Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clean Electric Power Generation (Canada)  

Broader source: Energy.gov [DOE]

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

2

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

3

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

4

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

5

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

6

Clean Power at Home  

E-Print Network [OSTI]

this report is to describe and analyze net metering as a mechanism to support the deployment of small-scale, distributed electricity technologies in British Columbia based on renewable energy sources. These are referred to as "distributed renewables" throughout the report. The deployment of distributed renewables offers several environmental, economic, and social benefits that are described in this paper. Net metering enables individual utility customers to connect on-site generation to the utility grid, feeding excess power back to the grid when it is not needed, and utilizing grid power when consumption exceeds local renewable energy supply. In most programs, a single meter measures the customer's net consumption of grid power in a billing period, and they are charged for that consumption under regular retail rates. If production exceeds consumption, the customer's bill is essentially zero. In some instances, utilities may refund customers for excess production in a billing period based on wholesale market prices or avoided production costs. Net metering programs can make self-generation more attractive for customers by eliminating the need to size systems to meet customers' exact power needs or install on-site storage and power conditioning devices. Utilities may, depending upon the type of systems installed, benefit from improvements in local area load factors, and receive credit for various social or environmental benefits of such resources (e.g., greenhouse gas reductions). However, utilities have raised concerns about worker safety (e.g., the possibility that net metering sites may continue to feed electricity into the local distribution grid when the rest of the network is down, putting line workers at risk) and possible financial cross-subsidies from other rate...

May Author Andrew; Andrew E. Pape

7

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

8

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

9

Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices  

Broader source: Energy.gov [DOE]

The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

10

The Sixth Power Plan: Toward a Clean  

E-Print Network [OSTI]

The Sixth Power Plan: Toward a Clean Energy Future Council Document 2010-01 February 2010 Apub is eco- nomical and reliable. The Sixth Northwest Power Plan: Toward a Clean Energy Future Improved energy efficiency potential, wind gen- eration is the leading resource in the near term to meet renewable

11

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

12

Geothermal Power Plants — Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

13

Clean Power Research | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanClean Power FinanceClean

14

Clean, Efficient, and Reliable Power for the 21st Century  

E-Print Network [OSTI]

vehicles; and auxiliary power units and portable electronics--fuel cell applications hold potential to capture the sun, harness the wind, and utilize earth's natural geothermal energy. DOE also pursues clean energy solutions for transportation, like next- generation biofuels, advanced batteries for electric

15

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

16

Clean Power Finance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanClean Power Finance

17

Solar thermoelectrics for small scale power generation  

E-Print Network [OSTI]

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

18

Clean Power Design | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweClean EnergyCESADesign

19

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Broader source: Energy.gov [DOE]

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

20

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

LBNL-57451 Clean Energy Technologies A Preliminary Inventorymight be termed a “clean energy technology initiative,” or aand uptake of the clean power technologies identified in the

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Energy--Clean Power From the Earth's Heat  

E-Print Network [OSTI]

Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A Foreword One of the greatest challenges of the 21st century is the production of sufficient energy to power

22

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

23

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

24

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

25

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

26

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

27

Madison Gas and Electric- Clean Power Partner Solar Buyback Program  

Broader source: Energy.gov [DOE]

'''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program]....

28

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future  

E-Print Network [OSTI]

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

Laughlin, Robert B.

29

Power Electonics & Electric Machinery | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Machinery SHARE Power Electronics and Electric Machinery Power Electronics and Electric Machinery research has dramatically advanced the technology of state-of-the-art...

30

High power microwave generator  

DOE Patents [OSTI]

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

31

Water Power for a Clean Energy Future (Fact Sheet), Wind and...  

Energy Savers [EERE]

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

32

Clean Coal Power Initiative | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean AirMajor

33

The Drivetrain of Sustainability Powering innovation in Clean teCh  

E-Print Network [OSTI]

The Drivetrain of Sustainability Powering innovation in Clean teCh iNSiDe: BUSiNeSS OF HeALTH CARe energy use, generation and storage, as well as other necessities of life, environmentally responsible of Management, I hope to participate in what many expect to be the next big chapter of the California Dream

California at Davis, University of

34

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

35

Clean Air Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 Stowe Drive Place: Poway,

36

5. annual clean coal technology conference: powering the next millennium. Volume 2  

SciTech Connect (OSTI)

The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

NONE

1997-06-01T23:59:59.000Z

37

Automotive Power Generation and Control  

E-Print Network [OSTI]

This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

Caliskan, Vahe

38

The Mesaba Energy Project: Clean Coal Power Initiative, Round 2  

SciTech Connect (OSTI)

The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

Stone, Richard; Gray, Gordon; Evans, Robert

2014-07-31T23:59:59.000Z

39

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

40

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

RF power generation  

E-Print Network [OSTI]

This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

Carter, R G

2011-01-01T23:59:59.000Z

42

Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants  

E-Print Network [OSTI]

Efficiency Improvements Efficiency improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch... that are high emitting. • Energy conservation programs. • Retrofitting units with partial CCS. • Use of certain biomass. • Efficiency improvements at higher- emitting plants.* • Market-based trading programs. • Building new renewables. • Dispatch changes. • Co...

Bremer,K.

2014-01-01T23:59:59.000Z

43

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

44

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect (OSTI)

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

45

The Fourth Generation of Nuclear Power  

SciTech Connect (OSTI)

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

46

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

SciTech Connect (OSTI)

The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

Bailey, Owen; Worrell, Ernst

2005-08-03T23:59:59.000Z

47

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

48

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

49

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

50

Second generation PFB for advanced power generation  

SciTech Connect (OSTI)

Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

Robertson, A.; Van Hook, J.

1995-11-01T23:59:59.000Z

51

Solid state pulsed power generator  

DOE Patents [OSTI]

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

52

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

53

The Clean Development Mechanism and Power Sector Reforms in Developing  

E-Print Network [OSTI]

regions include stimulating private sector financing, increasing operational and managerial efficiencies and lowering electricity tariffs #12;The CDM and renewable energy · Power sector reforms could potentially require higher investments for electricity generation than conventional fuel projects · Can also offer

54

Next Generation Geothermal Power Plants  

SciTech Connect (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

55

Webinar for Tribes, States, Local Governments, and Territories on the Clean Power Plan Supplemental Proposal  

Office of Energy Efficiency and Renewable Energy (EERE)

On Tuesday, October 28, 2014, EPA issued an action related to the proposed Clean Power Plan to cut carbon pollution from power plants. EPA is following through on its commitment made in June to...

56

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

57

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

58

Power generating system and method utilizing hydropyrolysis  

DOE Patents [OSTI]

A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

Tolman, R.

1986-12-30T23:59:59.000Z

59

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

60

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to jumpstart the next generation of smaller, faster, cheaper and more efficient power electronics for personal devices, electric vehicles, renewable power interconnection,...

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Use of Slip Ring Induction Generator for Wind Power Generation  

E-Print Network [OSTI]

Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

K Y Patil; D S Chavan

62

Analysis of power generation processes using petcoke  

E-Print Network [OSTI]

higher carbon content than other hydrocarbons like coal, biomass and sewage residue. This gives petcoke a great edge over other feedstocks to generate power. Models for the two most common processes for power generation, namely combustion and gasification...

Jayakumar, Ramkumar

2009-05-15T23:59:59.000Z

63

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

64

Power generation using solar power plant.  

E-Print Network [OSTI]

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather… (more)

Amin, Parth

2010-01-01T23:59:59.000Z

65

Opening New Frontiers in Power Generation  

E-Print Network [OSTI]

FUEL CELLS Opening New Frontiers in Power Generation U . S . D e p a r t m e n t o f E n e r g y in the power generation industry. Fuel cells have the potential to truly revolutionize power generation. Fuel by subjecting it to steam and high temperatures. In order to use coal, biomass, or a range of hydrocarbon wastes

Haile, Sossina M.

66

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

Liberzon, Daniel

67

Clean, Efficient, and Reliable Power for the 21st Century: Fact...  

Energy Savers [EERE]

Fact Sheet This fact sheet provides an overview of the U.S. Department of Energy's Fuel Cell Technologies Office. Clean, Efficient, and Reliable Power for the 21st Century...

68

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

69

Environmental impact of fossil fuel combustion in power generation  

SciTech Connect (OSTI)

All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1996-12-31T23:59:59.000Z

70

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

71

San Diego Solar Panels Generate Clean Electricity Along with...  

Broader source: Energy.gov (indexed) [DOE]

of 20 MW of renewable energy systems. This includes systems generating energy from biogas and hydroelectric sources at the Point Loma Wastewater Treatment Plant - also a...

72

Gas cleaning system and method  

SciTech Connect (OSTI)

A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

Newby, Richard Allen

2006-06-06T23:59:59.000Z

73

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

Not Available

2011-06-01T23:59:59.000Z

74

Science Blog -Bacterium cleans up uranium, generates electricity Create an account  

E-Print Network [OSTI]

Science Blog - Bacterium cleans up uranium, generates electricity Create an account :: Home electricity Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published

Lovley, Derek

75

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTankless Electric - v1.0.xlsxMarchPower for a Clean

76

Clean Coal and Power Conference | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean AirMajorClean

77

Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow  

E-Print Network [OSTI]

Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow May 8, 2006 WWS 402d Junior Paper ­ Final Draft Abstract: Wind power harbors the potential to become a key to wind power's growth relate to its remoteness and variability, but neither is an ob- stacle too great

Mauzerall, Denise

78

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

79

Keeping condensers clean  

SciTech Connect (OSTI)

The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

Wicker, K.

2006-04-15T23:59:59.000Z

80

Power Generation and Power Use Decisions in an Industrial Process  

E-Print Network [OSTI]

of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

Gilbert, J. S.; Niess, R. C.

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

82

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications MANAGEMENT The Next Generation Network Simulator is a framework for the partitioning, distribution, and run Grid Initiative (FPGI) will deliver next-generation concepts and tools for grid operation and planning

83

Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368  

SciTech Connect (OSTI)

The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States)] [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)] [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

2013-07-01T23:59:59.000Z

84

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

85

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

86

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

87

EECBG Success Story: New San Antonio Airport Terminal Generating Clean  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 ClosingA Tradition ofOregonPower | Department of

88

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

89

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

90

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

91

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

92

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

93

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network [OSTI]

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

94

DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR Richard Perez for Clean Power Research  

E-Print Network [OSTI]

DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY Richard Perez for Clean Power) requirements. #12;DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY The ELCC metric dispatchable power plant. 2 #12;DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY 0 1 2 3 4 5 6 7

Perez, Richard R.

95

Clean, Efficient, and Reliable Power for the 21st Century  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, Efficient, and

96

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

97

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Broader source: Energy.gov [DOE]

Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

98

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

99

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

100

"The cream on the pudding..." : An analysis of the Clean Development Mechanism in the Indian wind power sector.  

E-Print Network [OSTI]

??The thesis examines the effects of the Clean Development Mechanism (CDM), a flexible mechanism under the Kyoto Protocol, on the Indian wind power sector. Indian… (more)

Turkanovic, Zlata

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2005 clean coal and power conference. Conference proceedings  

SciTech Connect (OSTI)

The theme of the conference was 'The paradox: today's coal technologies versus tomorrow's promise'. The sessions covered: today's technologies, tomorrow's potential; economic stability; energy security; transition to sustainable energy future; new coal power technologies leading to zero emission coal; existing power plants - improved performance through use of new technology; and carbon capture and storage R & D - challenges and opportunities. Some of the papers only consist of the viewgraphs/overheads.

NONE

2005-07-01T23:59:59.000Z

102

The generative powers of demolition  

E-Print Network [OSTI]

When examining the factory within the urban fabric, especially those cases that are abandoned and considered obsolete, it may be possible to see the first generative act as one of un-building. Considering demolition as an ...

Muskopf, Christopher Jon Dalton, 1975-

2005-01-01T23:59:59.000Z

103

Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal  

SciTech Connect (OSTI)

There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

Omitaomu, Olufemi A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

104

Combined Heat & Power (CHP) -A Clean Energy Solution for Industry  

E-Print Network [OSTI]

From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process industries. By 1994, CHP provided 42 GW of electricity generation capacity -about 6 percent of the U.S. total. Three manufacturing industries...

Parks, H.; Hoffman, P.; Kurtovich, M.

105

New San Antonio Airport Terminal Generating Clean Power | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets withCohenNewReports ChartReactors

106

Northern Tool + Equipment Find the Right Fitting for Your Pressure Washer at Northern Tool! NorthernTool.com/PressureWashers Pristine Pressure Pressure/power washing in Maryland Vinyl siding cleaned, decks cleaned www.pristinepressure.com  

E-Print Network [OSTI]

ability to clean while saving on our most important resources, water and energy." In recognition! NorthernTool.com/PressureWashers Pristine Pressure Pressure/power washing in Maryland Vinyl siding cleaned, decks cleaned www.pristinepressure.com Siding Cleaning Bring back the life to your siding! Estimates

Sóbester, András

107

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

108

Hybrid solar-fossil fuel power generation  

E-Print Network [OSTI]

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

109

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

110

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

111

Wind Power (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

112

Sandia National Laboratories: clean hy-drogen power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogen power Portable Hydrogen Fuel-Cell Unit to

113

Sandia National Laboratories: clean hydrogen-powered fuel cell electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogen power Portable Hydrogen Fuel-Cell Unit

114

Energy and Capacity Valuation of Photovoltaic Power Generation in New York  

E-Print Network [OSTI]

Perez & Thomas E. Hoff, Clean Power Research for the Solar Alliance and the N r Energy Industry between peak demand and solar resource availability both downstate and upstate, the generation energy: What is the Value of PV? System Owners Utility Constituents Equipment cost Incentives benefit cost

Perez, Richard R.

115

Remote-site power generation opportunities for Alaska  

SciTech Connect (OSTI)

The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1997-03-01T23:59:59.000Z

116

The Governance of Clean Development Working Paper 015 July 2011  

E-Print Network [OSTI]

has been redefined as a `clean coal' power plant following a World Bank loan of $3 billion in April of climate change mitigation and emerging stakeholders in renewable generation. Key words: clean coal

Watson, Andrew

117

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

118

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

119

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

120

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

122

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

123

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

124

air cleaning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

125

air cleaning issues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

126

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

SciTech Connect (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

127

Plasma plume MHD power generator and method  

DOE Patents [OSTI]

A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

Hammer, J.H.

1993-08-10T23:59:59.000Z

128

Permit compliance monitoring for the power generation industry  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

129

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network [OSTI]

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

T. E. Girish; S. Aranya

2010-12-03T23:59:59.000Z

130

Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar  

Broader source: Energy.gov [DOE]

This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

131

Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?  

E-Print Network [OSTI]

Putting renewables and energy efficiency to work: How many jobs can the clean energy industry employment Energy efficiency employment a b s t r a c t An analytical job creation model for the US power energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper

Kammen, Daniel M.

132

Coal-fired high performance power generating system. Final report  

SciTech Connect (OSTI)

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

133

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

134

Isotope powered stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Tingey, G.L.; Sorensen, G.C. [Battelle, Paific Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Ross, B.A. [Stirling Technology Company, 2952 George Washington Way, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

135

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

136

Financing future power generation in Italy  

SciTech Connect (OSTI)

Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

Esposito, P.

1998-07-01T23:59:59.000Z

137

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables  

SciTech Connect (OSTI)

In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

2012-06-01T23:59:59.000Z

138

Cummins Power Generation SECA Phase 1  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

139

EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Broader source: Energy.gov [DOE]

This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

140

Coal-fired power generation: Proven technologies and pollution control systems  

SciTech Connect (OSTI)

During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

Balat, M. [University of Mah, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Clean Air Act's Impact on Environmental Regulation and Electric Power Conservation and Production  

E-Print Network [OSTI]

The demand for electric power in Texas is expected to grow at about 2.3 percent over the next 15 years. Utilities plan to satisfy this demand by increasing the number of power generating facilities and improving energy conservation programs. New...

Ashley, H.

142

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

143

Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report  

SciTech Connect (OSTI)

This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

Zinaman, O.; Miller, M.; Bazilian, M.

2014-04-01T23:59:59.000Z

144

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power Generation Co Ltd...

145

Overview of M-C Power`s MCFC power generation system  

SciTech Connect (OSTI)

The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

Benjamin, T.G.; Woods, R.R.

1993-11-01T23:59:59.000Z

146

New venture commercialization of clean energy technologies  

E-Print Network [OSTI]

Clean energy technologies lower harmful emissions associated with the generation and use of power (e.g. CO2) and many of these technologies have been shown to be cost effective and to provide significant benefits to adopters. ...

Miller, David S. (David Seth)

2007-01-01T23:59:59.000Z

147

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

148

Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky  

E-Print Network [OSTI]

or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from highElectromagnetic Generators for Portable Power Applications by Matthew Kurt Senesky B.A. (Dartmouth

Sanders, Seth

149

Commitment of Electric Power Generators under Stochastic Market Prices  

E-Print Network [OSTI]

Commitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market Prices Abstract A formulation for the commitment of electric power generators under a deregulated

Mazumdar, Mainak

150

Distributed Power Generation: Requirements and Recommendations for an ICT Architecture  

E-Print Network [OSTI]

. Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable), distrib- uted generation, energy management systems (EMS) , IEC standards 1 Power Generation possible to generate energy efficiently in large-scale power plants, a complex infrastructure is needed

Appelrath, Hans-Jürgen

151

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

152

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

153

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-12-01T23:59:59.000Z

154

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-01-01T23:59:59.000Z

155

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

156

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power Program

157

Los Angeles CleanTech Incubator to Host Event With Senior Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a non-profit organization working to accelerate the development of clean energy start-ups, and will include a discussion on next generation vehicle technologies, solar power,...

158

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network [OSTI]

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

159

Next Generation Power Electronics National Manufacturing Innovation...  

Broader source: Energy.gov (indexed) [DOE]

devoted to wide bandgap power electronics. It will create, showcase, and deploy new power electronic capabilities, products, and processes that can impact commercial...

160

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.  

E-Print Network [OSTI]

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coal pulverizing systems for power generation  

SciTech Connect (OSTI)

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

162

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

163

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

164

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

165

China power - thermal coal and clean coal technology export. Topical report  

SciTech Connect (OSTI)

China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

Binsheng Li

1996-12-31T23:59:59.000Z

166

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)  

Broader source: Energy.gov [DOE]

The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

167

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network [OSTI]

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

168

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network [OSTI]

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

169

Modeling Generator Power Plant Portfolios and Pollution Taxes  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice · Each Genco has a portfolio of power plants · Each power plant can have different supply costs and transaction costs · Supply costs can reflect capital

Nagurney, Anna

170

Centralized and Decentralized Generated Power Systems -A Comparison Approach  

E-Print Network [OSTI]

Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach@howard.edu, 202-806-5350 Power Systems Engineering Research Center The Power Systems Engineering Research Center

171

power generAtion College of Rural and Community Development  

E-Print Network [OSTI]

to Power Generation: Maintenance.......4 PGEN F104--Gas and Steam Turbines; Co-Generation and Combined with embedded communication content............(2 ­ 3) * ENGL F212 does not fulfill the second half

Hartman, Chris

172

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network [OSTI]

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability… (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

173

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while… (more)

Zhao, Y

2009-01-01T23:59:59.000Z

174

Novel NDE techniques in the power generation industry.  

E-Print Network [OSTI]

??The thesis presented here comprises the work undertaken for research into novel NDE techniques in the power generation industry. This has been undertaken as part… (more)

Ward, Christopher M. S.

2010-01-01T23:59:59.000Z

175

Analysis of solar power generation on California turkey ranches.  

E-Print Network [OSTI]

??The objective of this thesis is to conduct a net present value analysis of installing a solar power generation system on company owned turkey grow… (more)

Palermo, Rick

2009-01-01T23:59:59.000Z

176

Ames Lab 101: Next Generation Power Lines  

SciTech Connect (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2010-01-01T23:59:59.000Z

177

Ames Lab 101: Next Generation Power Lines  

ScienceCinema (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2012-08-29T23:59:59.000Z

178

Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks  

E-Print Network [OSTI]

, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

Nagurney, Anna

179

The CAIR vacatur raises uncertainty in the power generation industry  

SciTech Connect (OSTI)

On 11 July 2008, the U.S. Court of Appeals for the District of Columbia issued a unanimous decision vacating the entire Clean Air Interstate Rule (CAIR) and the associated federal implementation plan. The upset of this program to reduce power plant sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) emissions in the eastern United States was a great surprise, creating operational and planning turmoil in the industry. 4 refs.

Dan Weiss; John Kinsman [Duke Energy Indiana (United States)

2008-12-15T23:59:59.000Z

180

Generating expansion model incorporating compact DC power flow equations  

SciTech Connect (OSTI)

This paper presents a compact method of incorporating the spatial dimension into the generation expansion problem. Compact DC power flow equations are used to provide real-power flow coordination equations. Using these equations the marginal contribution of a generator to th total system loss is formulated as a function of that generator`s output. Incorporating these flow equations directly into the MIP formulation of the generator expansion problem results in a model that captures a generator`s true net marginal cost, one that includes both the cost of generation and the cost of transport. This method contrasts with other methods that iterate between a generator expansion model and an optimal power flow model. The proposed model is very compact and has very good convergence performance. A case study with data from Kenya is used to provide a practical application to the model.

Nderitu, D.G.; Sparrow, F.T.; Yu, Z. [Purdue Inst. for Interdisciplinary Engineering Studies, West Lafayette, IN (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fault Current Issues for Market Driven Power Systems with Distributed Generation  

E-Print Network [OSTI]

1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

182

On-line mechanical tube cleaning for steam electric power plants. Final report  

SciTech Connect (OSTI)

In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

Not Available

1994-02-18T23:59:59.000Z

183

Power Generation Asset Management Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

184

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect (OSTI)

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

185

Concentrated Solar Power Generation Systems: The SAIC Dish  

E-Print Network [OSTI]

Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

Hemmers, Oliver

186

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION  

E-Print Network [OSTI]

pro- duction to come from renewable resources. In the 2011 State of the Union Address, President ObamaBATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation

187

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

188

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network [OSTI]

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

189

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

190

Sizing Storage and Wind Generation Capacities in Remote Power Systems  

E-Print Network [OSTI]

Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

Victoria, University of

191

Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets  

E-Print Network [OSTI]

1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou--In current restructured wholesale power markets, the short length of time series for prices makes are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time

Tesfatsion, Leigh

192

Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski  

E-Print Network [OSTI]

Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

Boyer, Edmond

193

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

194

Optimal distributed power generation under network load constraints  

E-Print Network [OSTI]

wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, mainly because of the development of novel components for decentral power generation (solar panels, small (DPG) refers to an electric power source such as solar, wind or combined heat power (CHP) connected

Utrecht, Universiteit

195

Synchrophasor Applications for Wind Power Generation  

SciTech Connect (OSTI)

The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

2014-02-01T23:59:59.000Z

196

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

197

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

SciTech Connect (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

198

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

199

HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation  

E-Print Network [OSTI]

HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

Römisch, Werner

200

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau  

E-Print Network [OSTI]

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

Ashley, Michael C. B.

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah  

Broader source: Energy.gov [DOE]

This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

202

PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS  

E-Print Network [OSTI]

If a small-scale clean coal fu eled power plant is co-fu eled with 5 % of cre o-sote-treated used-up sleeper wood, the de con tam i na tion by carbonisation at 500 °C in an in di rectly heated ro tary kiln with the di am e ter 1.7 m and ef fec-tive length 10 m can be real ised. It should be in cluded in the “3R Clean Coal Carbonisation Plant ” sys tem, which pro cesses coal. It will im prove the heat bal ance of the sys tem, since the carbonisation of wood will de liver a lot of high caloricity pyroligneous vapour to the joint fur nace of the “3R Clean Coal Carbonisation Plant”. Pine wood sleeper sap wood con tains 0.25 % of sul phur, but the av er age pine sleeper wood (sap wood and heart wood) 0.05% of sul phur. Most of the sul phur is lost with the pyroligneous vapour and burned in the fur nace. Since the “3R Clean Coal Carbonisation Plant ” is equipped with a flue gases clean ing sys tem, the SO2 emis sion level will not ex-ceed 5 mg/m 3. The char coal of the sap wood por tion of sleep ers and that of the av er age sleeper wood will con tain 0.22 % and 0.035 % of sul phur, re spec-tively. The in crease of the carbonisation tem per a ture does not sub stan tially de crease the sul phur con tent in char coal, al though it is suf fi ciently low, and the char coal can be co-fired with clean coal. The con sid ered pro cess is suit-able for small power plants, if the bio mass in put in the com mon en ergy bal-ance is 5 to 10%. If the mean dis tance of sleep ers trans por ta tion for Cen tral and East ern Eu-rope is es ti mated not to ex ceed 200 km, the co-com bus tion of clean coal and carbonised sleep ers would be an ac cept able op tion from the en vi ron men tal and eco nomic points of view.

Janis Zandersons; Aivars Zhurinsh; Edward Someus

203

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

204

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

205

Protective, Modular Wave Power Generation System  

SciTech Connect (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

206

Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)  

E-Print Network [OSTI]

A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

Xia, YuXin, M.B.A. Sloan School of Management.

2006-01-01T23:59:59.000Z

207

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-Print Network [OSTI]

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

208

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

209

Safe Operation of Backup Power Generators  

E-Print Network [OSTI]

three-prong plug equipped with a grounding pin. ? Never plug the generator into a wall outlet in a house or other circuit. This practice, known as ?back feeding,? is extremely dangerous because it energizes the failed electrical wiring supply- ing...

Smith, David

2006-04-19T23:59:59.000Z

210

baepgig-clean | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

211

Plasma plume MHD power generator and method  

DOE Patents [OSTI]

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

212

Sandia National Laboratories: renewable energy power generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving the highlypower generation Hoboken

213

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

214

atomic power generation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a squeezed atom laser is to use Queensland, University of 420 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

215

advanced power generation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ATK Aerospace, ITT Exelis and the University of Texas 324 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

216

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

217

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

218

Using Backup Generators: Alternative Backup Power Options | Department...  

Broader source: Energy.gov (indexed) [DOE]

during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an...

219

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

220

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION...  

Broader source: Energy.gov (indexed) [DOE]

BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04G014351 ENTITLED "HIGH PERFORMANCE FLEXIBLE REVERSIBLE...

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION?  

E-Print Network [OSTI]

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION? David Watts Paulo Atienza to participate. Chile was the pioneer introducing this kind of reforms, through the application of a centralized

Catholic University of Chile (Universidad Católica de Chile)

222

A thermally efficient micro-reactor for thermophotovoltaic power generation  

E-Print Network [OSTI]

Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

Nielsen, Ole Mattis, 1977-

2006-01-01T23:59:59.000Z

223

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

NO. DE-AC21-95MC30247; DOE WAIVER DOCKET W(A)-98-006 ORO-737 Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Contractor"),...

224

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

NO. DE-FC21-95MC32267; DOE WAIVER DOCKET W(A)-96-002 ORO-620 Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the...

225

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

226

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCube Pvt Ltd PCPL Jump

227

Power Generation Subprogram status report, 1988-1989  

SciTech Connect (OSTI)

The status of individual contracts are described for projects within GRI's Power Generation Subprogram. The funding rationale, goals and objectives, accomplishments, and strategy are described for projects in cogeneration and power systems, prime mover and component development, and natural gas vehicles research. These project areas cut across the residential, commercial, industrial, transportation, and electric utility sectors.

Not Available

1989-09-01T23:59:59.000Z

228

Piezoelectric and Semiconducting Coupled Power Generating Process of a  

E-Print Network [OSTI]

of the electric generator relies on the unique coupling of piezoelectric and semiconducting dual properties of ZnPiezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment Jinhui Song, Jun Zhou, and Zhong Lin Wang* School

Wang, Zhong L.

229

Next generation geothermal power plants. Draft final report  

SciTech Connect (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

230

Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030  

E-Print Network [OSTI]

cost of energy from us wind power projects. Presentation,use requirements of modern wind power plants in the Unitedwith large amounts of wind power: Final report, IEA WIND

Abhyankara, Nikit

2014-01-01T23:59:59.000Z

231

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

232

Lamp for generating high power ultraviolet radiation  

DOE Patents [OSTI]

The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

233

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network [OSTI]

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

234

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

235

Clean Energy Investment in Developing Countries: Wind Power in Egypt | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, MissouriWebsterElectric Coop Corp JumpClean

236

Method and apparatus for automobile actuated power generation  

SciTech Connect (OSTI)

A plurality of cylindrical rollers are embedded in a roadway over which wheeled vehicles move such that the vehicle wheels rotate the contacted rollers. A shaft transverse to the roadway supports the rollers and turns with them to transfer power from vehicle contact to an electrical generating apparatus. Power accumulating apparatus, such as a water or hydraulic fluid reservoir, may intervene between the shaft and the generator to smooth the power flow when vehicle travel is intermittent. Alternate apparatus may directly link the shaft to an electrical generator which may, in turn, charge batteries or pump water upwardly to accumulate power for response to later demand. The rollers may be housed in a metal or concrete trough and cross one or more lanes of traffic to a median power collector such as a spider and bevel gear arrangement that is capable of receiving rotating motion from four right angle directions at once. In its simplest form, power is taken from auto wheels to turn the rollers and their shaft or shafts, and shaft rotation is communicated directly to an electrical generator to supply demand.

Rosenblum, J.

1984-03-13T23:59:59.000Z

237

Coal as an option for power generation in US territories of the Pacific  

SciTech Connect (OSTI)

A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

Borg, I. Y.

1981-11-30T23:59:59.000Z

238

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation  

E-Print Network [OSTI]

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

239

SAVE THIS | EMAIL THIS | Close Microbial Fuel Cell Generates Hydrogen, Cleans  

E-Print Network [OSTI]

to a limited amount of hydrogen and a mixture of "dead end" fermentation end products such as acetic--they can leap over the fermentation barrier and convert a "dead end" fermentation product, acetic acid be generated typically by fermentation alone. Dr. Bruce Logan, the Kappe professor of environmental engineering

240

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power generation considerations in a solar biomodal receiver  

SciTech Connect (OSTI)

The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

242

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

SciTech Connect (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

243

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, M.M.

1993-01-01T23:59:59.000Z

244

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

245

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

246

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

247

Power Maximization of a Closed-orbit Kite Generator System Mariam Ahmed*  

E-Print Network [OSTI]

. The third option is to use power kites as renewable energy generators such as the "Kite Wind Generator

Paris-Sud XI, Université de

248

Photonic microwave generation with high-power photodiodes  

E-Print Network [OSTI]

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

249

Technical Manual for the SAM Biomass Power Generation Model  

SciTech Connect (OSTI)

This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

Jorgenson, J.; Gilman, P.; Dobos, A.

2011-09-01T23:59:59.000Z

250

The Year of Concentrating Solar Power: Five New Plants to Power...  

Office of Environmental Management (EM)

a power block to generate electricity. The technology can generate energy even when the sun isn't shining, helping to provide clean power at times of peak demand. We recently...

251

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

252

Design, integration schemes, and optimization of conventional and pressurized oxy-coal power generation processes  

E-Print Network [OSTI]

Efficient and clean electricity generation is a major challenge for today's world. Multivariable optimization is shown to be essential in unveiling the true potential and the high efficiency of pressurized oxy-coal combustion ...

Zebian, Hussam

2014-01-01T23:59:59.000Z

253

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

254

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. LBNL-Tax on Microgrid Combined Heat and Power Adoption. JournalGeneration with Combined Heat and Power Applications Afzal

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

255

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

256

IBEX - a pulsed power accelerator that generates no prepulse  

SciTech Connect (OSTI)

Intense relativistic electron beams are produced in vacuum diodes driven by pulsed power accelerators. For pulse widths approx. 100 nsec, pulse forming lines (PPL) are used to generate the accelerating voltage pulse. This pulse is produced by sequential switching of stored energy through two or more stages. Capacitance and/or inductive coupling usually results in the generation of a low level prepulse voltage some time during the switching sequence. This prepulse is known to have a substantial effect on the performance of the vacuum diode during the main accelerating pulse. Most accelerators use various schemes for reducing this prepulse to acceptable levels. The Isolated Blumlein PPL concept was developed at Sandia to allow for the generation of the main accelerating pulse without generating a prepulse voltage. This concept was implemented into the IBEX accelerator that generates a 4 MV, 100 kA, 20 nsec output pulse. Design and performance data are presented.

Ramirez, J.J.; Corley, J.P.; Mazarakis, M.G.

1983-01-01T23:59:59.000Z

257

C Produced by Nuclear Power Reactors Generation and Characterization of  

E-Print Network [OSTI]

14 C Produced by Nuclear Power Reactors ­ Generation and Characterization of Gaseous, Liquid and process water from nuclear reactors ­ A method for quantitative determination of organic and inorganic and Solid Waste �sa Magnusson Division of Nuclear Physics Department of Physics 2007 Akademisk avhandling

Haviland, David

258

Sustainable Power Generation in Microbial Fuel Cells Using  

E-Print Network [OSTI]

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer applications, especially for wastewater treatment. Introduction Microbial fuel cell (MFC) technology has drawn of electrodes (6­9), (iii) selection and treatment of membranes (10­12), and (iv) optimization of the MFC design

Tullos, Desiree

259

ULTRA-THIN QUARTZ COMBUSTORS FOR TPV POWER GENERATION  

E-Print Network [OSTI]

ULTRA-THIN QUARTZ COMBUSTORS FOR TPV POWER GENERATION Yong Fan, Yuji Suzuki, and Nobuhide Kasagi in planar quartz combustors with channel height of 0.7/1.0/1.5 mm have been investigated for micro on the wall temperature. Keywords: Quenching distance, Micro combustor, Wall/flame temperature, PLIF 1

Kasagi, Nobuhide

260

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect (OSTI)

The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

Paul Tubel

2003-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Centralized and Distributed Generated Power Systems -A Comparison Approach  

E-Print Network [OSTI]

Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U.S. Department of Energy Robert Saint National Rural Electric Cooperative Association PSERC Publication 12-08 June 2012 #12;For

262

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation  

E-Print Network [OSTI]

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical fish consumption, and significant portions of the general population are believed to be consuming toxicologically significant levels of mercury (e.g., National Research Council, 2000). Historical discharges ­ e

263

Personalized Power Saving Profiles Generation Analyzing Smart Device Usage Patterns  

E-Print Network [OSTI]

Personalized Power Saving Profiles Generation Analyzing Smart Device Usage Patterns Soumya Kanti interactions of smart devices. This paper describes a client-server architecture that proposes personalized and they are sent back to the smart devices. These profiles are highly personalized since they are developed

Gesbert, David

264

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

SciTech Connect (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

265

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

266

Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators  

SciTech Connect (OSTI)

Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

1993-08-01T23:59:59.000Z

267

Thermal desalination : structural optimization and integration in clean power and water  

E-Print Network [OSTI]

A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

Zak, Gina Marie

2012-01-01T23:59:59.000Z

268

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

269

Start up results from a specialized flue gas cleaning facility in a power station using refinery residues  

SciTech Connect (OSTI)

In eastern Germany STEAG--the biggest German IPP--has erected a power plant consisting of three combustion lines burning oil distillation residues from the new Mider refinery to provide the refinery with power, steam, water and compressed air. Each of the three flue gas cleaning lines consists of a high dust SCR-system, quench, wet electrostatic precipitator, scrubber, steam reheater and ID-fan. Common systems are the storage and handling of the absorbent, the gypsum dewatering and the waste water treatment. The installed high dust SCR system attains the expected NO{sub x}-reduction efficiency and an excellent NO{sub x} outlet distribution and low ammonia slip. After commissioning problems occurred with the wet ESP in all three lines due to improper function of the upstream quenches. Modifications of the quench system have been made which assure a temperature of the flue gas after quench near saturation temperature and correct functioning of the quench and wet ESP. To reduce pressure loss of the absorber concurrent spray nozzles were installed. Strong vibrations of the absorber tower, the connected pipes and the steel structure along with an insufficient SO{sub x} removal efficiency at high inlet concentration were observed. After changing the concurrent operation of the spray nozzles to counter current operation the vibrations of the absorber tower became smaller and the removal efficiency achieved the guaranteed value. Problems arose in the waste water treatment plant caused by the high solid concentration of up to 1,000 g/l in the thickener. By diluting the settled sludge with overflow water from the thickener the problems in the waste water treatment plant could be minimized to an acceptable degree. Despite these problems the flue gas cleaning system is in continuous operation and the emission values of flue gas and waste water meet the required standards.

Beiers, H.G.; Gilgen, R.; Weiler, H.

1998-07-01T23:59:59.000Z

270

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation  

SciTech Connect (OSTI)

Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

Not Available

2010-12-01T23:59:59.000Z

271

Orbits design for Leo space based solar power satellite system.  

E-Print Network [OSTI]

?? Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave,… (more)

Addanki, Neelima Krishna Murthy

2011-01-01T23:59:59.000Z

272

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network [OSTI]

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

273

Coal gasification for power generation. 2nd ed.  

SciTech Connect (OSTI)

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

274

Adapting a GIS-Based Multicriteria Decision Analysis Approach for Evaluating New Power Generating Sites  

SciTech Connect (OSTI)

There is a growing need to site new power generating plants that use cleaner energy sources due to increased regulations on air and water pollution and a sociopolitical desire to develop more clean energy sources. To assist utility and energy companies as well as policy-makers in evaluating potential areas for siting new plants in the contiguous United States, a geographic information system (GIS)-based multicriteria decision analysis approach is presented in this paper. The presented approach has led to the development of the Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE) tool. The tool takes inputs such as population growth, water availability, environmental indicators, and tectonic and geological hazards to provide an in-depth analysis for siting options. To the utility and energy companies, the tool can quickly and effectively provide feedback on land suitability based on technology specific inputs. However, the tool does not replace the required detailed evaluation of candidate sites. To the policy-makers, the tool provides the ability to analyze the impacts of future energy technology while balancing competing resource use.

Omitaomu, Olufemi A [ORNL; Blevins, Brandon R [ORNL; Jochem, Warren C [ORNL; Mays, Gary T [ORNL; Belles, Randy [ORNL; Hadley, Stanton W [ORNL; Harrison, Thomas J [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL; Rose, Amy N [ORNL

2012-01-01T23:59:59.000Z

275

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

276

Nanodevices for generating power from molecules and batteryless sensing  

DOE Patents [OSTI]

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

2014-07-15T23:59:59.000Z

277

National-Scale Wind Resource Assessment for Power Generation (Presentation)  

SciTech Connect (OSTI)

This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

Baring-Gould, E. I.

2013-08-01T23:59:59.000Z

278

Tom Hoff, Clean Power Research Richard Perez, State University of New York at Albany  

E-Print Network [OSTI]

)................................................................................ 10 Minimum-Buffer-Energy-Storage-based Capacity (MBESC, Sungevity Mike Taylor, Solar Electric Power Association May 2008 PHOTOVOLTAIC CAPACITY VALUATION METHODS of Energy as part of the Solar America Initiative under contract # DE-FC36-07GO17036 with the State

Perez, Richard R.

279

Thermoelectric materials 1998 -- The next generation materials for small-scale refrigeration and power generation applications  

SciTech Connect (OSTI)

Thermoelectric materials are used in a wide variety of applications related to small-scale solid-state refrigeration or power generation. Over the past 30 years, alloys based on the Bi-Te compounds (refrigeration) [(Bi[sub 1[minus]x]Sb[sub x])[sub 2] (Te[sub 1[minus]x]Se[sub x])[sub 3

Tritt, T.M. (ed.) (Clemson Univ., SC (United States)); Kanatzidis, M.G. (ed.) (Michigan State Univ., East Lansing, MI (United States)); Mahan, G.D. (ed.) (Univ. of Tennessee, Knoxville, TN (United States)); Lyon, H.B. Jr. (ed.) (Marlow Industries, Dallas, TX (United States))

1999-01-01T23:59:59.000Z

280

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

SciTech Connect (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators  

SciTech Connect (OSTI)

The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

2014-06-07T23:59:59.000Z

282

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect (OSTI)

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

283

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

284

State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector under the EPA's Clean Power Plan  

E-Print Network [OSTI]

1 State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector goal of comprehensive carbon pricing along with various other policies (LCFS) · Into this setting drops rate" and the role of renewable energy and energy efficiency in the rate targets and in compliance

California at Davis, University of

285

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network [OSTI]

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

286

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

SciTech Connect (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

287

Clean Energy and the Electric System: Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Reducing energy demand and/ or increasing renewable energy generation from state and local clean energy initiatives—such as goals, standards, codes, funds and programs—can generate many benefits including: • Security, diversity, and overall reliability improvements for the electric system. ••Improved environmental quality, human health, and quality of life. ••Positive economic gains through energy costs saved, avoided medical costs, higher disposable incomes, increased labor productivity, and more jobs. This brochure is part of a series and focuses on electric system benefits. What’s Inside: • Why assess electric system benefits? • How can state and local governments estimate potential electric system benefits? • Quantitative examples of how clean energy initiatives result in direct energy benefits. • How to find more information. What are clean energy initiatives? Clean energy initiatives are policies and programs that state and local governments are using to save energy, improve air quality, reduce carbon emissions, support electric system reliability and security, and improve economic development. Examples include: Energy efficiency policies that reduce demand for energy, such as: Building codes for energy efficiency in both commercial and residential buildings; energy efficiency portfolio standards; public benefit funds for energy efficiency; and appliance efficiency standards. Energy supply policies that increase the use of renewables and clean sources, such as: Clean distributed generation and net metering interconnection standards; output-based environmental regulations; public benefit funds for clean energy supply; combined heat and power; and renewable portfolio standards. Clean energy initiatives reduce demand for fossil-fuel powered electricity and increase electricity generated with clean, renewable energy, contributing to a less polluting, more reliable and affordable electric system. Specifically, energy efficiency and/or renewable energy are resources that can: Avoid costs typically associated with conventional generation, including: Fuel, variable operation, and maintenance costs; emissions allowances; costs of emission Greenhouse gas (GHG) related policies that measure or limit emissions, such as: GHG registries, mandatory GHG reporting; CO offset requirements;

unknown authors

288

Energy Department Report Finds Major Potential to Increase Clean...  

Energy Savers [EERE]

Department Report Finds Major Potential to Increase Clean Hydroelectric Power Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power April 17, 2012 -...

289

State of Washington Clean Energy Opportunity: Technical Market...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

290

ITP Distributed Energy: State of Washington Clean Energy Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

291

Update on use of mine pool water for power generation.  

SciTech Connect (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

292

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect (OSTI)

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

293

A planning scheme for penetrating embedded generation in power distribution grids  

E-Print Network [OSTI]

Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

294

Next Generation Power Electronics National Manufacturing Innovation Institute  

Broader source: Energy.gov [DOE]

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

295

Gravitational wave generation in power-law inflationary models  

E-Print Network [OSTI]

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

Paulo M. Sá; Alfredo B. Henriques

2008-06-06T23:59:59.000Z

296

Using Backup Generators: Alternative Backup Power Options | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy,PotomacGenerators Power outages

297

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

298

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

299

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

300

Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy Considerations At Microsoft, we see information technology (IT) as a key tool to help address the daunting en-  

E-Print Network [OSTI]

Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy in energy conservation and integration of more renewable and zero-carbon energy sources into our economy. Microsoft envisions a clean energy ecosystem where information technology: · Empowers people

Narasayya, Vivek

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

302

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

303

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

304

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

305

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

SciTech Connect (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

306

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

307

A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation  

E-Print Network [OSTI]

an electric transmission network with wind power generation and their impact on its reliability. A stochastic disconnections leading to massive network blackout. 1. Introduction Systems of electric power generation, supply of generating units, the transfer of electric power over networks of transmission lines and, finally

Paris-Sud XI, Université de

308

The ultra-thin solar cells that could generate power through windows  

E-Print Network [OSTI]

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

309

A comparison of reversible chemical reactions for solar thermochemical power generation  

E-Print Network [OSTI]

453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

Boyer, Edmond

310

Technology status and project development risks of advanced coal power generation technologies in APEC developing economies  

SciTech Connect (OSTI)

The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

Lusica, N.; Xie, T.; Lu, T.

2008-10-15T23:59:59.000Z

311

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

312

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

313

CLEAN POWER Thankstoadvanc-  

E-Print Network [OSTI]

emissions can succeed through increases in energy efficiency alone. Because economic growth contin- ues of more energy-efficient ve- hicles, buildings and appliances. To counter the alarming trend of global the market to thin-film silicon cells and devices com- posed of plastic or organic semiconductors. Thin

Kammen, Daniel M.

314

JEA- Clean Power Program  

Broader source: Energy.gov [DOE]

In November 1999, JEA, a municipal utility, signed a Memorandum of Understanding with the Sierra Club and the American Lung Association of Florida to formalize the municipal utility's commitment to...

315

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

316

Power and Frequency Control as it Relates to Wind-Powered Generation  

SciTech Connect (OSTI)

This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

Lacommare, Kristina S H

2010-12-20T23:59:59.000Z

317

Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California  

E-Print Network [OSTI]

Keywords: Distributed generation Central generation Air quality modeling Reactivity a b s t r a c by the widespread installation of many stationary power generators close to the point of electricity use within from which electricity must be transmitted to end users. However, increasing electricity demand

Dabdub, Donald

318

Economy: Clean Energy and the Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Reducing energy demand and increasing renewable energy generation from state and local clean energy initiatives—such as goals, standards, codes, funds, and programs—generate many benefits including: ••Security, diversity, and overall reliability improvements for the electric system. ••Improved environmental quality, human health, and quality of life. ••Increased economic prosperity. This brochure is part of a series and focuses on economic benefits. What are the economic benefits of clean energy? Clean energy initiatives, including those that advance energy efficiency, renewable energy and clean distributed generation can: ?Lower ? energy costs. ?Increase ? personal disposable income. ?Increase ? revenue for businesses. ?Increase ? income, employment, and output. ?Reduce ? fuel costs and new electric power plant construction costs. ?Reduce ? health care costs as a result of better air quality and public health. How do clean energy initiatives benefit the economy? ?Direct ? Economic Benefits: Companies that provide the equipment, technologies, and services needed to implement an initiative benefit from increased demand, which increases their revenue and their ability to hire more people. In the case of energy efficiency, consumers and companies both benefit by spending less money on electricity. ?Indirect ? Economic Benefits: Suppliers to clean energy equipment and service providers benefit as demand for their inputs and revenues increase. With higher demand, these suppliers may also hire more workers. ?Induced ? Economic Benefits: Income generated from the direct and indirect effects is spent in the regional economy, such as when employees use their paychecks to buy groceries, eat out, and entertain themselves, all of which support jobs in those sectors. What’s Inside: • Why assess the economic benefits of clean energy? • How can policy makers estimate the macroeconomic benefits of clean energy? • A Benefits Flash with quantitative examples of how clean energy initiatives result in economic, air quality, and public health benefits. • Where to go for more information. Direct economic benefits of a wind initiative could increase: • Sales of wind turbines. • Revenue of local turbine manufacturers.

unknown authors

319

Tidal Energy System for On-Shore Power Generation  

SciTech Connect (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

320

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cleaning method and apparatus  

DOE Patents [OSTI]

A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

Jackson, D.D.; Hollen, R.M.

1981-02-27T23:59:59.000Z

322

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors  

E-Print Network [OSTI]

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors to reduce the fluctuation of generator power. In the second step, Supercapacitor (SC) Energy Storage System fluctuation, swell effect, power smoothing control, supercapacitor. I. [NTRODUCTION [n the recent years

Paris-Sud XI, Université de

323

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

324

Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model  

E-Print Network [OSTI]

Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model B. A a dynamic model of the power transmission system (OPA) and a simple economic model of power generation development. Despite the simplicity of this economic model, complex dynamics both in the economics (prices

Dobson, Ian

325

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

326

Biocomplexity Analysis of Alternative Biomass Routes for Power Generation: Environmental, Economic, and Technical Assessment  

E-Print Network [OSTI]

) as a replacement for coal in power generation. We utilize an environmental biocomplexity approach and examineBiocomplexity Analysis of Alternative Biomass Routes for Power Generation: Environmental, Economic generation. Economics, emissions and energy consumption during the on farm stage of all processes between

McCarl, Bruce A.

327

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

328

Clean Cities  

Broader source: Energy.gov [DOE]

Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

329

An air-breathing, portable thermoelectric power generator based on a microfabricated silicon combustor  

E-Print Network [OSTI]

The global consumer demand for portable electronic devices is increasing. The emphasis on reducing size and weight has put increased pressure on the power density of available power storage and generation options, which ...

Marton, Christopher Henry

2011-01-01T23:59:59.000Z

330

Long-term contracts for new investments in power generation capacity : pain or gain?  

E-Print Network [OSTI]

In recent years, a debate has ensued regarding the role of long-term power purchase agreements for securing investments in power generation capacity in organized wholesale markets. This thesis illuminates the issues ...

Sakhrani, Vivek A. (Vivek Ashok)

2010-01-01T23:59:59.000Z

331

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

332

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network [OSTI]

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

333

A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow  

E-Print Network [OSTI]

penetration of renewable resources of electricity, such as wind and solar, into existing power systems. Since renewable resources vary in rated power output and point of grid interconnection, they affect power systems1 A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow Xichen

Liberzon, Daniel

334

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network [OSTI]

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

335

Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint  

SciTech Connect (OSTI)

In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

Zhang, J.; Chowdhury, S.; Hodge, B. M.

2014-01-01T23:59:59.000Z

336

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

Boyer, Edmond

337

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-Ã?ela, Eranda

338

Increasing power generation for scaling up single-chamber air cathode microbial fuel cells  

E-Print Network [OSTI]

potential as a tech- nology for sustainable bioenergy production due to their ability to generate., 2004) can also affect power generation. Through optimization of MFC architecture and solution chemis

339

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

340

Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997  

SciTech Connect (OSTI)

This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

Provenzano, J.J.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel-cell based power generating system having power conditioning apparatus  

DOE Patents [OSTI]

A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

Mazumder, Sudip K. (Chicago, IL); Pradhan, Sanjaya K. (Des Plaines, IL)

2010-10-05T23:59:59.000Z

342

24 DTU International Energy Report 2013 Stochastic power generation  

E-Print Network [OSTI]

that their power output can be curtailed if necessary. Renewable energy sources such as wind, solar, wave and tidal are not dispatchable. Indeed, wind farms and solar power plants can be scheduled and controlled only to the extent of energy storage, which can compen- sate for the limited predictability of wind and solar power. Changing

Paris-Sud XI, Université de

343

1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed Generation Planning  

E-Print Network [OSTI]

Generation Planning to Profit Both Utility and DG Investors H. A. Hejazi, Ali R. Araghi, Behrooz Vahidi, S. H-scale electric generation facilities to participate in distributed generation (DG) with few requirements on power Terms--Distributed generation, investment incentives, op- timal location, price allocation, size

Mohsenian-Rad, Hamed

344

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

345

A Hierarchical Control Algorithm for Managing Electrical Energy Storage Systems in Homes Equipped with PV Power Generation  

E-Print Network [OSTI]

use their PV-based generation and controllable storage devices for peak shaving on their power demand controller should possess the ability of forecasting future PV-based power generation and load power consumption profiles for better performance. In this paper we present novel PV power generation and load power

Pedram, Massoud

346

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...  

Office of Environmental Management (EM)

Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

347

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

Undrill. 1975. "Automatic Generation Control", IEEE Tutorialfraction of generation providing response grid. The adjustment of generation, minute-by- minute, in

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

348

Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions  

E-Print Network [OSTI]

To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

Cuellar, Amanda Dulcinea

2012-01-01T23:59:59.000Z

349

Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission  

E-Print Network [OSTI]

Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

McLinko, Ryan M.

350

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network [OSTI]

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

351

Next-Generation Power Electronics: Reducing Energy Waste and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power electronics. This technology uses electronic components such as inverters and transformers to convert the electricity from your wall outlet into the right voltage and current...

352

Purchase and Installation of a Geothermal Power Plant to Generate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation....

353

March 2014 Most Viewed Documents for Power Generation And Distribution...  

Office of Scientific and Technical Information (OSTI)

materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 15 > Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 15 > WABASH RIVER COAL...

354

Low Cost High Concentration PV Systems for Utility Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop Practical...

355

Membranes for H2 generation from nuclear powered thermochemical cycles.  

SciTech Connect (OSTI)

In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

2006-11-01T23:59:59.000Z

356

Reactive power management of distribution networks with wind generation for improving voltage stability  

E-Print Network [OSTI]

-loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

Pota, Himanshu Roy

357

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network [OSTI]

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

358

Gulf Coast Clean Energy Application Center  

SciTech Connect (OSTI)

The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

Dillingham, Gavin

2013-09-30T23:59:59.000Z

359

PFBC presents its clean coal credentials  

SciTech Connect (OSTI)

Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

Makansi, J. [Pearl Street Inc. (United States)

2005-12-01T23:59:59.000Z

360

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The reduced environmental liability of clean coal technologies  

SciTech Connect (OSTI)

In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

Leslie, A.C.D. [Energetics, Inc., Columbia, MD (United States); McMillen, M. [Energetics, Inc., Washington, DC (United States)

1997-08-01T23:59:59.000Z

362

Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho  

SciTech Connect (OSTI)

Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

Struhsacker, D.W. (ed.)

1981-01-01T23:59:59.000Z

363

Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications  

SciTech Connect (OSTI)

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

Alvin, M.A.

2002-09-19T23:59:59.000Z

364

Water value in power generation: Experts distinguish water use and consumption  

E-Print Network [OSTI]

Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

Kalisek, D

2013-01-01T23:59:59.000Z

365

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power  

E-Print Network [OSTI]

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power to control voltage of distribution networks with DG using reactive power compensation approach. In this paper profile within the specified limits, it is essential to regulate the reactive power of the compensators

Pota, Himanshu Roy

366

Assessment of architectural options for surface power generation and energy storage on human Mars missions  

E-Print Network [OSTI]

of the Martian day). Given the significant policy and sustainability advantages of solar power compared-film photovoltaic arrays and energy storage technologies that is anticipated over the coming decades, solar powerAssessment of architectural options for surface power generation and energy storage on human Mars

de Weck, Olivier L.

367

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION  

E-Print Network [OSTI]

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor heat and electric power. To perform this analysis, yield and production potentials were explored

Wisconsin at Madison, University of

368

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF  

E-Print Network [OSTI]

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF LIFETIME CONSUMPTION of a combined cycle power plant under consideration of the real cost of lifetime usage is accomplished behavior of a combined cycle power plant. In order to model both the continuous/discrete dynamics

Ferrari-Trecate, Giancarlo

369

Hawaiis EVolution: Hawaii Powered. Technology Driven. (Brochure), Hawaii Clean Energy Initiative (HCEI)  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisThe Hawaii CleanEnergy

370

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

371

High-resolution emissions of CO{sub 2} from power generation in the USA - article no. G04008  

SciTech Connect (OSTI)

Electricity generation accounts for close to 40% of the U.S. CO{sub 2} emissions from fossil fuel burning, making it the economic sector with the largest source of CO{sub 2}. Since the late 1990s, the Environmental Protection Agency Clean Air Markets Division (EPA CAMD) has kept a repository of hourly CO{sub 2} emission data for most power plants in the conterminous United States. In this study, the CAMD CO{sub 2} data are used to derive a high spatiotemporal resolution CO{sub 2} emissions inventory for the electricity generation sector (inventory available on request). Data from 1998 to 2006 have been processed. This unique inventory can be used to improve the understanding of the carbon cycle at fine temporal and spatial scales. The CAMD data set provides the first quantitative estimates of the diurnal and seasonal cycles of the emissions as well as the year to year variability. Emissions peak in the summertime owing to the widespread use of air conditioning. Summertime emissions are in fact highly correlated with the daily average temperature. In conjunction with the EPA Emissions and Generation Resource Integrated Database (eGRID), we have derived high-resolution maps of CO{sub 2} emissions by fossil fuel burned (coal, gas, oil) for the year 2004. The CAMD data set also reflects regional anomalies in power generation such as the August 2003 blackout in the northeastern United States and the 2000-2001 increase in production in California. We recommend that all sectors of the economy report similar high-resolution CO{sub 2} emissions because of their great usefulness both for carbon cycle science and for greenhouse gases emissions mitigation and regulation.

Petron, G.; Tans, P.; Frost, G.; Chao, D.L.; Trainer, M. [NOAA, Boulder, CO (United States). Earth Systems Research Laboratory

2008-10-15T23:59:59.000Z

372

Message passing for integrating and assessing renewable generation in a redundant power grid  

SciTech Connect (OSTI)

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

373

Motion-to-Energy (M2E) Power Generation Technology  

SciTech Connect (OSTI)

INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

INL

2008-05-30T23:59:59.000Z

374

Motion-to-Energy (M2E™) Power Generation Technology  

SciTech Connect (OSTI)

INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

Idaho National Laboratory

2008-05-30T23:59:59.000Z

375

September 2013 Most Viewed Documents for Power Generation And...  

Office of Scientific and Technical Information (OSTI)

fan blades Karr, O.F.; Brooks, J.B.; Seay, E. (1993) 19 > Status of superconducting power transformer development Johnson, R.C.; McConnell, B.W.; Mehta, S.P. and others...

376

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

377

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

W ; Trainor-Guitton, W (2013) 18 Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Levy, Edward; Bilirgen, Harun; DuPont, John (2011) 18 Wind power...

378

Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...  

Energy Savers [EERE]

a 30% reduction in the use of fuel at the power plant, and at least a 30% reduction in heating fuel used by the tribal residences installed with electric thermal storage devices....

379

Motion-to-Energy (M2E) Power Generation Technology  

ScienceCinema (OSTI)

INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

INL

2009-09-01T23:59:59.000Z

380

Motion-to-Energy (M2Eâ?¢) Power Generation Technology  

ScienceCinema (OSTI)

INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

Idaho National Laboratory

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be...

382

Self-Cleaning CSP Collectors  

Broader source: Energy.gov [DOE]

This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

383

Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE  

E-Print Network [OSTI]

Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

384

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus  

E-Print Network [OSTI]

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus by re-dispatching generator outputs, using a normal vector found at a voltage collapse boundary or a low voltage boundary (LVB). This method uses the normal vector as an indicator to change the generation

385

The potential impacts of climate-change policy on freshwater use in thermoelectric power generation  

E-Print Network [OSTI]

The potential impacts of climate-change policy on freshwater use in thermoelectric power generation to generate electricity. We analyze what these changes could entail for electricity generation in the United carbon prices (4$50/tonne CO2), however, retrofitting coal plants to capture CO2 increases freshwater

Jackson, Robert B.

386

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

387

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

388

Generation of Alfven waves by high power pulse at the electron plasma frequency  

E-Print Network [OSTI]

Generation of Alfve´n waves by high power pulse at the electron plasma frequency B. Van CompernolleG, Helium) capable of supporting Alfve´n waves has been studied. The interaction leads to the generation locations. Citation: Van Compernolle, B., W. Gekelman, P. Pribyl, and T. A. Carter (2005), Generation

California at Los Angles, University of

389

Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power  

SciTech Connect (OSTI)

An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China) [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)] [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

2013-11-15T23:59:59.000Z

390

Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)  

SciTech Connect (OSTI)

This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

Not Available

2010-05-01T23:59:59.000Z

391

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

392

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus Power Ltd Jump to:Kiran ProjectsRayapati Power

393

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

SciTech Connect (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

394

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect (OSTI)

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

395

Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-hp range. Phase I final report  

SciTech Connect (OSTI)

The first phase of the design and development of Stirling engines for stationary power generation applications in the 373 kW (500 hp) to 2237 kW (3000 hp) range was completed. The tasks in Phase I include conceptual designs of large Stirling cycle stationary engines and program plan for implementing Phases II through V. Four different heater head designs and five different machine designs were prepared in sufficient detail to select a design recommended for development in the near future. A second order analysis was developed for examining the various loss mechanisms in the Stirling engine and for predicting the thermodynamic performance of these engines. The predicted engine thermal brake efficiency excluding combustion efficiency is approximately 42% which exceeds the design objective of 40%. The combustion system designs were prepared for both a clean fuel combustion system and a two-stage atmospheric fluidized bed combustion system. The calculated combustion efficiency of the former is 90% and of the latter is 80%. Heat transport systems, i.e., a heat exchanger for the clean fuel combustion system and a sodium heat pipe system for coal and other nonclean fuel combustion systems were selected. The cost analysis showed that for clean fuels combustion the proposed 2237 kW (3000 hp) system production cost is $478,242 or $214/kW ($159/hp) which is approximately 1.86 times the cost of a comparable size diesel engine. For solid coal combustion the proposed 2237 kW (3000 hp) system production cost is approximately $2,246,242 which corresponds to a cost to power capacity ratio of $1004/kW ($749/hp). The two-stage atmospheric fluidized bed combustion system represents 81% of the total cost; the engine represents 14% depending on the future price differential between coal and conventional clean fuels, a short payback period of the proposed Stirling cycle engine/FBC system may justify the initial cost. (LCL)

None

1980-10-01T23:59:59.000Z

396

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena Lopez, Hugo Eduardo

2008-10-10T23:59:59.000Z

397

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena, Hugo Eduardo

2009-05-15T23:59:59.000Z

398

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network [OSTI]

requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power...

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

399

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Office of Environmental Management (EM)

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

400

Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this  

E-Print Network [OSTI]

operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

Kusiak, Andrew

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The development of clean coal technology in the United States  

SciTech Connect (OSTI)

The United States has made a $5-billion commitment, to be shared by the government and the private sector, to the development of a new generation of clean-coal technologies. Because the nation has a resource imperative to develop domestic coal supplies and a strong commitment to environmental protection, it seems that clean coal technologies are the preferred solution for power generation needs in the United States in the medium-term. The lessons learned during this demonstration program could have important implications for technology development and deployment in other countries. The purpose of this paper is to discuss some of the aspects of the US Clean Coal Technology (CCT) demonstration program that could be relevant to other countries. 2 refs., 8 tabs.

Streets, D.G.

1989-01-01T23:59:59.000Z

402

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

403

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P.

1995-11-01T23:59:59.000Z

404

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.

1996-10-01T23:59:59.000Z

405

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States)

1996-11-01T23:59:59.000Z

406

Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna  

E-Print Network [OSTI]

All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

407

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

SciTech Connect (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

408

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSoham

409

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatang Chifeng Saihanba Wind Power Co Ltd

410

Clean Tech Now | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and...

411

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network [OSTI]

RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

Petto, S.

412

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

| NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

413

Applying epoch-era analysis for homeowner selection of distributed generation power systems  

E-Print Network [OSTI]

The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

Piña, Alexander L

2014-01-01T23:59:59.000Z

414

Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

415

Short-run interfuel substitution in West European power generation : a restriced cost function approach  

E-Print Network [OSTI]

This paper analyzes short-run interfuel substitution between fossil fuels in West European power generation. The problem is studied within a restricted translog cost model, which is estimated by pooling time-series data ...

Söderholm, Patrik

1999-01-01T23:59:59.000Z

416

Strategic investment in power generation under uncertainty : Electric Reliability Council of Texas  

E-Print Network [OSTI]

The purpose of this study is to develop a strategy for investment in power generation technologies in the future given the uncertainties in climate policy and fuel prices. First, such studies are commonly conducted using ...

Chiyangwa, Diana Kudakwashe

2010-01-01T23:59:59.000Z

417

Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations  

E-Print Network [OSTI]

The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known...

Jeraputra, Chuttchaval

2006-04-12T23:59:59.000Z

418

Gas production response to price signals: Implications for electric power generators  

SciTech Connect (OSTI)

Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

Ferrell, M.L.

1995-12-31T23:59:59.000Z

419

Efficiency, Cost and Weight Trade-off in TE Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System for Vehicle Exhaust Applications It contains a detailed co-optimization of the thermoelectric module with the heat sink and a study of the tradeoff between...

420

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network [OSTI]

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EPA Clean Energy-Environment Guide to Action 5.5 Fostering Green Power Markets Policy Description and Objective Summary  

E-Print Network [OSTI]

Green power is a relatively small but growing market that provides electricity customers the opportunity to make environmental choices about their electricity consumption. Programs in more than 40 states currently serve approximately 540,000 customers, representing nearly 4 billion kilowatt-hours (kWh) annually. Green power is offered in both vertically integrated and competitive retail markets. Green power programs have existed for approximately 10 years and have contributed to the development of over 2,200 megawatts (MW) of new renewable capacity over that time. A recent study estimates that this could reach 8,000 MW by 2015 (Wiser et al. 2001). Because participation in green power programs is voluntary, the role for states may be more limited

unknown authors

422

New Clean Coal Cycle Optimized Using Pinch Technology  

E-Print Network [OSTI]

NEW CLEAN COAL CYCLE OPTIMIZED USING PINCH TECHNOLOGY A. P. ROSSITER, Linnhoff March I 0'00 ' nc., Houston, TX J. J. NNELL, The M. W. Kellogg Company, Houston, TX High thermal efficiency and low levels of environmental emissions...~en incorporated in the present des1gn, some of them could be of use in later generations of the process. CONCLUSIONS The hybrid cycle is a very promising new clean coal power plant technology. Its benefits include: ? Very low NO and SOx emission levels...

Rossiter, A. P.; O'Donnell, J. J.

423

EIS-0186: Proposed Healy Clean Coal Project, Healy, AK  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

424

Transient stability enhancement of electric power generating systems by 120-degree phase rotation  

DOE Patents [OSTI]

A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

Cresap, Richard L. (Portland, OR); Taylor, Carson W. (Portland, OR); Kreipe, Michael J. (Portland, OR)

1982-01-01T23:59:59.000Z

425

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC NOBLE89-B

426

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC NOBLE89-B-A

427

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC NOBLE89-B-A-B

428

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:Fleet

429

Thermoelectric Power Generation System with Loop Thermosyphon in Future  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2forinHigh

430

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjing Shenzhou Wind Power Co

431

A Power Energy Generation Systems Ltd APWR | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China)|EnergyApproach-|Power

432

Power Generating Stationary Engines Nox Control: A Closed Loop Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | DepartmentSiteMaryland |2POWER ELECTRONICS

433

Clean Cities Internships  

Broader source: Energy.gov [DOE]

Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

434

Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with  

E-Print Network [OSTI]

of virtual impedance parameters and (ii) higher accuracy in reactive power flow calculation. The improved With larger portion of growing electricity demand which is being fed through distributed generation (DG, in order to decouple real and reactive power, to increase the stability margin and also to improve

Chaudhary, Sanjay

435

Biennial Assessment of the Fifth Power Plan Assessment of Other Generating Technologies  

E-Print Network [OSTI]

and wind power, covered in more detail in specific papers. The paper begins with an overview of generating adoption of the Plan. Wind plant construction is driven by extension of the federal production tax credit of wind power development in the Northwest. A preliminary estimate prepared for the Northwest Wind

436

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

Nagurney, Anna

437

Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods  

E-Print Network [OSTI]

- storage hydro plants a large-scale mixed integer optimization model for unit commitment is developed optimal scheduling of on/o decisions and output levels for generating units in a power system over on the shares of nuclear, conventional thermal, hydro and pumped-storage hydro power in the underlying

Römisch, Werner

438

Load-shedding probabilities with hybrid renewable power generation and energy storage  

E-Print Network [OSTI]

Load-shedding probabilities with hybrid renewable power generation and energy storage Huan Xu, Ufuk to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage turbines, supplemented with energy storage. We use a simple storage model alongside a combination

Xu , Huan

439

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

440

Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems  

SciTech Connect (OSTI)

The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

2010-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrochemical Membrane for Carbon Dioxide Separation and Power Generation  

SciTech Connect (OSTI)

uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

2012-12-28T23:59:59.000Z

442

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

1998-05-12T23:59:59.000Z

443

Self-cooling mono-container fuel cell generators and power plants using an array of such generators  

DOE Patents [OSTI]

A mono-container fuel cell generator (10) contains a layer of interior insulation (14), a layer of exterior insulation (16) and a single housing (20) between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation (14) in the interior (12) of the generator, and the generator is capable of operating at temperatures over about 650.degree. C., where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing (20) below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

444

High gliding fluid power generation system with fluid component separation and multiple condensers  

DOE Patents [OSTI]

An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

2014-10-14T23:59:59.000Z

445

Potential Economic Impact of Constructing and Operating Solar Power Generation Facilities in Nevada  

SciTech Connect (OSTI)

Nevada has a vast potential for electricity generation using solar power. An examination of the stock of renewable resources in Nevada proves that the state has the potential to be a leader in renewable-electric generation--one of the best in the world. This study provides estimates on the economic impact in terms of employment, personal income, and gross state product (GSP) of developing a portion of Nevada's solar energy generation resources.

Schwer, R. K.; Riddel, M.

2004-02-01T23:59:59.000Z

446

The Use of Biomass for Power Generation in the U.S.  

SciTech Connect (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

447

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

448

Wind Generation in the Future Competitive California Power Market  

SciTech Connect (OSTI)

The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

Sezgen, O.; Marnay, C.; Bretz, S.

1998-03-01T23:59:59.000Z

449

On the impact of CO{sub 2} emission-trading on power generation emissions  

SciTech Connect (OSTI)

In Europe one of the main policy instruments to meet the Kyoto reduction targets is CO{sub 2} emission-trading (CET), which was implemented as of January 2005. In this system, companies active in specific sectors must be in the possession of CO{sub 2} emission rights to an amount equal to their CO{sub 2} emission. In Europe, electricity generation accounts for one-third of CO{sub 2} emissions. Since the power generation sector has been liberalized, reregulated and privatized in the last decade, around Europe autonomous companies determine the sectors' CO{sub 2} emission. Short-term they adjust their operation, long-term they decide on (dis) investment in power generation facilities and technology selection. An agent-based model is presented to elucidate the effect of CET on the decisions of power companies in an oligopolistic market. Simulations over an extensive scenario-space show that there CET does have an impact. A long-term portfolio shift towards less-CO{sub 2} intensive power generation is observed. However, the effect of CET is relatively small and materializes late. The absolute emissions from power generation rise under most scenarios. This corresponds to the dominant character of current capacity expansion planned in the Netherlands (50%) and in Germany (68%), where companies have announced many new coal based power plants. Coal is the most CO{sub 2} intensive option available and it seems surprising that even after the introduction of CET these capacity expansion plans indicate a preference for coal. Apparently in power generation the economic effect of CO{sub 2} emission-trading is not sufficient to outweigh the economic incentives to choose for coal.

Chappin, E.J.L.; Dijkema, G.P.J. [Delft University of Technology, Delft (Netherlands)

2009-03-15T23:59:59.000Z

450

DOE Backup Power Working Group Best Practices Handbook for Maintenance and Operation of Engine Generators, Volume II  

SciTech Connect (OSTI)

The lubricating oil system provides a means to introduce a lubricant in the form of a film to reduce friction and wear between surfaces that bear against each other as they move.1 The oil film which is established also cools the parts by carrying generated heat away from hot surfaces, cleans and carries dirt or metal wear particles to the filter media, and helps seal the piston to the cylinder during combustion. Most systems are pressure lubricated and distribute oil under pressure to bearings, gears, and power assemblies. Lubricating oil usually reaches main, connecting rod, and camshaft bearings through drilled passages in the cylinder block and crankshaft or through piping and common manifolds.Many parts rely on oil for cooling, so if the lube oil system fails to perform its function the engine will overheat. Metal to metal surfaces not separated by a thin film of oil rapidly build up frictional heat. As the metals reach their melting point, they tend to weld together in spots or streaks. Lube oil system failures can cause significant damage to an engine in a short period of time. Proper maintenance and operation of the lubricating oil system is essential if your engine is to accomplish its mission.

Gross, R.E.

1998-10-30T23:59:59.000Z

451

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

452

AVESTAR Center for clean energy plant operators of the future  

SciTech Connect (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

453

Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report  

SciTech Connect (OSTI)

This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

2010-04-30T23:59:59.000Z

454

Polygeneration Integration of Gasoline Synthesis and IGCC Power Production Using  

E-Print Network [OSTI]

that in coal-rich countries like the US and China, the interest in gasification is very high and a number for a gas turbine in a combined cycle power generation scheme. Coal Residue Gasification Gas Cleaning/S, Nymøllevej 55, 2800 Kongens Lyngby, Denmark Abstract Coal is becoming an increasingly important raw material

455

Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies  

E-Print Network [OSTI]

This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

Strawser, Daniel DeWitt

2012-01-01T23:59:59.000Z

456

Customer adoption of small-scale on-site power generation  

SciTech Connect (OSTI)

The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-04-01T23:59:59.000Z

457

Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System  

SciTech Connect (OSTI)

Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

Zitney, S.E.

2007-06-01T23:59:59.000Z

458

High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium-doped PPKTP  

E-Print Network [OSTI]

for high power, continuous wave and polarized laser at 946 nm (fig1.c). We demonstrate a polarized laser. Laurell, "High-power, continous-wave, second harmonic generation at 532 nm in periodically poled KTiOPO4(b)(a) (c) High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium

Boyer, Edmond

459

Environmental externalities: Applying the concept to Asian coal-based power generation  

SciTech Connect (OSTI)

This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

Szpunar, C.B.; Gillette, J.L.

1993-03-01T23:59:59.000Z

460

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facility’s electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar energy power generators with advanced thermionic converters for spacecraft applications  

SciTech Connect (OSTI)

This study presents (1) a 50 kW/sub e/ solar energy generator in a geostationary orbit for direct tv-broadcasting and (2) a 10 GW/sub e/ space power plant, with the basic engineering outlines using an advanced thermionic converter proposal given for each. Further, a comparison of the main technical data for the generators with corresponding energy output using (1) advanced thermionic converter and (2) ordinary thermionic converter without auxiliary emitter is shown. 25 refs.

Sahin, S.

1981-01-01T23:59:59.000Z

462

Design of Micro-grid System Based on Renewable Power Generation Units  

E-Print Network [OSTI]

Abstract- Micro-grid system is currently a conceptual solution to fulfill the commitment of reliable power delivery for future power systems. Renewable power sources such as wind and hydro offer the best potential for emission free power for future micro-grid systems. This paper presents a micro-grid system based on wind and hydro power sources and addresses issues related to operation, control, and stability of the system. The micro-grid system investigated in this paper represents a case study in Newfoundland, Canada. It consists of a small hydro generation unit and a wind farm that contains nine variable- speed, double-fed induction generator based wind turbines. Using Matlab/Simulink, the system is modeled and simulated to identify the technical issues involved in the operation of a micro-grid system based on renewable power generation units. The operational modes, technical challenges and a brief outline of conceptual approaches to addressing some of the technical issues are presented for further investigation.

Dr. K. Ravich; M. Manasa; Mr. P. Yohan Babu; G. V. P. Anjaneyulu

463

What explains the increased utilization of Powder River Basin coal in electric power generation?  

SciTech Connect (OSTI)

This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

2008-11-15T23:59:59.000Z

464

Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications  

Office of Energy Efficiency and Renewable Energy (EERE)

Can you imagine a photovoltaic module that’s able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today’s EVs? Innovative solid-state nanocapacitors are making this clean technology possible.

465

IDEA Clean Energy Application Center  

SciTech Connect (OSTI)

The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

Thornton, Robert

2013-09-30T23:59:59.000Z

466

A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel  

SciTech Connect (OSTI)

The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

1996-10-01T23:59:59.000Z

467

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

468

A power regulator for the generators on the A.C. network calculator  

E-Print Network [OSTI]

Regulator 6. The Thermocouple Transducer 7. The Detector Testing Layout 8, The Thermocvuplc Detector 9? Effect of. Varying Paver when feeintaining Vacs 12 15 17 and Voltage Constant 1Q. D. C. Thermocouple Voltage Vs, Generator Pover Output 19 11... is that the sucrsstion of generator outputs equals or exceeds the load on the system. power may be shifted from one generator to the other according to the condition under study. Thus, by loading sll but one unit to the desired levels and letting the other unit seek...

Francis, Lawrence Gregg

1956-01-01T23:59:59.000Z

469

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

470

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect (OSTI)

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

471

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

SciTech Connect (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

472

Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems  

E-Print Network [OSTI]

development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

Pota, Himanshu Roy

473

Combustion technology developments in power generation in response to environmental challenges  

E-Print Network [OSTI]

Combustion technology developments in power generation in response to environmental challenges J.M. Bee´r* Department of Chemical Engineering, Room 66-548, Massachusetts Institute of Technology to be necessary to satisfy demands for CO2 emissions mitigation. From the 1970s on, attention has increasingly

Kammen, Daniel M.

474

Supporting Information Power generation by packed-bed air-cathode microbial fuel cells  

E-Print Network [OSTI]

1 Supporting Information Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan b a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU­ VEOLIA Informatics, China University of Mining and Technology, Xuzhou 221116, PR China * Corresponding author: E

475

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Price Reduction Offsetting demand for natural gas in the electricity sector by increasing wind energy’price reductions, and water savings. Index Terms—power system modeling, wind energywind energy to offset coal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

476

Partition Based Cascaded Generator Scheduling with Constraints for Large Power Networks  

E-Print Network [OSTI]

must be revisited. In this paper, we focus on the generator scheduling problem in smart grid comprehensive view for planning in the smart grid. Given the mammoth size of the power networks, we propose]. In addition, the smart grid vision in- corporates consumer-driven and regulator-driven policies

Kundur, Deepa

477

Qualification of Class 1E static battery charges and inverters for nuclear power generating stations  

SciTech Connect (OSTI)

This standard describes methods for qualifying static battery chargers and inverters for Class 1E installations in environmentally controlled areas outside containment in nuclear power generating stations. The purpose of this standard is to provide specific procedures to meet the requirements of IEEE Std. 323-1974.

Not Available

1981-01-01T23:59:59.000Z

478

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells  

E-Print Network [OSTI]

Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel), Faculty of Advanced Technology, University of Glamorgan, Pontypridd RCT CF37 1DL, UK Oxygen intrusion chamber MFCs at the end of a cycle when the substrate is depleted. A slight increase in dissolved oxygen

479

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with  

E-Print Network [OSTI]

;3 Alternate Fuel Infrastructure Lessons Learned Project ·Project with NREL ·Workshop held in April 2008 Municipalities and Local government agencies Fire and Rescue facilities Policy stations Data centers Universities1 Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand

480

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-Print Network [OSTI]

. The overall engine-generator efficiency at 7.5 kW electrical power load was lower at 19.81% for gasoline fueled engine compared to 35.27% for synthesis gas. The pressure swing adsorption (PSA) system increased the net heating value of the product gas...

Maglinao, Amado Latayan

2013-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "generating clean power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Models for Impact Assessment of Wind-Based Power Generation on Frequency Control  

E-Print Network [OSTI]

the impact of different renewable penetration sce- narios on system frequency performance metrics. In order communication and control; new loads, such as plug-in hybrid electric vehicles (PHEV); advanced power- gration of new renewable-based electricity generation sources, e.g., wind and solar. Focusing on renewable

Liberzon, Daniel

482

Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study  

E-Print Network [OSTI]

for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

Nenes, Athanasios

483

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY  

E-Print Network [OSTI]

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY AND MOTOR VEHICLE PEM FUEL CELL SYSTEMS UCD-ITS-RP-04-21 April 2004 by Timothy Lipman University of California: itspublications@ucdavis.edu #12;Energy Policy 32 (2004) 101­125 Fuel cell system economics: comparing the costs

Kammen, Daniel M.

484

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine  

E-Print Network [OSTI]

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine 2013. 09. 11 Korea ORC #12;Cycle simulation Solver : HYSYS Basic simulation design T-S diagram Pump Turbine Evaporator & turbine : iso-entropic process Pump Turbine Evaporator Condenser 4 1 2 3 Geothermal water Deep seawater

485

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

Karp, A. D.; Simbeck, D. R.

486

Gasification of low-grade fuels in a spouted bed for power generation  

SciTech Connect (OSTI)

Experimental data on the autothermal gasification of wastes from the flotation of Kuzbass coal of grade Zh and low-ash coal from the Kansk-Achinsk Basin in a spouted bed of an inert material at atmospheric pressure are presented. Capabilities for the development and use of this process for power generation based on closed-cycle gas turbine plants are analyzed.

A.A. Belyaev [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

487

Modeling and Control of Co-generation Power Plants: A Hybrid System Approach  

E-Print Network [OSTI]

cycle is driven by some fossil fuel (usually natural gas) and produces electric power via expansion of the gas turbine and generates both electricity and steam for the industrial processes. Clearly, the liberalization of the energy market has promoted the need of operating CCPPs in the most efficient way

Ferrari-Trecate, Giancarlo

488

Simulation of one-minute power output from utility-scale photovoltaic generation systems.  

SciTech Connect (OSTI)

We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2011-08-01T23:59:59.000Z

489

26 OUR PLANET GENERATING POWER, JOBS AND DEVELOPMENTS AndrewBrookes/Corbis  

E-Print Network [OSTI]

26 OUR PLANET GENERATING POWER, JOBS AND DEVELOPMENTS ©AndrewBrookes/Corbis #12;Retooling this change all the more necessary: energy e ciency and renewable energy can be an engine of dramatic new economic growth and job creation. It will be up to the incoming president to marshal public and industry

Kammen, Daniel M.

490

"The Dynamics of Market Power with Deregulated Electricity Generation Richard E. Schuler,  

E-Print Network [OSTI]

"The Dynamics of Market Power with Deregulated Electricity Generation Supplies" Richard E. Schuler previously developed models of dynamic oligopoly pricing, estimates are provided of how rapidly and how far of competition in long distance telephone service the United States, where they "predict" AT&T dynamic price

491

Electronic Power Conversion System for an Advanced Mobile Generator Set Leon M. Tolbert1,3  

E-Print Network [OSTI]

. The military generator set uses an internal combustion diesel engine to drive a radial-gap permanent magnet. The variable frequency, variable voltage produced by the permanent magnet alternator is diode-rectified to dc synchronous machines are presently used to convert the mechanical power of the rotating shaft into three

Tolbert, Leon M.

492

ReRack: Power Simulation for Data Centers with Renewable Energy Generation  

E-Print Network [OSTI]

- cause it should consider different energy sources (wind, solar), stor- age alternatives (batteries, grid ratio of renewable energy sources for a given location and workload. 1. INTRODUCTION Building a dataReRack: Power Simulation for Data Centers with Renewable Energy Generation Michael Brown and Jose

Renau, Jose

493

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

energy resource plan. An extremely abundant and promising source of energy exists in oceans of the following categories: wave energy, marine and tidal current energy, ocean thermal energy, energy fromPredictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1

Paris-Sud XI, Université de

494

A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter  

E-Print Network [OSTI]

's excessive energy demand. An extremely abundant and promising source of energy exists in oceans. Currently be included in one of the following categories: wave energy, marine and tidal current energy, ocean thermalA Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular

Brest, Université de

495

Thermionic power generation. January 1970-December 1980 (citations from the Engineering Index Data Base). Report for January 1970-December 1980  

SciTech Connect (OSTI)

Research on thermionic power generation, power plant design, converter design, and basic research on thermionic materials are cited in the bibliography. Spacecraft applications are also included. (Contains 138 citations, fully indexed and including a table of contents.)

Not Available

1980-12-01T23:59:59.000Z

496

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect (OSTI)

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

497

Department of Energy Announces Third Grant for U.S.-China Clean...  

Energy Savers [EERE]

by the University of Michigan to advance technologies for clean vehicles and one led by West Virginia University to focus on the next generation of clean coal technologies,...

498

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network [OSTI]

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

499

Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007  

SciTech Connect (OSTI)

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01T23:59:59.000Z