Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Changes related to "Nanjing Sunec Wind Generator Equipment Factory...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Nanjing Sunec Wind Generator Equipment Factory" Nanjing Sunec Wind Generator Equipment Factory Jump...

2

Pages that link to "Nanjing Sunec Wind Generator Equipment Factory...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Nanjing Sunec Wind Generator Equipment Factory" Nanjing Sunec Wind Generator Equipment Factory Jump...

3

Nanjing Sunec Wind Generator Equipment Factory | Open Energy Information  

Open Energy Info (EERE)

Sunec Wind Generator Equipment Factory Sunec Wind Generator Equipment Factory Jump to: navigation, search Name Nanjing Sunec Wind Generator Equipment Factory Place Nanjing, Jiangsu Province, China Zip 211100 Sector Wind energy Product A Chinese manufacturer for power supply, grid automation equipment and small-to-medium wind turbines, as well as a wind project developer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Directional Drilling and Equipment for Hot Granite Wells  

DOE Green Energy (OSTI)

Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

1981-01-01T23:59:59.000Z

5

Equipment  

Science Conference Proceedings (OSTI)

...Manual gas cutting equipment consists of gas regulators, gas hoses, cutting torches, cutting tips, and multipurpose wrenches. Auxiliary equipment may include a hand truck, tip cleaners, torch ignitors, and protective goggles. Machine cutting

6

Novel Carbon Films for Next Generation Rotating Equipment Applications  

DOE Green Energy (OSTI)

This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularly attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.

Michael McNallan; Ali Erdemir; Yury Gogotsi

2006-02-20T23:59:59.000Z

7

Directional drilling and equipment for hot granite wells  

DOE Green Energy (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

8

Sales and Use Tax Exemption for Electrical Generating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

In Indiana, transactions involving manufacturing machinery, tools, and equipment are exempt from the state gross retail tax if the property is used for the production of tangible personal property,...

9

Directional drilling equipment and techniques for deep hot granite wells  

DOE Green Energy (OSTI)

Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

1980-01-01T23:59:59.000Z

10

Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility: Building 382 Rev. 1, 02/11/00 Facility: Building 382 Rev. 1, 02/11/00 Training: (1) ESH114 Lockout/Tagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707 Accelerator Worker ESH738 GERT (3) ESH196 Hazard Communication ESH376 or 456 Chemical Waste (4) ASDSF6 (5) ESH170 OSHA Lead Standard ESH196 Hazard Communication ESH195 PPE ESH141 Hand and Power Tools (6) ESH195 PPE ESH141 Hand and Power Tools (7) Informal OJT (8) Formal OJT Management Tools: (A) ANL-E ESH Manual SMART (B) APS-SAD APS-CO (C) Waste Handling Procedure Manual Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical

11

Equipment  

Science Conference Proceedings (OSTI)

...are becoming common, and the newer rectifier-inverter supplies are very compact and versatile. The inverter power supply consists of three converters: 60 Hz primary ac is rectified to dc. Direct current is inverted to high-frequency ac. Alternating current is rectified to dc....

12

Recursive operation time maximization model for the maintenance of power generation equipment  

Science Conference Proceedings (OSTI)

Repairable equipment requires preventive maintenance (PM) to maintain proper function. An appropriate PM strategy can extend the life of equipment and reduce variable costs. A power generation company in Taiwan that has a fixed-period PM strategy is ... Keywords: Maintenance improvement factor, Mathematical programming, Preventive maintenance (PM)

Der-Chiang Li; Chiao-Wen Liu; Tung-Liang Chen

2012-05-01T23:59:59.000Z

13

A model for estimation of potential generation of waste electrical and electronic equipment in Brazil  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

Araujo, Marcelo Guimaraes, E-mail: marcel_g@uol.com.br [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Magrini, Alessandra [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Mahler, Claudio Fernando [Federal University of Rio de Janeiro, COPPE, GETRES (Brazil); Bilitewski, Bernd [Technical University of Dresden, Institute of Waste Management and Contaminated Site Treatment (IAA) (Germany)

2012-02-15T23:59:59.000Z

14

Comparison of Qualitative (AP-913) and Quantitative (Generation Risk Assessment) Equipment Reliability Assessment Techniques  

Science Conference Proceedings (OSTI)

In the analysis of the impact of plant structures, systems and components (SSCs) on nuclear safety and plant generation, both qualitative and quantitative techniques have been employed to classify the functional importance of SSCs and to support prioritization in business decision-making. With respect to the potential impact of SSCs on plant generation, this classification has typically been accomplished via qualitative techniques that support equipment reliability programs and the implementation of INPO...

2006-12-18T23:59:59.000Z

15

Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007  

Science Conference Proceedings (OSTI)

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01T23:59:59.000Z

16

Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The article shows WEEE plastics characterization from a recycling unit in Portugal. Black-Right-Pointing-Pointer The recycling unit has low machinery, with hand sorting of plastics elements. Black-Right-Pointing-Pointer Most common polymers are PS, ABS, PC/ABS, HIPS and PP. Black-Right-Pointing-Pointer Most plastics found have no identification of plastic type or flame retardants. Black-Right-Pointing-Pointer Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

Martinho, Graca [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pires, Ana, E-mail: ana.lourenco.pires@gmail.com [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Saraiva, Luanha; Ribeiro, Rita [Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

2012-06-15T23:59:59.000Z

17

Low temperature Direct Use Geothermal Facilities Contains generating  

Open Energy Info (EERE)

Low temperature Direct Use Geothermal Facilities Contains generating capacity information for low temperature direct use geothermal facilities by state.
2010-08-10T17:02:22Z...

18

Direct charge radioisotope activation and power generation  

DOE Patents (OSTI)

An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

2002-01-01T23:59:59.000Z

19

Comparative Global Warming Impacts of Electric Vapor-Compression and Direct-fired Absorption Equipment  

Science Conference Proceedings (OSTI)

This report compares the global warming impacts of electric vapor-compression and gas-fired absorption-cycle equipment for commercial cooling applications. Absorption chillers do not use ozone depleting refrigerants but substitution of alternative refrigerants in electrically driven vapor-compression cycle equipment also offers radically reduced or eliminated potential for stratospheric ozone depletion. Therefore, when comparing absorption-cycle and vapor-compression equipment, net global warming impacts...

1994-03-01T23:59:59.000Z

20

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laboratory Equipment Donation Program - Equipment Applications  

Office of Scientific and Technical Information (OSTI)

Specific questions concerning equipment should be directed to the point of Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for equipment using the LEDP Online Application: Select the "Search Equipment" menu link. Enter the type of equipment desired into the search box or choose the "Equipment List" link, which will allow you see a complete list of available equipment. Select the "Item Control Number" for the desired equipment. This

22

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

23

Use of solar generators in Africa for broadcasting equipment. [For powering educational tv receivers  

SciTech Connect

In Africa, solar cells were used for the first time in 1968 to provide power supply for the TV receivers in Niger. In that country, school television programs are essentially devised for the schools located in regions not provided with power mains. The transmissions are received by the means of TV sets that are especially devised to operate under warm and wet weather conditions. These receivers, model CATEL CI 17, are equipped with 61-cm screens, and are completely solid-state. They can be powered by a d.c. power supply, between 30 and 36 V. Their consumption, extremely modest, ranges around 32 W. The power supply for these receivers had, at the beginning, been provided by high-capacity alkaline electrolyte cells. In order to secure a more practical and less expensive source of energy, an experimental solar cell was installed in 1968. Following a satisfactory operation of this experimental solar cell, a careful study was conducted, after which some twenty installations were set up, using silicon cells and lead-acid batteries. A description of the installations is presented; and maintenance, reliability, and cost of the installations are discussed. (WHK)

Polgar, S.

1977-01-01T23:59:59.000Z

24

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

25

EPRI Products Can Help Utilities with Leakage Issues for Diesel Generators and Other Equipment  

Science Conference Proceedings (OSTI)

This notification is intended to make members aware of several EPRI products that help prevent problems with fluid leakage on diesel generators and other plant systems to improve component reliability. These reports are focused on fluid joints, and solutions to help plant personnel better maintain systems and reduce component failures due to leaks and increase overall station reliability. This information contained in this update could be useful to members of your organization responsible for the mainten...

2012-06-01T23:59:59.000Z

26

SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL  

SciTech Connect

Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

2008-05-01T23:59:59.000Z

27

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

28

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

29

The 12 kV, 50 kA Pulse Generator for the SPS MKDH Horizontal Beam Dump Kicker System,equipped with Semiconductor Switches  

E-Print Network (OSTI)

The high current pulses for the MKDH magnets are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via low inductance transmission lines. They are equipped with a stack of four Fast High Current Thyristors, together with snubber capacitors, a voltage divider and a specially designed trigger transformer.

Bonthond, J; Faure, P; Vossenberg, Eugne B; CERN. Geneva. SPS and LHC Division

2001-01-01T23:59:59.000Z

30

Combination, a model vehicle engine and a direct-current generator  

SciTech Connect

This patent describes an engine for a model vehicle and a direct-current generator, comprising: an internal-combustion engine; and a direct-current generator operatively coupled to the engine; wherein the generator comprises an armature, and a drive coupling member drivingly engaged with the armature; the armature has three poles; each of the poles has not less than six hundred turns of magnetic wire; the engine having first means comprising a crankshaft, and second means comprising a connecting rod; and one of the first a second means has means for drivingly engaging the drive coupling for imparting rotation to the generator from the engine.

Williams, G.A.

1987-01-20T23:59:59.000Z

31

Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators  

SciTech Connect

REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

2012-01-01T23:59:59.000Z

32

Model Study of Waves Generated by Convection with Direct Validation via Satellite  

Science Conference Proceedings (OSTI)

Atmospheric gravity waves have a major effect on atmospheric circulation, structure, and stability on a global scale. Gravity waves can be generated by convection, but in many cases it is difficult to link convection directly to a specific wave ...

Alison W. Grimsdell; M. Joan Alexander; Peter T. May; Lars Hoffmann

2010-05-01T23:59:59.000Z

33

A validation of a ray-tracing tool used to generate bi-directional...  

NLE Websites -- All DOE Office Websites (Extended Search)

A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems Title A validation of a ray-tracing tool used...

34

Direct connection of series self-excited generators and HVDC converters  

Science Conference Proceedings (OSTI)

An alternative and simpler solution is proposed for the direct connection of generators to HVdc converters. The generator exciter windings are connected in series with the output of the HVdc converter and take the place of the conventional smoothing reactor. Existing steady state and time domain simulation programs are modified to represent the behavior of the series direct connection scheme. It is shown that series excitation extends naturally the power transmission capability and permits fast fault clearances.

Arrillaga, J.; Macdonald, S.J.; Watson, N.R.; Watson, S. (Univ. Canterbury, Christchurch (New Zealand))

1993-10-01T23:59:59.000Z

35

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

-tracing study of the heat flux distribution inside the steam receiver is used to spatially refine the modelDYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION José Zapata 1 , John dish has been in operation since 2010 with a mono-tube steam cavity receiver, the SG4 system

36

Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines  

SciTech Connect

In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

2004-11-16T23:59:59.000Z

37

Equipment Certification | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Equipment Certification Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Canada Commercial Construction Developer

38

Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, J.

39

Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, Jacopo, 1971-

2001-01-01T23:59:59.000Z

40

MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy  

Open Energy Info (EERE)

OSU Direct Drive Power Generation Buoys OSU Direct Drive Power Generation Buoys < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6472,"lon":-124.127,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

The comment period is closed. Milestones and Documents The direct heating equipment, residential water heaters, and pool heaters standby and off mode test procedures...

42

Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines  

E-Print Network (OSTI)

-mm-coaxial transmission lines Tae-In Jeona) and D. Grischkowskyb) School of Electrical and Computer Engineering, OklahomaDirect optoelectronic generation and detection of sub-ps-electrical pulses on sub efficient direct optoelectronic generation of sub-ps-THz pulses on 50 coaxial transmission lines with a 330

Oklahoma State University

43

Laboratory - Equipment  

Science Conference Proceedings (OSTI)

Available Equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z. B. Ohaus ... W. Barnstead ...

2013-09-13T23:59:59.000Z

44

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

45

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

46

Direct contact low emission steam generating system and method utilizing a compact, multi-fuel burner  

SciTech Connect

A high output, high pressure direct contact steam generator for producing high quality steam particularly suited for use with low grade, low cost fuel. When used in a system incorporating heat recovery and conversion of carryover water enthalpy into shaft horsepower, the unit disclosed provides high quality, high pressure steam for ''steam drive'' or thermal stimulation of petroleum wells through injection of high pressure steam and combustion gas mixtures. A particular feature of the burner/system disclosed provides compression of a burner oxidant such as atmospheric air, and shaft horesepower for pumping high pressure feedwater, from a lowest cost energy source such as leased crude, or other locally available fuel.

Eisenhawer, S.; Donaldson, A. B.; Fox, R. L.; Mulac, A. J.

1985-02-12T23:59:59.000Z

47

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

48

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

49

Equipment Certification Requirements | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Requirements Equipment Certification Requirements Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Contents 1 Equipment Certification Incentives 2 References Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines

50

Short-Term PV Generation System Direct Power Prediction Model on Wavelet Neural Network and Weather Type Clustering  

Science Conference Proceedings (OSTI)

With the increase of the capacity of PV generated systems, how to eliminate the problem caused by the randomness of power output for photovoltaic system becomes more significant. Most of the existing photovoltaic prediction is Based on the solar radiation. ... Keywords: PV generation system, Wavelet neural network, Weather type clustering, Direct prediction

Ying Yang, Lei Dong

2013-08-01T23:59:59.000Z

51

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

SciTech Connect

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

52

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

DOE Green Energy (OSTI)

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

53

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

DOE Green Energy (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

54

Equipment Maintenance Optimization Manual Applications  

Science Conference Proceedings (OSTI)

This report is a compilation of Equipment Maintenance Optimization Manuals (EMOMs) that include procedures and troubleshooting supported by broad-based utility experience. EMOMs for critical generating station equipment allows power generating plants to replace existing maintenance practices with the latest industry best practices. Using this information as a benchmark, current practices can be validated or adjusted for more optimum performance of the overall maintenance process. In addition, the EMOMs c...

2001-12-21T23:59:59.000Z

55

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to amend the active mode test procedures for direct heating equipment and pool heaters. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of proposed rulemaking regarding active mode test procedures for direct heating equipment and pool heaters. 78 FR 63410 (October 24, 2013). The comment deadline is January 7, 2014. Public Meeting Information

56

A Review of Equipment Aging Theory and Technology  

Science Conference Proceedings (OSTI)

Reviews the theory and technology of equipment aging particularly as they relate to the qualification of safety-system equipment for nuclear power generating stations.

1980-09-01T23:59:59.000Z

57

Performance Calculations and Optimization of a Fresnel Direct Steam Generation CSP Plant with Heat Storage.  

E-Print Network (OSTI)

?? This master thesis deals with the performance calculations of a 9MW linear Fresnel CSP plant withdirect steam generation built by the Solar Division of (more)

Schlaifer, Perrine

2013-01-01T23:59:59.000Z

58

Direct Coherency Identification of Synchronous Generators in Taiwan Power System Based on Fuzzy c-Means Clustering  

Science Conference Proceedings (OSTI)

This paper is to investigate the application of fuzzy c-means clustering to the direct identification of coherent synchronous generators in power systems. Because of the conceptual appropriateness and computational simplicity, this approach is essentially ... Keywords: cluster analysis, coherency identification, coherency measure, fuzzy c-means, power system dynamic equivalent

Shu-Chen Wang; Pei-Hwa Huang; Chi-Jui Wu; Yung-Sung Chuang

2007-10-01T23:59:59.000Z

59

Guide to Energy-Efficient Office Equipment  

Science Conference Proceedings (OSTI)

Office equipment directly consumes as much as 30 billion kilowatt-hours of electricity, which represents 5% of total commercial electric energy consumption. EPRI's Guide to Energy-Efficient Office Equipment discusses the energy cost savings and environmental benefits of using high-efficiency equipment in areas ranging from personal computers and monitors to printers, copiers, and facsimile machines.

1996-04-05T23:59:59.000Z

60

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

Science Conference Proceedings (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Equipment Maintenance Optimization Manual Prototypes  

Science Conference Proceedings (OSTI)

This report provides detailed information to assist plant staff in performing recommended equipment maintenance tasks. It is a compilation of equipment maintenance optimization manual (EMOM) prototypes that include procedures and trouble shooting supported by broad-based utility experience. The EMOMs enable utility generation stations to: minimize operation and maintenance costs, including parts and labor; assist in maintenance planning, scheduling, and parts strategy; develop comprehensive maintenance m...

1999-11-24T23:59:59.000Z

62

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

63

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

SciTech Connect

A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

Lasche, George P. (Arlington, VA)

1988-01-01T23:59:59.000Z

64

Inertial confinement fusion with direct electric generation by magnetic flux comparession  

DOE Green Energy (OSTI)

A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts.

Lasche, G.P.

1983-01-01T23:59:59.000Z

65

Analysis of direct contact binary cycles for geothermal power generation (program DIRGEO)  

DOE Green Energy (OSTI)

A computer program was produced which would analyze a direct-contact binary fluid power plant as conceived for geothermal applications. The current cycle consists of a direct-contact boiler, binary vapor mixture turbine, parallel flow liquid-liquid preheaters, pumps, flash expander and a condenser. The program computes important design parameters which allow the user to select the optimum operating condition for a particular well. The program allows for the evaluation of cycles utilizing liquid hydrocarbons and fluorocarbons as secondary fluids. A complete description of the executive program including flow charts, program listings and variable symbol tables is contained. A sample run of the main program completes the description of its use.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-09-01T23:59:59.000Z

66

Direct generation of photon triplets using cascaded photon-pair sources  

E-Print Network (OSTI)

Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. We expect our photon-triplet source to open up new avenues of quantum optics and become an important tool in quantum technologies. Our source will allow experimental interrogation of novel quantum correlations, the post-selection free generation of tripartite entanglement without post- selection and the generation of heralded entangled-photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, ideally suited for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.

H. Hbel; D. R. Hamel; A. Fedrizzi; S. Ramelow; K. J. Resch; T. Jennewein

2010-07-28T23:59:59.000Z

67

Laboratory Equipment Donation Program - Application Process  

Office of Scientific and Technical Information (OSTI)

Equipment listings on the LEDP web site are obtained from the U.S. General Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires Repairs X: Salvage Salvage S: Scrap Scrap Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant

68

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

69

Using high-intensity laser-generated energetic protons to radiograph directly driven implosions  

Science Conference Proceedings (OSTI)

The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D{sup 3}He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Le Pape, S.; Mackinnon, A.; Patel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2012-01-15T23:59:59.000Z

70

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

71

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

72

NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION  

SciTech Connect

Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

2011-01-13T23:59:59.000Z

73

Laboratory Equipment Donation Program - Equipment Information  

Office of Scientific and Technical Information (OSTI)

Description: Location of Equipment: Address Line 2: Address Line 3: City: State: Zip: Contact: Phone: Fax: Email address: Quantity: Original Acquisition Cost: 0.00 U.S....

74

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

75

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

76

Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

2003-08-01T23:59:59.000Z

77

Original article: Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator  

Science Conference Proceedings (OSTI)

A lumped-parameter-based thermal analysis of a direct-driven permanent magnet wind generator with double radial forced-air cooling is presented. In the proposed thermal model, the thermal conduction and convection as well as the heating of the cooling ... Keywords: Air cooling, Permanent magnet synchronous generator, Thermal analysis, Thermal resistance networks

Janne Nerg, Vesa Ruuskanen

2013-04-01T23:59:59.000Z

78

Characterization equipment essential drawing plan  

SciTech Connect

The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings and Support Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). Support Drawings: Are those drawings identified by facility staff that further describe the design details of structures, systems, or components shown on essential drawings. (HNF 1997a) The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered General drawings until the Characterization Equipment Drawing Evaluation Report (Wilson 1998) is updated during fiscal year 1999. Trucks 1 and 2 drawings are not included in this revision of the essential drawing list due to uncertainty about future use.

WILSON, G.W.

1999-05-14T23:59:59.000Z

79

Laboratory Equipment Donation Program - Equipment List  

Office of Scientific and Technical Information (OSTI)

Equipment List Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022833290004 1300594 TLD DETECTOR 12/16/2013 Repairable N/A 89022833290005 1300595 PICOMETER 12/16/2013 Repairable N/A 89022833290008 1300598 READER 12/16/2013 Repairable N/A 89022833290010 1300600 DETECTOR VACUUM PUMP 12/16/2013 Repairable N/A 89022833290016 1300606 TLD READER 12/16/2013 Repairable N/A 89022833290018 1300608 READER 12/16/2013 Repairable N/A 89022833290019 1300609 ANALYZER WITH DETECTOR 12/16/2013 Repairable N/A 89022833180013 1300993 PRESSURE REGULATOR 12/04/2013 Repairable N/A 89022833180022 1301098 VACUUM GAUGE 12/04/2013 Repairable N/A 89022833180023 1301099 OSCILLOSCOPE 12/04/2013 Repairable N/A

80

Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

The 2010 Electric Power Research Institute (EPRI) Technology Watch (Techwatch) report on superconducting power applications (EPRI report 1019995, Superconducting Power Equipment: Technology Watch 2010) introduced coverage about superconducting magnetic energy storage systems and superconducting transformers. The 2011 report contains additional information about superconducting power equipment, including progress to demonstrations in some projects. The 2011 report also includes a section on superconductin...

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

82

Next Generation Rail Supply Chain- Rail Forums  

Science Conference Proceedings (OSTI)

... Next Generation Equipment Committee Manufacturing Extension Partnership (NIST MEP ... GE Transportation Motive Power Nippon Sharyo Siemens. ...

2012-11-07T23:59:59.000Z

83

Definition: Equipment Condition Monitor | Open Energy Information  

Open Energy Info (EERE)

Condition Monitor Condition Monitor Jump to: navigation, search Dictionary.png Equipment Condition Monitor A monitoring device that automatically measures and communicates equipment characteristics that are related to the "health" and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can automatically generate alarm signals if conditions exceed preset thresholds.[1] Related Terms sustainability References ↑ https://www.smartgrid.gov/category/technology/equipment_condition_monitor [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]] Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Condition_Monitor&oldid=502601"

84

Definition: Equipment Health Sensor | Open Energy Information  

Open Energy Info (EERE)

Sensor Sensor Jump to: navigation, search Dictionary.png Equipment Health Sensor Monitoring devices that automatically measure and communicate equipment characteristics that are related to the 'health' and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can also automatically generate alarm signals if the equipment characteristics reach critical or dangerous levels.[1] Related Terms sustainability References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Health_Sensor&oldid=502526

85

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

86

Property Tax Assessment for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount Renewable-energy equipment assessed at 20% of its depreciated cost Provider Arizona Department of Revenue Renewable energy equipment owned by utilities and other entities operating in Arizona is assessed at 20% of its depreciated cost for the purpose of determining property tax. "Renewable energy equipment" is defined as "electric generation facilities, electric transmission, electric distribution, gas distribution or combination gas and electric transmission

87

HPBA Comments NOPR on Energy Conservation Standards for Direct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HPBA Comments NOPR on Energy Conservation Standards for Direct Heating Equipment HPBA Comments NOPR on Energy Conservation Standards for Direct Heating Equipment The Hearth, Patio...

88

Water-Using Equipment: Commercial and Industrial  

Science Conference Proceedings (OSTI)

Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

Solana, Amy E.; McMordie-Stoughton, Katherine L.

2006-01-24T23:59:59.000Z

89

Energy Audit Equipment  

E-Print Network (OSTI)

The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple tools or expensive technically complex or multifunctional tools. In general, tools are needed which measure light, temperature and humidity, electricity, air flow, heat loss, and general energy information.

Phillips, J.

2012-01-01T23:59:59.000Z

90

Grid Equipment Reliability Study  

Science Conference Proceedings (OSTI)

Throughout the world, utilities have witnessed changes to electrical power markets. These changes have presented new and continuous challenges to maintaining the transmission system's integrity. In the past, emphasis at the transmission level has been on the system as a whole and not at the equipment level. This report summarizes the finding of a study that investigated the need to develop a new set of metrics and benchmarks to measure and compare grid equipment performance.

2001-12-10T23:59:59.000Z

91

Manual and Semiautomated Wind Direction Editing for Use in the Generation of Synthetic Aperture Radar Wind Speed Imagery  

Science Conference Proceedings (OSTI)

Previous studies have demonstrated that satellite synthetic aperture radar (SAR) can be used as an accurate scatterometer, yielding wind speed fields with subkilometer resolution. This wind speed generation is only possible, however, if a ...

George S. Young; Todd D. Sikora; Nathaniel S. Winstead

2007-06-01T23:59:59.000Z

92

Electricity Used by Office Equipment and Network Equipment in...  

NLE Websites -- All DOE Office Websites (Extended Search)

: Detailed Report and Appendices Title Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices Publication Type Report LBNL Report...

93

Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Inventory Equipment Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate...

94

Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I  

DOE Green Energy (OSTI)

Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

Not Available

1981-11-01T23:59:59.000Z

95

Scientist Equipment and Outline  

NLE Websites -- All DOE Office Websites (Extended Search)

Outline and Equipment Outline and Equipment LIGHT AND COLOR Grade levels: can be adapted for grades 2-8. Length of time: 30-45 minues. Room preference: Double classroom or all-purpose room. Equipment is located in the Lederman Science Center. Talk to Susan Dahl to borrow this set. Spectrum tube power supply, gas tubes and diffraction grating glasses Light box with red, green, and blue translucent film Power chord, extension chord Large set of lenses Small concave and convex lenses Magnetic optics kit, includes a small laser Slinky Flashlight Clear plastic tub, powdered milk Water Radiometer Electromagnetic energy spectrum poster Set of red, green and blue flood lights Where does light come from? Use a boy and a girl to make a human demonstration of molecules and atoms. Have students rub their hands together and notice friction equals heat.

96

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

97

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

subpart W. Statutory Authority The current energy conservation standards for commercial refrigeration equipment are mandated by Part A-1, the "Certain Industrial Equipment" of...

98

Laboratory Equipment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Facilities Scientific Labs Equipment Query Equipment Lab: HFIR - Biology Lab HFIR - Post Beam Sample Handling Lab HFIR - User Chemistry Lab High Pressure Lab SNS -...

99

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Equipment Insulation Jump to: navigation, search TODO: Add description List of Equipment Insulation...

100

Radioisotope Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioisotope Power Generation Long lived power sources are needed for equipment that is too remote or inaccessible for replacement. By choosing a radioactive element with a long...

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Equipment Operational Requirements  

SciTech Connect

The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

2009-06-11T23:59:59.000Z

102

Office Equipment Energy Use  

Science Conference Proceedings (OSTI)

Miscellaneous electric loads in office buildings consume nearly 58 billion kilowatt hours per year, which translates to $6.1 billion in electricity costs to businesses. Most office space is not sub metered, thus making it difficult for tenants to know how much electricity they use. Consequently, they are unable to see how the amount they pay for their space is affected by the efficiency of equipment they choose and how they operate it. By using recommended power-saving equipment and best practices outlin...

2010-12-16T23:59:59.000Z

103

Direction finding of half-gyrofrequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation  

SciTech Connect

The spectra of VLF/ELF emissions in the off-equatorial region in the outer magnetosphere are, on occasion, found to consist of upper and lower bands with a frequency gap between them. The wave normal directions of the upper band VLF emissions have been determined by means of wave distribution function analyses based first on the measurement of three magnetic field components only, and then with the additional use of an electric field component. It is found that the wave distribution functions are composed of two peaks whose central wave normal angles {theta} with respect to the magnetic field at a geomagnetic latitude of {approximately} 17{degree} are close to the local oblique resonance cone {theta}{sub res} but whose values of {theta} are always about 15{degree}-20{degree} less than {theta}{sub res} at a higher latitude of {approximately}26{degree}. This observed wave normal behavior is compared with the theoretical prediction from direct ray tracing studies using the hypothesis deduced from a previous investigation that the waves are generated at the equator with wave normals close to {theta}{sub res}. A combination of this comparison and inverse ray tracing in which the initial wave normal directions are those determined from the wave distribution analysis has yielded the results that the {theta} values of the upper band VLF emissions are very close to {theta}{sub res} at the equator and that the normalized frequency there, {Lambda}{sub eq}, is above 0.5. Hence the upper band VLF emissions are identified as being half-gyrofrequency VLF emissions generated in the vicinity of the magnetic equator, with their wave normals close to {theta}{sub res}. The characteristics of propagation between the equatorial source region and the observing positions have been investigated by direct ray tracing. The generation mechanism is also discussed.

Muto, H.; Hayakawa, M. (Nagoya Univ., Aichi (Japan)); Parrot, M.; Lefeuvre, F. (Centre National de la Recherche Scientifique, Orleans (France))

1987-07-01T23:59:59.000Z

104

field_equipment.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

EQUIPMENT INVENTORY EQUIPMENT INVENTORY Trucks * Five vac/pressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Water/fi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump trailer * Chemical injection truck, 20 bbl capacity * Three crane trucks: 6,000 lb., 8,000 lb., and 30 ton * Klaeger swab truck * Rig-up truck with 21-foot poles, 30,000-lb. capacity * Winch truck, 40,000-lb. capacity * Two bucket trucks: 25-foot and 28-foot reach * Two welding trucks with Miller Trailblazer welder * Two Ditch Witches: 8" x 7' and 6" x 3" * International PayStar 5000 transport truck * Western Star transport truck Backhoes & Loaders * John Deere 410G backhoe * Cat 420 backhoe * Case 20W loader with 2-yard bucket * Bobcat skid loader with bucket, forks, post hole digger, and trencher attachments

105

Foodservice Equipment Applications Handbook  

Science Conference Proceedings (OSTI)

A typical foodservice operation may spend 75 percent or more of its energy dollar to provide lighting, refrigeration, ventilation, and miscellaneous end uses. Performance characteristics and operational advantages make electricity an excellent option for powering major cooking equipment. This handbook describes the six most common types of major cooking appliances--griddles, fryers, broilers, ovens, ranges, and kettles--including typical applications and industry purchasing trends. Such information will ...

1996-03-26T23:59:59.000Z

106

Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1  

DOE Green Energy (OSTI)

Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

Not Available

1981-11-01T23:59:59.000Z

107

GPHS-RTG system explosion test direct course experiment 5000. [General Purpose Heat Source-Radioisotope Thermoelectric Generator  

SciTech Connect

The General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG) has been designed and is being built to provide electrical power for spacecrafts to be launched on the Space Shuttle. The objective of the RTG System Explosion Test was to expose a mock-up of the GPHS-RTG with a simulated heat source to the overpressure and impulse representative of a potential upper magnitude explosion of the Space Shuttle. The test was designed so that the heat source module would experience an overpressure at which the survival of the fuel element cladding would be expected to be marginal. Thus, the mock-up was placed where the predicted incident overpressure would be 1300 psi. The mock-up was mounted in an orientation representative of the launch configuration on the spacecraft to be used on the NASA Galileo Mission. The incident overpressure measured was in the range of 1400 to 2100 psi. The mock-up and simulated heat source were destroyed and only very small fragments were recovered. This damage is believed to have resulted from a combination of the overpressure and impact by very high velocity fragments from the ANFO sphere. Post-test analysis indicated that extreme working of the iridium clad material occurred, indicative of intensive impulsive loading on the metal.

Not Available

1984-03-01T23:59:59.000Z

108

Plastics and Extrusion - Manufacturing Facilities, Systems and Equipment  

Science Conference Proceedings (OSTI)

This PQ TechWatch presents steps to improving power quality (PQ) in plastics manufacturing facilities, systems, and equipment. The following sections are included: PQ and EMC for Plastics Manufacturing and Facility Equipment Financial Implications of PQ and EMC Problems Standards Distributed Generation and Energy Storage Power Conditioning in the Plastics Manufacturing Environment Mini Cases in Power Quality

2003-12-31T23:59:59.000Z

109

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Part A-1 of Title III (42 U.S.C. 6311-6317) establishes a similar program for ''Certain Industrial Equipment,'' which includes commercial refrigeration equipment. Amendments to...

110

China production equipment sourcing strategy  

E-Print Network (OSTI)

This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

Chouinard, Natalie, 1979-

2009-01-01T23:59:59.000Z

111

Substation Equipment Life Extension Guidelines  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment. The Electric Power Research Institute (EPRI) report Life Extension Guidelines for Substation Equipment-Fi...

2011-12-21T23:59:59.000Z

112

Anne Arundel County - Solar and Geothermal Equipment Property...  

Open Energy Info (EERE)

for heating and cooling and solar energy equipment for water heating and electricity generation. The credit is calculated as the lesser of the following: (1) 50% of the total cost...

113

Wind Measurement Equipment: Registration (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Department of Aeronautics All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be

114

List of Processing and Manufacturing Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 130 Processing and Manufacturing Equipment Incentives. CSV (rows 1 - 130) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial

115

Renewable Energy Equipment Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment Sales Tax Exemption Equipment Sales Tax Exemption Renewable Energy Equipment Sales Tax Exemption < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate None Program Info State Massachusetts Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Massachusetts Department of Revenue Massachusetts law exempts from the state's sales tax "equipment directly relating to any solar, windpowered; or heat pump system, which is being utilized as a primary or auxiliary power system for the purpose of heating or otherwise supplying the energy needs of an individual's principal residence in the commonwealth." Massachusetts Tax Form ST-12 is available on the

116

Appendix D: Facility Process Data and Appendix E: Equipment Calibration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D: Facility Process Data and Appendix E: Equipment D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of

117

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information Oregon Program Type ApplianceEquipment Efficiency...

118

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information New York Program Type ApplianceEquipment Efficiency Standards ''...

119

Data Center Equipment | Open Energy Information  

Open Energy Info (EERE)

Center Equipment Jump to: navigation, search TODO: Add description List of Data Center Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleDataCenterEquip...

120

Electrical Equipment Inventory and Inspection Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Production of Molybdenum-99 by (n, ) activation and direct separation of Technetium-99m without column generator fabrication: A viable strategy for enhanced availability of technetium-99m  

Science Conference Proceedings (OSTI)

Fission-produced 99Mo (F 99Mo) is traditionally used for fabrication of 99Mo/99mTc adsorption-type column generators. In this paper, several emerging strategies that are being pursued or have been suggested to overcome the continuing shortages of F 99Mo are discussed. To provide an alternative source of 99Mo, the principal focus of this analysis is a detailed discussion of the advantages and strategies for enhanced production of low-specific-activity 99Mo (LSA 99Mo) by direct activation of molybdenum targets in nuclear reactors. In order to enhance the availability of 99Mo, development of an increased network of reactors for production of LSA 99Mo is described, as well as utilization of currently unused reactors. The time spent in manufacturing of 99Mo/99mTc column generators is responsible for the loss of more than 50% of F99Mo produced. Hence, the authors propose a paradigm shift in the use of 99Mo by recovering clinical-grade 99mTc from 99Mo solution as an alternative to use of 99Mo/99mTc column generators, thereby avoiding substantial decreased availability of 99Mo from radioactive decay. Implementation of the suggested strategies would be expected to increase availability of 99mTc to the clinical user community by several folds. Additional important advantages of the use of LSA 99Mo include precluding the need for fission product waste management and phasing out the need for high- and low-enriched uranium as target materials for medical radioisotope production.

Knapp Jr, Russ F [ORNL; Pillai, M R A [Bhabha Atomic Research Centre, Mumbai, India

2012-01-01T23:59:59.000Z

122

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

Risk assessment and management are key elements in a well developed asset management implementation. Consequently an increasing number of utility managers are devoting resources to the task of improving their capabilities for risk-based decision making. Equipment risk models are essential elements in a risk assessment process. However, most proposed power delivery equipment risk models require for their successful application some probabilistic representation describing the chances of equipment ...

2012-12-14T23:59:59.000Z

123

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

Risk assessment and management are key elements in a well-developed asset management implementation. Consequently, an increasing number of utility managers are devoting resources to the task of improving their capabilities for risk-based decision making. Equipment risk models are essential elements in the risk assessment process. However, for their application, most proposed power delivery equipment risk models require some probabilistic representation describing the chances of equipment failure. This re...

2011-12-21T23:59:59.000Z

124

Experience Based Seismic Equipment Qualification  

Science Conference Proceedings (OSTI)

This report provides guidelines that can be used to perform an experience-based seismic equipment qualification for verification of seismic adequacy of active electrical and mechanical equipment consistent with requirements of American Society of Civil Engineers (ASCE)-7. The report summarizes what requirements are sufficient to ensure that an item of equipment can perform its intended safety function after a design earthquake. The report also provides additional guidance on ensuring that an item of equi...

2007-12-21T23:59:59.000Z

125

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Certification of Commercial Heating, Ventilating, Air-Conditioning, Refrigeration, and Water Heating Equipment Sign up for e-mail updates on regulations for this and other products...

126

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Amendments and Correction to Petitions for Waiver and Interim Waiver for Consumer Products and Commercial and Industrial Equipment Sign up for e-mail updates on regulations for...

127

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Collection on Commercial Equipment Labeling Sign up for e-mail updates on regulations for this and other products The Department of Energy is seeking information...

128

Advanced systems demonstration for utilization of biomass as an energy source. Volume III. Equipment specifications  

DOE Green Energy (OSTI)

This volume contains all of the equipment specifications to be utilized for the proposed biomass co-generation plant in Maine. (DMC)

Not Available

1980-10-01T23:59:59.000Z

129

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

130

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

131

Equipment Risk and Performance Assessment  

Science Conference Proceedings (OSTI)

This report introduces the basis for understanding, developing, and applying a new set of practical, condition-based risk models for substation equipment. Because of the great variety of risks encountered in the power delivery industry and the diversity in utility equipment and business practices, the focus at this stage of the project is at the conceptual level.

2010-12-23T23:59:59.000Z

132

2004 Equipment Reliability Forum Proceedings  

Science Conference Proceedings (OSTI)

This report describes the proceedings of the EPRI 2004 Equipment Reliability Forum that was held September 1314, 2004, in Kansas City, Missouri. This annual forum provides an opportunity for industry personnel involved in equipment reliability and related issues to exchange information and share experiences. It is structured to incorporate both formal presentations and open discussion.

2004-11-30T23:59:59.000Z

133

Using Backup Generators: Choosing the Right Backup Generator - Business  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing the Right Backup Generator Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify essential systems and equipment-What do you need to keep your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers; lights (interior and exterior), computers, and other office equipment; pumps, including sump pumps, sprinkler system pumps, and well water pumps; and alarm systems. Some of these systems and equipment may have to operate continuously, while others may be needed only during normal business hours. Choose the generator's fuel source-Backup generators are

134

Solar and Wind Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info State Wisconsin Program Type Property Tax Incentive Rebate Amount Varies Provider Wisconsin Department of Revenue In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then transfers or stores solar energy into usable forms of thermal or electrical energy, but does not include equipment or components that would be present as part of a

135

Interim Stabilization Equipment Essential and Support Drawing Plan  

SciTech Connect

The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

KOCH, M.R.

1999-10-22T23:59:59.000Z

136

Interim Stabilization Equipment Essential and Support Drawing Plan  

Science Conference Proceedings (OSTI)

The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. [CHG 2000a]. Support Drawings are those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings. [CHG 2000a].

HORNER, T.M.

2000-10-16T23:59:59.000Z

137

Laboratory Equipment Donation Program - Guidelines  

Office of Scientific and Technical Information (OSTI)

The United States Department of Energy, in accordance with its The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is available for grant; however, specific items may be recalled for DOE use and become unavailable through the program. Frequently Asked Questions Who is eligible to apply for equipment? Any non-profit, educational institution of higher learning, such as a middle school, high school, university, college, junior college, technical

138

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Package Vertical Air Conditioners and Heat Pumps Single Package Vertical Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's energy conservation standards for single package vertical air conditioners and heat pumps as a separate equipment class since 2008. Before 2010, this equipment was regulated under the broader scope of commercial air conditioning and heating equipment. Single package vertical air conditioners and heat pumps are commercial air conditioning and heating equipment with its main components arranged in a vertical fashion. They are mainly used in modular classrooms, modular office buildings, telecom shelters, and hotels, and are typically installed on the outside of an exterior wall or in a closet against an exterior wall but inside the building.

139

LANSCE | Lujan Center | Ancillary Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ancillary Equipment Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10 - LQD 02 - SMARTS Victor Fanelli vfanelli@lanl.gov Or particular instrument scientist Top loading closed-cycle refrigerator T = 10 K to 500 K option of in situ gas adsorption cell 07 - FDS Luke Daemon lld@lanl.gov Monika Hartl hartl@lanl.gov

140

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

heaters, gas-fired and oil-fired instantaneous water heaters and hot water supply boilers, and unfired hot water storage tanks. Commercial water heating equipment is used to...

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commonwealth's Master Equipment Leasing Program  

Energy.gov (U.S. Department of Energy (DOE))

The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

142

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Large, and Very Large, Air-Cooled Commercial Air Conditioning and Heating Equipment Sign up for e-mail updates on regulations for this and other products Pursuant to Section...

143

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

for automatic commercial ice-making equipment cover maximum energy use and maximum condenser water use of cube ice machines with harvest rates between 50 and 2,500 lbs of ice...

144

Standard guide for general design considerations for hot cell equipment  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 The intent of this guide is to provide general design and operating considerations for the safe and dependable operation of remotely operated hot cell equipment. Hot cell equipment is hardware used to handle, process, or analyze nuclear or radioactive material in a shielded room. The equipment is placed behind radiation shield walls and cannot be directly accessed by the operators or by maintenance personnel because of the radiation exposure hazards. Therefore, the equipment is operated remotely, either with or without the aid of viewing. 1.1.2 This guide may apply to equipment in other radioactive remotely operated facilities such as suited entry repair areas, canyons or caves, but does not apply to equipment used in commercial power reactors. 1.1.3 This guide does not apply to equipment used in gloveboxes. 1.2 Applicability: 1.2.1 This guide is intended for persons who are tasked with the planning, design, procurement, fabrication, installation, or testing of equipment used in rem...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

145

Water-Using Equipment: Domestic  

SciTech Connect

Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

Solana, Amy E.; McMordie-Stoughton, Katherine L.

2006-01-24T23:59:59.000Z

146

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

147

BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341  

Science Conference Proceedings (OSTI)

Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

Stefanko, D.; Herbert, J.

2012-01-10T23:59:59.000Z

148

Decontamination & Decommissioning Equipment Tracking System (DDETS)  

SciTech Connect

At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

Cook, S.

1994-07-01T23:59:59.000Z

149

High energy arcing fault fires in switchgear equipment : a literature review.  

SciTech Connect

In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

2008-10-01T23:59:59.000Z

150

PNNL: EDO - Facilities & Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

151

Energy efficiency standards for equipment: Additional opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency standards for equipment: Additional opportunities in the residential and commercial sectors Title Energy efficiency standards for equipment: Additional opportunities in...

152

Building Technologies Office: Appliance and Equipment Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Standards Result in Large Energy, Economic, and Environmental Benefits to someone by E-mail Share Building Technologies Office: Appliance and Equipment Standards Result...

153

Philadelphia Gas Works - Commercial and Industrial Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food service equipment. All equipment must meet program...

154

Commercial Refrigeration Equipment | Open Energy Information  

Open Energy Info (EERE)

Refrigeration Equipment Jump to: navigation, search TODO: Add description List of Commercial Refrigeration Equipment Incentives Retrieved from "http:en.openei.orgw...

155

Renewable Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Equipment Exemption Renewable Energy Equipment Exemption Eligibility Agricultural Commercial General PublicConsumer Residential Savings For Solar Buying & Making...

156

Laboratory Equipment Donation Program - LEDP Widget  

Office of Scientific and Technical Information (OSTI)

LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment...

157

Puerto Rico - Renewable Energy Equipment Certification | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Renewable Energy Equipment Certification Puerto Rico - Renewable Energy Equipment Certification Eligibility Construction InstallerContractor Savings For Solar Buying...

158

Southwest Gas Corporation - Commercial Energy Efficient Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water heaters, tankless...

159

Appliances, Lighting, Electronics, and Miscellaneous Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes Title Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in...

160

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electricity used by office equipment and network equipment in the U.S.: Detailed report and appendices  

SciTech Connect

In spite of the recent explosive growth in the use of office and network equipment, there has been no recent study that estimates in detail how much electricity is consumed by that equipment in the United States. In this study, we examined energy use by office equipment and network equipment at the end of 1999. We classified office equipment into 11 types; for each type we estimated annual energy consumption for residential, commercial, and industrial use by combining estimates of stock, power requirements, usage, and saturation of power management. We also classified network equipment into six types and estimated the annual energy consumption for each type. We found that total direct power use by office and network equipment is about 74 TWh per year, which is about 2% of total electricity use in the U.S. When electricity used by telecommunications equipment and electronics manufacturing is included, that figure rises to 3% of all electricity use (Koomey 2000). More than 70% of the 74 TWh/year is dedicated to office equipment for commercial use. We also found that power management currently saves 23 TWh/year, and complete saturation and proper functioning of power management would achieve additional savings of 17 TWh/year. Furthermore, complete saturation of night shutdown for equipment not required to operate at night would reduce power use by an additional 7 TWh/year. Finally, we compared our current estimater with our 1995 forecast for 1999. We found that the total difference between our current estimate and the previous forecast is less than 15% and identified the factors that led to inaccuracies in the previous forecast. We also conducted a sensitivity analysis of the uncertainties in our current forecast and identified the data sets that have the largest impact on our current estimate of energy use.

Kawamoto, Kaoru; Koomey, Jonathan G.; Nordman, Bruce; Brown, Richard E.; Piette, Mary Ann; Ting, Michael; Meier, Alan K.

2001-02-01T23:59:59.000Z

162

Equipment  

Science Conference Proceedings (OSTI)

...lined with natural rubber and acid-resistant red shale or carbon brick joined with silica-filled hot poured sulfur cement. [graphic]...

163

Equipment  

Science Conference Proceedings (OSTI)

...The power source should be of a constant-current design. Transistorized power sources are most common, although inverter power supplies are also available. It should have a minimum open-circuit voltage of 80 V to ensure the reliable initiation

164

Equipment  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... To avoid production losses, reduce maintenance cost and increase safety reflexes of the crane operators in case of emergency, ECL has...

165

Microsoft Word - CX-2013ElectronicEquipmentUpgrades_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 12, 2013 April 12, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Cleareance Memorandum Molly Kovaka Bob Trismen Contractor - TEP-CSB-2 Electrical Engineer - TEP-CSB-1 Proposed Action: Electronic Equipment Upgrades and Emergency Generator Replacements PP&A Project No: 2571 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment; B1.3 Routine maintenance activities Location: Multiple locations within Bonneville Power Administration's (BPA) service area. Proposed by: BPA Description of the Proposed Action: BPA proposes to upgrade electronic equipment required for operation of its transmission grid and replace emergency generators. Several types of actions involving communications, meters, relays, and Remedial Action Scheme (RAS) and Supervisory

166

System and Equipment Troubleshooting Guideline  

Science Conference Proceedings (OSTI)

This guideline outlines a generic process for use by power plant personnel engaged in the troubleshooting of plant systems and equipment. The structured approach presented in the guideline will be helpful for any plant personnel engaged in these activities, whether working individually or as part of a troubleshooting team.

2002-01-22T23:59:59.000Z

167

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

168

Energy-related laboratory equipment (ERLE) guidelines  

SciTech Connect

This document describes the Used Energy-Related Laboratory Equipment grants, and eligibility and procedures for participation. The document contains tables identifying typical equipment that may be requested, where to review ERLE equipment lists, and where to mail applications, a description of the eligible equipment grants access data system, and a copy of the ERLE grant application and instructions for its completion and submission.

Not Available

1995-01-01T23:59:59.000Z

169

Written Information Equipment TECHNOLOGY: Oral Information  

SCIENTIFIC OR TECHNOLOGICAL Equipment TECHNOLOGY: DEVELOPMENTAL RESOURCES Written Information Oral Information Hardware Facilities Data

170

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

171

Direct probing of electronic density distribution of a Rydberg state by high-order harmonic generation in a few-cycle laser pulse  

Science Conference Proceedings (OSTI)

We demonstrate that the electronic density distribution of a Rydberg state can be probed directly using a broadband harmonic spectrum in a few-cycle laser pulse. Taking advantage of the large orbital radius of a Rydberg state, we show that the Rydberg electron can be accelerated directly toward the core under the influence of a few-cycle laser pulse, leading to recombination and emission of harmonic photons. In this case the initial position of the electron and the harmonic order form a one-to-one correspondence, resulting in a realization of direct probing of the density distribution of the initial Rydberg state.

Zhai Zhen; Fu Panming; Wang Bingbing [Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Chen Jing [Center for Nonlinear Studies, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yan Zongchao [Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3 (Canada)

2010-10-15T23:59:59.000Z

172

NanoFab Equipment - Lithography  

Science Conference Proceedings (OSTI)

... Image sensors, photovoltaic devices and bio-chips. Laser Pattern Generator: Heidelberg DWL 2000. The system uses a ...

2013-09-30T23:59:59.000Z

173

Bulk Hauling Equipment for CHG  

NLE Websites -- All DOE Office Websites (Extended Search)

BULK HAULING EQUIPMENT FOR CHG BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg * Purchase Cost (+/- 5%) - $510,000 HEXAGON LINCOLN TITAN(tm) V Magnum Trailer System Compressed Hydrogen Gas * Capacity 250 bar - 800 kg 350 bar - 1050 kg 540 bar - 1500 kg * Gross Vehicle Weight (with prime mover) 250 bar - 31 000 kg 350 bar - 34 200 kg 540 bar - 45 700 kg * Purchase Cost (+/-

174

BASIS Equipment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment BASIS Schematic Schematic of the SNS Backscattering Spectrometer. Helium dewer cooling a sample Helium dewer cooling a sample (bird's eye view). The heart of the work in a typical experiment is setting up the sample in the desired environment. A typical neutron sample ranging from a millimeter to a few centimeters is placed in a specialized cylindrical can and sealed. For liquids, the backscattering instrument often uses an annular can, created by placing a smaller can within a larger can and inserting the liquid sample between the two cans. This picture shows a helium dewer cooling the environment encompassing the sample can, which has been lowered into the beam from the top of the scattering tank. Crystals Crystals. The backscattering spectrometer is defined by the reflection of specific

175

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network (OSTI)

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN · · · · · 18 Specific design features 0 0 · · · · · · · · · · · · · · 19 Refrigerated surfaces 0 · · 0 0 0 · 0

176

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

177

Waste electronics and electrical equipment disassembly and recycling using Petri net analysis: Considering the economic value and environmental impacts  

Science Conference Proceedings (OSTI)

The Industry Council for Electronic Equipment Recycling (ICER) has published estimates of waste generation based on both assumptions and analysis regarding the relationship between the market sales of Electrical and Electronic Equipment (EEE) in a given ... Keywords: Disassembly, Hazardous substances, Petri net disassembly tree, Recycling, Waste electric and electronic equipment

Tsai C. Kuo

2013-05-01T23:59:59.000Z

178

Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog  

Science Conference Proceedings (OSTI)

This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

Not Available

1994-07-01T23:59:59.000Z

179

Special techniques and equipment reduce problems  

Science Conference Proceedings (OSTI)

Novel underbalanced drilling procedures, downhole-adjustable equipment, and a mud easily cleaned from the fractures, helped reduce formation damage and ensured a successful horizontal well in the high-temperature, abnormally pressured Austin chalk in Louisiana. The technique for successfully drilling the lateral in the Austin chalk included taking the smallest influx possible, maintaining as low a back pressure as possible, and balancing the mud gains from the hole with the mud losses to the hole. Other keys to the success of this well included the use of measurement-while-drilling (MWD) with resistivity in real time to pick the top of the formation. In describing the drilling process, the paper discusses the following: intermediate casing point, pilot hole, 8 1/2-inch curve, snubbing, laterals, bit performance, mud properties, underbalanced drilling, high temperature, directional drilling, and well completion, and then gives recommendations for similar wells.

Joseph, R.A. (OXY U.S.A. Inc., Houston, TX (United States))

1995-03-27T23:59:59.000Z

180

Ehv substation equipment challenges both designer and manufacturer  

SciTech Connect

Huge equipment and structures necessary to operate substations at extra-high voltage (ehv) require special design innovations. Because of the phase spacing required more real estate and larger, stronger takeoff structures are necessary. Also, economics (and optimization) becomes a more-important factor in design because of the large investment involved. Because generating plants are increasing steadily in size and are being located more remote from load centers, ehv transmission is becoming more common. Some of the design criteria and costs for ehv-substation equipment that is necessary to terminate the transmission lines at 345 kV and higher voltages are discussed.

Carey, H.D.

1965-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment as a function of load and operating them close to the maximum efficiency point.

Ganapathy, V.

1996-04-01T23:59:59.000Z

182

Fire suppression and detection equipment  

SciTech Connect

Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

2006-01-15T23:59:59.000Z

183

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

to the annual greenhouse gas emissions of about 392,000 million automobiles. The Standards and Test Procedures for this product are related to Rulemaking for Direct Heating...

184

Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

185

Technical Requirements and Vision for Development of an Integrated Framework for Substation Equipment Performance and Risk Assessment  

Science Conference Proceedings (OSTI)

The principal motivation for building an integrated assessment framework is to provide support for decisions that influence substation equipment performance. However, because equipment performance can in turn affect substation and system performance, the framework scope should reach beyond the traditional equipment boundaries. The decisions that revolve around maintenance and replacement most directly affect installed substation equipment performance and are therefore the primary focus of this work. Comp...

2008-12-18T23:59:59.000Z

186

Improved Thermal Modeling Tools for Substation Equipment  

Science Conference Proceedings (OSTI)

The ratings of substation terminal equipment often limit power flow through transmission circuits. Capital investment in terminal equipment is generally modest in comparison to lines, transformers, and underground cables. Replacement difficulties are centered more on service availability than on cost. Detailed manufacturer test data is often unavailable for older equipment but ratings are simpler to calculate than for lines. Certain types of terminal equipment are tolerant of over-loading and problems in...

2007-03-08T23:59:59.000Z

187

Appliances and Commercial Equipment Standards: Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies...

188

Equipment-Immunity Performance Guidelines: 2010 Activities  

Science Conference Proceedings (OSTI)

This report details EPRIs 2010 efforts for improved equipment-immunity standards and performance in the electrical environment.

2010-12-16T23:59:59.000Z

189

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

190

Liquid-Liquid Extraction Equipment  

Science Conference Proceedings (OSTI)

Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

Jack D. Law; Terry A. Todd

2008-12-01T23:59:59.000Z

191

Analyzing the dynamic behavior of downhole equipment during drilling  

DOE Green Energy (OSTI)

Advanced geothermal drilling systems will require a bottom hole assembly (BHA) which utilizes sophisticated electronic and mechanical equipment to accomplish faster, more trouble free, smarter drilling. The bit-drill string/formation interaction during drilling imposes complex, intermittent dynamic loading on the downhole equipment. A finite element computer code, GEODYN, is being developed to allow analysis of the structural response of the downhole equipment during drilling and to simulate the drilling phenomena (i.e. penetration, direction, etc.). Phase 1 GEODYN, completed early in 1984, provides the capability to model the dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-homogeneous formation. Succeeding development phases will allow inclusion of stabilizers and, eventually, the entire drill string in addition to facilitating drill ahead simulation.

Baird, J.A.; Caskey, B.C.

1984-01-01T23:59:59.000Z

192

Seismic Studies of Substation Equipment: Progress Report  

Science Conference Proceedings (OSTI)

IEEE Standard 693, Recommended Practice for Seismic Design of Substations, is used by electric power utilities to qualify substation equipment for seismic movements. Deficiencies exist in the present standard, and information is unavailable for dynamic response that may be used to better analyze equipment and permit equipment evaluation in case of limited configuration changes, such as insulator substitution.

2009-09-28T23:59:59.000Z

193

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2002-06-01T23:59:59.000Z

194

Proceedings: Substation Equipment Diagnostics Conference IX  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2001-09-01T23:59:59.000Z

195

Proceedings: Substation Equipment Diagnostics Conference VIII  

SciTech Connect

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2000-06-01T23:59:59.000Z

196

Sample-related peripheral equipment at IPNS  

Science Conference Proceedings (OSTI)

This paper describes samples environment equipment provided by IPNS to visiting users and staff scientists. Of the twelve horizontal neutron beam stations, (ten now operational, two under construction) all use one or more form of such support equipment. An in-house support group devotes a significant fraction of its time to development, calibration, and maintenance of this equipment.

Bohringer, D.E.; Crawford, R.K.

1985-01-01T23:59:59.000Z

197

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

Science Conference Proceedings (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

2002-06-27T23:59:59.000Z

198

Power System Equipment Module Test Project  

DOE Green Energy (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

199

Standard guide for hot cell specialized support equipment and tools  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 This guide presents practices and guidelines for the design and implementation of equipment and tools to assist assembly, disassembly, alignment, fastening, maintenance, or general handling of equipment in a hot cell. Operating in a remote hot cell environment significantly increases the difficulty and time required to perform a task compared to completing a similar task directly by hand. Successful specialized support equipment and tools minimize the required effort, reduce risks, and increase operating efficiencies. 1.2 Applicability: 1.2.1 This guide may apply to the design of specialized support equipment and tools anywhere it is remotely operated, maintained, and viewed through shielding windows or by other remote viewing systems. 1.2.2 Consideration should be given to the need for specialized support equipment and tools early in the design process. 1.2.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conv...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

200

Recommendation for Cryptographic Key Generation  

Science Conference Proceedings (OSTI)

... 100 Bureau Drive (Mail Stop 8930) Gaithersburg ... Output of a Random Bit Generator ..... ... 7.1 The Direct Generation of Symmetric ...

2013-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Illuminated Exit Signs Illuminated Exit Signs Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of illuminated exit signs since 2005. Illuminated exit signs are used to indicate exit doors in schools, hospitals, libraries, government buildings, and commercial buildings of all kinds, including offices, restaurants, stores, auditoriums, stadiums, and movie theatres. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates There are no recent updates for this equipment. Standards for Illuminated Exit Signs The following content summarizes the energy conservation standards for illuminated exit signs. The text is not an official reproduction of the Code of Federal Regulations and should not be used for legal research or citation.

202

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

203

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Commercial and Industrial Pumps Sign up for e-mail updates on regulations for this and other products Pumps are used in agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. Currently there are no energy conservation standards for pumps. The Department of Energy (DOE) will conduct an analysis of the energy use, emissions, costs, and benefits associated with this equipment during the commercial and industrial pumps energy conservation standards rulemaking. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document. 78 FR 7304 (Feb. 1, 2013). For more information, please see the rulemaking page.

204

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Compressors Determination Commercial and Industrial Compressors Determination Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) proposes to determine that commercial and industrial compressors meet the criteria for covered equipment under Part A-1 of Title III of the Energy Policy and Conservation Act (EPCA), as amended. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a Proposed Coverage Determination concerning commercial and industrial compressors. 77 FR 76972 (Dec. 31, 2012). Public Meeting Information No public meeting is scheduled at this time. Submitting Public Comments The comment period is closed.

205

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Efficiency Determination Methods and Alternate Rating Methods Alternative Efficiency Determination Methods and Alternate Rating Methods Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to revise and expand its existing regulations governing the use of alternative efficiency determination methods (AEDM) and alternate rating methods (ARM) for covered products as alternatives to testing for the purpose of certifying compliance. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule revising its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air conditioning, water heating, and refrigeration equipment. 78 FR 79579 (December 31, 2013).

206

Facilities Engineering Materials, Equipment, and Relocatable Building Management This regulation--  

E-Print Network (OSTI)

o Consolidates AR 420-83; AR 420-17, chapters 5 and 6 and appendixes E through M; and implements applicable portions of DOD directives, DOD instructions, and DOD regulations. o Adds a requirement for major Army commands (MACOMS) to biennially inspect subordinate supply and equipment operations and relocatable building programs (para 1-9b). o Designates the installation Director of Engineering and Housing as the assessable unit manager (per AR 11-2) for completion of the Internal Management Control Review Checklist applicable to this regulation (para 1-11b). o Directs open warehouses during inventories (para 2-7a). o Requires a yearly inventory of four types of supplies, no inventory of other types, and no periodic inventories (para 2-7b). o Establishes management thresholds for inventory discrepancies (para 2-8b). o Addresses excess management (para 2-15). o Describes self help supply centers (para 2-21). o Delegates decision to lease equipment to DEH (para 3-5b). o Requires that MACOMs appoint an individual to be responsible for Directorate of Engineering and Housing equipment management (para 3-8b). o Allows a cash flow approach to equipment management (rental and depreciation rates) (para 3-8d).Headquarters Department of the Army

unknown authors

1992-01-01T23:59:59.000Z

207

Costs and Indices for Domestic Oil and Gas Field Equipment and ...  

U.S. Energy Information Administration (EIA)

Lease Equipment Costs for Gas Production in the Mid-Continent: Direct Annual Operating Costs for Gas Production in the Mid-Continent: Gas Production--the Rocky Mountains

208

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Construction General Public/Consumer Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Equipment Certification Provider Florida Solar Energy Center Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar equipment certified first contacts FSEC for an application and requests that FSEC test samples of the product at random. Equipment is then subjected to a series of tests in order to be approved or denied certification. Standards and applications procedures for specific technologies are available on the FSEC web site.

209

Laboratory Equipment Donation Program - Contact Us  

Office of Scientific and Technical Information (OSTI)

End of Year Reports End of Year Reports At the end of the first year of using LEDP grant equipment, the grantee must provide DOE with a report on the use of the equipment. If a grantee does not submit a report, the DOE OPMO who approved the grant application can pull the equipment back, or not allow that institution to apply for more equipment. The report should describe: Any new courses instituted as a result of the grant of the equipment; Existing courses which have been expanded as a result of the grant of the equipment; Research activities, e.g., thesis titles, journals articles, sponsored research, etc.; and Other ways the equipment has been used to enhance courses, e.g., experiments, demonstrations, etc. If your item control Number starts with Send your report to 890565

210

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part  

NLE Websites -- All DOE Office Websites (Extended Search)

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part Limestone and Ash Storage Silos and Lime Preparation Equipment, Part of the System to Inject Limestone Sorbent for SO, Control. Nucla, CO Nucla...continued Before being repowered, the plant consisted of three 12 MWe coal stoker- fired units built in 1959, which were taken out of service in 1984 due to low efficiency and high fuel cost. Antici- pating a need for additional power in the early 1990s. and after review of many power generation alternatives, CUEA started constmction of the re- powered Nucla CFB plant in Novem- ber 1984 and completed the project in May 1987. The original boilers were replaced with a new Fympower Corp. CFB bailer, a new high pressure 74 MWe steam turbine generator was installed, the three original 12 MWe steam turbines were

211

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

212

Hydro Life Extension Modernization Guides, Volume 3: Electromechanical Equipment  

Science Conference Proceedings (OSTI)

Hydroelectric power generation is a proven vital source of electricity in the United States and worldwide. This guideline represents the third in a series of seven to help hydroelectric utilities assess the needs and benefits of life extension and modernization. This volume focuses on alternatives for plant electromechanical equipment to assist in evaluating the cost and economic justification for various alternatives and to implement the selected plan. It also provides a screening procedure and criteria...

2001-12-20T23:59:59.000Z

213

DIRECT FUELCELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

214

DIRECT FUELCELL/TURBINE POWER PLANT  

SciTech Connect

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

215

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

216

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

217

Southwest Gas Corporation - Commercial High-Efficiency Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless water heaters, boiler equipment, griddles, fryers, conveyor ovens,...

218

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

219

Survey of Substation Equipment Access Control Policies  

Science Conference Proceedings (OSTI)

Utility management and control of access to substations and equipment can help prevent not only unauthorized access by outside agents with ill intent, but also erroneous access to, or erroneous operation of, utility equipment by utility personnel. This report provides the results of an EPRIsponsored research project to identify how utilities manage access to transmission and distribution substations and equipment.BackgroundThe enhanced ...

2012-11-20T23:59:59.000Z

220

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

222

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Program Info State Minnesota Program Type Equipment Certification Provider Minnesota Department of Commerce Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and Certification Corporation (SRCC) standards. Specifically, the rule references SRCC's "Operating Guidelines" pertaining to collector certification and system certification: OG-100 and OG-300, respectively. Local building officials

223

Agricultural Lighting and Equipment Rebate Program (Vermont)...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Agricultural Lighting and Equipment Rebate Program (Vermont) This is the approved revision of this page, as...

224

Schools - Electronic Equipment Damage Due to Lightning  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of damage to a school's phone equipment, security alarm, and network computer system during a lightning storm.

2003-12-31T23:59:59.000Z

225

PPP Equipment Corporation | Open Energy Information  

Open Energy Info (EERE)

PPP Equipment Corporation Sector Solar Product PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

226

Zhongneng Windpower Equipments | Open Energy Information  

Open Energy Info (EERE)

manufacturer engages in the development, design, testing and products manufacture of rotor blade of WTGS. References Zhongneng Windpower Equipments1 LinkedIn Connections...

227

Laboratory Equipment Donation Program - Contact Us  

Office of Scientific and Technical Information (OSTI)

Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been...

228

The Healthcare and Medical Equipment Industry  

Science Conference Proceedings (OSTI)

This PQ TechWatch highlights the measures that the healthcare and medical equipment industry is taking to reduce power quality (PQ) and electromagnetic compatibility (EMC) problems.

2003-12-31T23:59:59.000Z

229

MOV surge arresters: improved substation equipment protection  

Science Conference Proceedings (OSTI)

The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

Niebuhr, W.D.

1985-07-01T23:59:59.000Z

230

Electric Vehicle Supply Equipment (EVSE) Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing What's New PLUGLESS Level 2 EV Charging System by Evatran Group Inc. - August 2013 The Advanced Vehicle Testing Activity is tasked...

231

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

232

Request an Inspection of User Electrical Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

date, time, and location of the inspection Equipment list and description List any manualsdocumentationschematics that exist and are present to aid with the inspection. A...

233

Stangl Semiconductor Equipment AG | Open Energy Information  

Open Energy Info (EERE)

Solar Product German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References Stangl Semiconductor Equipment AG1 LinkedIn...

234

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

Nucleares, SA Place Madrid, Spain Zip 28006 Sector Services Product ENSA is a Spanish nuclear components and nuclear services supply company. References Equips Nucleares, SA1...

235

APS Guideline for Personal Protective Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

severe consequences. Consequently, the CAT has adopted the following policies and procedures to ensure the proper selection and use of such equipment by CATXSD personnel...

236

Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant  

E-Print Network (OSTI)

A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence which has the lowest energy cost to operate at a given plant cooling load and outside air wet bulb temperature. and satisfies all the constraints associated with the refrigeration system. Selection of the optimal equipment sequence is very difficult given the complexity of the refrigeration system and the dynamic nature of the plant cooling load. As a solution a computer program was developed to generate optimal equipment sequences to operate for combinations of a wide range of plant cooling loads and outside air wet bulb temperatures. Analysis of the solution identified the need for a retrofit project to remove "vital" constraints in order to improve the refrigeration system's performance. The solution to the problem was then incorporated in the operating procedures for the Central Utility Plant.

Fiorino, D. P.; Priest, J. W.

1986-01-01T23:59:59.000Z

237

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

238

Modern generator protection systems  

SciTech Connect

The special problems of the protection of generating stations with large machines connected to large integrated networks are presented. The coordination between the protective relays and tripping functions and the reliability of the protection scheme are important considerations in modern plants. Primary and backup protective functions, the applications, and their divisions into fault detection and ''fault prevention'' categories are considered. Testing and maintenance of the generator protection system including automatic calibration testing equipment is also discussed. The concept of the generator protection as a completely coordinated system and its realization with solid state protective relays is also presented. 9 refs.

Pencinger, C.J.

1981-01-01T23:59:59.000Z

239

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

240

Energy Efficiency Standards for Residential and Commercial Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards for Residential and Commercial Equipment: Additional Opportunities Title Energy Efficiency Standards for Residential and Commercial Equipment: Additional...

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research on Precise Support for Armored Equipment  

Science Conference Proceedings (OSTI)

The current support of the armored equipment is traditional extensive mode. There are many problems, such as excessive maintenance, late maintenance and high ratio of expenses to battle effectiveness. Aiming at these problems, the significance of Precise ... Keywords: Precise Support, Armored Equipment, advanced sensors, C4ISR

Yong-chun Xia; Yu-hua Zhou; Ren-jie Xu; Bi-wei Xie

2012-03-01T23:59:59.000Z

242

Life Extension Guidelines for Other Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with tighter, leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment.BackgroundThe ...

2012-12-12T23:59:59.000Z

243

General Restaurant Equipment: Order (2013-CE-5344)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

244

Life Extension Guidelines for Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment. EPRI's life extension guidelines for substationsfirst published in 1995 and periodically revisedsupport curre...

2010-12-22T23:59:59.000Z

245

Life Extension Guidelines for Other Substation Equipment  

Science Conference Proceedings (OSTI)

Utilities are under increasing pressure to maintain service reliability while operating aging transmission substations with tighter, leaner maintenance budgets and fewer experienced personnel. A structured life extension program can help utilities make equipment maintenance, replacement, and refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment.BackgroundEPRIs Life Extension Guidelines for ...

2013-12-20T23:59:59.000Z

246

Laboratory Equipment Donation Program - About Us  

Office of Scientific and Technical Information (OSTI)

About LEDP About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department of Energy (DOE) to grant surplus and available used energy-related laboratory equipment to universities and colleges in the United States for use in energy oriented educational programs. This grant program is sponsored by the Office of Workforce Development for Teachers and Scientists (WDTS). The listing of equipment available through LEDP is updated as new equipment is identified. It is available at no cost for a limited time and is granted on a first-received qualified application basis. Specific items may be recalled for DOE use and become unavailable through the program after the

247

Experimental Equipment | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency converter (3 channels) (1) Fluke high voltage power supply (1) Kinetic Systems hex scaler (1) Kinetic Systems up-down presettable counter (1) Ortec real-time clock (2) Joerger stepping motor controller DSP Micro VAX or Kinetic Systems G.I./CAMAC crate controller (1) Standard Engineering Corporation CAMAC power supply

248

RMOTC - Field Information - Equipment and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Facilities Equipment & Facilities Motor Grader at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's test facility has its own line of workover, support, and heavy equipment available for partner use on site. RMOTC can also offer its partners workspace on site in its Customer Operations Center which has

249

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Equipment End-Use Equipment The types of space heating equipment used in office buildings were similar to those of the commercial buildings sector as a whole (Table 8 and Figure 5). Furnaces were most used followed by packaged heating systems. Individual space heaters were third-most used but were primarily used to supplement the building's main heating system. Boilers and district heat systems were more often used in larger buildings. Table 8. Types of Heating Equipment Used in Office Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Buildings* All Office Buildings All Buildings* All Office Buildings All Buildings 4,645 824 64,783 12,208 All Buildings with Space Heating 3,982 802 60,028 11,929 Heating Equipment (more than one may apply)

250

CVD Equipment Corp | Open Energy Information  

Open Energy Info (EERE)

CVD Equipment Corp CVD Equipment Corp Jump to: navigation, search Name CVD Equipment Corp Place Ronkonkoma, New York Zip 11779 Sector Solar Product New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of solar and semiconductor fabrication. Coordinates 40.81122°, -73.098744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.81122,"lon":-73.098744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Definition: Disturbance Monitoring Equipment | Open Energy Information  

Open Energy Info (EERE)

Disturbance Monitoring Equipment Disturbance Monitoring Equipment Jump to: navigation, search Dictionary.png Disturbance Monitoring Equipment Devices capable of monitoring and recording system data pertaining to a Disturbance. Such devices include the following categories of recorders: Sequence of event recorders which record equipment response to the event., Fault recorders, which record actual waveform data replicating the system primary voltages and currents. This may include protective relays., Dynamic Disturbance Recorders (DDRs), which record incidents that portray power system behavior during dynamic events such as low-frequency (0.1 Hz - 3 Hz) oscillations and abnormal frequency or voltage excursions. Phasor Measurement Units and any other equipment that meets the functional requirements of DMEs may qualify as DMEs.[1]

252

Equipment qualification research program: program plan  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump.

Dong, R.G.; Smith, P.D.

1982-06-08T23:59:59.000Z

253

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Certain Lamps Exempted from General Service Incandescent Lamp Standards Certain Lamps Exempted from General Service Incandescent Lamp Standards Sign up for e-mail updates on regulations for this and other products The information on this page pertains to the Department of Energy's (DOE) analysis of and unit sales forecast for five lamp types, which was mandated by the Energy Independence and Security Act of 2007 (EISA 2007). Among the requirements of subtitle B of title III of EISA 2007 were provisions directing DOE to evaluate and publish within 1 year a benchmark unit sales estimate for five types of incandescent lamps (rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps). These lamp types were not made subject to the regulatory standards for general service incandescent lamps established by EISA 2007. Among the requirements of subtitle B of title III of EISA 2007 were provisions directing DOE to collect, analyze, and monitor unit sales of these five lamp types.

254

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Map to JGI Directions from Directions from key local start points, public transit Home > About Us > Map to JGI UC logo DOE logo Contact Us Credits Disclaimer Access...

255

Plant layup and equipment preservation sourcebook: Interim report  

Science Conference Proceedings (OSTI)

US nuclear generating plant systems and equipment have received very sophisticated chemistry and environmental controls during operation, but very little during construction and outages. As plant construction times became longer, and operating plants experienced outages of significant length, the component damage and system contamination occurring during this idle time has become greater, to the extent that plant startup schedules or the ability to keep the plant operational are sometimes affected. This has led to limited efforts in the industry to control component internal chemistry and environment by planned lay-up procedures. These efforts have been thwarted by a lack of information on how to do equipment lay-ups, and a lack of data base to quantify the value of various lay-up techniques. EPRI authorized the preparation of this sourcebook as part of a research program, RP2815-1, with the goal of providing a convenient and unified source of plant lay-up information.

Mentink, H.W.; Hagan, K.A.; Lovett, C.G.

1987-03-01T23:59:59.000Z

256

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and External Power Supplies Battery Chargers and External Power Supplies Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) does not currently regulate battery chargers. Energy conservation standards have been in place for external power supplies since 2007. Battery chargers charge batteries for consumer products, including battery chargers embedded in other consumer products. Examples of this product include chargers for cell phone or laptop computer batteries. External power supplies convert household electric current into direct current or lower-voltage alternating current to operate a consumer product such as a laptop computer or digital picture frame. Currently only Class A external power supplies are covered by standards.

257

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

258

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

259

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

260

TFTR Motor Generator  

SciTech Connect

A general description is given of 475 MVA pulsed motor generators for TFTR at Princeton Plasma Physics Laboratory. Two identical generators operating in parallel are capable of supplying 950 MVA for an equivalent square pulse of 6.77 seconds and 4,500 MJ at 0.7 power factor to provide the energy for the pulsed electrical coils and heating system for TFTR. The description includes the operational features of the 15,000 HP wound rotor motors driving each generator with its starting equipment and cycloconverter for controlling speed, power factor, and regulating line voltage during load pulsing where the generator speed changes from 87.5 to 60 Hz frequency variation to provide the 4,500 MJ or energy. The special design characteristics such as fatigue stress calculations for 10/sup 6/ cycles of operation, forcing factor on exciter to provide regulation, and low generator impedance are reviewed.

Murray, J.G.; Bronner, G.; Horton, M.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Appliances and Commercial Equipment Standards: Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Appliances & Equipment Standards About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Guidance and Frequently Asked Questions This webpage is designed to provide guidance and answer Frequently Asked Questions (FAQs) on the U.S. Department of Energy's appliance standards program. Guidance types span all covered products and covered equipment and cover such topics as: definitions, scope of coverage, conservation standards, test procedures, certification, Compliance and Certification Management System (CCMS), and enforcement. This website offers users an

262

New surface equipment for underbalanced drilling  

Science Conference Proceedings (OSTI)

Perhaps the single most exciting development in the area of new drilling technology in this decade is underbalanced drilling (UBD). This category includes both jointed pipe and coiled tubing applications. Each has advantages and disadvantages in UBD operations. Regardless of the method selected for a particular UBD application, equipment similarities exist. The surface control and production equipment must be correctly sized and designed for the overall total UBD engineering solution. This article describes the various types, applications and purposes of special surface equipment needed in underbalanced operations. This is the second in a series of articles on UBD technology and its rapid development is this field.

Cuthbertson, R.L.; Vozniak, J.; Kinder, J.

1997-03-01T23:59:59.000Z

263

Distributed Generation: Which technologies? How fast will they emerge?  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

264

GENERATOR PAD FOUNDATIONS  

SciTech Connect

The purpose of this analysis is to design structural foundations for the Generator Pad. The equipment foundation shall be designed in Section 10 using standard foundation design hand calculations. The vertical loads reflect Mechanical/Electrical requirements. Lateral loads will be calculated using applicable codes. The soil bearing and foundation stresses will be analyzed using accepted engineering mechanics. The foundation will be designed using the Strength Design Method.

T. Saltikov

1995-04-27T23:59:59.000Z

265

IMPROVEMENTS IN STEAM GENERATING AND SUPERHEATING PLANT AND AN IMPROVED METHOD OF PRODUCING LOW PRESSURE SUPERHEATED STEAM  

SciTech Connect

A steam supply arrangement is described which generates high-pressure steam and superheats steam from a low-pressure source. Inus, in operations cteam at 350 to 600 psi from a nuciear reactor is superheated in a heat exehanger anu later in gas-heated equipment to 1100 F and passed to a stage of a pluralstage steam turbine. When the reactor ls shut downs steam generated in the steam generator section may be passed directly to the gas-fired superheater. (T.R.H.)

1959-02-18T23:59:59.000Z

266

HVAC Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Equipment Rebate Program HVAC Equipment Rebate Program HVAC Equipment Rebate Program < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Institutional Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Maximum Rebate Rebates of greater than $5,000 require pre-approval Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies depending on technology and efficiency Provider Efficiency Vermont NOTE: Rebate reservations are required for all boiler and furnace projects. Efficiency Vermont offers rebates for commercial installations of high-efficiency HVAC equipment and controls. For businesses and purchases

267

Cruising Equipment Company CECO | Open Energy Information  

Open Energy Info (EERE)

Cruising Equipment Company CECO Cruising Equipment Company CECO Jump to: navigation, search Name Cruising Equipment Company (CECO) Place Seattle, Washington Zip 98107 Product Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Definition: Equipment Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search Dictionary.png Equipment Rating The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.[1] Also Known As Standard current ratings Related Terms reactive power, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Rating&oldid=502535" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

269

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

270

Laboratory Equipment Donation Program - Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Laboratory Equipment Donation Program Home About LEDP FAQ Application Site Index Contact Us Administrative Login SEARCH: Go! view equipment list LEDP News Latest Equipment Added as of January 08, 2014: 1. DATA HANDLING SYSTEM 89514133530195 2. METER, VOLT 89514133530179 3. RECORDER, STRIP 89514133530184 4. RECORDER, STRIP 89514133530185 5. SCINTILLATOR STRIPS, 1.9 CM X 1.5 CM X 96 CM 89514133530188 Quick Links What type of equipment is available? Who is eligible to apply? How long will it take to find out if my application has been approved? Who is responsible for arranging and paying for shipping? RSS Get Widgets Bookmark and Share Get the tools you need to inspire innovation and creativity The United States Department of Energy (DOE), in accordance with its

271

Energy Sub-Metering Equipment and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sub-Metering Equipment and Applications Energy Sub-Metering Equipment and Applications Speaker(s): Sim Gurewitz Date: July 24, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew This talk will address the following topics:Submetering basics: What is it? How does a submeter work?How to obtain a finer level of energy information within the buildingApplications: Who submeters and why?LEED NC/EB/CS and submetering / Energy & Atmosphere pointsSubmetering equipment: gas, electric, water, steam, CW Btu and HHW BtuHow to install equipment without scheduling an outageLoad Control option for automated load shedding and peak shavingWireless submeters and communication options / integration to EMS-BMCSAutomatic remote meter reading and cost allocation softwarePutting it all together into a metering SYSTEM: read from anywhere, IP

272

Definition: Reduced Equipment Failures | Open Energy Information  

Open Energy Info (EERE)

limits based on real-time equipment or environmental factors.1 Related Terms sustainability References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You...

273

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

274

Enhanced Substation Equipment Industry-Wide Database  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Industrywide Equipment Performance Database (IDB) for transformers is a collaborative effort to pool appropriate transformer operating and failure data in order to assemble a statistically valid population of many types of transformers.

2008-12-18T23:59:59.000Z

275

NETL: Carbon Absorber Retrofit Equipment (CARE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Carbon Absorber Retrofit Equipment (CARE) Project No.: DE-FE0007528 Spray Jet Array for Neustream-C Nozzle Technology Spray Jet Array for Neustream-C Nozzle...

276

Biomass Equipment & Materials Compensating Tax Deduction  

Energy.gov (U.S. Department of Energy (DOE))

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

277

Hot conditioning equipment conceptual design report  

SciTech Connect

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

278

Integrating Equipment Health Information Into Grid Operations  

Science Conference Proceedings (OSTI)

In recent years, grid operators have expressed keen interest in having equipment health information available in real time. The health status of critical power system equipment can help operators assess situations, identify associated risks, and develop mitigation strategies/solutions in a time frame commensurate with the risk level. Health status information can also help operators recognize potential failures and take proactive actions, such as unloading a transformer or breaker that has shown signs of...

2011-12-21T23:59:59.000Z

279

An Approach to Evaluating Equipment Efficiency Policies  

E-Print Network (OSTI)

The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach to the evaluation of these and related policy options is under development. The approach includes equipment classification and characterization, market characterization, and the subsequent evaluation of effectiveness and costs of the policy options. Technical, economic, and marketing data obtained with the cooperation of industrial groups, such of policy impacts.

Newsom, D. E.; Evans, A. R.

1980-01-01T23:59:59.000Z

280

Seaport Land-Side Equipment Electrification Opportunities  

Science Conference Proceedings (OSTI)

The air quality problems associated at the Ports, have become a widely discussed issue facing cargo handling in recent years. While growth is necessary for economic health, the pollution emitted is growing as well. This study gives an overview of the many aspects of the port that can be considered for electrification. The emphasis of the work is a complete review of the land side equipment. Primary equipment includes: terminal tractors, forklifts, top loaders, empty container handlers, non-road vehicles,...

2006-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Specifying and Testing Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

EPRI held a workshop on September 21, 2007 in Hauppauge, New York to discuss what is needed to develop standards and specifications for testing superconducting power equipment. Stakeholders, including developers, equipment manufacturers, and electric utilities, participated in the discussions, which were arranged in a semi-formal setting to promote open dialogue. The U.S. Department of Energy provided assistance with meeting facilitation and recording.

2008-07-22T23:59:59.000Z

282

Gas insulated substation equipment for industrial applications  

SciTech Connect

Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

Kenedy, J.J.

1984-11-01T23:59:59.000Z

283

Substation Equipment Asset Management: Utility Experience Sharing  

Science Conference Proceedings (OSTI)

Utilities have been maintaining substation equipment reliably since the industrys inception, but now many are facing increased challenges to reduce operating and maintenance costs without adversely affecting service levels. In this setting, utilities may benefit from knowing which programs and techniques their peers have implemented. To that end, the Electric Power Research Institute (EPRI) conducted a series of industry surveys assessing key substation equipment maintenance practices. As ...

2013-12-18T23:59:59.000Z

284

Night storage and backup generation with electrochemical engines  

DOE Green Energy (OSTI)

Li/I/sub 2/ electrochemical engines both store and generate electric power. These dual capabilities complement solar photovoltaic generation in critical areas: Photovoltaics need backup storage at least for nights and, if possible, for two or three days' needs. Such storage must be relatively cheap and compact--aqueous batteries would have trouble filling these requirements. Likewise, photovoltaics need backup generation based on combustion of fossil fuels for periods of bad weather--solar residences or communities will probably have to supply their own backup generation because central generating stations cannot be expected to keep large amounts of equipment on standby for solar users. Li/I/sub 2/ engine designs are described which could be developed to fill these needs of solar users, i.e., storing electricity generated by photovoltaics and generating additional electricity from fossil fuels as needed. Calculations based on laboratory performance indicate that the devices could be simple to manufacture, economically competitive, and efficient both in storage and generation. These engines also could directly use solar energy from focused and tracking solar collectors, or they could indirectly use solar energy through the combustion of biomass materials.

Elliott, G.R.B.; Vanderborgh, N.E.

1978-01-01T23:59:59.000Z

285

Alternative Fuels Data Center: Pollution Control Equipment Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pollution Control Pollution Control Equipment Exemption to someone by E-mail Share Alternative Fuels Data Center: Pollution Control Equipment Exemption on Facebook Tweet about Alternative Fuels Data Center: Pollution Control Equipment Exemption on Twitter Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Google Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Delicious Rank Alternative Fuels Data Center: Pollution Control Equipment Exemption on Digg Find More places to share Alternative Fuels Data Center: Pollution Control Equipment Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pollution Control Equipment Exemption Dedicated original equipment manufacturer natural gas vehicles and

286

List of Agricultural Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Agricultural Equipment Incentives Agricultural Equipment Incentives Jump to: navigation, search The following contains the list of 90 Agricultural Equipment Incentives. CSV (rows 1 - 90) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Vermont Agricultural Agricultural Equipment Custom/Others pending approval Lighting

287

CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Construction - Mechanical Equipment - June Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 June 26, 2012 Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) The purpose of this criteria review and approach, this CRAD includes mechanical equipment installation, including connections of the equipment to installed piping systems, and attachments of the equipment to structures (concrete, structural steel, or embed plates). Mechanical equipment includes items such as pumps and motors, valves, tanks, glove boxes, heat exchangers, ion exchangers, service air system, fire pumps and tanks, and heating, ventilation, and air condition (HVAC) equipment such as fans, scrubbers and filters.

288

Next Generation Rooftop Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

289

Next Generation Rooftop Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

290

Introduction to Simplified Generation Risk Assessment Modeling  

Science Conference Proceedings (OSTI)

Life cycle management (LCM) and risk-informed asset management of nuclear power plants can benefit from improved prediction of the effect of equipment failures or degradation on plant productivity. The Generation Risk Assessment (GRA) model described in this report provides a systematic approach to estimating how equipment reliability relates to the risk of future lost generation from trips and derates and to prioritizing components and systems based on their importance to productivity.

2004-01-26T23:59:59.000Z

291

Sales and Use Tax Exemption for Renewable Energy Equipment  

Energy.gov (U.S. Department of Energy (DOE))

In April 2008, the Maryland enacted legislation exempting geothermal and solar energy equipment from the state sales and use tax. Geothermal equipment is defined as "equipment that uses ground loop...

292

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

293

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

294

Evaluating Equipment Performance Using SCADA/PMS Data for Thermal Utility Plants - Case Studies  

E-Print Network (OSTI)

The equipment in cogeneration plants and thermal energy plants such as gas tubing generators, boilers, steam turbine generators, chillers and cooling towers are often critical to satisfying building needs. Their actual energy performance is very important when implementing the continuous Commissioning (CC) process. The actual performance can be used to develop optimal operation strategies, to conduct thermo-economy analysis, to perform fault diagnostics, and so forth. Because the standard performance test such as chiller test per ARI standard and cooling tower test per CTI standard often require the equipment to be operated under specific test conditions; however, in reality the dynamics of the system load normally do not allow the equipment to be operated under such conditions. It is costly and even impossible to take such critical equipment offline for test purposes. In order to facilitate the plant processes and on-going operations, utility plants usually employ Supervisory Control and Data Acquisition Plant Monitoring Systems (SCADA/PMS) or Energy Management and Control Systems (EMCS) to monitor sensors, display data, control equipment, activate alarms and log information. However, the utilization and interpretation of the logged data are often at the minimum level especially in old systems without automatic operation and control optimization capabilities. Through three case studies, this paper presents methods for evaluating equipment performance using SCADA/PMS or EMSC data.

Deng, X.; Chen, Q.; Xu, C.

2007-01-01T23:59:59.000Z

295

NSLS Services | Repair & Equipment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Repair & Equipment Services Repair & Equipment Services Cleaning Facility (BNL Central Shops) Solvent cleaning of vacuum parts and leak checking service is also available. Work is billed to each user via a BNL ILR. Contact the NSLS Building Manager to arrange for any of these services. Electronics Repair Limited repairs for electronic equipment are available from an outside contractor through the Control Room. Contact Control Room Supervisor Randy Church (x2550 or x2736, pager 5310). Shipping memos are filled out on the web, and pick ups are on Fridays. Come to the Control Room for assistance. The user should call the contractor on the day before scheduled pickups to alert the contractor of the pickup. Items to be repaired should be left in the Control Room with the completed shipping memo. Costs are charged to the

296

Guide to efficient unitary cooling equipment  

SciTech Connect

The universe of unitary cooling equipment is a large one; these systems are used in nearly forty percent of the residential and commercial buildings in the United States. Unitary cooling equipment is made up of off-the-shelf units: factory-assembled single or split systems, including air-source heat pumps and air conditioners. The efficiency of this class of cooling equipment has increased steadily in recent years, driven primarily by government standards. Although most of the units have efficiencies near the minimum federal standards, a significant number of models beat the standards by 10 to 30 percent. However, the larger the system, the narrower the range of efficiencies available and the fewer models available in the most efficient categories. For the buyer and the utility, this report reveals where to get efficiency information on current products, and a recommended purchasing process. It also examines the ratings, standards, and programs that can expand the number of high-efficiency models available.

Gregerson, J.; George, K.L.

1995-07-01T23:59:59.000Z

297

REMOTE CONTROL EQUIPMENT FOR PLUTONIUM METAL PRODUCTION  

SciTech Connect

Design and construction of remote control equipment for plutonium metal production are described. Criteria for the design of the equipment included the following: rubber gloves were to be completely eliminated; all mechanisms were to be built as integral units to facilitate replacement through use of the plastic- bag technique; no accessory equipment such as switches, valves, piping, or cylinders were to be inside the contaminated enclosure unless required to handle the plutonium; and all units were to be tested in mockups before final design. The chemical process, general layout, and operating function are outlined. Descriptions are given of all mechanical units, electrical systems, hydroxide slurry systems, ventilation systems, and chemical tanks and manifolds. (W.L.H.)

Hazen, W.C.

1951-10-01T23:59:59.000Z

298

Wiring methods, components, and equipment for general use. -...  

NLE Websites -- All DOE Office Websites (Extended Search)

to conductors which form an integral part of equipment such as motors, controllers, motor control centers and like equipment. 1926.405(a)(1) General requirements -...

299

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

300

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Incentive - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Bay...

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

302

A Methodological Framework for Comparative Assessments of Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methodological Framework for Comparative Assessments of Equipment Energy Efficiency Policy Measures Title A Methodological Framework for Comparative Assessments of Equipment Energy...

303

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit Anne Arundel County - Solar and Geothermal Equipment...

304

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits Anne Arundel County - Solar and Geothermal Equipment...

305

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

306

Avista Utilities (Gas & Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates through...

307

,,,,,,,,,,"Lease Equipment Costs for Primary Oil Production in...  

U.S. Energy Information Administration (EIA) Indexed Site

of Lease Equipment Costs for Primary Oil Recovery ",,,"Oil Production--West Texas" ,,"Operations (10 Producing Wells)" ,,,"Lease Equipment Costs for Primary Oil...

308

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2012 (EIA)

Energy Consumption Survey Lighting Equipment Standard fluorescent and incandescent light bulbs were the most widely used types of lighting equipment (Figure 3). The vast...

309

Alliant Energy Interstate Power and Light - Farm Equipment Energy...  

Open Energy Info (EERE)

Equipment, Ceiling Fan, Clothes Washers, CustomOthers pending approval, Dishwasher, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat recovery, Lighting,...

310

Management of Sensitive Equipment at Selected Locations, IG-0606...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

use or readily convertible to cash. Generally, this includes equipment such as computers, personal digital assistants, cameras, and communications equipment. The Department...

311

NineStar Connect - Residential Energy Efficient Equipment Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NineStar Connect - Residential Energy Efficient Equipment Rebate Program NineStar Connect - Residential Energy Efficient Equipment Rebate Program Eligibility Residential Savings...

312

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy...

313

Measuring and Test Equipment Assessment Plan,NNSA/Nevada Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent Oversight Division Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent...

314

Harbin Wind Power Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Harbin Wind Power Equipment Company Jump to: navigation, search Name Harbin Wind Power Equipment...

315

Category:Smart Grid Projects - Equipment Manufacturing | Open...  

Open Energy Info (EERE)

Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment Manufacturing" The following 2 pages are in this category, out of 2...

316

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Address DOE Joint Genome Institute 2800 Mitchell Drive Walnut Creek, CA 94598 From Oakland Airport Follow Airport exit signs onto AIRPORT DR. Turn RIGHT onto HEGENBERGER...

317

Matching equipment size to the cooling load  

SciTech Connect

This article presents a heat extraction rate analysis method, using ASHRAE algorithms that enables HVAC system designers to optimally size cooling equipment. The final stage of the cooling load calculation process determines the heat extraction rate required to achieve design conditions. Put another way, this stage determines the equipment capacity required to match the cooling load profile, and it does so in a manner that predicts the resulting space temperature profile, and it does so in a manner that predicts the resulting space temperature profile. It is a stage in the design process that, in practice, may not be given the attention it deserves.

Bloom, B. (Harvey Toub Engineering, Atlanta, GA (United States))

1993-10-01T23:59:59.000Z

318

Conceptual design report, CEBAF basic experimental equipment  

Science Conference Proceedings (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

319

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

320

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transient Control Level Test Generators  

Science Conference Proceedings (OSTI)

... final determination should be made by direct measurement at ... by the regulation of the generator, must be ... of the timing circuit used to drive the relay ...

2013-05-17T23:59:59.000Z

322

Electricity used by office equipment and network equipment in the U.S.: Detailed report and appendices  

E-Print Network (OSTI)

LBNL-45917 Electricity Used by Office Equipment and Network46 Electricity Used by Office Equipment and Networkestimates in detail how much electricity is consumed by that

2001-01-01T23:59:59.000Z

323

Test and Test Equipment Joshua Lottich  

E-Print Network (OSTI)

Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

Patel, Chintan

324

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

325

Central Waste Complex (CWC) Safety Equipment List  

Science Conference Proceedings (OSTI)

This document lists all safety equipment for the Central Waste Complex, per HNF-PRO-704. This document provides a list of structures, systems, and components that are essential to the continuing safe operation of the Central Waste Complex, as designated by the applicable facility management and the cognizant engineer.

WHITLOCK, R.W.

2000-01-20T23:59:59.000Z

326

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

327

The Challenges of Third-Generation Synchrotron Light Sources  

E-Print Network (OSTI)

the list of third-generation sources developed by Professorthe design of third-generation sources arise directly fromparameters of the third-generation sources planned, or under

Jackson, A.

2010-01-01T23:59:59.000Z

328

Collecting Construction Equipment Activity Data from Caltrans Project Records  

E-Print Network (OSTI)

Industrial Law n and Garden Logging Military Tactical Support Misc. Portable Equipment Transport Refrigeration

Kable, Justin M

2008-01-01T23:59:59.000Z

329

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

330

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

331

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

332

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

333

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

334

Building Technologies Office: About the Appliance and Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Appliance and About the Appliance and Equipment Standards Program to someone by E-mail Share Building Technologies Office: About the Appliance and Equipment Standards Program on Facebook Tweet about Building Technologies Office: About the Appliance and Equipment Standards Program on Twitter Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Google Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Delicious Rank Building Technologies Office: About the Appliance and Equipment Standards Program on Digg Find More places to share Building Technologies Office: About the Appliance and Equipment Standards Program on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes

335

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

336

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

337

HVAC equipment replacement for best size and efficiency  

DOE Green Energy (OSTI)

The purpose of this project was to explore the potential benefits of HVAC equipment replacement for buildings owned by the City of Phoenix. The specific research objectives were as follows: Establishment an understanding of the magnitude and sources of saving available through equipment replacement; Establish an economic model for understanding equipment replacement and deciding when equipment should be replaced; Establish technical methods for calculating savings from replacement of various types of equipment; Demonstrate the replacement of a major item of HVAC equipment and document the savings through actual experimentation and measurement; and Provide guidance material for other jurisdictions wishing to investigate equipment replacement. 11 figs., 9 tabs.

Teji, D.S.

1988-02-01T23:59:59.000Z

338

NANODEVICES FOR GENERATING POWER FROM MOLECULES AND ...  

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are ...

339

STLOAD 1.0, Substation Equipment Thermal Loading Program  

Science Conference Proceedings (OSTI)

The Substation Equipment Thermal Loading Program, STLOAD Version 1.0 software is intended for use by substation engineers for the purpose of establishing thermal ratings for and making diagnostic evaluations of substation equipment. STLOAD 1.0 software calculates substation equipment operating temperatures and thermal ratings based on user-specified physical parameters for the equipment and user-specified load and air temperature data. Substation equipment that can be modeled using STLOAD includes strain...

2006-03-15T23:59:59.000Z

340

Laboratory Equipment Donation Program - Guidelines/FAQ  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle and high schools are no longer eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. Participation in the LEDP is limited to accredited, post graduate, degree granting institutions including universities, colleges, junior colleges, technical institutes, museums, or hospitals, located in the U.S. and interested in establishing or upgrading energy-oriented educational programs in the life, physical, and environmental sciences and in engineering is eligible to apply. An energy-oriented program is defined as an academic research activity dealing primarily or entirely in

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Process Equipment Cost Estimation, Final Report  

Office of Scientific and Technical Information (OSTI)

Process Equipment Cost Estimation Process Equipment Cost Estimation Final Report January 2002 H.P. Loh U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 and P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and Jennifer Lyons and Charles W. White, III EG&G Technical Services, Inc. 3604 Collins Ferry Road, Suite 200 Morgantown, WV 26505 DOE/NETL-2002/1169 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

342

Documentation Requirements for Pressurized Experiment Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Requirements for Pressurized Experiment Apparatus Documentation Requirements for Pressurized Experiment Apparatus PSSC NOTE01 15-Jan-2013 When bringing a piece of apparatus to the APS for an experiment that will involve pressure, whether it is to be used on a beamline during a measurement or in a laboratory to prepare the sample prior to the experiment, the hazards associated with the equipment must be reviewed. To review the equipment and make any recommendations, a certain level of documentation must be provided by the experimenter. The length and depth of the documentation should be commensurate with the complexity of the system. 1. Description of apparatus a. Description of the assembly and operation of the system. b. State the maximum working pressure, working fluid (liquid or gas) used to

343

Sample Environment Equipment Categories - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › Sample Environment Home › Instruments › Sample Environment Sample Environment: Categories of Equipment All Ancillary Equipment Auto Changer Closed Cycle Refrigerators Closed Cycle Refrigerators - Bottom Loading Closed Cycle Refrigerators - Top Loading Furnaces Gas Handling Gas Panel High Pressure Systems Liquid Helium Cryostats Magnet Systems Other Special Environments Sample Cell Sample Stick Ultra Low Temperature Devices Sample Environment: by Beam Line All BL-11A-POWGEN BL-11B-MANDI BL-12-TOPAZ BL-13-Fundamental Neutron Physics Beam Line BL-14A-BL-14A BL-14B-HYSPEC BL-15-Neutron Spin Echo (NSE) BL-16B-VISION BL-17-SEQUOIA BL-18-ARCS BL-1A-TOF-USANS BL-1B-NOMAD BL-2-BASIS BL-3-SNAP BL-4A-Magnetism Reflectometer BL-4B-Liquids Reflectometer BL-5-Cold Neutron Chopper Spectrometer (CNCS) BL-6-EQ-SANS

344

Measured Peak Equipment Loads in Laboratories  

SciTech Connect

This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

Mathew, Paul A.

2007-09-12T23:59:59.000Z

345

Miscellaneous equipment in commercial buildings: The inventory, utilization, and consumption by equipment type  

SciTech Connect

The nature of the miscellaneous equipment (devices other than permanently installed lighting and those used for space conditioning) in commercial buildings is diverse, comprising a wide variety of devices that are subject to varied patterns of use. This portion of the commercial load is frequently underestimated, and widely hypothesized to be growing. These properties make it a particularly difficult load to characterize for purposes of demand-side management. In the End-Use Load and Consumer Assessment Program (ELCAP), over 100 commercial sites in the Pacific Northwest have been metered at the end-use level for several years. Detailed inspections of the equipment in them have also been conducted. This paper describes how the ELCAP data have been used to estimate three fundamental properties of the various types of equipment in several classes of commercial buildings: (1) the installed capacity per unit floor area, (2) utilization of the equipment relative to the installed capacity, and (3) the resulting energy consumption by building type and for the Pacific Northwest commercial sector as a whole. Applications for the results include assessment of conservation potential, prediction of equipment loads from survey data, estimating equipment loads for energy audits, targeting of conservation technology development, and disaggregating building total or mixed end-use data. 4 tabs., refs.

Pratt, R.G.; Williamson, M.A.; Richman, E.E.

1990-09-01T23:59:59.000Z

346

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

347

Enhanced oil recovery: major equipment and its projected demand  

Science Conference Proceedings (OSTI)

After years of research and pilot tests, the enhanced oil recovery (EOR) industry is taking major leaps forward in 1981. With the launching of several hundred new EOR pilot tests, the announcement of major CO/sub 2/ pipelines into W. Texas, and a $3.6-billion purchase of South Belridge heavy oil by Shell, oil companies are showing their confidence in this technologically-emerging area. While much research remains to be done to make these processes more efficient and economic, the important commercial stage of the EOR industry's growth has clearly been reached. Along with the growth of the EOR industry will come a major demand for equipment and facilities. This demand will include traditional requirements for steam generators and compressors, although on a scale many times larger than at present, as well as new requirements for gas separation, chemical storage, and special tubulars.

Kuuskraa, V.A.; Hammershaimb, E.C.; Wicks, D.E.

1981-09-01T23:59:59.000Z

348

New York Power Authority Identifies More than $ 1.75 Million in Savings Annually with RCM at Its Hydro Generating Stations  

Science Conference Proceedings (OSTI)

Member Quote"Working under the direction of the EPRI Solutions Team, NYPA's strategic goals of providing economical and reliable energy, are realized through an effort of applying the RCM process at our large hydro facilities."--Horace Horton, Regional Manager, Western New York, New York Power Authority In BriefThe New York Power Authority (NYPA) identified nearly $1.75 million in annual savings by applying reliability-centered maintenance (RCM) to the electrical equipment at its hydro generating station...

2006-08-29T23:59:59.000Z

349

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

350

Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Equipment Biodiesel Equipment and Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Equipment and Fuel Tax Exemption

351

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

352

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

353

DEVELOPMENT OF EQUIPMENT FOR THE RETRIEVAL & STABILIZATION & ENCAPSULATION OF RADIOACTIVE SLUDGE AT THE HANFORD SITE  

SciTech Connect

This poster presentation describes and illustrates some of the equipment and tools that Fluor Hanford and BNG America have developed and designed to remove, transport, stabilize and encapsulate radioactive sludge from the K Basins at the Hanford nuclear site in Washington State, U.S.A. K Basins were built in the early 1950s to temporarily store irradiated nuclear fuel prior to chemical processing to remove plutonium for nuclear weapons. The sludge is the result of corrosion of these fuel elements and its removal is the final stage before the basin water can be drained and the basins decommissioned. The sludge is hydrogen-generating because of its uranium metal content and account has to be taken also of its heat generating capacity and criticality potential as it is moved from one containment to another. The paper describes all stages of sludge treatment from the use of vacuum wands to suck up the sludge, through consolidating the sludge in temporary underwater containers, transporting it though flexible, temporary pipe systems, acceleration of the corrosion of uranium to reduce hydrogen generation, measuring the fissile content and finally encapsulation in a cement grout. Emphasis is placed on the use of existing, transportable and temporary equipment. This not only saves initial costs but it also reduces the total amount of equipment needed to be disposed of as radioactive waste at the end of the job. The processes, equipment and tools described potentially have a broad applicability to nuclear site decommissioning and cleanup worldwide.

ROOSENDAAL, G.D.

2005-07-05T23:59:59.000Z

354

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment  

Science Conference Proceedings (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

2004-01-22T23:59:59.000Z

355

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

356

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

357

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

358

Improvement in Cell Equipment and Design  

Science Conference Proceedings (OSTI)

Mar 2, 2011... three anonymous anode suppliers, how it was measured in the cells and ... A new generation of key energy saving technology for aluminum...

359

Work Management Improvement at Burlington Generating Station  

Science Conference Proceedings (OSTI)

The Work Coordination Process (WCP), developed in an EPRI tailored collaboration effort to upgrade the maintenance program at Burlington Generating Station, is an organized methodology to prepare for and perform preventative and corrective maintenance during both outages and running periods. The coordinating process supports both the need of operational personnel for maximum equipment availability and the need of maintenance personnel for access to plant equipment to ensure maximum reliability.

2001-11-19T23:59:59.000Z

360

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

Note: This page contains sample records for the topic "generating equipment direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chapter 10 - Property, Plant and Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-18-2011 7-18-2011 Chapter 10-1 CHAPTER 10 PROPERTY, PLANT, AND EQUIPMENT 1. INTRODUCTION. a. Background/Authorities. This chapter describes financial controls over the acquisition, use, and retirement of property and provides guidelines for distinguishing between charges to capital accounts and charges to expense accounts consistent with the Statement of Federal Financial Accounting Standards (SFFAS). b. Applicability. The applicability of this chapter is specified in Chapter 1, "Accounting Overview." When in conflict with the provisions of this paragraph, power marketing administrations (PMAs) should observe the policies of the Federal Energy Regulatory Commission and other industry

362

Laboratory Equipment Donation Program - LEDP Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Copy the code below and paste it to your website or blog: