Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

2

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Broader source: Energy.gov (indexed) [DOE]

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

3

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

4

Sustainable Electricity | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sustainable Electricity SHARE Sustainable Electricity Outdoor power line accelerated testing. Oak Ridge National Laboratory's Energy Efficiency and Electricity Technologies Program develops technologies to create a cleaner environment, a stronger economy, and a more secure future for our nation. The Program is committed to expanding energy resource options and to improving efficiency in every element of energy production and use, and to ensuring a reliable and secure grid that fully integrates central generation with distributed resources, manages power flows, facilitates recovery from disruptions to the energy supply, and meets the nation's need for increasing electric

5

Historical development of concentrating solar power technologies to generate clean electricity efficiently A review  

Science Journals Connector (OSTI)

Abstract The conventional ways for generating electricity around the world face two main problems, which are gradual increase in the earth?s average surface temperature (global warming) and depleting fossil fuel reserves. So switching to renewable energy technologies is an urgent need. Concentrating solar power (CSP) technologies are one of renewable technologies that are able to solve the present and future electricity problems. In this paper the historical evolution for the cornerstone plants of CSP technologies to generate clean electricity was reviewed and the current projects worldwide of CSP technologies were presented to show that the CSP technologies are technically and commercially proven and have the possibility for hybridization with fossil fuel or integration with storage systems to sustain continuous operation similar to conventional plants. Among all solar thermal technologies parabolic trough is the most technically and commercially proven. It also has the possibility for hybridization since it is proven by operating in several commercial projects for more than 28 years. It has a high maturity level and able to provide the required operating heat energy either as a stand-alone or in hybrid systems at the lowest cost and lower economic risks. For this reason, this technology is dominant in the operational and under-construction projects. However, currently there is a trend toward employing the other CSP technologies in the future projects as a result of the improvement in their performance. The use of PTC technology in the operational CSP projects is 95.7% and has decreased to 73.4% for the under-construction projects. Meanwhile, the uses of Fresnel collector (LFC), Tower power (TSP) and Stirling dish (SDC) technologies in the operational projects are 2.07%, 2.24%, and 0% respectively and have increased to 5.74%, 20.82% and 0.052% respectively for the under-construction projects. For the development projects, the use of TSP technology has reached to 71.43%, compared to 28.57% for PTC.

Dhyia Aidroos Baharoon; Hasimah Abdul Rahman; Wan Zaidi Wan Omar; Saeed Obaid Fadhl

2015-01-01T23:59:59.000Z

6

Buying Clean Electricity | Department of Energy  

Energy Savers [EERE]

to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. The premium covers the increased costs incurred by the power...

7

Science Blog -Bacterium cleans up uranium, generates electricity Create an account  

E-Print Network [OSTI]

electrons and "reduce" metal ions as part of its energy-generating metabolism. From DOE/U.S. Department and biotechnologies for cleaning up groundwater at DOE and at industry sites." The contamination of groundwater that has led to fundamental changes in how scientists evaluate this microbe," said Barbara Methe, the TIGR

Lovley, Derek

8

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

LBNL-57451 Clean Energy Technologies A Preliminary Inventorymight be termed a clean energy technology initiative, or aand uptake of the clean power technologies identified in the

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

9

Buying Clean Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buying Clean Electricity Buying Clean Electricity Buying Clean Electricity July 2, 2012 - 8:21pm Addthis You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. What are the key facts? Everyone can purchase renewable power for their home or business for a small premium. Purchasing renewable power is your vote for cleaner air and water. Purchasing renewable power supports the growth of the renewable energy industry.

10

Is It Better To Burn or Bury Waste for Clean Electricity Generation?  

Science Journals Connector (OSTI)

The process models in MSW-DST can calculate total electricity generated and apply an offset analysis on the grid mix of fuels specific to each of the North American Electric Reliability Council (NERC) regions, an average national grid mix, or a user-defined grid mix. ... The background LCI data are collected on a unit mass of fuel (23); when converted on a per unit of electricity generated basis, the magnitude of resultant emissions depends on the efficiency of the power plant. ... While we have provided a detailed, side-by-side comparison of life-cycle emissions from LFGTE and WTE, there is an important remaining question about scale: How big an impact can energy recovery from MSW make if all of the discarded MSW (166 million tons/year) is utilized? ...

P. Ozge Kaplan; Joseph DeCarolis; Susan Thorneloe

2009-02-10T23:59:59.000Z

11

Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Pacific Gas and Electric Company to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Google Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Delicious Rank Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

12

Clean Cities: Electric Vehicle Infrastructure Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

13

Clean Cities: Electric Vehicle Community Readiness Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Projects to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Projects on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Projects on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Projects on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects

14

Clean Cities: Electric Vehicle Community Readiness Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Workshop to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Workshop on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Workshop on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Workshop on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Workshop on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure

15

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Broader source: Energy.gov (indexed) [DOE]

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

16

Department of Energy Quadrennial Technology Review Clean Electricity...  

Energy Savers [EERE]

Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the...

17

Utility Generation and Clean Coal Technology (Indiana) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Industry Recruitment/Support Performance-Based Incentive Rebate Program Grant Program Provider Indiana Utility Regulatory Commission This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal gasification. The statute also supports the development of projects using renewable energy sources as well

18

Clean Electricity Initiatives in California  

U.S. Energy Information Administration (EIA) Indexed Site

* Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement...

19

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

20

Flying Electric Generators | OpenEI Community  

Open Energy Info (EERE)

Flying Electric Generators Home > Groups > Clean and Renewable Energy Dc's picture Submitted by Dc(107) Contributor 15 September, 2014 - 12:17 How High Can They Go? Are you ready...

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Vehicle Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on AddThis.com...

22

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

23

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

24

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

25

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

26

Generating electricity from viruses  

ScienceCinema (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2014-06-23T23:59:59.000Z

27

Generating electricity from viruses  

SciTech Connect (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2013-10-31T23:59:59.000Z

28

clean, "smart" electrical grids; and advance clean energy research and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean, "smart" electrical grids; and advance clean energy research and clean, "smart" electrical grids; and advance clean energy research and development (R&D). The new action plan also places a greater emphasis on energy efficiency to take advantage of both countries' approaches and tools to help facilitate the uptake of energy efficiency technologies and practices. Accomplishments to date under the CED include: (1) completing the final phase of the Weyburn-Midale Carbon Dioxide Monitoring and Storage Project, which focuses on best practices for the

29

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric  

Broader source: Energy.gov (indexed) [DOE]

Construction Begins on First-of-its-Kind Advanced Clean Coal Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated gasification combined cycle (IGCC) facility near Orlando, Fla. The new generating station will be among the cleanest, most efficient coal-fueled power plants in the world. Southern Company will operate the facility through its Southern Power subsidiary, which builds, owns, and manages the company's competitive generation assets. It will be located at OUC's Stanton Energy Center in

30

Rising Cost of Generating Electricity  

Science Journals Connector (OSTI)

... METHODS are being discussed by electrical engineers to meet the rising costs of generating ... of generating electricity. Even before the War this was becoming a serious problem. In some cases it ...

1940-07-20T23:59:59.000Z

31

Reviewing electricity generation cost assessments.  

E-Print Network [OSTI]

?? Studies assessing the electricity generation cost of various power generating technologies are becoming increasingly common and references to such studies can often be heard (more)

Larsson, Simon

2012-01-01T23:59:59.000Z

32

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

33

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

34

Power Electonics & Electric Machinery | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has dramatically advanced the technology of state-of-the-art inverters, DC-DC converters, motor control techniques, efficient compact electric machines, and high voltage, high...

35

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

36

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

37

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

38

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

39

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

40

Coal based electric generation comparative technologies report  

SciTech Connect (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OpenEI - Electricity Generation  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Generation (1980 - 2009) http://en.openei.org/datasets/node/878 Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA).

License
Type of License:  Other (please specify below)
Source of

42

Method for protecting an electric generator  

DOE Patents [OSTI]

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

43

Scientists decipher genome of bacterium that remediates uranium contamination, generates electricity Public release date: 11-Dec-2003  

E-Print Network [OSTI]

a microbe's capability to generate electricity and to help clean up radioactive contamination, scientistsScientists decipher genome of bacterium that remediates uranium contamination, generates that remediates uranium contamination, generates electricity Analysis of Geobacter sulfurreducens genes reveals

Lovley, Derek

44

New San Antonio Airport Terminal Generating Clean Power | Department of  

Broader source: Energy.gov (indexed) [DOE]

San Antonio Airport Terminal Generating Clean Power San Antonio Airport Terminal Generating Clean Power New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. Todd G. Allen Project Officer, Golden Field Office What are the key facts? The City of San Antonio's EECBG proram staff awarded a block grant for a solar photovoltaic (PV) system at the airport, designed and built the project, and complied with all local and federal regulations... all in seven months. In early 2010, the City of San Antonio's Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at their fingertips. The opening of the new San

45

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

46

Electricity Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Generation world Data text/csv icon total_electricity_net_generation_1980_2009billion_kwh.csv (csv, 46.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

47

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

48

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network [OSTI]

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

49

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Energy Savers [EERE]

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

50

Clean Distributed Generation for Slum Electrification: The Case of Mumbai  

E-Print Network [OSTI]

the lack of electrification in slums in India, focussing on the slums in the city of Mumbai as a case studyClean Distributed Generation for Slum Electrification: The Case of Mumbai This paper discusses the city's 16 million inhabitants in 2335 distinct settlements, are used as a case-study throughout

Mauzerall, Denise

51

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

52

Do You Buy Clean Electricity From Your Utility? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean electricity from your utility. If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy. Do you buy clean electricity from your utility? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure Six Places to Find Help with Your Energy Costs Do You Drive a Hybrid Electric Vehicle?

53

The Easy Way to Use Renewables: Buy Clean Electricity | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to me. My wife and I had a small solar electric system installed on the roof of our house that produces about 2% of the annual electricity consumed by our all-electric house. We don't have a large south-facing roof, so we couldn't easily install a larger system. But what about the remaining 98% electricity that we need to buy? About half a dozen years ago we signed up for 100% wind electricity after our state deregulated its electricity industry. We didn't have much of a choice to purchase "green" electricity. Only two utility companies offered electricity produced by renewable energy to residents of Maryland where I

54

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

55

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

56

Apparatuses and methods for generating electric fields  

DOE Patents [OSTI]

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

57

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

58

Winning with Wind: Electric Co-ops Providing Clean Energy to Customers  

Office of Energy Efficiency and Renewable Energy (EERE)

Electric co-ops are increasingly turning to wind power as a clean, reliable source of energy that slashes carbon emissions and protects the environment. The Energy Department and National Rural Electric Cooperative Association recently recognized two electric co-ops that demonstrate leadership in wind energy: Old Dominion Electric Cooperative of Virginia and the Rural Electric Convenience Cooperative (RECC) of Illinois.

59

Mini-biomass electric generation  

SciTech Connect (OSTI)

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

60

Compare All CBECS Activities: Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

By Electricity Generation By Electricity Generation Compare Activities by ... Electricity Generation Capability For commercial buildings as a whole, approximately 8 percent of buildings had the capability to generate electricity, and only 4 percent of buildings actually generated any electricity. Most all buildings generated electricity only for the purpose of emergency back-up. Inpatient health care and public order and safety buildings were much more likely to have the capability to generate electricity than other building types. Over half of all inpatient health care buildings and about one-third of public order and safety buildings actually used this capability. Electricity Generation Capability and Use by Building Type Top Specific questions may be directed to: Joelle Michaels

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clean Cities: Clean Cities Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities Partnerships to someone by E-mail Share Clean Cities: Clean Cities Partnerships on Facebook Tweet about Clean Cities: Clean Cities Partnerships on Twitter Bookmark Clean Cities: Clean Cities Partnerships on Google Bookmark Clean Cities: Clean Cities Partnerships on Delicious Rank Clean Cities: Clean Cities Partnerships on Digg Find More places to share Clean Cities: Clean Cities Partnerships on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

62

Definition: Electric generator | Open Energy Information  

Open Energy Info (EERE)

generator generator Jump to: navigation, search Dictionary.png Electric generator A device for converting mechanical energy to electrical energy. Note: The EIA defines "electric generator" as a facility rather than as a device; per the EIA definition, examples include electric utilities and independent power producers.[1][2] View on Wikipedia Wikipedia Definition In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electric current to flow through an external circuit. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air, or any other source of

63

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Broader source: Energy.gov (indexed) [DOE]

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

64

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

. Instead, the battery supplies electricity to the electric motor . Photo from Margaret Smith, DOEPIX 18215 Plug-In Electric Vehicle Handbook for Consumers 5 Factors That Affect...

65

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

66

Conditions on Electric Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

67

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

68

Small Modular Reactors and U.S. Clean Energy Sources for Electricity |  

Broader source: Energy.gov (indexed) [DOE]

Small Modular Reactors and U.S. Clean Energy Sources for Small Modular Reactors and U.S. Clean Energy Sources for Electricity Small Modular Reactors and U.S. Clean Energy Sources for Electricity For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume renewables reach 650 TWhr, (double the EIA estimate) that leaves 2000 TWhr for nuclear power. If the Administration's loan guarantee program for current large reactors is successful, then one might expect the large reactors to reach 1000 TWhr by 2035. This leaves some 1000 TWhr for SMR - that is a lot of electricity. SMR and Clean Energy.pdf More Documents & Publications Slide 1 Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment

69

THE VALUATION OF CLEAN SPREAD OPTIONS: LINKING ELECTRICITY, EMISSIONS RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ  

E-Print Network [OSTI]

on CO2 by the regulation should be included in the costs of production to set the price of electricity which can be run when it is profitable to do so (namely when the price of electricity is greater thanTHE VALUATION OF CLEAN SPREAD OPTIONS: LINKING ELECTRICITY, EMISSIONS AND FUELS REN´E CARMONA

Carmona, Rene

70

Future Developments of Large Electric Generators  

Science Journals Connector (OSTI)

...Future Developments of Large Electric Generators C. Concordia Several observations can...continual development of large electric generators: 1. The tendency toward always increasing...unbalanced loading. 5. The type of steam generator as it may influence a tendency to use...

1973-01-01T23:59:59.000Z

71

Generating electricity from the oceans  

Science Journals Connector (OSTI)

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

AbuBakr S. Bahaj

2011-01-01T23:59:59.000Z

72

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals  

E-Print Network [OSTI]

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals Contents Detection and Generation of Electric Signals in Fishes: An Introduction Morphology of Electroreceptive Sensory Organs Electrolocation Electric Organs Generation of Electric Signals Development of Electroreceptors and Electric

73

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Distributed Generation Dispatch Optimization Under Various Electricity Tariffs which generatorsDistributed Generation Dispatch Optimization Under Various Electricity Tariffs no-DG The generator

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

74

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

75

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

76

INTRODUCTION Weakly electric fish generate an electric organ discharge (EOD)  

E-Print Network [OSTI]

4196 INTRODUCTION Weakly electric fish generate an electric organ discharge (EOD) that results in an electric field that surrounds the fish's body. In Eigenmannia, the EOD is quasi-sinusoidal and when fish are in close proximity (~1m or less) their EODs interact. In the case of two nearby conspecifics, the combined

77

Ultra High Efficiency Electric Motor Generator  

Science Journals Connector (OSTI)

The Ultra High Efficiency Electric Motor Generator is an exciting opportunity to leverage ... in green technology. Marand currently produces this motor/generator at our Moorabbin facility for application ... sola...

Jeff Brown

2012-01-01T23:59:59.000Z

78

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network [OSTI]

In theory, competitive electricity markets can provide incentives for efficient investment in generating capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generating capacity can sign...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

79

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...monthly averages of wind power production...negative. Very large wind power penetration...forms. Plug-in hybrid electric vehicles...excesses in electricity system, while energy-rich...storage. Potential wind-generated electricity...only wind but also solar. The additional...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

80

CHP: A Clean Energy Solution, August 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and...

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

82

AEO2011: Electricity Generation by Electricity Market Module Region and  

Open Energy Info (EERE)

Generation by Electricity Market Module Region and Generation by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 96, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into texas regional entity, Florida reliability coordinating council, midwest reliability council and northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electricity generation Data application/vnd.ms-excel icon AEO2011: Electricity Generation by Electricity Market Module Region and Source- Reference Case (xls, 400.2 KiB) Quality Metrics

83

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

84

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

85

Renewable Electricity Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

86

Renewable Electricity Generation in the United States  

E-Print Network [OSTI]

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

87

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

88

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Ebadi, Zahra

2014-01-01T23:59:59.000Z

89

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network [OSTI]

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

90

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

91

The generation of oscillations in networks of electrically coupled cells  

E-Print Network [OSTI]

The generation of oscillations in networks of electrically coupled cells Y. Loewenstein* , Y. Yarom systems, the electrical coupling of nonoscil- lating cells generates synchronized membrane potential dynam- ics. We show that strong electrical coupling in this network generates multiple oscillatory

Loewenstein, Yonatan

92

MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

REPORT REPORT INSTRUCTIONS|Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours| |PURPOSE|Form EIA-860M collects data on the status of: Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; Existing generators scheduled to retire from service within the subsequent 12 months; and Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry.| |REQUIRED RESPONDENTS|Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT,

93

Renewable Generation and Interconnection to the Electrical Grid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California...

94

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

95

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

96

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

97

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

98

THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIRTH OF NUCLEAR-GENERATED ELECTRICITY BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not then available to pursue the idea After the war, the newly established Atomic Energy Commission (now the Department of Energy) assigned some of the nation's nuclear skills and resources to developing peaceful uses of the atom. The large bodies of uranium ore found in the 1950's were

99

CleanDistributedGeneration.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

100

The Economics of Steam Electric Generation  

E-Print Network [OSTI]

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network [OSTI]

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However, (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

102

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network [OSTI]

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

103

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

104

The Rising Cost of Electricity Generation  

SciTech Connect (OSTI)

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades.

Tobey Winters

2008-06-15T23:59:59.000Z

105

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

106

Implementation of optimum solar electricity generating system  

Science Journals Connector (OSTI)

Under the 10th Malaysian Plan the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015 which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia harnessing technologies related to solar energy resources have great potential for implementation. However the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time and there is a need for electrical energy storage system so that there is electricity available during the night time as well. The meteorological condition such as clouds haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper the technical aspects of the implementation of optimum SEGS is discussed especially pertaining to the positioning of the PV panels.

2014-01-01T23:59:59.000Z

107

Two-stage electric generator system  

SciTech Connect (OSTI)

The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy output from the stator winding.

Leroux, A.

1981-09-29T23:59:59.000Z

108

Electric current generation in distorted graphene  

E-Print Network [OSTI]

Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

2013-12-11T23:59:59.000Z

109

High Electric Demand Days: Clean Energy Strategies for Improving Air Quality  

Broader source: Energy.gov [DOE]

This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

110

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

111

Clean Cities: National Clean Fleets Partner: Staples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staples Staples to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Staples on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Staples on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Staples on Google Bookmark Clean Cities: National Clean Fleets Partner: Staples on Delicious Rank Clean Cities: National Clean Fleets Partner: Staples on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Staples on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

112

Clean Cities: National Clean Fleets Partner: Verizon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verizon Verizon to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Verizon on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Verizon on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Google Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Delicious Rank Clean Cities: National Clean Fleets Partner: Verizon on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Verizon on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

113

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

114

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING  

E-Print Network [OSTI]

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC and retail services. The gains are likely to be largest in electric generation because generation costs more heavily regulated. This chapter will evaluate changes in the efficiency of electric generation

Sadoulet, Elisabeth

115

Registration of Electric Generators (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State Connecticut Program Type Generation Disclosure Provider Department of Energy and Environmental Protection All electric generating facilities operating in the state, with the

116

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

117

Fact #799: September 30, 2013 Electricity Generation by Source...  

Broader source: Energy.gov (indexed) [DOE]

9: September 30, 2013 Electricity Generation by Source, 2003-2012 Fact 799: September 30, 2013 Electricity Generation by Source, 2003-2012 With the increase in market penetration...

118

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network [OSTI]

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

119

Table 11.4 Electricity: Components of Onsite Generation, 2010...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit:...

120

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires  

E-Print Network [OSTI]

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires K. Momeni, G. M October 2010; published online 1 December 2010 A nanocomposite electrical generator composed of an array system and loading configuration can generate up to 160% more electric potential than the values reported

Endres. William J.

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

122

Electrical dark compacton generator: Theory and simulations  

Science Journals Connector (OSTI)

A modified Colpitts oscillator (MCO) associated with a nonlinear transmission line (NLTL) with intersite nonlinearity is introduced as a self-sustained generator of a train of modulated dark signals with compact shape. Equations of state describing the dynamics of the MCO part are derived and the stationary state is obtained. Using the Routh-Hurwitz criterion, the result of a stability analysis indicates the existence of a limit cycle in certain parameter regimes and there the oscillation of the circuit delivers pulselike electrical signals. The train of generated signals is then transformed into a train of compact modulated dark voltage solitons by the NLTL. The exactness of this analytical analysis is confirmed by numerical simulations performed on the circuit equations. Finally, simulations show the capacity of this circuit to work as a generator of compactlike dark voltage solitons. The performance of the generator, namely, the pulse width and the repetition rate, is controlled by the magnitude of the characteristic parameters of the electronic components of the device.

Fabien Kenmogne; David Yeml; Paul Woafo

2012-05-22T23:59:59.000Z

123

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

124

EIA - Annual Energy Outlook 2008 (Early Release)-Electricity Generation  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation Electricity Generation Annual Energy Outlook 2008 (Early Release) Electricity Generation U.S. electricity consumption—including both purchases from electric power producers and on-site generation—increases steadily in the AEO2008 reference case, at an average rate of 1.3 percent per year. In comparison, electricity consumption grew by annual rates of 4.2 percent, 2.6 percent, and 2.3 percent in the 1970s, 1980s, and 1990s, respectively. The growth rate in the AEO2008 projection is lower than in the AEO2007 reference case (1.5 percent per year), and it leads to lower projections of electricity generation. Figure 4. Electricity generation by fuel, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

125

Plasma discharge self-cleaning filtration system  

DOE Patents [OSTI]

The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

2014-07-22T23:59:59.000Z

126

Electrical optimization of plasma-enhanced chemical vapor deposition chamber cleaning plasmas  

Science Journals Connector (OSTI)

Fluorinated gas discharges are widely used by the semiconductor industry in etching and chamber cleaning applications but the performance of these discharges varies in unpredictable ways for unknown reasons believed to be electrical in origin. To investigate possible mechanisms for this behavior we have measured the electrical characteristics of NF 3 /Ar CF 4 /O 2 /Ar and C 2 F 6 /O 2 /Ar chamber cleaning plasmas at 6.7267 Pa in a 13.56 MHz capacitively coupled parallel-plate reactor using radio-frequency current and voltage probes and optical emission spectroscopy. From the measurements power losses in the external circuitry surrounding the discharge were determined. Furthermore using the measurements and equivalent circuit models the mechanisms by which power was absorbed within the discharge itself were investigated. Power was absorbed most efficiently at particular values of the discharge impedance. These optimal impedances occur in the middle of a transition from capacitive impedances at low pressures to resistive impedances at high pressures. These results illustrate that the plasma impedance is a useful parameter for monitoring and optimizing plasma processes in highly electronegative gases.

M. A. Sobolewski; J. G. Langan; B. S. Felker

1998-01-01T23:59:59.000Z

127

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

128

Clean Cities: 2011 Clean Cities Stakeholder Summit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: 2011 Clean Cities Stakeholder Summit to someone by E-mail Share Clean Cities: 2011 Clean Cities Stakeholder Summit on Facebook Tweet about Clean Cities: 2011 Clean Cities Stakeholder Summit on Twitter Bookmark Clean Cities: 2011 Clean Cities Stakeholder Summit on Google Bookmark Clean Cities: 2011 Clean Cities Stakeholder Summit on Delicious Rank Clean Cities: 2011 Clean Cities Stakeholder Summit on Digg Find More places to share Clean Cities: 2011 Clean Cities Stakeholder Summit on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure Fuel & Vehicle Strategy 2011 Clean Cities Stakeholder Summit

129

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Renewable Electricity Generation  

Broader source: Energy.gov (indexed) [DOE]

April 30, 2013 April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American families and businesses * Protecting health and safety by mitigating the impact

130

Optimized Hydrogen and Electricity Generation from Wind  

Broader source: Energy.gov [DOE]

Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

131

International Coal Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Australia NA NA NA NA NA NA NA NA NA Austria 45.70 52.67 64.47 81.28 87.52 92.75 96.24 122.10 120.10 Belgium 37.72 34.48 35.94 72.46 80.35 63.24 75.54 130.54 NA Canada 18.52 19.17 21.03 20.32 24.50 26.29 NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 31.29 31.43 31.18 47.75 57.70 54.68 70.17 118.49 NA Czech Republic3 8.05 8.52 C C C C C C C Denmark NA NA NA NA NA NA NA NA NA Finland 46.66 44.02 48.28 67.00 72.06 74.27 83.72 142.90 NA France 45.28 42.89 42.45 63.55 74.90 72.90 83.90 136.10 NA Germany 51.86 45.70 50.02 70.00 79.74 77.95 90.26 152.60 NA

132

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

133

State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

Not Available

2011-04-01T23:59:59.000Z

134

Renewable Power Options for Electricity Generation on Kaua'i: Economics  

Broader source: Energy.gov (indexed) [DOE]

Renewable Power Options for Electricity Generation on Kaua'i: Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. 52076.pdf More Documents & Publications Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

135

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

period for coal, petroleum, and natural gas are by factors of 1.72, 7.27, and 1 "Conversion" here does1 Costs of Generating Electrical Energy 1.0 Overview The costs of electrical energy generation can of electric energy out of the power plant. 2.0 Fuels Fuel costs dominate the operating costs necessary

McCalley, James D.

136

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

137

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

138

CSEM WP 111R The Efficiency of Electricity Generation  

E-Print Network [OSTI]

CSEM WP 111R The Efficiency of Electricity Generation in the U.S. After Restructuring Catherine Berkeley, California 94720-5180 www.ucei.org #12;THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER-utility generating plants. Then, beginning with California in 1996, nearly half the states passed and a smaller

California at Berkeley. University of

139

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

140

Clean Cities: Clean Cities Conferences and Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conferences and Workshops Conferences and Workshops to someone by E-mail Share Clean Cities: Clean Cities Conferences and Workshops on Facebook Tweet about Clean Cities: Clean Cities Conferences and Workshops on Twitter Bookmark Clean Cities: Clean Cities Conferences and Workshops on Google Bookmark Clean Cities: Clean Cities Conferences and Workshops on Delicious Rank Clean Cities: Clean Cities Conferences and Workshops on Digg Find More places to share Clean Cities: Clean Cities Conferences and Workshops on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure Fuel & Vehicle Strategy Clean Cities Conferences and Workshops Clean Cities offers conferences and workshops about alternative fuels and

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Cities: Clean Cities National Parks Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

142

Impact of Electric Generating Facilities (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality After a proposed power plant has received approval from the State Corporation Commission (SCC) and location approval from the local government, it must apply for all applicable permits from the Virginia

143

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

144

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

145

Edison Electric Institute State Generation and Transmission Siting...  

Open Energy Info (EERE)

LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting DirectoryPermittingRegulatory...

146

NREL: Energy Analysis - Coal-Fired Electricity Generation Results...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, coal-fired electricity generation systems (based on...

147

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

148

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

149

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

150

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

Energy (4 categories) W + Wind (2 categories) 3 pages Pages in category "Electricity Generating Technologies" The following 3 pages are in this category, out of 3...

151

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

152

Application Filing Requirements for Wind-Powered Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

153

Securing a Clean Energy Future: A Governor's Guide to Clean Power  

Broader source: Energy.gov (indexed) [DOE]

Securing a Clean Energy Future: A Governor's Guide to Clean Power Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Meeting today's electricity needs calls for addressing two important and seemingly incompatible challenges: satisfying steadily growing demand and mitigating greenhouse gas emissions.The United States' electricity demand totaled more than 3,800 billion kilowatt hours (kWh) in 2006 and is expected to grow approximately 1.1 percent each year in the next two decades. By 2030, electricity consumption will be about 26 percent greater than it is today. Meanwhile, electricity production and distribution accounts for 40 percent of U.S. carbon dioxide (CO2) emissions. These emissions are projected to grow more than 20 percent by

154

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

155

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network [OSTI]

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

156

Clean Cities: National Clean Fleets Partner: GE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE to GE to someone by E-mail Share Clean Cities: National Clean Fleets Partner: GE on Facebook Tweet about Clean Cities: National Clean Fleets Partner: GE on Twitter Bookmark Clean Cities: National Clean Fleets Partner: GE on Google Bookmark Clean Cities: National Clean Fleets Partner: GE on Delicious Rank Clean Cities: National Clean Fleets Partner: GE on Digg Find More places to share Clean Cities: National Clean Fleets Partner: GE on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: GE

157

Clean Cities: National Clean Fleets Partner: UPS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UPS to UPS to someone by E-mail Share Clean Cities: National Clean Fleets Partner: UPS on Facebook Tweet about Clean Cities: National Clean Fleets Partner: UPS on Twitter Bookmark Clean Cities: National Clean Fleets Partner: UPS on Google Bookmark Clean Cities: National Clean Fleets Partner: UPS on Delicious Rank Clean Cities: National Clean Fleets Partner: UPS on Digg Find More places to share Clean Cities: National Clean Fleets Partner: UPS on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: UPS

158

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

159

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002;" 4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.1,1.4 "Value of Shipments and Receipts"

160

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Nuclear Generation and Generating Capacity Data Released: September 26, 2014 Data for: July 2014 Next Release: October 2014 Year Capacity and Generation by State and Reactor...

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electric generating or transmission facility: determination of rate-making  

Broader source: Energy.gov (indexed) [DOE]

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

162

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables D.J. Hurlbut, S. Haase, C.S. Turchi, and K. Burman National Renewable Energy Laboratory Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No WFJ5.1000. Technical Report NREL/TP-6A20-54706 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Navajo Generating Station and

163

Computational Needs for the Next Generation Electric Grid Proceedings  

SciTech Connect (OSTI)

The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

2011-10-05T23:59:59.000Z

164

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

165

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network [OSTI]

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-06-07T23:59:59.000Z

166

Elimination of Competition and Duplication of Electricity Generation and  

Broader source: Energy.gov (indexed) [DOE]

Elimination of Competition and Duplication of Electricity Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info

167

Towards modelling and design of magnetostrictive electric generators  

Science Journals Connector (OSTI)

The paper deals with application of giant magnetostrictive materials for power harvesting from vibration. Mathematical modelling and design of magnetostrictive electric generators (MEG) are considered. The mathematical model, original MEG and test rig ... Keywords: Electric generator, Magnetostriction, Modelling, Power harvesting, Terfenol-D, Vibration, Villari effect

Viktor Berbyuk; Jayesh Sodhani

2008-02-01T23:59:59.000Z

168

The Economic Value of Temperature Forecasts in Electricity Generation  

Science Journals Connector (OSTI)

Every day, the U.S. electricity-generating industry decides how to meet the electricity demand anticipated over the next 24 h. Various generating units are available to meet the demand, and each unit may have its own production lead time, start-...

Thomas J. Teisberg; Rodney F. Weiher; Alireza Khotanzad

2005-12-01T23:59:59.000Z

169

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

170

Exemption from Electric Generation Tax (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Start Date 07/01/2011 Expiration Date 10/01/2013 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable energy facilities and customer-sited facilities are exempt from the tax. The tax and related

171

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...Annual wind energy potential...Monthly wind energy potential for...on a U.S. national basis depending...electricity to other energy forms. Plug-in...transmission grid. Expansion...in potential renewable resources, not...relating to the integration of electricity...relates to the challenge of matching...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

172

Electricity Generation and Consumption by State (2008 ) | OpenEI  

Open Energy Info (EERE)

Generation and Consumption by State (2008 ) Generation and Consumption by State (2008 ) Dataset Summary Description Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008, reported in GWh, and total electricity generation by sector (e.g. wind, solar, nuclear, coal) for all states in 2008, reported in GWh. Source NREL Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords EIA Electricity Consumption Electricity Generation States Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 2008 State Electricity Generation and Consumption (format: xls) (xlsx, 56.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Other or unspecified, see optional comment below

173

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...6 MW, deployed offshore, reflecting the greater...incentive to deploy larger turbines to capture the higher wind speeds available in...Electricity-Producing Wind Turbines ( International Electrotechnical...2008 ) Assessing offshore wind resources: An accessible...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

174

La Plata Electric Association - Renewable Generation Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

175

Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity  

Broader source: Energy.gov (indexed) [DOE]

Discussion Paper for DOE SEAB/SMR Subcommittee Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity In his 2011 State of the Union speech President Obama stated: "By 2035, 80 percent of America's electricity will come from clean energy sources." As yet, there is no official definition of a clean energy source, but a sensible definition is to suggest a "clean energy standard" where sources are weighted with respect to how much CO 2 they emit per unit of electrical energy produced. That is: Where F CE = Fraction of electricity for clean energy sources (multiply by 100 to get percent)

176

The role of hydroelectric generation in electric power systems with large scale wind generation .  

E-Print Network [OSTI]

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

177

Combined-Cycle Power Generation A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

178

Clean Cities: National Clean Fleets Partner: Schwan's Home Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schwan's Schwan's Home Service to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Google Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Delicious Rank Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

179

Clean Cities: National Clean Fleets Partner: Veolia Environmental Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Veolia Veolia Environmental Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

180

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Clean Cities: National Clean Fleets Partner: Enterprise Holdings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enterprise Holdings to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Google Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Delicious Rank Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

182

Clean Energy Economy | Open Energy Information  

Open Energy Info (EERE)

Economy Economy Jump to: navigation, search Clean Energy Economy Participants Clean Energy Companies (12882) add Networking Organizations (101) add Research and Development Institutions (189) add Investors and Financial Organizations (141) add Policy Organizations (124) add Clean Energy Hotspots Bay Area Greater Boston Area Northeast - NY NJ CT PA Area Pacific Northwest Area Rockies Area Southern CA Area Texas Area Clean Energy Infrastructure Clean Energy Generation Facilities add Biomass Facilities (506) Geothermal Facilities (73) Solar Power Plants (81) Wind Facilities (1295) Open PV Smart Meter Pilot Projects Visualizing The U.S. Electric Grid Clean Energy Natural Capital Maps Clean Energy Technology Commercialization Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN)

183

Clean Energy Ambassadors The mission of the Clean Energy Institute is to accelerate the  

E-Print Network [OSTI]

of a clean energy future by advancing next generation solar energy and electrical energy storage materials. Student have fun learning about solar cells and simple circuits. Solar Energy Exploration- A set

Hochberg, Michael

184

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844:Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

185

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

186

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Broader source: Energy.gov (indexed) [DOE]

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

187

Applications for Certificates for Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

188

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

189

Alternative electric generation impact simulator : final summary report  

E-Print Network [OSTI]

This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

Gruhl, Jim

1981-01-01T23:59:59.000Z

190

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Analysis of Wind Power and Load Data at MultipleLoad?Analysis J Model for Electric Power Distribution Facilities Using Consumer Meter?Reading Data,data generated by the power provider, such as pricing or load

Birman, Kenneth

2012-01-01T23:59:59.000Z

191

Maine: Energy Efficiency Program Helps Generate Town's Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

192

Competitive electricity markets and investment in new generating capacity  

E-Print Network [OSTI]

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

193

Electrical Generation Tax Reform Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generation Tax Reform Act (Montana) Generation Tax Reform Act (Montana) Electrical Generation Tax Reform Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Systems Integrator Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Fees Provider Montana Department of Revenue This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the

194

Clean Cities: Clean Cities Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Learn about alternative fuels and vehicles, infrastructure development, emissions, idle reduction, and more in the following Clean Cities-branded publications. Program Clean Cities Overview Clean Cities Now - Fall 2013 issue Fuels Biodiesel Basics Natural Gas Basics Spanish version Propane Basics Spanish version Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Straight Vegetable Oil as Diesel Fuel? Spanish version Vehicles Clean Cities 2014 Vehicle Buyer's Guide Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment Flexible Fuel Vehicles: Providing a Renewable Fuel Choice Spanish version Hybrid and Plug-In Electric Vehicles

195

A rotating suspended liquid film as an electric generator  

E-Print Network [OSTI]

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

196

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network [OSTI]

used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose and animal wastewaters and corn stover hydrolysates. For example, high power densities (810 to 970 mW/m2

197

What does it take to create a clean energy future for Washington? Solar, Wind, Hydro  

E-Print Network [OSTI]

Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10's leadership and economic advantages in clean energy. - The mission of the Clean Energy Institute is to accelerate the adoption of a clean energy future by advancing next generation solar energy and electrical

Hochberg, Michael

198

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

199

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility  

E-Print Network [OSTI]

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility Eric M. Braun, Frank K. Lu is described in which a detonation-driven piston system has been integrated with a linear generator in order in a single mass, two-spring system where the detonation wave pressure may be modeled as a variable force

Texas at Arlington, University of

200

Electrical faults modeling of the photovoltaic generator Wail Rezgui1  

E-Print Network [OSTI]

The productivity of photovoltaic generators is based on two main factors [1-3]: solar radiation energy which is captured by the generator and direct electrical energy resulting from the conversion of the solar radiation energy by the photovoltaic phenomena. So, the degradation of these two factors means the presence

Boyer, Edmond

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis  

E-Print Network [OSTI]

General equilibrium, electricity generation technologies and the cost of carbon abatement-down General equilibrium Electricity generation is a major contributor to carbon dioxide emissions Elsevier B.V. All rights reserved. 1. Introduction Electricity generation is a significant contributor

202

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

203

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

204

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

205

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

206

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

207

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

208

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

209

Hourly Energy Emission Factors for Electricity Generation in the United  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United Hourly Energy Emission Factors for Electricity Generation in the United States Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. This project utilized GridViewTM, an electric grid dispatch software package, to estimate hourly emission factors for all of the eGRID subregions in the continental United States. These factors took into account electricity imports and exports

210

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

211

Market Power and Technological Bias: The Case of Electricity Generation  

E-Print Network [OSTI]

, the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... , Cambridge CB3 9DE, UK, Tel: ++ 44 1223 335200, paul.twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However...

Twomey, Paul; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

212

Yancheng Chuangneng Straw Electricity Generation Co Ltd | Open Energy  

Open Energy Info (EERE)

Yancheng Chuangneng Straw Electricity Generation Co Ltd Yancheng Chuangneng Straw Electricity Generation Co Ltd Jump to: navigation, search Name Yancheng Chuangneng Straw Electricity Generation Co Ltd Place Yancheng, Jiangsu Province, China Sector Biomass Product A biomass project developer in China. Coordinates 33.583°, 113.983009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.583,"lon":113.983009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Form EIA-860 Annual Electric Generator Report | OpenEI  

Open Energy Info (EERE)

761 761 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142263761 Varnish cache server Form EIA-860 Annual Electric Generator Report Dataset Summary Description The Form EIA-860 is a generator-level survey that collects specific information about existing and planned generators and associated environmental equipment at electric power plants with 1 megawatt or greater of combined nameplate capacity. The survey data is summarized in reports such as the Electric Power Annual. The survey data is also available for download here. The data are compressed into a self-extracting (.exe) zip folder containing .XLS data files and record layouts. The current file structure (starting with 2009 data) consists

214

Simplified Approach for Estimating Impacts of Electricity Generation  

Open Energy Info (EERE)

Simplified Approach for Estimating Impacts of Electricity Generation Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS) Jump to: navigation, search Tool Summary Name: Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS) Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Agriculture, Energy Efficiency, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, - Health Resource Type: Software/modeling tools Complexity/Ease of Use: Advanced Website: www.iaea.org/OurWork/ST/NE/Pess/PESSenergymodels.shtml References: Overview of IAEA PESS Models [1] Related Tools DNE21+ Integrated Global System Modeling Framework Prospective Outlook on Long-Term Energy Systems (POLES) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS

215

Hawaii Clean Energy Initiative (HCEI)  

Broader source: Energy.gov [DOE]

The Hawaii Clean Energy Initiative (HCEI) is an unprecedented effort to transform the entire Hawaii economy from getting 95% of its energy, including most electricity, from imported oil today, to meeting the states energy needs from 70% clean energy (primarily indigenous renewables and efficiency) by 2030. DOEs work on the HCEI was initiated and coordinated through OEs then Deputy Assistant Secretary William Parks, an expert in renewable energy and fossil generation technologies and electricity system integration serving as a loaned executive to the State of Hawaii.

216

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

217

Table 11.3 Electricity: Components of Onsite Generation, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010; 3 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 5,666 5,414 81 171 3112 Grain and Oilseed Milling 3,494 3,491 Q 2 311221 Wet Corn Milling 3,213 3,211 0 2 31131 Sugar Manufacturing 1,382 1,319 64 0 3114 Fruit and Vegetable Preserving and Specialty Foods 336 325 Q * 3115 Dairy Products 38 36 1 1 3116 Animal Slaughtering and Processing 19 Q Q 14 312 Beverage and Tobacco Products 342 238 Q 7 3121 Beverages 308 204 Q 7 3122 Tobacco 34

218

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

219

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network [OSTI]

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

220

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

222

Modeling of a detonation driven, linear electric generator facility  

E-Print Network [OSTI]

Modeling of a detonation driven, linear electric generator facility E.M. Braun, E. Baydar, and F.K. Lu 1 Introduction The pulsed detonation engine (PDE) has been developed over several decades due must consider if the unique properties of the detonation wave can be utilized to in- crease efficiency

Texas at Arlington, University of

223

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

224

Treatment of Solar Generation in Electric Utility Resource Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

225

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

226

Computational Needs for the Next Generation Electric Grid Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 19-20, 2011 April 19-20, 2011 Editors: Joseph H. Eto Lawrence Berkeley National Laboratory Robert J. Thomas Cornell University Proceedings Computational Needs for the Next Generation Electric Grid LBNL-5105E Computational Needs for the Next Generation Electric Grid Proceedings April 19-20, 2011 Editors: Joseph H. Eto, Lawrence Berkeley National Laboratory Robert J. Thomas, Cornell University The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the

227

Effective critical electric field for runaway electron generation  

E-Print Network [OSTI]

In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

Stahl, Adam; Decker, Joan; Embrus, Ola; Flp, Tnde

2014-01-01T23:59:59.000Z

228

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown  

Broader source: Energy.gov [DOE]

From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

229

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

230

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

231

ELECTRICITY DEMAND AND SUPPLY PROJECTIONS IN IEA WORLD ENERGY SCENARIOS: HOW MUCH, HOW CLEAN?  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): The presentation will highlight and discuss projections for electricity demand up to 2050 based on the recent publication Energy Technology Perspectives 2012:...

Frankl, Paolo

232

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

233

Clean Cities: Clean Cities 20th Anniversary Event  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20th Anniversary Event to 20th Anniversary Event to someone by E-mail Share Clean Cities: Clean Cities 20th Anniversary Event on Facebook Tweet about Clean Cities: Clean Cities 20th Anniversary Event on Twitter Bookmark Clean Cities: Clean Cities 20th Anniversary Event on Google Bookmark Clean Cities: Clean Cities 20th Anniversary Event on Delicious Rank Clean Cities: Clean Cities 20th Anniversary Event on Digg Find More places to share Clean Cities: Clean Cities 20th Anniversary Event on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure Fuel & Vehicle Strategy Clean Cities 20th Anniversary Event The U.S. Department of Energy's Clean Cities program recognized two decades

234

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

235

Halbach array motor/generators: A novel generalized electric machine  

SciTech Connect (OSTI)

In August 1979, Halbach submitted a paper entitled ``Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.`` In this paper, he presented a novel method of generating multipole magnetic fields using non-intuitive geometrical arrangements of permanent magnets. In subsequent publications, he further defined these concepts. Of particular interest to one of the authors (RFP) was the special magnet array that generated a uniform dipole field. In 1990 Post proposed the construction of an electric machine (a motor/generator) using a dipole field based on Klaus Halbach`s array of permanent magnets. He further proposed that such a system should be employed as an integral part of ``an electromechanical battery`` (EMB), i.e., a modular flywheel system to be used as a device for storing electrical energy, as an alternative to the electrochemical storage battery. This paper reviews Halbach`s theory for the generation of a dipole field using an array of permanent magnet bars, presents a simple analysis of a family of novel ``ironless`` electric machines designed using the dipole Halbach array, and describes the results obtained when they were tested in the laboratory.

Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

1994-10-28T23:59:59.000Z

236

Identification and definition of unbundled electric generation and transmission services  

SciTech Connect (OSTI)

State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

Kirby, B.; Hirst, E.; Vancoevering, J.

1995-03-01T23:59:59.000Z

237

Eucalyptus plantations for electricity generation: the cost of carbon dioxide abatement in Thailand  

Science Journals Connector (OSTI)

Short-rotation plantations are expected to play an important role in the transition towards renewable energy, in particular in many developing countries. At present, developing countries do not have any carbon dioxide (CO2 ) abatement targets under the Kyoto Protocol, but CO2 mitigating projects might nevertheless be carried out through the Clean Development Mechanism (CDM). The purpose of this paper is to analyse: i) the economics of eucalyptus production in the east and northeast of Thailand and ii) the cost of substituting eucalyptus wood for fossil fuels for electricity production. The productivity of eucalyptus plantations is estimated at 7??11 dry ton/hectare(ha)/year over a rotation period of 3 to 5 years. The levelised cost of eucalyptus wood delivered to the factory gate is estimated at 13??18 USD/fresh ton (1.2??1.7 USD/GJ). If eucalyptus wood is used for electricity generation, the cost of electricity generation would be 6.2 US cents/kWh, and consequently the cost of substituting a wood-fired plant for a coal-fired plant and a gas-fired plant would be 107 and 196 USD/ton-C, respectively. The extent to which eucalyptus plantations could offer economically attractive options for electricity generation and CO2 abatement depends, among other things, on the cost of reducing CO2 emissions in the Annex 1 countries and CO2 mitigation options in developing countries. In addition, it depends on the economics of eucalyptus production as seen by farmers. There are also several other factors that affect an increased establishment of eucalyptus plantations in Thailand. The potential land-use change impact as well as the social and environmental impact associated with establishing mono-culture eucalyptus plantations as a CO2 abatement strategy are, however, not analysed in this paper and should be further investigated.

Wathanyu Amatayakul; Christian Azar

2003-01-01T23:59:59.000Z

238

I n s i t u thermal oxidation for surface cleaning and mask generation prior to selective area epitaxy  

Science Journals Connector (OSTI)

Dry thermal oxidation of GaAs and AlAs has been carried out in an organometallic chemical vapor deposition system. This i n s i t u process performed either before or after an epitaxialgrowth serves the purposes of surface cleaning and mask generation for selective area epitaxy of various III?V semiconductors.AlAsoxidized immediately after growth and patterned for the next regrowth provides better oxide?semiconductor interfaces and minimizes wafer handling. Pre?epitaxy oxidation at 435?C on a patterned wafer with AlAs/GaAs areas resulted in a selective oxide mask. Since thermal oxides of GaAssublime at temperatures >600?C a 700?C pregrowth annealing thus thermally cleans the oxidizedGaAs areas while the oxides of AlAs remain as a mask for the following regrowth. Photoluminescence results indicate that high quality regrown interfaces have been obtained.

Stephen H. Jones; Kei May Lau

1988-01-01T23:59:59.000Z

239

Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368  

SciTech Connect (OSTI)

The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States)] [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)] [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

2013-07-01T23:59:59.000Z

240

Clean Cities: New Haven Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Haven Clean Cities Coalition Haven Clean Cities Coalition The New Haven Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Haven Clean Cities coalition Contact Information Lee Grannis 203-627-3715 lgrannis@snet.net Brian McGrath 203-627-6874 soggy3@aol.com Coalition Website Clean Cities Coordinators Coord Lee Grannis Coord Coord Brian McGrath Coord Photo of Lee Grannis Lee Grannis started the New Haven Clean Cities coalition in 1995 and has served as the coalition's coordinator for the last 12 years. As part of his Clean Cities mission, Grannis has developed projects and obtained federal and matching funding for compressed natural gas, liquefied natural gas, light duty electric vehicles, electric transit, hydrogen

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electricity generation and environmental externalities: Case studies, September 1995  

SciTech Connect (OSTI)

Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

NONE

1995-09-28T23:59:59.000Z

242

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

243

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

244

The Role of Energy Storage with Renewable Electricity Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

245

Annual Electric Generator data - EIA-860 data file  

Gasoline and Diesel Fuel Update (EIA)

60 detailed data with previous form data (EIA-860A/860B) 60 detailed data with previous form data (EIA-860A/860B) Release Date: October 10, 2013 for Final 2012 data Next Release Date: September 2014 Re-Release 2012 data: December 4, 2013 (CORRECTION) The survey Form EIA-860 collects generator-level specific information about existing and planned generators and associated environmental equipment at electric power plants with 1 megawatt or greater of combined nameplate capacity. Summary level data can be found in the Electric Power Annual. Detailed data are compressed (zip) and contain the following files: LayoutYyy – Provides a directory of all (published) data elements collected on the Form EIA-860 together with the related description, specific file location(s), and, where appropriate, an explanation of codes.

246

CDCA Final EIS for Ivanpah Solar Electric Generating System  

Broader source: Energy.gov (indexed) [DOE]

CALIFORNIA DESERT CONSERVATION AREA PLAN CALIFORNIA DESERT CONSERVATION AREA PLAN AMENDMENT / FINAL ENVIRONMENTAL IMPACT STATEMENT FOR IVANPAH SOLAR ELECTRIC GENERATING SYSTEM FEIS-10-31 JULY 2010 BLM/CA/ES-2010-010+1793 In Reply Refer To: In reply refer to: 1610-5.G.1.4 2800lCACA-48668 Dear Reader: Enclosed is the proposed California Desert Conservation Area Plan Amendment and Final Environmental Impact Statement (CDCA Plan Amendment/FEIS) for the Ivanpah Solar Electric Generating System (ISEGS) project. The Bureau of Land Management (BLM) prepared the CDCA Plan Amendment/FEIS for the ISEGS project in consultation with cooperating agencies and California State agencies, taking into account public comments received during the National Environmental Policy Act (NEPA) process. The proposed plan amendment adds the Ivanpah

247

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

SciTech Connect (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

248

New Zealand Interactive Electricity Generation Cost Model 2010 | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New Zealand Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency/Company /Organization: New Zealand Energy Authority Sector: Energy Topics: Finance, Implementation, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.med.govt.nz/templates/MultipageDocumentTOC____45553.aspx Country: New Zealand Cost: Free Australia and New Zealand Coordinates: -40.900557°, 174.885971°

249

Clean Coal Incentive Tax Credit (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Property Tax Incentive Provider Kentucky Cabinet for Economic Development Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity. Before the credit is given, the Environmental and Public Protection Cabinet must certify that a facility is reducing emissions of pollutants released during electric generation through the use of clean coal equipment and technologies. The amount of the allowable credit is $2 per ton of eligible coal purchased that is used to

250

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect (OSTI)

SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

251

Extreme Harmonic Generation in Electrically Driven Spin Resonance  

Science Journals Connector (OSTI)

We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.

J. Stehlik; M.?D. Schroer; M.?Z. Maialle; M.?H. Degani; J.?R. Petta

2014-06-06T23:59:59.000Z

252

Use of a thermophotovoltaic generator in a hybrid electric vehicle  

Science Journals Connector (OSTI)

Viking 29 is the Worlds first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration speed and handling compare to modern high performance sports cars while emissions are cleaner than current internal combustion engine vehicles.

Orion Morrison; Michael Seal; Edward West; William Connelly

1999-01-01T23:59:59.000Z

253

Regulated apparatus for the generation of electrical energy, such as a wind generator  

SciTech Connect (OSTI)

The invention relates to a regulated apparatus for the generation of electrical energy. A wind generator comprises a propeller having fixed blades and a generator connected by a transmission to the propeller and having sets of main and secondary brushes. The hub of the propeller comprises a rotor of an eddy-current brake whose inductor stator is supplied by a current delivered, starting from a certain speed , by the secondary brushes of the generator which are angularly shifted relative to their neutral position.

Kant, M.

1980-04-15T23:59:59.000Z

254

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

255

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Francisco Clean Cities Coalition Francisco Clean Cities Coalition The San Francisco Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Francisco Clean Cities coalition Contact Information Bill Zeller 415-355-3728 william.zeller@sfgov.org Coalition Website Clean Cities Coordinator Bill Zeller Photo of Bill Zeller Bill Zeller currently leads the San Francisco Clean Cities Coalition. Although he is new to the leadership position, he has worked with SFCCC for many years as an active stakeholder representing PG&E and as the Treasurer. He has worked in the clean transportation industry since the late 1980s, promoting natural gas and electric vehicles. He recently retired from PG&E after 28 years of service. He is now the manager of Clean Vehicle Programs

256

Clean Cities: Ann Arbor Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ann Arbor Clean Cities Coalition Ann Arbor Clean Cities Coalition The Ann Arbor Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ann Arbor Clean Cities coalition Contact Information Mark Rabinsky 734-585-5720, Ext. 24 mark@cec-mi.org Coalition Website Clean Cities Coordinator Mark Rabinsky Photo of Mark Rabinsky Mark Rabinsky is a project manager and Ann Arbor Clean Cities Coordinator for Clean Energy Coalition. He is working to develop a plug-in electric vehicle charging infrastructure community preparedness plan for the State of Michigan. Prior to joining the Clean Energy Coalition, Rabinsky was the director of sustainability at Jackson Community College (JCC) in Jackson, Mich. where he created a program of study in alternative energy, and oversaw the

257

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

259

State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: Energy.gov (indexed) [DOE]

Single policies do not create market transformation for a Single policies do not create market transformation for a clean energy economy in states and localities. To reap the economic, environmental, and security benefits of clean energy development, suites of policies applied in succession are often the most cost-effective way to move toward transformation. This also allows for states and localities to target the lowest cost strategies first, increasing consumer comfort with innovative clean energy technologies later on. This factsheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

260

State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single policies do not create market transformation for a Single policies do not create market transformation for a clean energy economy in states and localities. To reap the economic, environmental, and security benefits of clean energy development, suites of policies applied in succession are often the most cost-effective way to move toward transformation. This also allows for states and localities to target the lowest cost strategies first, increasing consumer comfort with innovative clean energy technologies later on. This factsheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The potential contribution of small hydroelectric generation to meeting electrical demand on Vancouver Island.  

E-Print Network [OSTI]

??This work focuses on the electrical contribution small hydro generation can make to meeting Vancouver Island's electrical demand, today, and as further development proceeds. A (more)

Schuett, Matthew T.

2008-01-01T23:59:59.000Z

262

TEC as electric generator in an automobile catalytic converter  

SciTech Connect (OSTI)

Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

1996-12-31T23:59:59.000Z

263

Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts  

SciTech Connect (OSTI)

Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

1993-01-01T23:59:59.000Z

264

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

265

Clean Cities: National Clean Fleets Partner: FedEx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FedEx to FedEx to someone by E-mail Share Clean Cities: National Clean Fleets Partner: FedEx on Facebook Tweet about Clean Cities: National Clean Fleets Partner: FedEx on Twitter Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Google Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Delicious Rank Clean Cities: National Clean Fleets Partner: FedEx on Digg Find More places to share Clean Cities: National Clean Fleets Partner: FedEx on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: FedEx

266

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Traciton Motors in Hybrid Electric Vehicles Xiaofeng Ding 1 , Jinglin Liu 2 , and Chris Mi 3 1 Department Generation of Traciton Motors in Hybrid Electric Vehicles 1460 2. SIMPLE ANALYTICAL MODEL OF UCG 2.1 ModelJournal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 1459 Uncontrolled Generation

Mi, Chunting "Chris"

267

Clean Cities: Clean Cities Internships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internships to someone by Internships to someone by E-mail Share Clean Cities: Clean Cities Internships on Facebook Tweet about Clean Cities: Clean Cities Internships on Twitter Bookmark Clean Cities: Clean Cities Internships on Google Bookmark Clean Cities: Clean Cities Internships on Delicious Rank Clean Cities: Clean Cities Internships on Digg Find More places to share Clean Cities: Clean Cities Internships on AddThis.com... Coordinator Basics Outreach Education & Webinars Online Learning Webinars Internships Meetings Reporting Contacts Clean Cities Internships Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions across the country with students interested in changing the future of onroad transportation.

268

Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations  

Science Journals Connector (OSTI)

Ocean currents contain a remarkable amount of kinetic energy and have potential worldwide capability. Initial tests to harness current power focus on the Straits of Florida where the Florida Current has a total flow capacity of about 30נ106m3s?1. Generation of clean electricity from ocean currents off southeast Florida is based on a power extractor comprising open-center turbine technology. This innovative turbine provides safe passage for fish and other aquatic species. The water-column array of energy production units (EPUs) will have a 350km2 footprint, based on a 600m (10 rotor diameters) downstream separation distance between \\{EPUs\\} with a lateral separation of 400m. Water depths for the EPU field are in the range of 100500m. With such a large area of water column and benthic habitat utilized, environmental concerns must be overcome, including routing of transmission lines to shore. Risks and vulnerabilities of the proposed ocean current generated electricity include failure of individual \\{EPUs\\} and damage to sensitive coastal marine environments during installation.

Charles W. Finkl; Roger Charlier

2009-01-01T23:59:59.000Z

269

Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets  

Broader source: Energy.gov [DOE]

A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

270

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

271

Clean Cities: Clean Cities Conferences and Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conferences and Workshops Conferences and Workshops Clean Cities offers conferences and workshops about alternative fuels and advanced vehicles. Find information below about upcoming and past conferences and workshops. Clean Cities 20th Anniversary Event June 24, 2013 The U.S. Department of Energy's Clean Cities program recognized two decades of successfully deploying alternative and renewable fuels, advanced vehicles, fuel economy improvements, and idle reduction. Electric Vehicle Community Readiness Workshop May 1, 2013 This workshop featured leaders of electric vehicle community readiness projects in a panel format organized by topic to share findings, describe lessons learned, and evaluate accomplishments. Electric Vehicle Symposium May 7, 2012 The Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group provided an opportunity to discuss challenges and best practices for preparing communities and regions for plug-in electric vehicles and charging infrastructure deployment. Learn more in the workshop summary report.

272

Clean Cities: Funded Clean Cities Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded Clean Cities Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of projects that reduce petroleum use. Since its inception in 1993, Clean Cities has funded more than 500 transportation projects nationwide through a competitive application process. These projects awards contribute to Clean Cities' primary goal of reducing petroleum use in the U.S. by 2.5 billion gallons per year by 2020. Some funded Clean Cities projects have included: Introduction of all-electric and hybrid electric vehicles into public and private fleets Development of E85 (85% ethanol, 15% gasoline) fueling stations along busy transportation corridors Conversion of conventional vehicles to run on natural gas and propane Installation of idle-reduction equipment in school buses and tractor trailers.

273

Risk implications of the deployment of renewables for investments in electricity generation  

E-Print Network [OSTI]

This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

Sisternes, Fernando J. de (Fernando Jos de Sisternes Jimnez)

2014-01-01T23:59:59.000Z

274

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

275

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-?ela, Eranda

276

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

277

Table E13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation...

278

Clean Cities: National Clean Fleets Partner: Best Buy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Best Buy Best Buy to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Best Buy on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Best Buy on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Google Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Delicious Rank Clean Cities: National Clean Fleets Partner: Best Buy on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Best Buy on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

279

Clean Cities: National Clean Fleets Partner: Coca-Cola  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coca-Cola to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Coca-Cola on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Coca-Cola on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Google Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Delicious Rank Clean Cities: National Clean Fleets Partner: Coca-Cola on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Coca-Cola on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

280

Clean Cities: National Clean Fleets Partner: AMP Americas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AMP AMP Americas to someone by E-mail Share Clean Cities: National Clean Fleets Partner: AMP Americas on Facebook Tweet about Clean Cities: National Clean Fleets Partner: AMP Americas on Twitter Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Google Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Delicious Rank Clean Cities: National Clean Fleets Partner: AMP Americas on Digg Find More places to share Clean Cities: National Clean Fleets Partner: AMP Americas on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean Cities: National Clean Fleets Partner: PepsiCo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PepsiCo PepsiCo to someone by E-mail Share Clean Cities: National Clean Fleets Partner: PepsiCo on Facebook Tweet about Clean Cities: National Clean Fleets Partner: PepsiCo on Twitter Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Google Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Delicious Rank Clean Cities: National Clean Fleets Partner: PepsiCo on Digg Find More places to share Clean Cities: National Clean Fleets Partner: PepsiCo on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

282

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

283

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Renewable Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Renewable Electricity Generation, May 2013.

284

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

285

Electrical motor/generator drive apparatus and method  

DOE Patents [OSTI]

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

286

On-line mechanical tube cleaning for steam electric power plants. Final report  

SciTech Connect (OSTI)

In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

Not Available

1994-02-18T23:59:59.000Z

287

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders  

E-Print Network [OSTI]

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders Department, construction and testing of an electrical generator intended for interface with a MEMS internal combustion (IC fuels through the use of internal combustion (IC) engines paired with electrical generators (see [4

Sanders, Seth

288

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

289

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

290

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

291

Submerged electricity generation plane with marine current-driven motors  

DOE Patents [OSTI]

An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

2014-07-01T23:59:59.000Z

292

Clean Energy Procurement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Procurement Clean Energy Procurement Clean Energy Procurement < Back Eligibility State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State Maryland Program Type Green Power Purchasing Provider Maryland Department of General Services Maryland's Governor issued an executive order on March 13, 2001 calling for at least 6% of the electricity consumed by state-owned facilities to be generated from "green" energy sources, such as wind, solar, landfill gas, and other biomass resources. The order specifies that no more than 50% of the power procured to meet the requirement come from municipal solid waste facilities. Subsequently in 2009 the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons", to contract

293

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

technologiessuchasdiesel,electric,hybrid,andhydrogenmode (e.g. , diesel trains or electric trains).

Birman, Kenneth

2012-01-01T23:59:59.000Z

294

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.orgcontentrenewable-energy-electricity-generati Language: English Policies: "Deployment...

295

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

296

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

297

International Natural Gas Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per 107 Kilocalories - Gross Calorific Value2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria NA NA NA NA NA NA NA NA NA Barbados NA NA NA NA NA NA NA NA NA Belgium C C C C C C C C C Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 145.5 144.7 174.9 171.9 225.2 NA NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 244.7 252.1 258.6 281.0 326.2 348.5 400.8 499.3 NA

298

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

299

High efficiency electric power generation: The environmental role  

Science Journals Connector (OSTI)

Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.

Jnos M. Ber

2007-01-01T23:59:59.000Z

300

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas |  

Broader source: Energy.gov (indexed) [DOE]

44: Texas Clean Energy Project (TCEP), Ector County, Texas 44: Texas Clean Energy Project (TCEP), Ector County, Texas EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas Overview The Department of Energy proposes to provide approximately $450 million to Summit Texas Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and capture carbon dioxide for use in enhanced oil recovery and sequestration. The plant would generate 400 MW (gross) of electricity, of which 130-213 MW would be provided to the power grid. It would also produce marketable urea, argon, and sulfuric acid. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Second Generation Biofuel from Cellulosic Agricultural By-product Fermentation Using Clostridium Species for Electricity Generation  

Science Journals Connector (OSTI)

Abstract The production of second generation biofuel is essential for limiting food versus fuel competition. Butanol is one of the important biofuel for the future. Agricultural by-products namely bagasse and potato peel were hydrolyzed to produce readily fermented sugar for butanol fermentation. The butanol concentration was 1 2g/l. To test the electricity generation, a customized generator was used for butanol combustion. The electricity produced was up to 1300 watts. Further improvements are needed in the hydrolysis method, medium composition, and generator design. This research has demonstrated that bagasse and potato peel are potential feedstock for producing butanol for generating electricity

Yalun Arifin; Ellen Tanudjaja; Arbi Dimyati; Reinhard Pinontoan

2014-01-01T23:59:59.000Z

302

On parallel electric field generation in transversely inhomogeneous plasmas  

E-Print Network [OSTI]

The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field aligned) speed attained by electrons. However, parallel ion velocity decreases linearly with inverse of the mass ratio m_i/m_e. These results can be interpreted as following: (i) ion dynamics plays no role in the E_{||} generation; (ii) E_{||} \\propto 1/m_i scaling is caused by the fact that omega_d = 0.3 omega_{ci} \\propto 1/m_i is decreasing with the increase of ion mass, and hence the electron fluid can effectively "short-circuit" (recombine with) the slowly oscillating ions, hence producing smaller E_{||}.

David Tsiklauri

2007-11-28T23:59:59.000Z

303

Clean Cities: Clean Cities Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Clean Cities Publications to someone by E-mail Share Clean Cities: Clean Cities Publications on Facebook Tweet about Clean Cities: Clean Cities Publications on Twitter Bookmark Clean Cities: Clean Cities Publications on Google Bookmark Clean Cities: Clean Cities Publications on Delicious Rank Clean Cities: Clean Cities Publications on Digg Find More places to share Clean Cities: Clean Cities Publications on AddThis.com... Publications Technical Assistance Clean Cities Publications Learn about alternative fuels and vehicles, infrastructure development, emissions, idle reduction, and more in the following Clean Cities-branded publications. Program Clean Cities Overview Clean Cities Now - Fall 2013 issue

304

Clean Coal Power Initiative  

Broader source: Energy.gov [DOE]

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

305

Unbundling generation and transmission services for competitive electricity markets  

SciTech Connect (OSTI)

Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

Hirst, E.; Kirby, B.

1998-01-01T23:59:59.000Z

306

Concentrated solar power in the future of electricity generation: a synthesis of reasons  

Science Journals Connector (OSTI)

...electricity generation. Experience...steam-Rankine coal-fired power plants, nuclear...defaults in generation units. Large...need to have a generation system with...the unitary power will have to...and natural gas. Evidently...

2013-01-01T23:59:59.000Z

307

Clean Cities: Norwich Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Norwich Clean Cities Coalition Norwich Clean Cities Coalition The Norwich Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Norwich Clean Cities coalition Contact Information Pete Polubiatko 860-887-6964 pete@askncdc.com Coalition Website Clean Cities Coordinator Pete Polubiatko Photo of Pete Polubiatko Pete Polubiatko has been the coordinator of the Norwich Clean Cities coalition since 1995, when it was designated by the U.S. Department of Energy. In 1995, the Norwich City Council choose to have the municipally-owned utility manage the coalition and the role of coordinator became one of Pete's responsibilities as electric division manager. Polubiatko currently shares his time between construction management for

308

Clean Cities: New Jersey Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Jersey Clean Cities Coalition Jersey Clean Cities Coalition The New Jersey Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Jersey Clean Cities coalition Contact Information Chuck Feinberg 973-886-1655 chuck.feinberg@gmail.com Coalition Website Clean Cities Coordinator Chuck Feinberg Photo of Chuck Feinberg Chuck Feinberg is founder and Chairman of the Board of the 501(c)3 nonprofit NJ Clean Cities Coalition (NJCCC), which promotes alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction initiatives. Current projects include technology deployment to public and private fleets, including the use of compressed natural gas, propane, hydrogen, plug-in and hybrid electricity, and others.

309

Clean Cities: Ocean State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ocean State Clean Cities Coalition Ocean State Clean Cities Coalition The Ocean State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ocean State Clean Cities coalition Contact Information Wendy Lucht 401-874-2792 wlucht@uri.edu Coalition Website Clean Cities Coordinator Wendy Lucht Photo of Wendy Lucht Wendy Lucht has worked as the Ocean State Clean Cities coordinator at the University of Rhode Island (URI) since 2008 but has worked at URI since 1999. Lucht is working to make Rhode Island the first state certified by Project Get Ready, an initiative preparing cities and states for the arrival of plug-in hybrid electric vehicles (PHEV). As part of this effort, Lucht is serving as chair of the fleet-acquisition committee working on

310

Clean Cities: Clean Cities Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities Contacts to someone by E-mail Share Clean Cities: Clean Cities Contacts on Facebook Tweet about Clean Cities: Clean Cities Contacts on Twitter Bookmark Clean Cities: Clean Cities Contacts on Google Bookmark Clean Cities: Clean Cities Contacts on Delicious Rank Clean Cities: Clean Cities Contacts on Digg Find More places to share Clean Cities: Clean Cities Contacts on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts Clean Cities Contacts Clean Cities contact information is provided here. Clean Cities is funded and managed by the U.S. Department of Energy (DOE). The organization includes staff from DOE headquarters, national laboratories, technical contractors, and coalition coordinators.

311

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email roald.wigeland@inl.gov fax (U.S.) 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

312

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

powersystems. ElectricPowerSystemsResearch,80(6):627?system,ElectricPowerSystemsResearch,20(1990),pp. 1?Measurements, Electric PowerSystemsResearch,Vol. 79

Birman, Kenneth

2012-01-01T23:59:59.000Z

313

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

314

Strategic Investment in Power Generation under Uncertainty Electric Reliability Council of Texas  

E-Print Network [OSTI]

Strategic Investment in Power Generation under Uncertainty Electric Reliability Council of Texas and Engineering Systems Director, Technology and Policy Program #12;#12;Strategic Investment in Power Generation to the Electricity Student Research Group for the contagious passion for electricity and sharing of knowledge

315

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provideAnalysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs

Wong, Vincent

316

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

317

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

these assumptions and a turbine efficiency of 46% the totalAssuming 35% efficiency for gas turbine and 50% for heatcombusted in micro-turbines with an efficiency of 28% (LHV).

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

318

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

generally regenerative thermal oxidizers (RTO) are used. Insystem compared to a regenerative thermal oxidizer (RTO) VOC

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

319

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Organic Rankine Cycle.Heat Using High-Speed Organic Rankine Cycle (ORC), Int. J.Power recovery Organic Rankine Cycle Flare Gas Recovery

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

320

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Landfill Gas.paper.htm. April 2004. 20. Landfill Gas The decomposition ofgas. Therefore, the landfill gas is often collected and

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

of biomass integrated-gasifier/gas turbine combined cyclefarms to large integrated gasifiers at petroleum refineries.BLGCC). The black liquor gasifier technology will produce a

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

322

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant, Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

323

RESEARCH ARTICLE The proteome survey of an electricity-generating organ  

E-Print Network [OSTI]

RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

Vertes, Akos

324

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network [OSTI]

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

325

An overview on doubly fed induction generators? controls and contributions to wind based electricity generation  

Science Journals Connector (OSTI)

Abstract Undoubtedly, energy has a significant role in economic growth and technical developments. Renewable energy resources are becoming more important in recent years due to their tremendous contributions to the independence of power generation industry from traditional fossil energy resources. Wind energy has been outstanding among renewable energy resources since continuous harvestable potential on the earth is approximately around 106MW. Concerning the variable nature of wind energy, the variable speed machines, especially doubly fed induction generators (DFIG) are one of the considerations for wind energy conversion systems (WECS). Their implementation in renewable energy conversion systems is dramatically increasing due to their numerous advantages such as low cost and small size, the elimination of external DC source, the ability to produce maximum power under various wind and rotational speeds, the capability of controlling active and reactive power, and the opportunity to employ cheaper and smaller convertors and controllers. This paper is an extensive review of researches in the past 30 years on DFIG. The study starts with describing general perspective on wind energy and commonly used generators in wind conversion. Then it presents more details on \\{DFIGs\\} operational modes, utilizations, their modeling and simulation. It is followed by DFIG control methods and overviews of different employed electrical and mechanical controlling methods. Finally the review on the mutual impact of DFIG on power networks and vice versa, including wind uncertainty, power and frequency stability, power and voltage quality, operation under steady state, dynamic and fault conditions, and protections is given. Based on the review DFIG has advantages in terms of electrical, mechanical, and economic perspectives. It can be concluded that the DFIG has the most promising future for \\{WECSs\\} in power generation to complement the conventional systems.

Abdullah Asuhaimi B. Mohd Zin; Mahmoud Pesaran H.A.; Azhar B. Khairuddin; Leila Jahanshaloo; Omid Shariati

2013-01-01T23:59:59.000Z

326

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

327

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

328

Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances  

Science Journals Connector (OSTI)

We present the first experimental study of the interplay of electric and magnetic resonances in a metamaterial to measure their independent contributions to second-harmonic generation....

Chandrasekar, Rohith; Emani, Naresh; Lagutchev, Alexei; Shalaev, Vladimir M; Kildishev, Alexander; Ciraci, Cristian; Smith, David R

329

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network [OSTI]

?? This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

330

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

331

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

332

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

333

Greenhouse gas emissions from electricity generated by offshore wind farms  

Science Journals Connector (OSTI)

Abstract For wind power generation offshore sites offer significantly better wind conditions compared to onshore. At the same time, the demand for raw materials and therefore the related environmental impacts increase due to technically more demanding wind energy converters and additional components (e.g. substructure) for the balance of plant. Additionally, due to environmental concerns offshore wind farms will be sited farshore (i.e. in deep water) in the future having a significant impact on the operation and maintenance efforts (O&M). Against this background the goal of this analysis is an assessment of the specific GHG (greenhouse gas) emissions as a function of the site conditions, the wind mill technology and the O&M necessities. Therefore, a representative offshore wind farm is defined and subjected to a detailed LCA (life cycle assessment). Based on parameter variations and modifications within the technical and logistical system, promising configurations regarding GHG emissions are determined for different site conditions. Results show, that all parameters related to the energy yield have a distinctive impact on the specific GHG emissions, whereas the distance to shore and the water depth affect the results marginally. By utilizing the given improvement potentials GHG emissions of electricity from offshore wind farms are comparable to those achieved onshore.

Britta Reimers; Burcu zdirik; Martin Kaltschmitt

2014-01-01T23:59:59.000Z

334

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

335

Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Clean Cities Clean Cities Learn how Clean Cities coalitions all across the country are helping their communities get ready for plug-in electric vehicles. Learn how Clean Cities coalitions all across the country are helping their communities get ready for plug-in electric vehicles. Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country. Featured Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the Mammoth Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography.

336

Mississippi Clean Energy Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Clean Energy Initiative Mississippi Clean Energy Initiative Mississippi Clean Energy Initiative < Back Eligibility Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Program Info Start Date 07/01/2010 State Mississippi Program Type Industry Recruitment/Support Rebate Amount 100% exemption from income, franchise, and sales and use tax for 10 years Provider Mississippi Development Authority In April 2010, the Mississippi Legislature enacted [http://billstatus.ls.state.ms.us/documents/2010/pdf/HB/1700-1799/HB1701S... HB 1701], establishing the Mississippi Clean Energy Initiative. This program provides an incentive for companies that manufacture systems or components used to generate renewable energy, including biomass, solar,

337

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

338

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

339

The Efficiency of Electricity Generation in the U.S. After Restructuring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Efficiency of Electricity Generation in the U.S. After Restructuring The Efficiency of Electricity Generation in the U.S. After Restructuring Speaker(s): Catherine Wolfram Date: June 9, 2003 - 12:00pm Location: Bldg. 90 Over the past eleven years, US electric utilities have faced significant changes to their competitive and regulatory environments. The industry restructuring is designed to enhance economic efficiency at all levels of operation, including distribution, transmission, generation and retail services. The gains are likely to be largest in electric generation because generation costs are the largest component of end-use costs and restructuring has a larger impact on generation than on other segments of the electricity industry, such as transmission and distribution, which are likely to remain more heavily regulated. This paper evaluates changes in

340

AVESTAR Center for operational excellence of electricity generation plants  

SciTech Connect (OSTI)

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energys National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

generation equipment, substations, distribution lines,energyresources(DER), substationanddistribution. thenextgenerationofsubstationautomationsolutions. It

Birman, Kenneth

2012-01-01T23:59:59.000Z

342

Palmetto Clean Energy (PaCE) Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State South Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and customer demand for Palmetto Clean Energy (PaCE) Provider South Carolina Energy Office '''''Note: For a limited time, generators of 6 kilowatts or less of renewable energy can now take advantage of a premium $0.10 per kilowatt hour. This premium is available on a first-come-first-serve basis to generators of solar, wind, hydro or biomass-based electricity.'''''

343

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

transmissionvisionforwindintegration. www.aep.com/Corporation. Easternwindintegrationandtransmissionarecentstudyonwindintegration(AmericanElectric

Birman, Kenneth

2012-01-01T23:59:59.000Z

344

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",75183893,85006849,92198096,93939609,98396809,100536445,98159139,102750838,14230...

345

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",96763006,99451077,95099161,90418339,94637160,97259636,94637956,95187030,9205415...

346

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",106615302,103334454,88057219,90733028,93162079,90531201,94067080,83152928,83500...

347

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",56188401,53328664,58902054,59225368,59780402,64316732,61176351,65456080,6510365...

348

U.S.-Canada Clean Energy Dialogue (CED) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S.-Canada Clean Energy Dialogue (CED) U.S.-Canada Clean Energy Dialogue (CED) U.S.-Canada Clean Energy Dialogue (CED) President Obama and Prime Minister Harper launched the U.S.-Canada Clean Energy Dialogue (CED) in February 2009 to encourage the development of clean energy technologies to reduce greenhouse gases and combat climate change in both countries. The CED is charged with: expanding clean energy research and development; developing and deploying clean energy technologies; and building a more efficient electric grid based on clean and renewable generation. The U.S. Department of Energy (DOE) leads the CED for the United States, and Canada's effort is led by Environment Canada, with participation by Natural Resources Canada (NRCan). DOE and NRCan co-chair three bilateral Working Groups which carry out this

349

Superconductivity for Electric Systems Program Review LANL Contributions to GE HTS Generator  

E-Print Network [OSTI]

-section · Develop a heat generation profile => thermal analysis #12;Superconductivity for Electric Systems Program of coolant loop to verify heat due to flow work on helium #12;Superconductivity for Electric Systems Program for Electric Systems Program Review Stationary heat pipe tests were necessary to determine performance impact

350

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode  

E-Print Network [OSTI]

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode D. Luo, H.T. Dai, X.W. Sun , H.V. Demir School of Electrical and Electronic Engineering, Nanyang Keywords: Diffraction Liquid crystal devices Propagation A pair of electrically switchable finite energy

Demir, Hilmi Volkan

351

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing  

E-Print Network [OSTI]

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which. Availability of affordable and sustainable electrical energy has been the key to prosperity and continued socio

Pedram, Massoud

352

EV3 : Traction drives and generators A: Electric machine design and optimization 1  

E-Print Network [OSTI]

EV3 : Traction drives and generators A: Electric machine design and optimization 1 Influence Electrical Machine Type B. Aslan1 , J. Korecki1 , T. Vigier1 , E. Semail1 bassel.aslan@yahoo.com, korecki according to the electrical angle e (angle between current and back-EMF vector), for different values

Boyer, Edmond

353

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network [OSTI]

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

354

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

355

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

356

Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial  

E-Print Network [OSTI]

Water Research 39 (2005) 4961­4968 Electricity generation from swine wastewater using microbial September 2005 Abstract Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters indicated that electricity could be generated from swine wastewater containing 83207190 mg/L of soluble

357

"Table A17. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Components of Onsite Electricity Generation by Census Region," 7. Components of Onsite Electricity Generation by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," "," ","RSE" "SIC"," "," "," "," "," ","Row" "Code(a)","Industry Groups and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.4,1.2

358

Characteristic Requirements of a Small Scale Squirrel Cage Induction Generator for Effective Electricity Generation from Wind Energy  

Science Journals Connector (OSTI)

Abstract This paper proposes characteristic requirements of a small scale squirrel cage induction generator for effective electricity generation from wind energy. These characteristics are obtained from modeling and testing results. Investigation into comparative performances between Standard and high efficiency induction generators is given in order to find out the characteristic requirements of a suitable induction generator. Performances of various features of the machine structure are given. The suitable design of the induction generator based on empirical rules is also included. The investigation of power loss of the induction machine both in theory using FEM (Finite Element Method) and tests has been made. In addition, static var (Volt-Ampere reactive power) compensator using power electronic control to keep terminal voltage of a self-excited induction generator constant is explained. These results can be guidelines for machine development and control method for effective electricity generation.

V. Kinnares; B. Sawetsakulanond

2013-01-01T23:59:59.000Z

359

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Broader source: Energy.gov (indexed) [DOE]

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

360

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

SciTech Connect (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Clean Tech Now | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a historic shift to a cleaner, more domestic and more secure energy future. That clean technology revolution is here today -- and it is gaining force. Read the report Revolution Now: The Future for Four Clean Energy Technologies Watch a video from Secretary Ernest Moniz and learn more about the

362

Decomposition analysis of CO2 emissions from electricity generation in China  

Science Journals Connector (OSTI)

Electricity generation in China mainly depends on coal and its products, which has led to the increase in CO2 emissions. This paper intends to analyze the current status of CO2 emissions from electricity generation in China during the period 19912009, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in CO2 emissions. The main results as follows: (1) CO2 emission from electricity generation has increased from 530.96Mt in 1991 to 2393.02Mt in 2009, following an annual growth rate of 8.72%. Coal products is the main fuel type for thermal power generation, which accounts for more than 90% CO2 emissions from electricity generation. (2) This paper also presents CO2 emissions factor of electricity consumption, which help calculate CO2 emission from final electricity consumption. (3) In China, the economic activity effect is the most important contributor to increase CO2 emissions from electricity generation, but the electricity generation efficiency effect plays the dominant role in decreasing CO2 emissions.

Ming Zhang; Xiao Liu; Wenwen Wang; Min Zhou

2013-01-01T23:59:59.000Z

363

Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation  

Science Journals Connector (OSTI)

Of the various clean combustion technologies with carbon capture and sequestration (CCS) possibilities, chemical-looping combustion (CLC) promises to be an efficient...2 compression to 110bar to facilitate CCS.

R. J. Basavaraj; S. Jayanti

2014-05-01T23:59:59.000Z

364

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network [OSTI]

of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements chains and emission factors for the generation, transmission and distribution portions of the electricity, for electricity and for particular products, results show environmental impacts split up by generation type

365

Adapting On-Site Electrical Generation Platforms for Producer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. electricalgenerationplatformsfactsheet.pdf More Documents & Publications...

366

Energy security and sustainable development implications for Guatemala of the Electricity Generation Expansion Plan 2014-2028.  

E-Print Network [OSTI]

?? Electricity consumption in Guatemala has been steadily increasing during the recent years, challenging the generation sector to keep up with the pace of electricity (more)

Ochaeta Paz, Karen

2014-01-01T23:59:59.000Z

367

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

368

Generation of Dielectrophoretic Force under Uniform Electric Field  

E-Print Network [OSTI]

Effective dipole moment method has been widely accepted as the de facto technique in predicting the dielectrophoretic force due to the non-uniform electric field. In this method, a finite-particle is modeled as an equivalent ...

Kua, C.H.

369

Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water  

E-Print Network [OSTI]

through removal of metals from solution, but also for producing useful products such as electricity from gases or liquid fuels such as hydrogen or methanol. However, new types of microbial fuel cells

370

Renewable Power Options for Electricity Generation on Kauai...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7% renewable energy installed in their system. Their strategic plan calls for 50% of electricity from renewable energy by 2023. KIUC is well on their way to achieving this goal...

371

Electric Generating and Transmission Facilities Emissions Management (Iowa)  

Broader source: Energy.gov [DOE]

This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

372

Storing the Electric Energy Produced by an AC Generator  

Science Journals Connector (OSTI)

Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy and when we think about electric energygenerators one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a motivation for projects with students.

P. Simeo Carvalho; Ana Paula Lima; Pedro Simeo Carvalho

2010-01-01T23:59:59.000Z

373

Clean Cities: Clean Cities Goals and Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals and Accomplishments Goals and Accomplishments Clean Cities' primary goal is to cut petroleum use in the United States by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: Replace petroleum with alternative and renewable fuels Reduce petroleum consumption through smarter driving practices and fuel economy improvements Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices. Clean Cities coalitions and stakeholders have saved more than 5 billion gallons of petroleum since the program's inception in 1993. Clean Cities efforts have helped deploy thousands of alternative fuel vehicles and the fueling stations needed to serve them, aided in the elimination of millions of hours of vehicle idling, and helped accelerate the entry of electric-drive vehicles into the marketplace.

374

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission...  

Buildings Energy Data Book [EERE]

Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and...

375

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

376

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

377

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

378

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

379

Clean Cities: State of Maryland Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State of Maryland Clean Cities Coalition State of Maryland Clean Cities Coalition The State of Maryland Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Maryland Clean Cities coalition Contact Information Chris Rice 410-260-7207 crice@energy.state.md.us Coalition Website Clean Cities Coordinator Chris Rice Photo of Chris Rice Christopher Rice manages the Transportation and Clean Cities programs for the Maryland Energy Administration. He's currently working with the Maryland Public Service Commission on the regulatory treatment of electric vehicle re-charging stations. He is also working with the Maryland Department of Transportation to establish the Maryland Electric Vehicle Council and the implementation of the Electric Vehicle Excise Tax Credit

380

Clean Cities: Ellen Bourbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ellen Bourbon Ellen Bourbon Project Assistance Ellen Bourbon provides programmatic support for Clean Cities as an employee of New West Technologies. She assists the U.S. Department of Energy headquarters and the Clean Cities regional managers and works with Clean Cities coalitions across the country as they develop and revise their strategies to meet petroleum reduction goals. Bourbon worked for the New Jersey Office of Clean Energy for 14 years as the Alternative Fuels Project Manager. During much of that time, she also served as New Jersey's Clean Cities coordinator, establishing the program and growing it into a statewide coalition. She worked extensively on projects involving natural gas, propane, biodiesel, and hybrid electric vehicles, and she developed a range of incentive programs to encourage state and local governments to use alternative fuels and advanced vehicles.

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy Considerations At Microsoft, we see information technology (IT) as a key tool to help address the daunting en-  

E-Print Network [OSTI]

Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy in energy conservation and integration of more renewable and zero-carbon energy sources into our economy. Microsoft envisions a clean energy ecosystem where information technology: · Empowers people

Narasayya, Vivek

382

#CleanTechNow  

SciTech Connect (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2013-09-17T23:59:59.000Z

383

Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

384

Electricity generation:: regulatory mechanisms to incentive renewable alternative energy sources in Brazil  

Science Journals Connector (OSTI)

The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany.

Carla Kazue Nakao Cavaliero; Ennio Peres Da Silva

2005-01-01T23:59:59.000Z

385

A new-generation energy-saving industrial controlled electric drive  

Science Journals Connector (OSTI)

Results of the innovative development of an efficiently controlled, new-generation, energy-saving, industrial AC electric drive are presented. ... filter in the intermediate link. The improved energy and electrom...

R. T. Shreiner; V. K. Krivovyaz; A. I. Kalygin

2007-11-01T23:59:59.000Z

386

Did English generators play cournot? : capacity withholding in the electricity pool  

E-Print Network [OSTI]

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

Green, Richard

2004-01-01T23:59:59.000Z

387

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

388

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Broader source: Energy.gov [DOE]

Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

389

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

390

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

391

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

392

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system  

E-Print Network [OSTI]

Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

Issaeva, Natalia

2009-01-01T23:59:59.000Z

393

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Broader source: Energy.gov [DOE]

The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300 F) geothermal resources in oil and gas settings.

394

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect (OSTI)

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

395

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

396

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network [OSTI]

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Alexander Bolonkin

2007-01-19T23:59:59.000Z

397

Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance  

E-Print Network [OSTI]

and technologies expected to be available to meet bulk power generation needs during the period of the power plan PRICES The price forecasts for coal, fuel oil and natural gas are described in Appendix B. COAL-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over

398

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

399

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

400

"Table A27. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region," Components of Onsite Electricity Generation by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" ," "," "," "," " " "," "," "," ",," ","RSE" "SIC"," "," "," ",," ","Row" "Code(a)","Industry Group and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.6,1 , 20,"Food and Kindred Products",6962,6754,90,118,11.2

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential in response to applied mechanical  

E-Print Network [OSTI]

Abstract--Piezoelectricity is an ability of some materials to generate an electric potential, PZT ceramics I. INTRODUCTION Piezoelectricity is an ability to generate an electric potential that demonstrate the direct piezoelectric effect, which is the generation of electricity upon applied mechanical

Ha, Dong S.

402

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

403

Clean, Efficient, and Reliable Power for the 21st Century  

E-Print Network [OSTI]

vehicles; and auxiliary power units and portable electronics--fuel cell applications hold potential to capture the sun, harness the wind, and utilize earth's natural geothermal energy. DOE also pursues clean energy solutions for transportation, like next- generation biofuels, advanced batteries for electric

404

Aggregated Purchasing - A Clean Energy Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A number of organizations, including municipalities, state and federal agencies, businesses and even religious organizations are leading the way to a renewable energy future by using their collective buying power to purchase green power. The city of Chicago has formed an alliance with 47 other local government agencies to increase their reliance on clean energy sources. As part of this effort, Chicago has installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. City of Chicago Aggregated Purchasing-A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing-A Clean Energy Strategy by Lori A. Bird and Edward A. Holt November/December 2002 35 Power generated from renewable resources, also known as "green" power, is

405

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

406

Generation of Electricity Without the use of Rotating Machinery  

Science Journals Connector (OSTI)

... It seems likely that advances in efficiency above about 40 per cent of the heat engines (steam or Diesel) used for large-scale power generation will be achieved only with ... molecules, the fuel cell acts isothermally and escapes the Carnot limitation inherent in all heat engines. Consequently, the apparent thermodynamic efficiency may be very high-more than 90 per cent ...

K. H. SPRING

1961-04-22T23:59:59.000Z

407

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

408

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

409

Preliminary estimates of electrical generating capacity of slim holes--a theoretical approach  

SciTech Connect (OSTI)

The feasibility of using small geothermal generators (< 1 MWe) for off-grid electrical power in remote areas or for rural electrification in developing nations would be enhanced if drilling costs could be reduced. This paper examines the electrical generating capacity of fluids which can be produced from typical slim holes (six-inch diameter or less), both by binary techniques (with downhole pumps) and, for hotter reservoir fluids, by conventional spontaneous-discharge flash-steam methods. Depending mainly on reservoir temperature, electrical capacities from a few hundred kilowatts to over one megawatt per slim hole appear to be possible.

Pritchett, John W.

1995-01-26T23:59:59.000Z

410

Algorithm for calculation of characterisitcs of thermionic electricity-generating assemblies  

SciTech Connect (OSTI)

A numerical algorithm has been developed for calculating the kinetic characteristics of electricity-generating coaxial cells and assemblies; it is based on separate solution of the equations describing the thermal and electrical processes with their subsequent coordination by way of the volt-ampere characteristics of an elementary thermionic converter by means of piecewise-linear approximation of the nonlinear characteristics at the operating points. The possibilities and advantages of the proposed calculation algorithm for investigation of the transients occurring in the course of operation of the electricity generating assemblies (EGA) are indicated. Results are reported for sample calculations of several EGA static and kinetic characteristics. 10 refs.

Babushkin, Yu.V.; Mendel'baum, M.A.; Savinov, A.P.; Sinyavskii, V.V.

1981-01-01T23:59:59.000Z

411

Energy Department Report Finds Major Potential to Increase Clean  

Broader source: Energy.gov (indexed) [DOE]

Report Finds Major Potential to Increase Clean Report Finds Major Potential to Increase Clean Hydroelectric Power Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power April 17, 2012 - 12:39pm Addthis Washington, D.C. -- As part of President Obama's all-out, all-of-the-above energy strategy, the Energy Department today released a renewable energy resource assessment detailing the potential to develop electric power generation at existing dams across the United States that aren't currently equipped to produce power. The report estimates that without building a single new dam, these available hydropower resources, if fully developed, could provide an electrical generating capacity of more than 12 gigawatts (GW), equivalent to roughly 15 percent of current U.S. hydropower capacity. These findings demonstrate one of the ways the nation

412

A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this project do? Betin Incorporated recently installed an "anaerobic digester" that transforms industrial waste into electricity. In support of the Obama Administration's goals for quality, American-made clean energy products, the Energy Department's State Energy Program

413

A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this project do? Betin Incorporated recently installed an "anaerobic digester" that transforms industrial waste into electricity. In support of the Obama Administration's goals for quality, American-made clean energy products, the Energy Department's State Energy Program

414

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cientA Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission the behavior of the various decision-makers, who operate in a decentralized manner and include power generators

Nagurney, Anna

415

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network [OSTI]

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only in many fields, such as commu- nications, sensors, imaging, medical treatments, displays, solar cells

416

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

SciTech Connect (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

417

FORM EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

PURPOSE Form EIA-860M collects data on the status of: a) Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; b) Existing generators scheduled to retire from service within the subsequent 12 months; and c) Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT, respondents who have indicated in a previous filing to

418

Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper  

SciTech Connect (OSTI)

Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

1980-01-01T23:59:59.000Z

419

Feasibility Study of Biomass Electrical Generation on Tribal Lands  

SciTech Connect (OSTI)

The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

2005-03-29T23:59:59.000Z

420

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Broader source: Energy.gov (indexed) [DOE]

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces  

SciTech Connect (OSTI)

HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200?C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSb surfaces was observed.

Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ohtake, Akihiro [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Ichikawa, Masakazu [The University of Tokyo, Tokyo 113-8656 (Japan)

2014-06-09T23:59:59.000Z

422

Laser surface cleaning  

SciTech Connect (OSTI)

The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO{sub 2} lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results.

Freiwald, J.G.; Freiwald, D.A.

1994-12-31T23:59:59.000Z

423

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

424

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

425

Coal cleaning program for Kazakstan  

SciTech Connect (OSTI)

In 1992 the United States Agency for International Development (USAID) started sponsoring general projects in the Energy and Environmental Sector to improve health and well-being, to improve the efficiency of the existing fuel and energy base, and to assist in the establishment of a strong private sector. Coal Cleaning Program, covered in this report, is one of the recently completed projects by Burns and Roe, which is a prime USAID contractor in the field of energy and environment for the NIS. The basis for coal cleaning program is that large coal resources exist in northeast Kazakstan and coal represents the major fuel for heat and electricity generation at present and in the foreseeable future. The coal mined at Karaganda and Ekibastuz, the two main coal mining areas of Kazakstan, currently contains up to 55% ash, whereas most boilers in Kazakstan are designed to fire a coal with an ash content no greater than 36%. The objective of the task was to determine optimum, state-of-the-art coal cleaning and mining processes which are applicable to coals in Kazakstan considering ultimate coal quality of 36% ash, environmental quality, safety and favorable economics.

Popovic, N. [Burns and Roe Enterprises, Oradell. NJ (United States); Daley, D.P. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Jacobsen, P.S. [Jacobsen (P. Stanley), Littleton, CO (United States)

1996-12-31T23:59:59.000Z

426

Cleaning method and apparatus  

DOE Patents [OSTI]

A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

Jackson, D.D.; Hollen, R.M.

1981-02-27T23:59:59.000Z

427

Automated cleaning of electronic components  

SciTech Connect (OSTI)

Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

1994-07-01T23:59:59.000Z

428

Sustainable Electricity Factsheets | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factsheets Building Technologies Clean Energy Home | Science & Discovery | Clean Energy | Newsletters and Media | Sustainable Electricity Factsheets SHARE Sustainable...

429

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

430

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions  

E-Print Network [OSTI]

Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-harmonic generation and terahertz radiation emission indicates that the observed dominant surface electric-field-induced contributions Matthew Reid, Igor V. Cravetchi, and Robert Fedosejevs Department of Electrical and Computer

Reid, Matthew

431

Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal Near-Field generated by a  

E-Print Network [OSTI]

influences the longitudinal electrical near-field generated by it. For this application, we designed our set extremity on the longitudinal electrical near-field generated by a coaxial cable. Considering1/12 Piezoelectric & Optical Set-up to measure an Electrical Field. Application to the Longitudinal

Paris-Sud XI, Université de

432

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect (OSTI)

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

433

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

434

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

435

Exploring the Basic Principles of Electric Motors and Generators With a Low-Cost Sophomore-Level Experiment  

Science Journals Connector (OSTI)

In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric ... Keywords: Assessment, electric machines, electric motors, laboratory

T. F. Schubert; F. G. Jacobitz; E. M. Kim

2009-02-01T23:59:59.000Z

436

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect (OSTI)

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

437

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

2005-01-01T23:59:59.000Z

438

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect (OSTI)

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

439

Table A20. Components of Onsite Electricity Generation by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region and" Components of Onsite Electricity Generation by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,,"RSE" " "," "," "," "," ","Row" "Economic Characteristics(a)","Total","Cogeneration","Renewables","Other(b)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.2,1.3 "Value of Shipments and Receipts" "(million dollars)" " Under 20",562,349,"W","W",23 " 20-49",4127,3917,79,131,20.1 " 50-99",8581,7255,955,371,10

440

Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation  

SciTech Connect (OSTI)

Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table A28. Components of Onsite Electricity Generation by Census Region, Cens  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region, Census Division, and" Components of Onsite Electricity Generation by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,"Renewables" ,,,"(excluding Wood",,"RSE" " "," "," ","and"," ","Row" "Economic Characteristics(a)","Total","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.6,1.8,1.4 "Value of Shipments and Receipts" "(million dollars)" " Under 20",1098,868," W "," W ",22.3

442

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

443

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

444

#CleanTechNow: Your Best Clean Energy Photos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

#CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos September 27, 2013 - 12:45pm Addthis Marissa Newhall Marissa Newhall Managing Editor, Energy.gov Learn More: Follow @energy on Instagram to check out more great photos and videos about energy technology. Read an Energy Department report about the recent advances of wind, solar panels, electric vehicles and LED lighting in the consumer marketplace. Check out Secretary Moniz's blog post about the importance of smart policies and investments in clean energy technology. #CleanTechNow: Your Best Clean Energy Photos When it comes to clean energy, the future is already here -- and during our #CleanTechNow feature, you showed us how it's already playing a role in your daily lives. Below, check out highlights from #CleanTechNow and our

445

Alternate cleaning methods for LCCAs. Final report  

SciTech Connect (OSTI)

The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

Adams, B.E.

1993-04-01T23:59:59.000Z

446

Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions  

E-Print Network [OSTI]

The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

Tabors, Richard D.

1991-01-01T23:59:59.000Z

447

Clean Cities: Clean Cities Goals and Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities Goals and Accomplishments Clean Cities Goals and Accomplishments to someone by E-mail Share Clean Cities: Clean Cities Goals and Accomplishments on Facebook Tweet about Clean Cities: Clean Cities Goals and Accomplishments on Twitter Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Google Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Delicious Rank Clean Cities: Clean Cities Goals and Accomplishments on Digg Find More places to share Clean Cities: Clean Cities Goals and Accomplishments on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities Goals and Accomplishments Clean Cities' primary goal is to cut petroleum use in the United States by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities

448

A model for estimation of potential generation of waste electrical and electronic equipment in Brazil  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

Araujo, Marcelo Guimaraes, E-mail: marcel_g@uol.com.br [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Magrini, Alessandra [Federal University of Rio de Janeiro, COPPE, Energy Planning Department (Brazil); Mahler, Claudio Fernando [Federal University of Rio de Janeiro, COPPE, GETRES (Brazil); Bilitewski, Bernd [Technical University of Dresden, Institute of Waste Management and Contaminated Site Treatment (IAA) (Germany)

2012-02-15T23:59:59.000Z

449

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

450

Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for future patents Full Story | More information from BESC Home | Science & Discovery | Clean Energy Clean Energy | Clean Energy SHARE '' Download the Clean Energy Newsletter...

451

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect (OSTI)

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

452

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Broader source: Energy.gov (indexed) [DOE]

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

453

Clean Cities: Starting a Clean Cities Coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

454

Clean Cities: Clean Cities 20th Anniversary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities 20th Anniversary to someone by E-mail Share Clean Cities: Clean Cities 20th Anniversary on Facebook Tweet about Clean Cities: Clean Cities 20th Anniversary on Twitter Bookmark Clean Cities: Clean Cities 20th Anniversary on Google Bookmark Clean Cities: Clean Cities 20th Anniversary on Delicious Rank Clean Cities: Clean Cities 20th Anniversary on Digg Find More places to share Clean Cities: Clean Cities 20th Anniversary on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities 20th Anniversary Clean Cities marked a major milestone in 2013, celebrating 20 years of progress in cutting petroleum use in transportation. Through the work of

455

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

456

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Consumers Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

457

Energy Dept. Report Finds Major Potential to Grow Clean, Sustainable...  

Energy Savers [EERE]

Related Articles Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power This map demonstrates the potential capacity to generate clean hydroelectric...

458

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Office of Energy Efficiency and Renewable Energy (EERE)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

459

At What Cost? A comparative evaluation of the social costs of selected electricity generation alternatives in Ontario.  

E-Print Network [OSTI]

??This thesis examines the private and external costs of electricity generated in Ontario by natural gas, wind, refurbished nuclear and new nuclear power. The purpose (more)

Icyk, Bryan

2007-01-01T23:59:59.000Z

460

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Economic feasibility of carbon emission reduction in electricity generation, a case study based on Sri Lanka  

Science Journals Connector (OSTI)

The main purpose of this paper is an assessment of economic feasibility in reducing carbon dioxide emission of electricity generation in Sri Lanka. The paper shows that the present annual green house gas (GHG) emission with respect to electricity generation in Sri Lanka is about 2.8 million metric tons. The identified total GHG emission reduction potential in electricity generation is about 37 GW. The total reduction in GHG will be 16 million metric tons per year. Considering the savings on fossil fuel combustion, the total investment on CHG reduction methods would be recovered within a reasonable period as confirmed by a sensitivity analysis. To achieve these benefits, broad policies and guidelines are presented in-line with the country's environmental obligations. This is the first time that this type of scientific research study has been carried out in Sri Lanka to ascertain the current situation of GHG emission of electricity generation, to identify possible methods in reducing carbon dioxide emission and their economic feasibility. The methodology employed and the policies derived can be used as guides to similar types of research in other countries as well.

S.W.S.B. Dasanayaka; W. Jayarathne

2012-01-01T23:59:59.000Z

462

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-Print Network [OSTI]

. The overall engine-generator efficiency at 7.5 kW electrical power load was lower at 19.81% for gasoline fueled engine compared to 35.27% for synthesis gas. The pressure swing adsorption (PSA) system increased the net heating value of the product gas...

Maglinao, Amado Latayan

2013-04-11T23:59:59.000Z

463

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid  

E-Print Network [OSTI]

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid March 2011 voltages are nominally 4.5kv and 13 2kv The solar system must maintain voltageand 13.2kv. The solar system) or multiple sites (multiple leases, interconnect points, construction forces) Ground based, roof top (weight

Homes, Christopher C.

464

Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure  

E-Print Network [OSTI]

facility, the sum capacity of which does not exceed 30 megawatts. (4) Solar. For purposes1 Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure that a retail seller offers to sell to consumers in California under terms and conditions specific to an offer

465

Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge  

E-Print Network [OSTI]

Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Hydrogen Energy (H2E) Center, The Pennsylvania State University, 212 Sackett Bld., University Park, PA, USA also examined power output in a MFC with a salt bridge instead of a membrane system. Power output

466

EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

467

Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories  

E-Print Network [OSTI]

We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

A. Hart; R. W. Haymaker; Y. Sasai

1998-08-28T23:59:59.000Z

468

Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia  

Science Journals Connector (OSTI)

Abstract To compare electricity-generation fuel mixes in two countries with multiple energy policy goals and unique circumstances, we look at three scenarios reflecting the carbon emissions mitigation targets, differences in energy security levels, and electricity-generating costs of each nation. Korea and Mongolia show clear differences in electricity-generation structure related to import dependency, the potential of renewable energy, and threats to energy security. These variations lead to different decisions on the power-generation fuel mix plan. Use of fossil fuel resources in Korea results in carbon dioxide emissions and energy insecurity, while in Mongolia carbon emissions, also from fossil fuels, and energy insecurity are separate concerns as Mongolia domestically operates coal-fired power plants and imports electricity. Policies targeting two objectives, carbon emissions mitigation and energy security improvement, show complementarity in Korea as fossil fuels are replaced by renewables or nuclear power, but represent trade-offs in Mongolia as emissions mitigation and improved energy security cannot be achieved with one strategy. In conclusion, national plans to achieve two goals differ by country: In Korea, the appropriate portion of nuclear energy is the determining policy factor. In Mongolia, carbon capture and storage is the clear alternative for mitigating carbon emissions despite large renewables potential.

Hanee Ryu; Shonkhor Dorjragchaa; Yeonbae Kim; Kyunam Kim

2014-01-01T23:59:59.000Z

469

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

470

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

471

Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand  

Science Journals Connector (OSTI)

Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand ... potential of solar energy all over the world is many times larger than the current total primary energy demanded. ... The magnitudes of the free energies derived from formal potentials are detd. ...

Manuel A. Mndez; Pekka Peljo; Michel D. Scanlon; Heron Vrubel; Hubert H. Girault

2014-02-27T23:59:59.000Z

472

Energy Department Invests $17 Million in Small Businesses to Accelerate Clean Energy Innovation  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on President Obamas Climate Action Plan to continue U.S. leadership in clean energy innovation, the Energy Departments Office of Energy Efficiency and Renewable Energy (EERE) today awarded $17 million in Small Business Innovation Research (SBIR) projects to help small businesses in 13 states develop prototype technologies that could improve manufacturing energy efficiency, reduce the cost of installing clean energy projects, and generate electricity from renewable energy sources.

473

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

474

Clean Cities: Funded Clean Cities Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Funded Clean Cities Projects to someone by E-mail Share Clean Cities: Funded Clean Cities Projects on Facebook Tweet about Clean Cities: Funded Clean Cities Projects on Twitter Bookmark Clean Cities: Funded Clean Cities Projects on Google Bookmark Clean Cities: Funded Clean Cities Projects on Delicious Rank Clean Cities: Funded Clean Cities Projects on Digg Find More places to share Clean Cities: Funded Clean Cities Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of

475

Clean Cities: Clean Cities Now Newsletter Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archives to Archives to someone by E-mail Share Clean Cities: Clean Cities Now Newsletter Archives on Facebook Tweet about Clean Cities: Clean Cities Now Newsletter Archives on Twitter Bookmark Clean Cities: Clean Cities Now Newsletter Archives on Google Bookmark Clean Cities: Clean Cities Now Newsletter Archives on Delicious Rank Clean Cities: Clean Cities Now Newsletter Archives on Digg Find More places to share Clean Cities: Clean Cities Now Newsletter Archives on AddThis.com... News Blog Newsletter Archives Subscribe Information for Media Clean Cities Now Newsletter Archives To read past issues of the Clean Cities Now newsletter or its predecessor publications, Clean Cities News and Alternative Fuels News, select from the list below. Clean Cities Now Volume 17 Issue 2 - October 2013

476

Clean Cities: Clean Cities Public Outreach Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities Public Outreach Resources Clean Cities Public Outreach Resources to someone by E-mail Share Clean Cities: Clean Cities Public Outreach Resources on Facebook Tweet about Clean Cities: Clean Cities Public Outreach Resources on Twitter Bookmark Clean Cities: Clean Cities Public Outreach Resources on Google Bookmark Clean Cities: Clean Cities Public Outreach Resources on Delicious Rank Clean Cities: Clean Cities Public Outreach Resources on Digg Find More places to share Clean Cities: Clean Cities Public Outreach Resources on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts Clean Cities Public Outreach Resources Use these robust resources to support your Clean Cities coalition's public

477

Form EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

INSTRUCTIONS INSTRUCTIONS Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours PURPOSE Form EIA-860M collects data on the status of: a) Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; b) Existing generators scheduled to retire from service within the subsequent 12 months; and c) Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860,

478

Harmonic and interharmonic distortion analysis in the grid-connected wind electric generator  

Science Journals Connector (OSTI)

The operation of wind turbines has an impact on the power quality at the connected electric network. The integration of wind electric generators with the power grid becomes a headache for power engineers in several aspects. Harmonic distortion is one of the most important phenomena which affect the grid performance. This paper provides an in-depth discussion on harmonic and interharmonic distortion taking place on the low-voltage side of the wind generator, as well as in the power grid side. A case study, to determine where a significant amount of harmonic currents or voltages exists in the system, is performed using a power quality analyser. From these measurements and subsequent calculations, the levels of harmonics and interharmonics are analysed. It is found that the harmonic distortion is invariably present on the generator side as well as on the grid side, depending on the wind turbine technology.

V. Suresh Kumar; P.S. Kannan

2007-01-01T23:59:59.000Z

479

Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry  

SciTech Connect (OSTI)

Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

480

Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy  

SciTech Connect (OSTI)

Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

Palchak, D.; Denholm, P.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generate clean electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transient stability enhancement of electric power generating systems by 120-degree phase rotation  

DOE Patents [OSTI]

A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

Cresap, Richard L. (Portland, OR); Taylor, Carson W. (Portland, OR); Kreipe, Michael J. (Portland, OR)

1982-01-01T23:59:59.000Z

482

Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of clean electricity; A 2.0 megawatt anaerobic digester to convert food waste into biogas; An LED lighting project at the tribe's parking facilities that reduced electricity...

483

EIS-0486: Plains & Eastern Clean Line Transmission Project  

Broader source: Energy.gov [DOE]

This EIS will evaluate the potential environmental impacts of participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver approximately 3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an interconnection with the Tennessee Valley Authority (TVA).

484

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

485

Clean Cities: Clean Cities Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships Partnerships Clean Cities partners with thousands of stakeholders in the public and private sectors to reduce petroleum use in transportation. Partnerships and collaborations are the foundation of Clean Cities' efforts to reduce petroleum use. An active network of government agencies, industry representatives, community organizations, and businesses allows a variety of stakeholders to combine their efforts and exchange information and resources. Local Efforts Clean Cities coalitions build these partnerships at the state and local levels with thousands of stakeholders in communities across the country. National Efforts At the national level, Clean Cities collaborates with federal agencies, equipment manufacturers, fuel providers, industry associations, and large companies whose vehicle fleets operate in multiple states. These national-level partnerships include:

486

Clean Cities: Clean Cities Coordinator Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

487

Clean Cities: Clean Cities Contacts for Coordinators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts for Coordinators Contacts for Coordinators to someone by E-mail Share Clean Cities: Clean Cities Contacts for Coordinators on Facebook Tweet about Clean Cities: Clean Cities Contacts for Coordinators on Twitter Bookmark Clean Cities: Clean Cities Contacts for Coordinators on Google Bookmark Clean Cities: Clean Cities Contacts for Coordinators on Delicious Rank Clean Cities: Clean Cities Contacts for Coordinators on Digg Find More places to share Clean Cities: Clean Cities Contacts for Coordinators on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Contacts for Coordinators The Clean Cities contact resources help coordinators communicate with the Clean Cities program staff and other coordinators. Program Contacts Use the program contacts to communicate individually with U.S. Department

488

Clean Cities: Clean Cities Program Structure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Structure to Program Structure to someone by E-mail Share Clean Cities: Clean Cities Program Structure on Facebook Tweet about Clean Cities: Clean Cities Program Structure on Twitter Bookmark Clean Cities: Clean Cities Program Structure on Google Bookmark Clean Cities: Clean Cities Program Structure on Delicious Rank Clean Cities: Clean Cities Program Structure on Digg Find More places to share Clean Cities: Clean Cities Program Structure on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Program Structure Clean Cities is funded and managed by the U.S. Department of Energy (DOE). The organization includes staff from DOE headquarters, national

489

Clean Cities: Clean Cities Reference Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials to Reference Materials to someone by E-mail Share Clean Cities: Clean Cities Reference Materials on Facebook Tweet about Clean Cities: Clean Cities Reference Materials on Twitter Bookmark Clean Cities: Clean Cities Reference Materials on Google Bookmark Clean Cities: Clean Cities Reference Materials on Delicious Rank Clean Cities: Clean Cities Reference Materials on Digg Find More places to share Clean Cities: Clean Cities Reference Materials on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Reference Materials Use these reference materials-including quick-reference documents, publications, websites, and the Clean Cities Coalition Wiki-to develop