z

346

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect (OSTI)

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

347

LNG to CNG refueling stations  

SciTech Connect (OSTI)

While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

1995-12-31T23:59:59.000Z

348

Burner balancing Salem Harbor Station  

SciTech Connect (OSTI)

The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

Sload, A.W. [New England Power Co., Salem, MA (United States); Dube, R.J. [DB Riley, Inc., Worcester, MA (United States). Fuel Equipment Design

1995-12-31T23:59:59.000Z

349

Guide to the Library Locations  

E-Print Network [OSTI]

Guide to the Libraries #12;Library Locations W.E.B. DU BOIS LIBRARY www.library.umass.edu 154 Hicks Way (413) 545-0150, (413) 545-2622 The Du Bois Library is the primary location for resources machine, and a fax machine. Quiet study space is located on Floors 2 and 3 and throughout the upper floors

Massachusetts at Amherst, University of

350

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

1998-01-01T23:59:59.000Z

351

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

Groll, T.A.; White, J.P.

1998-03-03T23:59:59.000Z

352

Measurements of Collimator Wakefields at End Station A  

SciTech Connect (OSTI)

The angular deflection of a 28.5 GeV electron beam passing off-axis between the jaws of a collimator, generating a transverse wakefield, were measured in End Station A (ESA) at SLAC. In total, fifteen different configurations of collimator geometry and material were tested: some were chosen for compatibility with previous measurements while others served to study the effect of geometry and taper angles (geometrical contribution to the wakefield) and the effect of the material resistivity (resistive contribution) to the imparted kick. This paper summarises the last update of preliminary experimental results before they are finalised. The reconstructed kick factor is compared to analytical calculations and simulations.

Fernandez-Hernando, J.L.; /Daresbury; Molloy, S.; /SLAC; Smith, J.D.A.; /Cockcroft Inst. Accel. Sci. Tech.; Watson, Nigel Keith; /Birmingham U.

2011-11-01T23:59:59.000Z

353

50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL  

SciTech Connect (OSTI)

In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

2011-03-11T23:59:59.000Z

354

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

355

OPTIMIZING PERFORMANCE OF THE HESKETT STATION  

SciTech Connect (OSTI)

The overall conclusion from this work is that a switch from river sand bed material to limestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch to limestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium and sulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bed without agglomeration, allowing either the bed turnover rate to be reduced to half the current sand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned with limestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO{sub 2} emissions can be controlled. A small improvement in boiler efficiency should be achievable by operating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NO{sub x} emissions, providing a margin of safety for meeting emission standards. No detrimental effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Some specific conclusions from this work include the following: The bed material feed rate can be reduced from the current rate of 5.4% of the coal feed rate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This will result in an annual savings of approximately $200,000. (1) SO{sub 2} emissions at the recommended feed rate would be approximately 250 ppm (0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO{sub 2} allowances could be generated at a cost of $60/ton SO{sub 2} , leaving a large profit margin for the sale of allowances. The addition of limestone at the same rate currently used for sand feed could generate $455,000 net income if allowances are sold at $200/ton SO2 . (2) At full-load operation, unburned carbon losses increase significantly at excess oxygen levels below 2.8%. No efficiency gains are expected at high-load operation by switching from sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiency gain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annual savings. (3) A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by using limestone at the recommended feed rate compared to the current sand feed rate. No measurable change in volume would be realized because of the lower bulk density of the limestone-derived material.

Michael D. Mann; Ann K. Henderson

1999-03-01T23:59:59.000Z

356

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

357

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

358

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

359

University Climatological Station Compiled by Erwin Wodarczak (1998)  

E-Print Network [OSTI]

University Climatological Station Committee fonds Compiled by Erwin Wodarczak (1998) #12;Fonds Description University Climatological Station Committee fonds. ­ 1961-1974. 3 cm of textual records. Administrative History In 1954 a President's Climatological Station Committee was established

Handy, Todd C.

360

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

362

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

only 18% of existing gas station number is needed to achievean intersection like 4-corner gas stations in real life, butis only 708 or 18% of gas stations in the study region. This

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

363

Establishment of a Background Environmental Monitoring Station for the PNNL Campus  

SciTech Connect (OSTI)

The environmental surveillance of background levels of radionuclides and, in particular, the siting of a background environmental surveillance (monitoring) station are examined. Many published works identify and stress the need for background monitoring; however, little definitive and comprehensive information for siting a station exists. A definition of an ideal background monitoring location and the generic criteria recommended for use in establishing such a background monitoring location are proposed. There are seven primary (mandatory) criteria described with two additional, optional criteria. The criteria are applied to the Richland, Washington (WA), Pacific Northwest National Laboratory (PNNL) Campus, which currently uses background monitoring data from the nearby Hanford Site. Eleven potential background monitoring sites were identified, with one location in Benton City, WA found to meet all of the mandatory and optional criteria. It is expected that the new sampler will be installed and operating by the end of June, 2015.

Fritz, Brad G.; Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.; Rishel, Jeremy P.

2014-12-18T23:59:59.000Z

364

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

365

WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS  

SciTech Connect (OSTI)

Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

Buckley, R; Allen H. Weber, A

2006-11-01T23:59:59.000Z

366

Fact #717: March 5, 2012 Availability of Electric Charging Stations...  

Energy Savers [EERE]

7: March 5, 2012 Availability of Electric Charging Stations Has Increased Dramatically in Recent Years Fact 717: March 5, 2012 Availability of Electric Charging Stations Has...

367

Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic...

368

Hydrogen Station Test Device Design and Fabrication | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Station Test Device Design and Fabrication Hydrogen Station Test Device Design and Fabrication October 2, 2014 - 3:02pm Addthis Open Date: August 26, 2014 Requesting...

369

Climate analysis with satellite versus weather station data  

Science Journals Connector (OSTI)

This paper compares how well satellite versus weather station measurements of climate predict agricultural performance ... , India, and the United States. Although weather stations give accurate measures of groun...

Robert Mendelsohn; Pradeep Kurukulasuriya; Alan Basist; Felix Kogan

2007-03-01T23:59:59.000Z

370

November 10, 2004: First hydrogen refueling station opens in...  

Energy Savers [EERE]

refueling station in Washington, D.C. The station will be used to refuel General Motors' fuel cell vehicles in DOE's Vehicle and Infrastructure Learning Demonstration and...

371

H2FIRST: Hydrogen Fueling Infrastructure Research and Station...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure...

372

Boiler House and Power Station Chemistry  

Science Journals Connector (OSTI)

... and power stations". It provides a useful background of information on the properties and combustion of ... of coals, and on such subjects as the treatment of boiler feed water, types of oil ...

A. PARKER

1949-01-01T23:59:59.000Z

373

The College Station Residential Energy Compliance Code  

E-Print Network [OSTI]

The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

Claridge, D. E.; Schrock, D.

1988-01-01T23:59:59.000Z

374

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

stations and vendors (e.g. Air Products and Chemicals, Inc,including Chevron and Air Products and Chemicals, Inc. , asDiesel a. Verified with Air Products representative, Feb

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

375

Hydrogen Fueling Infrastructure Research and Station Technology  

Broader source: Energy.gov [DOE]

Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

376

IntegratedScienceWorkingforYou Research Station  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . .5 Colorado's forest resources, 2002-2006 . . . . . . . . .6 Post Mountain Research Station Federal Recycling Program Printed on Recycled Paper The Rocky Mountain Research organi- zation--the most extensive natural resources research organization in the world. We maintain 14

377

Field Station Contributors, 2010 Acton, Gary  

E-Print Network [OSTI]

Field Station Contributors, 2010 Acton, Gary Allen, Deborah and Harry Ardell, Robert and Lee Baker Mead, Judson and Jane Mead, Thomas and Lenore Merritt, Andrew and Eleanor Morganwalp, David and Jill

Polly, David

378

Improving Unit Operations-Test Station Performance  

E-Print Network [OSTI]

) usage. The basic concept evaluates the varying criterias affecting these elements and their direct impact on production/test station operating costs. Second consideration explores other methods available to enhance mechanical compatibility with operator...

Filak, J. J. Jr.

379

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

380

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect (OSTI)

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

System and method for optically locating microchannel positions  

DOE Patents [OSTI]

A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.

Brewer, Laurence R. (Oakland, CA); Kimbrough, Joseph (Pleasanton, CA); Balch, Joseph (Livermore, CA); Davidson, J. Courtney (Livermore, CA)

2001-01-01T23:59:59.000Z

382

LOCATION: Johnson County Sheriff's Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOCATION: Johnson County Sheriff's Office Criminalistics Laboratory 11890 Sunset Drive Olathe, Kansas 66061 DATE: JULY 15TH - JULY 18TH, 2013 TUITION: MAFS MEMBERS: 550 Non-MAFS...

383

EIS-0215: Pinon Pine Power Project, Tracy Station, NV  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

384

A Proposal for an ALPs-Chameleon Experiments Station  

E-Print Network [OSTI]

It is generally accepted that certain astronomical and cosmological observations can be explained by invoking the concepts of Dark Matter and Dark Energy (DM/DE). Applying straightforward extensions of the Standard Model to DM/DE, results in scalar fi?elds and predictions of particles generation via photo-magnetic coupling . Under the right conditions, these particles should be observable in earth-bound laboratory settings. Although many attempts have been made to observe these particles, none have succeeded. Heretofore, most searches have focused on detecting multi-GeV Dark Matter WIMPS. Recently, however, searches have been conducted in the lighter dark matter, sub-eV, WISP mass range. By comparison, little has been done to search for dark energy particles. The ALPs-Chameleon Experiments Stations (ACES) program, described herein, proposes a compact station that would search for both dark sector particles. Finally, it is noted that both "species" of particles - dark energy and dark matter - could be generated at the same time in the same magnetic ?field with the possibility of interaction between DM and DE particles. Thus, by using standard matter tools to produce particles from both dark sectors, ACES potentially could provide tri-sector discoveries with huge results for very little investment.

James R. Boyce; Andrei Afanasev; Oliver Keith Baker; Michelle Shinn

2014-03-25T23:59:59.000Z

385

Coal dust exposure among power station workers during normal operations at Hatfield's Ferry Power Station.  

E-Print Network [OSTI]

??Changes in coal composition could produce higher levels of coal dust exposure thanthose found in the past at Hatfield's Ferry Power Station. Air sampling was (more)

Lewis, Christian S.

2008-01-01T23:59:59.000Z

386

Property:EIA/861/NercLocation | Open Energy Information  

Open Energy Info (EERE)

NercLocation NercLocation Jump to: navigation, search This is a property of type String. Description: Nerc Location NERC Location: The North American Electric Reliability Corporation (NERC) region where the utility has its primary business operations (service territory), electrical generation, transmission, and distribution equipment, and its administrative headquarters. Some utilities have business operations and service areas in more than one NERC region. Power marketers, because they generally have only office equipment, can have business operations in any NERC region. FRCC = Florida Reliability Coordinating Council; MRO = Midwest Reliability Organization; NPCC = Northeast Power Coordinating Council; RFC = Reliability First Corporation (formerly MAAC, MAIN and ECAR); SERC = SERC Reliability Corporation; SPP =

387

Homodyne impulse radar hidden object locator  

DOE Patents [OSTI]

An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

388

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

389

DOE - Office of Legacy Management -- Naval Ordnance Test Station - CA 06  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ordnance Test Station - CA 06 Ordnance Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: China Lake Naval Weapons Center Salt Wells Pilot Plant CA.06-1 Location: Inyokern , California CA.06-1 Evaluation Year: 1987 CA.06-1 Site Operations: Naval facility; experimental development work on shape charges and quality castings on a pilot plant scale. CA.06-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at the site CA.06-1 Radioactive Materials Handled: None Indicated CA.06-1 Primary Radioactive Materials Handled: None CA.06-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see

390

Some factors affecting the location of controlled access highways  

E-Print Network [OSTI]

of t hos differ', ness;;~ be resolved by acvutcemsnt of principles u;m ettich sgreeitent t. y be reached and satisfactory decisions tede. Methods have bem est!d lished for tho ev&uat, ion of the desi&~ li!stations~ construction am. rifht oi ea; cout... to Groups 1 and 2 but located such that the freeway could not influence their value. 4n analysis was made of all sales within the chosen areas for three time intervals, each being 2 years in lengthx and spread to give two time periods of study of 5 years...

Case, Henry Orlando

2012-06-07T23:59:59.000Z

391

Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)  

SciTech Connect (OSTI)

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

Not Available

2009-04-01T23:59:59.000Z

392

The LOFAR Super Station concept : an input for discussion  

E-Print Network [OSTI]

throughout Europe : several stations in Germany1 , UK2 , soon a French LOFAR station in Nançay3 , and further contacts in several other countries4 FLOW context · Official decision for funding the French station taken MHz) o Incoherent addition of the same stations to synthesize a broad instantaneous beam (maximum

Demoulin, Pascal

393

Fallon Naval Air Station Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Naval Air Station Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Naval Air Station Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

395

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

396

Risk-Cost Tradeoff Analysis of Oil vs. Coal Fuels for Power Generation  

Science Journals Connector (OSTI)

This study examines the economic requirements and health consequences of converting an electrical power generating unit from oil to coal combustion at the West Springfield, MA Generating Station. Three alterna...

Lawrence B. Gratt; Gregory S. Kowalczyk

1991-01-01T23:59:59.000Z

397

Evaluation of the effectiveness of shielding and filtering of HVDC converter stations  

SciTech Connect (OSTI)

The electromagnetic interference (EMI) generated by the periodic turn-on and turn-off of the valves is an important consideration in the design of HVDC converter stations. Remedial measures such as shielding the valve hall and filtering have been used in order to reduce the interference levels to acceptable values. The application of recently-developed Numerical Electromagnetic Code (NEC) to the problem of EMI from HVDC converter stations is investigated in this paper, with particular emphasis on evaluating the effectiveness of valve hall shielding and filtering.

Dallaire, R.D.; Maruvada, P.S.

1989-04-01T23:59:59.000Z

398

E-Print Network 3.0 - anna power station Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

station Search Powered by Explorit Topic List Advanced Search Sample search results for: anna power station...

399

E-Print Network 3.0 - anna power stations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stations Search Powered by Explorit Topic List Advanced Search Sample search results for: anna power stations...

400

An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Natural gas is transported in pipelines at high pressures. To distribute the gas locally at locations along the pipeline the pressure must be reduced before the gas enters the local distribution system. Most pressure reduction stations in North America use expansion valves for this purpose. The expansion process produces a temperature decrease which can cause problems so the gas must be preheated before entering the expansion valve. Usually this is done using a natural gas-fired boiler. To reduce the energy consumption the pressure drop can be achieved by passing the gas through a turboexpander which generates electrical power. With a turboexpander system the gas must also be preheated, a gas-fired boiler again used. A new approach which uses a hybrid turboexpander-fuel cell system has been considered here. In such a system, a Molten Carbonate Fuel Cell (MCFC) utilizing natural gas is used to preheat the gas before it flows through the turboexpander and to provide low emission electrical power. The main objective of the present work was to investigate the factors affecting the performance of such a system. Data on natural gas usage in typical smaller Canadian city was used as an input to a simulation of a hybrid gas expansion station in the city.

Clifford Howard; Patrick Oosthuizen; Brant Peppley

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

POST 10/Truck Inspection Station (Map 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

402

Development of a Renewable Hydrogen Energy Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

403

A comprehensive approach to selecting the water chemistry of the secondary coolant circuit in the projects of nuclear power stations equipped with VVER-1200 reactors  

Science Journals Connector (OSTI)

The paper presents the results obtained from studies on selecting the water chemistry of the secondary coolant circuit carried out for the project of a nuclear power station equipped with a new-generation VVER-12...

V. F. Tyapkov

2011-05-01T23:59:59.000Z

404

Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations  

SciTech Connect (OSTI)

Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

Johnson, C.; Hettinger, D.; Mosey, G.

2011-05-01T23:59:59.000Z

405

Geotechnical investigations at strong-motion stations in the Imperial Valley, California  

SciTech Connect (OSTI)

This study involved investigations at Imperial Valley, California accelerograph stations, and was done because of the unique strong-motion data set recorded during the magnitude 6.5 earthquake of October 15, 1979. The project included the following investigations: (1) electronic cone-penetrometer soundings at nine stations; (2) drilling, sampling, and logging of 22 borings to depths of from about 30 to 244 m; (3) downhole P- and S-wave velocity surveys at 22 stations; (4) high-amplitude resonant column tests of undisturbed samples from several stations; and (5) numerous gamma, S-P, and resistivity logs and caliper and temperature measurements at selected stations. This study is part of a program to compile geotechnical data at selected locations in various regions and to use these data to make detailed comparisons of the geologic and seismic characteristics that will provide a means for quantitatively estimating strong ground motion at a given site and facilitate the development of seismic zonation techniques applicable to other regions. 29 refs., 13 figs., 4 tabs.

Porcella, R.L.

1984-08-01T23:59:59.000Z

406

Final Environmental Impact Statement Plymouth Generating Facility Plymouth, Washington  

SciTech Connect (OSTI)

Plymouth Energy, L.L.C. (Plymouth Energy) proposes to construct and operate the Plymouth Generating Facility (PGF), which would be a 307-megawatt (MW) natural gas-fired, combined cycle power generation facility on a 44.5-acre site 2 miles west of the rural community of Plymouth in southern Benton County, Washington. Plymouth Energy has proposed that the PGF would be interconnected to the Bonneville Power Administration's (BPA's) proposed McNary-John Day 500-kilovolt (kV) transmission line at a point approximately 4.7 miles west of BPA's McNary Substation. This tie-in to the McNary-John Day line would be approximately 0.6 mile to the north of the project site. Natural gas would be supplied to the project by an 800-foot pipeline lateral from the Williams Northwest Gas Pipeline Company (Williams Co.) Plymouth Compressor Station, which is located adjacent to the plant site. Water for project use would be supplied from a groundwater well whose perfected rights have been transferred to the project. A small additional quantity of water to meet plant peak needs would be obtained by lease from the neighboring farm operation. Wastewater resulting from project operations would be supplied to the neighboring farm for blending with farm-supplied water, and then used for crop irrigation. Electricity generated by the PGF would be delivered to the BPA electric grid via a new transmission interconnection for transmission of energy to regional purchasers of electricity.

N /A

2003-06-20T23:59:59.000Z

407

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect (OSTI)

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

408

14th Annual international meeting of wind turbine test stations: Proceedings  

SciTech Connect (OSTI)

These proceedings are of the 14th Annual International Meeting of Test Stations. As the original charter states these meetings are intended to be an international forum for sharing wind turbine testing experiences. By sharing their experiences they can improve testing skills and techniques. As with all new industries the quality of the products is marked by how well they learn from their experiences and incorporate this learning into the next generation of products. The test station`s role in this process is to provide accurate information to the companies they serve. This information is used by designers to conform and improve their designs. It is also used by certification agencies for confirming the quality of these designs. By sharing of experiences they are able to accomplished these goals, serve these customers better and ultimately improve the international wind energy industry.

Not Available

1994-11-01T23:59:59.000Z

409

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

410

Veterinary Sciences Research Station Emergency Instructions  

E-Print Network [OSTI]

the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

411

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

412

Alternative Fuels Data Center: Alternative Fueling Station Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Station Grant Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Station Grant Program The Alternative Fueling Station Grant Program provides grants of up to

413

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

414

Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Station Air Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fueling Station Air Quality Permit Exemption

415

HATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

or Revised Project Procedures for initiating a new project or for revising an existing project entail: 1. Abstracting the essential features of the objective and procedures sections from the project outline for CRISHATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION USDA PROJECT OUTLINE DEVELOPMENT

Ghajar, Afshin J.

416

City of College Station's Thermographic Mobile Scan  

E-Print Network [OSTI]

During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

Shear, C. K.

1986-01-01T23:59:59.000Z

417

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect (OSTI)

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

418

The University of California Seismographic Stations  

Science Journals Connector (OSTI)

...MEMBERSHIP COHM ITTEE Ross R. Heinrich...n~bers and changes or address should...seismograms, (2) a world-wide...Utah a 0.3 Bonneville lake beds Scoresbysund...Alaska 1.1 2.0 Graywacke...Stores, 221 North Grand Boulevard...SEISM and the name of the station...day of month (2) ml n2 sl s2...

Perry Byerly

419

LHC and space station get funding strings  

Science Journals Connector (OSTI)

... , authorizing US funding for both the International Space Station and the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN) in Geneva, Switzerland, but ... both houses. But they do provide an indication of policy direction. In particular, the LHC vote represents defeat for a bid to cut funding completely, but still reflects congressional ...

Meredith Wadman

1997-04-24T23:59:59.000Z

420

Japan, Europe lobby US over space station  

Science Journals Connector (OSTI)

... the fate of the planned US Space Station this week, scientists and government officials from Japan and Europe were doing their best to see that the ambitious pro-gramme stays on ... were doing their best to see that the ambitious pro-gramme stays on track.

David Swinbanks; Peter Aldhous; Steven Dickman

1991-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

422

The relation of the vegetation on the Texas Range Station to soils, precipitation, and grazing  

E-Print Network [OSTI]

were recorded? one for each species. The point-contact frame was moved ten times along the line between stakes at each plot location. In this manner read? ings were made for 100 pins at each plot. The belt-transect method During the four...-year period from 1950 through 1953* belt transects were mapped at each of the permanent plot locations shown on the Range Station map (Figure 3)* These belts covered approximately the same area charted by the inclined-point-contact method. The belt...

Thomas, Gerald Waylett

1954-01-01T23:59:59.000Z

423

Location logistics of industrial facilities  

E-Print Network [OSTI]

is not growing rapidly or 1s very small, they may not carry a staff from wh1ch the necessary people for a 25 s1te selection team can be drawn. Also, quite possibly, a company may not be involved in the site selection process for expansion. Instead, they may... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

Hammack, William Eugene

2012-06-07T23:59:59.000Z

424

Major DOE Biofuels Project Locations  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

425

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

426

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

427

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

428

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

429

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Housman Building 80 E. Concord St R BU School of Medicine, Instructional Building 80 E. Concord St L BU JBuilding Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC

Guenther, Frank

430

Generation Planning (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

431

Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir  

SciTech Connect (OSTI)

The purpose of this paper is to report on processing of raw waveform data from 4547 events recorded at 12 stations between 2001 and 2005 by the Salton Sea Geothermal Field (SSGF) seismic network. We identified a central region of the network where vertically elongated distributions of hypocenters have previously been located from regional network analysis. We process the data from the local network by first autopicking first P and S arrivals; second, improving these with hand picks when necessary; then, using cross-correlation to provide very precise P and S relative arrival times. We used the HypoDD earthquake location algorithm to locate the events. We found that the originally elongated distributions of hypocenters became more tightly clustered and extend down the extent of the study volume at 10 Km. However, we found the shapes to depend on choices of location parameters. We speculate that these narrow elongated zones of seismicity may be due to stress release caused by fluid flow.

Boyle, K L; Hutchings, L J; Bonner, B P; Foxall, W; Kasameyer, P W

2007-08-08T23:59:59.000Z

432

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

433

Alternative Fuels Data Center: Access to State Alternative Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Access to State Access to State Alternative Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Google Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Delicious Rank Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Access to State Alternative Fueling Stations

434

Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...  

Broader source: Energy.gov (indexed) [DOE]

6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

435

VELO[city] : rethinking the multi-modal urban station  

E-Print Network [OSTI]

Train travel was once integral to the urban condition. Railway stations and rural depots were designed as machines for efficiency and it was within the station that one could escape the chaos of the city to become a part ...

Dickson, Amanda, 1974-

2003-01-01T23:59:59.000Z

436

Nuclear Rocket Development Station at the Nevada Test Site |...  

Office of Environmental Management (EM)

Nuclear Rocket Development Station at the Nevada Test Site Nuclear Rocket Development Station at the Nevada Test Site During the 1950s, the United States launched a nuclear rocket...

437

Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Fueling Hydrogen Fueling Station Evaluation to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of

438

The Research about Fire Prevention of Vehicle Refuelling Stations  

Science Journals Connector (OSTI)

Abstract Fuel oil and gas offered by vehicle refuelling stations have combustion and explosion characteristics, serious casualties and economic losses often caused by fire. The research about oil and gas fire risk, refuelling process and facilities, proposing appropriate fire prevention measures possess great significance for reducing refuelling stations fire losses, and ensuring the safety of the station and surrounding environment.

Hong-yu Zhang

2014-01-01T23:59:59.000Z

439

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

440

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network [OSTI]

ed Basin Dataset on Urban Gasoline Stations. Institute ofavailability Gasoline stations abstract Alternative fueldistribution, the existing gasoline station networks in many

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - arctowski station king Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HoytSt Burnett... Front Stadium Broad St Station Military Park Rutgers University Essex County College PASSAIC RIVER BROAD ST... STATION Route 280 Pennsylvania RailroadStation...

442

Power production of hydroelectric stations calculated for providing fuel to power systems with a large share of hydroelectric stations  

Science Journals Connector (OSTI)

1. With the existing capacity of fuel depots at thermal power stations in the Siberian power pool, the following...

A. Sh. Reznikovskii; M. I. Rubinshtein

1997-03-01T23:59:59.000Z

443

Solaire Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Solaire Generation Place New York, New York Zip 10001 Sector Solar Product New York-based rooftop PV mounting systems and solar canopy maker. References Solaire Generation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solaire Generation is a company located in New York, New York . References ↑ "Solaire Generation" Retrieved from "http://en.openei.org/w/index.php?title=Solaire_Generation&oldid=351239" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data

444

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station Forrestal/PPPL Effective 6/1/11 #12;

Bou-Zeid, Elie

445

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station Forrestal/PPPL Effective 2/6/12 #12;

Bou-Zeid, Elie

446

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey Apts Mathey Campus Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey:45 PM Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey Apts Mathey Campus Campus Station Forrestal/PPPL 12/19-22 & 12/27-29 #12;

447

A survey of computational location privacy  

Science Journals Connector (OSTI)

This is a literature survey of computational location privacy, meaning computation-based privacy mechanisms that treat location data as geometric information. This definition includes privacy-preserving algorithms like anonymity and obfuscation as well ... Keywords: Context, Location, Privacy

John Krumm

2009-08-01T23:59:59.000Z

448

Location and Hours | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Location and Hours Location The ORNL Research Library is located off the central corridor of Bldg. 4500N on the main ORNL campus. Hours The library is open 24 hours, seven days a...

449

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

Refueling Stations Incentives Refueling Stations Incentives Jump to: navigation, search The following contains the list of 6 Refueling Stations Incentives. CSV (rows 1 - 6) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle and Refueling - Corporate Tax Credit (Colorado) Corporate Tax Credit Colorado Commercial Renewable Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels

450

Wild Life Research Station Emergency Instructions  

E-Print Network [OSTI]

Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt to clean up a spill assailant, run away from the subject Hide - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter

de Leon, Alex R.

451

Kananaskis Field Station -RB Miller Emergency Instructions  

E-Print Network [OSTI]

Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt to clean up a spill assailant, run away from the subject Hide - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter

de Leon, Alex R.

452

ETM (Distribution Network Automation on 10 kV cable line stations) (Smart  

Open Energy Info (EERE)

ETM (Distribution Network Automation on 10 kV cable line stations) (Smart ETM (Distribution Network Automation on 10 kV cable line stations) (Smart Grid Project) Jump to: navigation, search Project Name ETM (Distribution Network Automation on 10 kV cable line stations) Country Hungary Headquarters Location Budapest, Hungary Coordinates 47.498405°, 19.040758° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.498405,"lon":19.040758,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Power Station Efficiency Control: a Treatise for the Power Station Engineer on Boiler-Room Efficiency, Turbine-Room Efficiency, Heat Balance Control, Methods of Recording and Tabulating Operating Results and Keeping a Day to Day Check on Operating Efficiency  

Science Journals Connector (OSTI)

... improvements have been made in recent years, with a consequent increase in the over-all efficiency of generation. All the coal used is now weighed with high accuracy. The temperature ... , thanks to scientific investigations, there are power stations in various places with a thermal efficiency of more than 18 per cent. Most of the improvement is due to increased ...

1924-10-18T23:59:59.000Z

454

Vacuum State/Refiner/Location  

U.S. Energy Information Administration (EIA) Indexed Site

Vacuum Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 130,000 0 48,000 32,000 0 0 0 Goodway Refining LLC 4,100 0 5,000 0 0 0 0 0 0 ....................................................................................................................................................................................................

455

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

456

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

457

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Recharging Stations Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs. In addition, lab contractors may install electric vehicle recharging

458

DOE Hydrogen Analysis Repository: Hydrogen Fueling Station Economics Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fueling Station Economics Model Fueling Station Economics Model Project Summary Full Title: Hydrogen Fueling Station Economics Model Project ID: 193 Principal Investigator: Bill Liss Brief Description: The Gas Technology Institute developed a hydrogen fueling station economics model as part of their project to develop a natural gas to hydrogen fuel station. Keywords: Compressed gas; vehicle; refueling station; cost; natural gas Purpose Calculate hydrogen fueling station costs, including capital, operating, and maintenance costs. Performer Principal Investigator: Bill Liss Organization: Gas Technology Institute Address: 1700 South Mount Prospect Road Des Plains, IL 60018-1804 Telephone: 847-768-0530 Email: william.liss@gastechnology.org Project Description Type of Project: Model Category: Hydrogen Fuel Pathways

459

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

460

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs.

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mobile Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to...

462

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

463

Air pollution study of Laredo Customs Station  

E-Print Network [OSTI]

the accuracy of the scaled model with that of the actual station a complete survey of veloc1ty, pressure, temperature and video tape recordings were taken in Laredo. These results were then compared with those simulated in the wind tunnel. Good correlation... Circuitry for Model Ventilation System. . . 3-14 Instrumentation in the Control Room. . 22 24 25 26 27 28 31 32 4-1 Existing Forced Air System. 4-2 Video Taping at Laredo. 4-3 Exhaust Fan Velocity Measurement. 4-4 Wind Velocity Measurement...

Welling, Vidyadhar Yeshwant

2012-06-07T23:59:59.000Z

464

Location-based vehicular moving predictions for wireless communication  

Science Journals Connector (OSTI)

In cellular networks, an important practical issue is how to ensure high-quality service. We assume all Base Stations (BSs) have a Geographic Information System (GIS) that has a street map with all BSs and all vehicles have a Global Positioning System (GPS), which acquires data for vehicle speed, direction, and location and sends this information to the nearest BS periodically when communicating within the BS. Based on this vehicle information, a BS checks whether an intersection has a traffic light, determines the traffic light pattern, predicts where vehicles may move, determines whether vehicles may move into another region, and informs the BS to reserve resources for a hand-off. Based on GPS and GIS information, the proposed method, TSDMP, has a lower prediction error rate in predicting traffic light patterns and vehicle movements than other techniques.

Hsin-Te Wu; Wen-Shyong Hsieh

2012-01-01T23:59:59.000Z

465

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

466

Report on Experiments with Citrus Fruits at the Beeville Sub-station.  

E-Print Network [OSTI]

!TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN No. 148. MAY, 1912. Report on Experiments With Citrus Fruits at The Bee- ville Sub-station A. T. POTTS, Superintendent Beeville Sub-station AUSTIN PRINTING COMPANY AUSTIN. TEXAS TEXAS... EXPERIMENT STATIONS. GOVERNING BOARD. 1 DIRECTOR OF STATIONS. ...................................... B. YOUNOBLOOD, M. S.. .College Station I SUPERINTENDENTS OF SUB-STATIONS. .................. E. E. BINFORD, Beeville Sub-station.. .Beeville, P:.e Cc...

Potts, A. T. (Arthur Tillman)

1912-01-01T23:59:59.000Z

467

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg

2014-01-01T23:59:59.000Z

468

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

469

Monitoring and reconstruction of a chairlift midway station in creeping permafrost terrain, Grchen, Swiss Alps  

Science Journals Connector (OSTI)

The midway station of a chairlift located in the ski resort Grchen (Swiss Alps) was originally built in 1997 at 2453m ASL in alpine permafrost terrain. The chairlift conveys 300,000330,000 passengers every winter season and constitutes an important link between two cable cars in the ski area. In winter 19971998, it became evident that the terrain at the mid-way station was unstable: one of the two concrete foundations started to creep and settle rapidly and cracks formed in the structure. To investigate the properties of the ground, two 25m boreholes were drilled near the foundations and equipped with inclinometer casings and thermistors. The presence of permafrost with an exceptionally thick active layer and a 20-m talik containing water was confirmed. The horizontal and vertical deformation rates of the ground attained very high values between 2002 and 2003. As a consequence, and in the interest of the safety of the passengers, the original midway station had to be destroyed and a specially developed new station was built in 2003. The excavation trench was lined with insulating material in order to avoid thermal disturbance of the underlying permafrost by hydration heat. The new foundation consists of a concrete T-girder with three point bearings. Repositioning of the entire structure in response to creep is possible, due to the unique character of the structural bearings which can be raised or lowered using hydraulic cylinders and steel plates. The thermal regime of the entire structure, ground temperatures and slope movements continue to be monitored to determine the long-term evolution of the mid-way station.

M. Phillips; F. Ladner; M. Mller; U. Sambeth; J. Sorg; Ph. Teysseire

2007-01-01T23:59:59.000Z

470

Major DOE Biofuels Project Locations  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Biofuels Project Locations Pacific Ethanol (Boardman, OR) BlueFire Ethanol (Corona, CA) POET (Emmetsburg, IA) Lignol Innovations (Commerce City, CO) ICM (St. Joseph, MO) Abengoa (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage (Wisconsin Rapids, WI) Range Fuels (Soperton, GA) DSM Innovation Center (Parsippany, NJ) Novozymes (Davis, CA) Genencor (Palo Alto, CA) Verenium Corp (San Diego, CA) Dupont (Wilmington, DE) Mascoma (Lebanon, NH) Cargill Inc (Minneapolis, MN) Regional Partnerships South Dakota State University, Brookings, SD Cornell University, Ithaca, NY University of Tennessee, Knoxville, TN Oklahoma State University, Stillwater, OK Oregon State University, Corvallis, OR

471

Ocean current observations near McMurdo Station, Antarctica, 1993 to 1994: Relation to wastewater discharge dispersal  

SciTech Connect (OSTI)

This report presents analyses of current measurements from McMurdo Sound, Antarctica during December, 1993 to November, 1994, in relation to dispersal of the McMurdo Station wastewater plume. Data collected from 1991 to 1993 are also discussed here. Six current meters were deployed near McMurdo Station, Antarctica, from December 1993 to November 1994. Five functioned properly throughout the observation period, and one failed. Analyses of 5 data series include: (1) summaries of current speed and direction, (2) directional analyses of flow, (3) time series current vectors averaged over 1, 3, 6, 12, and 24 h, (4) principal axes of flow, (5) maps of mean seasonal flow, (6) progressive vector plots, (7) spectral analyses, and (8) low-pass filtered (30h) time series of currents at McMurdo Station. Observations of flow near McMurdo Station during 1994 were generally similar to 1993. Short term variation in flow was related principally to diurnal tidal motions. Longer period oscillations in flow such as seasonal shifts, and non-periodic changes in current speed and direction were likely related to changes in ice cover and wind stress in the vicinity of McMurdo Station or over much larger scales or both. Three distinct oceanographic {open_quote}seasons{close_quote} were apparent in time series from 1992 to 1994, from stations furthest offshore, where the effects of local topography are minimal. The spring-summer (Oct.-Jan.) period of both years was dominated by regional southward flow, which generates a counter-clockwise eddy (McMurdo Gyre) adjacent to McMurdo Station. With regard to dispersal of the wastewater plume from McMurdo Station, observations of currents during 1994 generally corroborate those from 1993, and the recommendation that the outfall pipe should be repositioned offshore of the McMurdo Gyre is supported.

Barry, J.P. [J.P. Barry Consulting, Monterey, CA (United States)

1995-09-01T23:59:59.000Z

472

Sempra Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Sempra Generation Place California Utility Id 55701 Utility Location Yes Ownership W NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Sempra_Generation&oldid=411504" Categories: EIA Utility Companies and Aliases

473

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions

474

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even

475

Toxicity assessment of water and sediment elutriates from fixed-station ambient water quality network stations, 1986, 1987, 1988, and 1989  

SciTech Connect (OSTI)

Toxicity biomonitoring of water column and sediment toxicity was conducted at six fixed network stations from 1986 through 1989. Stations were located on the Holston River, Bear Creek (Pickwick Reservoir), Hiwassee River, Emory River, Nolichucky River, and French Broad River at locations chosen to represent those sub-basins. Tests evaluated acute and chronic responses of larval fathead minnow survival and growth and Ceriodaphnia survival and reproduction to water and sediment elutriates collected from these sites. Samples were collected once each year during summer. Neither water nor sediment elutriates from the French Broad River were toxic during the study period. Water column toxicity (chronic) occurred in Bear Creek in 1986 and in the Nolichucky River in 1987. Sediment elutriate toxicity occurred once during the study period in the Emory (1987) and Nolichucky (1988) Rivers. Sediments from the Holston and Hiwassee Rivers were toxic two times each. Hiwassee River sediment exhibited >1.3 chronic toxicity units in 1987 and 1989 (were toxic at the lowest dilution tested). Holston River sediment toxicity occurred during the most recent two years of testing. Results from the Holston and Hiwassee Rivers may indicate a toxics problem in the sub-basin. No acute toxicity occurred during the study. 4 refs., 2 tabs.

Moses, J.; Wade, D.C.

1991-02-01T23:59:59.000Z

476

Fuel cell generating plant  

SciTech Connect (OSTI)

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

477

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

478

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

479

Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Google Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Delicious Rank Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Digg

480

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "generating station located" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Localization of Antarctic ice breaking events by frequency dispersion of the signals received at a single hydroacoustic station in the Indian Ocean  

Science Journals Connector (OSTI)

Transient acoustic signals from Antarctic icecracking and breaking events featuring significant frequency dispersion were observed at the hydroacoustic stations deployed in the Indian Ocean as part of the International Monitoring System(IMS) of the Comprehensive Nuclear?Test?Ban Treaty. Based on a comparison with numerical predictions the measured dispersion characteristics were used to estimate the range between ice events and the receiver. Combined with the bearing capability of the IMS stations these estimates allow us to locate ice events from a single hydroacoustic station. An analysis of range estimation errors due to uncertainty of the measured time?frequency structure of signal arrivals and due to variations of the sound speed profiles was also conducted. The analysis showed that the location accuracy from a single hydroacoustic station for the typical ice events was of the same order as that determined from an intersection of bearings from two remote stations if the signal frequency bandwidth is as wide as at least 5 Hz and lies within 5 Hz to 35 Hz frequency range. This localization method was examined by analysing several ice events detected at both the Cape Leeuwin IMS station and a sea noise logger deployed off the Antarctic shelf.

Binghui Li; Alexander Gavrilov

2008-01-01T23:59:59.000Z

482

NordhausGaddum bounds for locating domination  

Science Journals Connector (OSTI)

Abstract A dominating set S of graph G is called metric-locatingdominating if it is also locating, that is, if every vertex v is uniquely determined by its vector of distances to the vertices in S . If moreover, every vertex v not in S is also uniquely determined by the set of neighbors of v belonging to S , then it is said to be locatingdominating. Locating, metric-locatingdominating and locatingdominating sets of minimum cardinality are called ? -codes, ? -codes and ? -codes, respectively. A NordhausGaddum bound is a tight lower or upper bound on the sum or product of a parameter of a graph G and its complement G . In this paper, we present some NordhausGaddum bounds for the location number ? , the metric-locationdomination number ? and the locationdomination number ? . Moreover, in each case, the graph family attaining the corresponding bound is fully characterized.

C. Hernando; M. Mora; I.M. Pelayo

2014-01-01T23:59:59.000Z

483

Ocean current observations near McMurdo Station, Antarctica from 1991 to 1993: Relation to wastewater discharge dispersal  

SciTech Connect (OSTI)

Analyses of ocean currents in the vicinity of McMurdo Station, Antarctica, are relevant to the transport and dispersal of wastewater from the McMurdo Station sewage outfall pipe. Observations of ocean currents during the initial phases of this study have been presented by Howington and McFeters. These studies, using coliform bacterial counts as an indicator of dispersion of the wastewater plume and current meters to measure flow patterns, indicated that dispersal of the plume by local currents does not effectively remove the plume from the vicinity of McMurdo Sound, under the present outfall pipe location. Moreover, these studies suggest that, although the flow pattern is generally consistent with transport of the plume away from McMurdo Station, episodes of current reversal are sufficient to transport the wastewater plume along the shore toward the southeast, eventually overlapping the seawater intake area near the McMurdo jetty. Several concerns included (a) impacts of wastewater inputs to nearshore benthic and pelagic habitats adjacent to McMurdo Station, (b) effects of wastewater input to the McMurdo Station fresh water intake source, and (c) reduction in human impacts on the McMurdo Sound ecosystem. These concerns motivated studies to characterize nearshore currents more extensively in relation to dispersal of the wastewater plume. This report discusses analysis results of current observations from November 1992 to November 1993.

Barry, J.P. [J. P. Consulting, Monterey, CA (United States)

1994-08-01T23:59:59.000Z

484

Allegations Regarding the Consolidation of Central Alarm Stations...  

Energy Savers [EERE]

Allegations Regarding the Consolidation of Central Alarm Stations at the Oak Ridge Reservation DOEIG-0929 December 2014 U.S. Department of Energy Office of Inspector General...

485

Texas A&M University College Station, Texas  

E-Print Network [OSTI]

­ 31, 2007 Department of Biomedical Engineering 337 Zachry Building, MS 3120 College Station, Texas ..................................................................................................... 6 B. Dwight Look College of Engineering............................................................................................................ 9 A. A Brief History

486

Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis  

Broader source: Energy.gov [DOE]

This feasibility report assesses the technical and economic feasibility of deploying a hydrogen fueling station at the Fort Armstrong site in Honolulu.

487

Sandia National Laboratories: More California Gas Stations Can...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More...

488

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying all (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

489

New tool predicts economic impacts of natural gas stations |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

called JOBSNG that helps estimate potential economic impacts from building new natural gas fueling stations. Photo credit: Shutterstock. (Click image to enlarge) Argonne...

490

Laboring Lesbians at Gas Stations: Pumping the "Good Life".  

E-Print Network [OSTI]

?? This dissertation project is an interdisciplinary exploration of laboring lesbian bodies within the context of U.S. gas stations. I begin with an investigation of (more)

Tweedy, Amy Jo

2014-01-01T23:59:59.000Z

491

Investigations of Sediment Elutriate Toxicity at Three Estuarine Stations  

E-Print Network [OSTI]

Investigations of Sediment Elutriate Toxicity at Three Estuarine Stations in San Francisco Bay.............................................................................................. 8 Sediment-Water Interface Exposures................................................................................. 9 August 1997 Sediment-Water Interface Exposures

492

Energy Jobs: Electric Vehicle Charging Station Installer | Department...  

Energy Savers [EERE]

-- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of...

493

Vision Based Station-Keeping for the Unmanned Underwater Vehicle.  

E-Print Network [OSTI]

??Station-Keeping is an important capability of the Unmanned Underwater Vehicle in a variety of mission , including inspection and repair of undersea pipeline , and (more)

Lee, Chen-wei

2008-01-01T23:59:59.000Z

494

Engineering-economic design basis of pumped-storage stations  

Science Journals Connector (OSTI)

Peak-load pumped-storage stations are or should be a component of each well-developed power system, even with a considerable proportion of hydroelectric...

T. Bernatski

1972-04-01T23:59:59.000Z

495

Help Design the Hydrogen Fueling Station of Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE)

University students can join the Energy Department-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station.

496

Design of Photovoltaics e-bikes charging station:.  

E-Print Network [OSTI]

??It is a project about designing a photovoltaics charging station for electrical bikes and scooters, which can facilitate electrical bike user and promote sustainable way (more)

Zhao, Y.

2014-01-01T23:59:59.000Z

497

Wind Generation Feasibility Study in Bethel, AK  

SciTech Connect (OSTI)

This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

2004-07-31T23:59:59.000Z

498

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems  

Science Journals Connector (OSTI)

...simply as resistive heaters. Efficiency is about...office resistance heaters. Usually, traditional heaters draw more electrical...maintenance-free operation dominate other performance...pipelines, polar weather station power generators...

Lon E. Bell

2008-09-12T23:59:59.000Z

499