National Library of Energy BETA

Sample records for generating capacity electricity

  1. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  2. Economic Dispatch of Electric Generation Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 ...

  3. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  4. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  5. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  6. High current capacity electrical connector

    DOE Patents [OSTI]

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  7. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  8. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  9. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  10. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  11. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  12. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  13. Locational electricity capacity markets: Alternatives to restore the missing signals

    SciTech Connect (OSTI)

    Nieto, Amparo D.; Fraser, Hamish

    2007-03-15

    In the absence of a properly functioning electricity demand side, well-designed capacity payment mechanisms hold more promise for signaling the value of capacity than non-CPM alternatives. Locational CPMs that rely on market-based principles, such as forward capacity auctions, are superior to cost-based payments directed to specific must-run generators, as CPMs at least provide a meaningful price signal about the economic value of resources to potential investors. (author)

  14. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    1980-12-01

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  15. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  16. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  17. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  18. Electrical pulse generator

    DOE Patents [OSTI]

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  19. Mini-biomass electric generation

    SciTech Connect (OSTI)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  20. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  1. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  2. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  3. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Nuclear Generation and Generating Capacity Data Released: August 25, 2016 Data for: June 2016 Next Release: September 2016 Year Capacity and Generation by State and Reactor 2016 P XLS 2015 P XLS 2014 P XLS 2013 XLS 2012 XLS 2011 XLS 2010 XLS 2009 XLS 2008 XLS 2007 XLS 2006 XLS 2005 XLS 2004 XLS 2003 XLS P = Preliminary U.S. Nuclear Generation: 1957 to latest available EIA final data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity

  4. Generation of electrical power

    DOE Patents [OSTI]

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  5. ELECTRIC PULSE GENERATOR

    DOE Patents [OSTI]

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  6. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  7. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  8. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal ...

  9. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  10. Fact #885: August 10, 2015 Electricity Generation - Planned Additions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retirements | Department of Energy 5: August 10, 2015 Electricity Generation - Planned Additions and Retirements Fact #885: August 10, 2015 Electricity Generation - Planned Additions and Retirements SUBSCRIBE to the Fact of the Week Between April 2015 and March 2016, there is a cumulative total of 88,953 megawatts of new electric utility capacity planned. This new capacity will add to the current U.S. capacity of about 1,071,000 megawatts. Over half (53%) of the new capacity that is planned

  11. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  12. THERMO-ELECTRIC GENERATOR

    DOE Patents [OSTI]

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  13. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  14. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this

  15. Monthly Electric Generator data - EIA-860M data file

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Monthly Electric Generator Inventory (based on Form EIA-860M as a supplement to Form EIA-860) Release Date: August 24, 2016 Next Release Date: September 2016 The monthly survey Form EIA-860M, ‘Monthly Update to Annual Electric Generator Report’ supplements the annual survey form EIA-860 data with monthly information that monitors the current status of existing and proposed generating units at electric power plants with 1 megawatt or greater of combined nameplate capacity. EIA

  16. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  17. Electricity Generating Portfolios with Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the ...

  18. Policy Makers' Guidebook for Geothermal Electricity Generation...

    Open Energy Info (EERE)

    Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation AgencyCompany Organization:...

  19. Liupanshui Shuiliandong Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Liupanshui Shuiliandong Electricity Generation Co Ltd Jump to: navigation, search Name: Liupanshui Shuiliandong Electricity Generation Co.Ltd. Place: Liupanshui City, Guizhou...

  20. Solar energy electric generating system

    SciTech Connect (OSTI)

    Anthony, J.

    1988-03-01

    A solar energy electric generating system is described comprising in combination: (a) an array of photocells; (b) means for gating the electrical direct current energy produced by the array of photocells; (c) means for transforming the electrical direct current energy at an output of the array of photocells whereby an alternating current at the output of the transforming means is produced, and which is controlled by a control device for controlling the rate and duty cycle of the gating means; and (d) a photosensitive sampler which samples light incident upon the photocell array and outputs a proportional signal.

  1. Electricity Capacity Expansion Modeling, Analysis, and Visualization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and includes more sectors than ReEDS. For example, it includes modeling of the natural gas and coal supply markets, and a model of electricity load. The ReEDS model...

  2. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis NREL Doubling Geothermal Capacity.pdf (890.69 KB) More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  3. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  4. Electricity Generation, Transmission and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and reliable before it is permitted on the grid. However, energy storage manufacturers and integrators are often unable to afford or provide the logistics necessary for this long-term testing and monitoring. The Energy Storage Test Pad (ESTP) in conjunction with the Energy Storage Analysis Laboratory (ESAL) provides trusted,

  5. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  6. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Installment Electricity: Generation to End-Use ... Power Generation and Transmission: How Can We Plan, ... recent announcement represents a 3.6 billion investment. ...

  7. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Second Installment Electricity: Generation to End Use ... Midwest and Florida Regions, Duke Energy Corporation * Mike Langford, National ...

  8. Concentrating Solar Power Projects - Palen Solar Electric Generating System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Concentrating Solar Power | NREL Palen Solar Electric Generating System This page provides information on the Palen Solar Power Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 4, 2013 Project Overview Project Name: Palen Solar Electric Generating System Country: United States Location: Desert Center, California Owner(s): BrightSource Energy (100%) Technology: Power tower Turbine Capacity:

  9. Unbundling the electric capacity price in a deregulated commodity market

    SciTech Connect (OSTI)

    Rose, J.; Mann, C.

    1995-12-01

    In a deregulated, unbundled market, capacity has value separate from energy. The exact price will reflect the cost of a gas-fired combustion turbine. Energy values alone will not suffice to estimate the firm price for electric power. The lack of quotable, unbundled capacity prices creates uncertainty, especially given the direction taken by the Federal Energy Regulatory Commission in its March 1995 Notice of Proposed Rulemaking on stranded investment and open-access electric transmission. What conclusions can be drawn from the current regime that might paint a picture of tomorrow`s market?

  10. Capacity utilization and fuel consumption in the electric power industry, 1970-1981

    SciTech Connect (OSTI)

    Lewis, E.W.

    1982-07-01

    This report updates the 1980 Energy Information Administration (EIA) publication entitled Trends in the Capacity Utilization and Fuel Consumption of Electric Utility Powerplants, 1970-1978, DOE/EIA-184/32. The analysis covers the period from 1970 through 1981, and examines trends during the period prior to the 1973 Arab oil embargo (1970-1973), after the embargo (1974-1977), and during the immediate past (1978-1981). The report also addresses other factors affecting the electric utility industry since the oil embargo: the reduction in foreign oil supplies as a result of the 1979 Iranian crisis, the 1977 drought in the western United States, the 1978 coal strike by the United Mine Workers Union, and the shutdown of nuclear plants in response to the accident at Three Mile Island. Annual data on electric utility generating capacity, net generation, and fuel consumption are provided to identify changes in patterns of power plant capacity utilization and dispatching.

  11. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick ...

  12. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North Anna","Nuclear","Virginia Electric & Power Co",1893 3,"Possum Point","Natural gas","Virginia Electric & Power Co",1733 4,"Surry","Nuclear","Virginia Electric

  13. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  14. PUCT Substantive Rule 25.91 Generating Capacity Reports | Open...

    Open Energy Info (EERE)

    PUCT Substantive Rule 25.91 Generating Capacity Reports Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: PUCT Substantive...

  15. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  16. Renewable Electricity Generation (Fact Sheet) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    electricity generation technologies including solar, water, wind, and geothermal. ... Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 24 POWER ...

  17. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  18. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  19. Quadrennial Energy Review - Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Second Installment Electricity: Generation to End-Use Stakeholder Meeting Number 3: ... ancillary service, day-ahead energy, and unit commitment markets while becoming the balancing ...

  20. NAFTA opportunities: Electrical equipment and power generation

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

  1. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1830 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1784.3 3,"Seminole (OK)","Natural gas","Oklahoma Gas & Electric Co",1506.5 4,"Muskogee","Coal","Oklahoma Gas &

  2. Electricity market design for generator revenue sufficiency with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity market design for generator revenue sufficiency with increased variable generation Title Electricity market design for generator revenue sufficiency with increased...

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  4. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  5. electric generation | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Graham7781(2017) Super contributor 2 August, 2012 - 13:30 The Transparent Cost Database (TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This...

  6. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  7. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",426.4 4,"Delaware City Plant","Other

  8. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  9. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  10. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped storage","Los Angeles

  11. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  12. EERE FY 2016 Budget Overview -- Renewable Electricity Generation...

    Office of Environmental Management (EM)

    Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview --...

  13. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  14. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), ...

  15. New Zealand Interactive Electricity Generation Cost Model 2010...

    Open Energy Info (EERE)

    Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency...

  16. Yun Xingfu Electricity Generation and Supply Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xingfu Electricity Generation and Supply Co Ltd Jump to: navigation, search Name: Yun Xingfu Electricity Generation and Supply Co., Ltd Place: Lincang City, Yunnan Province, China...

  17. Yancheng Chuangneng Straw Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Yancheng Chuangneng Straw Electricity Generation Co Ltd Jump to: navigation, search Name: Yancheng Chuangneng Straw Electricity Generation Co Ltd Place: Yancheng, Jiangsu Province,...

  18. Category:Electricity Generating Technologies | Open Energy Information

    Open Energy Info (EERE)

    Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

  19. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhenkang County Jineng Electricity Generation Co Ltd Jump to: navigation, search Name: Zhenkang County Jineng Electricity Generation Co., Ltd Place: Lincang, Yunnan Province, China...

  20. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  1. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Final Environmental Impact Statement EIS-0476: ...

  2. Yangbi Puping Electric Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Puping Electric Power Generation Co Ltd Jump to: navigation, search Name: Yangbi Puping Electric Power Generation Co., Ltd Place: Yunnan Province, China Zip: 672500 Sector: Hydro...

  3. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect (OSTI)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  4. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  5. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Nine Mile Point","Natural gas","Entergy Louisiana LLC",2083.3 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.9 3,"Big Cajun 2","Coal","Louisiana Generating LLC",1743 4,"Brame Energy Center","Petroleum","Cleco Power

  6. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  7. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Fired Electricity Generation Market Home There are currently no posts in this category. Syndicate...

  8. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  9. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generated from Coal has Declined while Generation from Natural Gas has Grown - Dataset Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  10. Electrical power systems for distributed generation

    SciTech Connect (OSTI)

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  11. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  12. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  13. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments [OSTI]

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  14. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  15. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Energy Savers [EERE]

    Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino ...

  16. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  17. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  18. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect (OSTI)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  19. CARBON MANAGEMENT STRATEGIES FOR EXISTING U.S. GENERATION CAPACITY: A VINTAGE-BASED APPROACH

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.; Gale, J.; Kaya, Y.

    2003-01-01

    This paper examines the existing stock of fossil-fired power generation capacity in the United States within the context of climate change. At present, there are over 1,337 fossil-fired power generating units of at least 100 MW in capacity, that began operating between the early 1940's and today. Together these units provide some 453 GW of electric power, and simply retiring this stock early or repowering with advanced technology as a means of addressing their greenhouse gas emissions will not be a realistic option for them all. Considering a conservative 40-year operating life, there are over 667 fossil-fired power plants, representing a capacity of over 291 GW, that have a minimum of a decade's worth of productive life remaining. This paper draws upon specialized tools developed by Battelle to analyze the characteristics of this subset of U.S. power generation assets and explore the relationships between plant type, location, emissions, and vintage. It examines the economics of retrofit capture technologies and the proximity of these existing power plants to geologic reservoirs with promise for long-term storage of CO2. The costs for retrofitting these plants and disposing of their CO2 into nearby geologic reservoirs are presented.

  20. Fact #885: August 10, 2015 Electricity Generation - Planned Additions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retirements - Dataset | Department of Energy 5: August 10, 2015 Electricity Generation - Planned Additions and Retirements - Dataset Fact #885: August 10, 2015 Electricity Generation - Planned Additions and Retirements - Dataset Excel file and dataset for Electricity Generation - Planned Additions and Retirements fotw#885_web.xlsx (429.24 KB) More Documents & Publications Fact #874: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact #886:

  1. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  2. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar ... benefits and challenges of incorporating solar generation into the resource planning ...

  3. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 SUBSCRIBE to the Fact of the Week The number of battery packs sold for plug-in electric vehicles (PEV) declined by 3.4% from 2014 to 2015. However, the total battery capacity for all PEVs sold between

  4. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 - Dataset | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Excel file and dataset for Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 fotw#937_web.xlsx (17.8 KB) More Documents &

  5. Optimized Hydrogen and Electricity Generation from Wind

    Broader source: Energy.gov [DOE]

    Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

  6. Electricity generator cost data from survey form EIA-860

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy Comprehensive data ... capacity estimates that use direct current (DC) ratings of PV panels. ...

  7. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect (OSTI)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  8. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, CA | Department of Energy 6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino

  9. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  10. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  11. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  12. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Sandy","Coal","Kentucky Power Co",1060 9,"Riverside Generating LLC","Natural gas","Riverside Generating Co LLC",825 10,"J K Smith","Natural gas","East Kentucky Power Coop, Inc",784

  13. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes Solid Oxide Fuel Cell and Power System Development at PNNL Proton Exchange Membrane Fuel Cells for Electrical Power ...

  14. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  15. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  16. Notice of Intent (NOI): Next Generation of Electric Machines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Notice of Intent (NOI): Next Generation of Electric Machines Notice of Intent (NOI): Next Generation of Electric Machines February 4, 2015 - 12:20pm Addthis The purpose of this Notice of Intent is to provide potential applicants advance notice that the Advanced Manufacturing Office (AMO), on behalf of the DOE Office of Energy Efficiency and Renewable Energy (EERE), intends to issue a Funding Opportunity Announcement (FOA) entitled "Next Generation of Electric Machines"

  17. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coproduced from Oil and/or Gas Wells | Department of Energy Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort project presentation at the 2013 peer review meeting in Colorado. chenahotsprings_peerreview2013.pdf (798.26 KB) More Documents & Publications Electrical Power Generation Using

  18. Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The

    Reports and Publications (EIA)

    2009-01-01

    This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

  19. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting...

  20. Perry Wyoming manure to electricity generation plant | Open Energy...

    Open Energy Info (EERE)

    will build and operate anaerobic digestion systems to convert animal manure into methane for electricity generation. Coordinates: 42.895849, -89.760231 Show Map Loading...

  1. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  2. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  3. Adapting On-site Electrical Generation Platforms for Producer Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  4. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  5. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  6. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Environmental Management (EM)

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable ... change, is captured and destroyed Manure wastes are stabilized, reducing odor and flies ...

  7. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota ...

  8. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  9. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  10. Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest Moniz Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered February 20, 2014 - 2:00pm Addthis Dr. Ernest Moniz Dr. ...

  11. EERE FY 2016 Budget Overview-- Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Renewable Electricity Generation, a presentation with Doug Hollett, Deputy Assistant Secretary, March 2015.

  12. DOE Announces Webinars on Next Generation Electric Machines,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Next Generation Electric ... energy efficiency and renewable energy technologies, to training ... highlight the process for site registration and ...

  13. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  14. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  15. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  16. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) ...

  17. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... North America with a wide array of strategic and ... Northwestern University. 6 Panel 2: Electricity Distribution ... largest distributed solar installation project and ...

  18. Next Generation Electric Machines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In 2013, electricity accounted for approximately 40% of primary energy consumption in the United States and ... manufacturing was responsible for more than a quarter of end-use. ...

  19. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Denton Municipal Electric * Jennifer Smith, Executive Director, Congregation Beth Israel * Tonya Baer, Public Counsel, Texas Office of Public Utility Counsel * Michelle Foss, ...

  20. Energy Intensity Indicators: Electricity Generation Energy Intensity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As shown in the figure, in 1950, central power plants producing only electricity required ... decade the overall performance of the plants in this sector has steadily improved and ...

  1. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    by this Institute of Electrical and Electronics Engineers paper handle high power density winds, and are theoretically capable of delivering a constant 30 MW to the grid. At...

  2. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  3. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  4. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3540 4,"Manatee","Petroleum","Florida Power &

  5. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",299.7 4,"Evander Andrews Power Complex","Natural gas","Idaho Power

  6. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","Talen Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  7. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  8. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 2,"Hunter","Coal","PacifiCorp",1361 3,"Lake Side Power Plant","Natural gas","PacifiCorp",1176 4,"Huntington","Coal","PacifiCorp",909 5,"Currant

  9. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  10. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  11. Table 8.2c Electricity Net Generation: Electric Power Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table ... Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar PV 9 Wind Total ...

  12. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today I would like to address, at a high level, the scope, pace, opportunities and challenges of the expected evolution of an electric utility system with high levels of DER ...

  13. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Today, our member cooperatives provide electricity to over 42 million people in 47 states, many of whom are in "persistent poverty" counties, and they do so in an environment of ...

  14. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1:30 - 2:45 PM Panel 3 Cyber- and Physical Security and Resilience Utilities and other owners and operators of electricity sector assets must provide reliable service in the face ...

  15. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... demand response; distributed generation; digital communications, sensors and control ... Product Management and Product Marketing, Energy Management, Smart Grid Solutions ...

  16. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... demand response; distributed generation; digital communications, sensors and control ... Cheryl Roberto, Partner, Utility Transformation & Regulation, Twenty First Century ...

  17. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  18. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Mr. Kelley became an Eagle Scout in 1990. Panel 1: Bulk Power Generation and Transmission: ... He also helped develop a new method for assessing the economic benefits of proposed ...

  20. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Prior to joining MISO, Ms. Curran was Manager of Power Generation & Supply Strategy for the Mid-Atlantic and Mid-Continent Regions at Reliant Resources. She holds a Bachelor of ...

  1. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore » the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  2. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  3. A systems model and potential leverage points for base load electric generating options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.

    1993-09-01

    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  4. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  5. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  6. Proton Exchange Membrane Fuel Cells for Electrical Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Commercial Airplanes | Department of Energy Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes This report, prepared by Sandia National Laboratories, is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft. The report examines whether on-board airplane fuel cell systems are

  7. Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Guarantee Announcement in Waynesboro, GA - As Delivered | Department of Energy Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered February 20, 2014 - 2:00pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you, Tom [Fanning] and Paul [Bowers], and Buzz [Miller] as well. It's

  8. DOE Announces Webinars on Next Generation Electric Machines, Zero Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, and More | Department of Energy Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - 8:44am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  9. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  10. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  11. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  12. Table 8.4b Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  13. DOE Awards Cooperative Agreement for Innovative Electric Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility with Pre-Combustion CO2 Capture and Storage | Department of Energy Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean

  14. Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: September 30, 2013 Electricity Generation by Source, 2003-2012 Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 With the increase in market penetration for electric vehicles, the upstream emissions from electricity generation become important. Those emissions are dependent upon the source of electricity generation. Although the generation of electricity varies greatly by region, the overall use of coal declined by about 24% from 2008 to 2012.

  15. Table 11.4 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row"

  16. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  17. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  18. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  19. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  20. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  1. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  2. Table 11.4 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,406 632 Q 746 20-49 2,466 1,907 535 25 50-99 2,593 2,513 45 36 100-249 11,375 10,771

  3. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  4. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Cost and Quality of Fuels for Electric Plants - Energy Information...

    Gasoline and Diesel Fuel Update (EIA)

    Electricity transactions, reliability Electricity and the environment All electricity data reports Analysis & Projections Major Topics Most popular Capacity and generation Costs, ...

  6. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  7. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  8. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  9. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  10. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  11. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  12. Monthly/Annual Energy Review - electricity section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

  13. Monthly/Annual Energy Review - electricity section

    Reports and Publications (EIA)

    2016-01-01

    Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

  14. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  15. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect (OSTI)

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  16. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  17. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic

  18. Table 8.11b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000 [10] NA

  19. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  20. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  1. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  2. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature ...

  3. Big drop in coal-fired electricity generation during first half...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Big drop in coal-fired electricity generation during first half of 2016 The amount of U.S. electricity generated by coal continues to decline in 2016, as power plant operators turn ...

  4. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  5. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect (OSTI)

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1995-02-01

    For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different, application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.

  6. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact Statement Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA February 25, 2014 EIS-0476: Record of Decision Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA

  7. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  8. Electric Power Generation from Low to Intermediate Temperature Resources

    SciTech Connect (OSTI)

    Gosnold, William D.

    2015-06-18

    produced 26 peer-reviewed papers and 62 presentations at professional meetings. Faculty involved in the program developed five graduate level courses covering different elements in heat flow and geothermal energy that are now offered in the Harold Hamm School of Geology and Geological Engineering. Lessons learned – Keys to developing a successful project;1. Determine target formations; a. Data from oil and gas operators, state oil and gas regulatory agencies, and state geological surveys help to identify producing formations and their properties; 2. Determine the quantity of energy available in the target formations; a. A complete thermal analysis of the basin or region yields the most useful information; b. Critical data include: BHT, heat flow, stratigraphy, lithology, lithological properties, and thermal conductivity, subsurface structure; 3. Determine fluid production potential; a. State oil and gas regulatory agencies, and state geological surveys have data on oil, gas and water production. State Water Commission/Agencies have data on water quality, aquifers, and regulations; b. Consider single horizontal wells, multiple conventional wells, and unitized fields; 4. Calculate energy production capacity of each formation based on different well combination and power plant scenarios. This is a broad overview rather than a site specific analysis; 5. Research and understand the local electrical power industry. Obtain the PPA before committing to the project; 6. Work with the high-level personnel in the oil company partner. Obtain an MOU that addresses all issues in the project including what to expect if the company goes out of business, is bought out, changes management, etc; and 7. Be prepared for project delays.

  9. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool

  10. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  11. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  12. Electricity Transmission Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  13. Electricity Transmission and Distribution Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  14. EIA's Energy in Brief: How much U.S. electricity is generated from

    Gasoline and Diesel Fuel Update (EIA)

    renewable energy? much U.S. electricity is generated from renewable energy? Last Updated: May 5, 2016 U.S. power plants used renewable energy sources, including water, wind, biomass wood and waste, geothermal, and solar, to generate about 13% of the electricity produced in the United States during 2015. Sources of Renewable Electricity Generation, 2013; chart shaped like an outlet. Renewables are 13% of generation. Renewable breakout: hydropower, 52%; wind, 32%; biomass wood, 8%; biomass

  15. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  16. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect (OSTI)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  17. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  18. Electric power generation expansion and integration, Micronesia (Yap, Kosrae, Pohnpei, Chuuk) power plants project. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The State of Yap in the Federated States of Micronesia is now entirely dependent on oil for electric power generation. The present high costs and limited capacity for electric power generation are major disincentives to the economic development of Yap. Preliminary proposals from two U.S. companies regarding waste-to-energy plants might furnish electricity to Yap below present costs. Yap and its sister state of Kosrae have agreed to jointly seek a grant from the U.S. Trade and Development Program (TDP) to cover three areas: An assessment of projected power generating requirements; A review of generating alternatives with emphasis on waste to energy generation; and An environmental analysis of the waste to energy alternatives. The government in Yap has two objectives: reduce the amount of money spent for diesel fuel now and in the future and make sufficient electricity available at a reasonable price to attract development for the economy of Yap. Officials on both Pohnpei and Kosrae echoed these objectives.

  19. Table 8.4a Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  20. Table 8.5c Consumption of Combustible Fuels for Electricity Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant ... Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum ...

  1. Electrical generation using a vertical-axis wind turbine

    SciTech Connect (OSTI)

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  2. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. coproduced_demoprojects_peerreview2013.pdf (2.47 MB) More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

  3. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  4. Table 8.4c Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial ... Power Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum of ...

  5. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co- Produced and Other Oil Field Fluids William Gosnold ... entrepreneurship in development of oil field geothermal resources and to train ...

  6. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect (OSTI)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  7. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  8. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high power density and energy efficient megawatt (MW) class electric motors in three primary areas: (1) chemical and petroleum refining industries; (2) natural gas ...

  9. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, ...

  10. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect (OSTI)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  11. DOE Quadrennial Energy Review 1.2, Electricity: Generation to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The project uses Toshiba's lithium-ion battery, with 2-MW output and 0.8 megawatt-hour capacity. Duke Energy, LG Chem and Greensmith are teaming up for a 2-MW storage project will ...

  12. Annual Electric Generator data - EIA-860 data file

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... date, energy source, heat content, nameplate capacity, summer and winter capability, etc. 860-A (Utility) Data are compressed into a zip file that expands into xls data files and a ...

  13. MHK Technologies/Electric Generating Wave Pipe | Open Energy...

    Open Energy Info (EERE)

    Dimensions Technology Nameplate Capacity (MW) Potential 40 500KW 5MW per unit within cluster Cluster quantity unlimited Device Testing Date Submitted 56:42.6 << Return to the MHK...

  14. The Market for Coal Based Electric Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Market for New Coal Power Plant Technology 0 50 100 150 200 250 300 350 400 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 Coal-Fired Plant Capacity (GW) EIA Projected Coal ...

  15. The effect of plant reliability improvement in the cost of generating electricity

    SciTech Connect (OSTI)

    Nejat, S.; Sanders, R.C.; Tsoulfanidis, N.

    1982-02-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant, as a result of improving the availability of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel series system having components with failure and repair rates distributed exponentially in time. The method has been applied to different subsystems, systems, and the secondary loop of a plant as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal allocation of spare parts to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utility will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  16. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or

  17. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas