National Library of Energy BETA

Sample records for generate clean electricity

  1. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  2. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  3. Buying Clean Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Buying & Making Electricity » Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy

  4. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  5. Buying Clean Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. The premium covers the increased costs incurred by the power...

  6. Clean Electricity Initiatives in California

    U.S. Energy Information Administration (EIA) Indexed Site

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  7. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  8. Department of Energy Quadrennial Technology Review Clean Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the ...

  9. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric production

  10. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  11. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  12. Department of Energy Quadrennial Technology Review Clean Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the documents and presentations shared during the clean electricity workshop, along with anonymous notes of the workshop and focus group. PDF icon Department of Energy Quadrennial Technology Review Clean Electricity Workshop More Documents & Publications Slide 1 Quadrennial Technology

  13. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  14. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  15. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  16. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  17. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  18. Construction Begins on First-of-its-Kind Advanced Clean Coal Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Facility | Department of Energy Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated

  19. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  20. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  1. Electrical pulse generator

    DOE Patents [OSTI]

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  2. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  3. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    I: Clean Air Partners 0.5 ghp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners ...

  4. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  5. Do You Buy Clean Electricity From Your Utility?

    Broader source: Energy.gov [DOE]

    If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy.

  6. Energy Storage: The Key to a Reliable, Clean Electricity Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program

  7. ELECTRIC PULSE GENERATOR

    DOE Patents [OSTI]

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  8. Generation of electrical power

    DOE Patents [OSTI]

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  9. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  10. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  11. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  12. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  13. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    0.5 ghp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 ghp-h NOx ...

  14. Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow June 10, 2014 - 2:50pm Addthis Imagine Tomorrow participants Pavan Kumar (from left), Isaak Nanneman, Ethan Perrin, Andrew Wang and Oisin Doherty were selected by the Bioenergy Technologies Office to present their idea at the Biomass 2014 conference next month. The student team from Redmond, Washington, was chosen for their idea

  15. DOE Announces Webinars on Next Generation Electric Machines, Zero Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, and More | Department of Energy Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - 8:44am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  16. Electricity Generating Portfolios with Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the ...

  17. Policy Makers' Guidebook for Geothermal Electricity Generation...

    Open Energy Info (EERE)

    Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation AgencyCompany Organization:...

  18. Liupanshui Shuiliandong Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Liupanshui Shuiliandong Electricity Generation Co Ltd Jump to: navigation, search Name: Liupanshui Shuiliandong Electricity Generation Co.Ltd. Place: Liupanshui City, Guizhou...

  19. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  20. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.« less

  1. Electricity Generation, Transmission and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and reliable before it is permitted on the grid. However, energy storage manufacturers and integrators are often unable to afford or provide the logistics necessary for this long-term testing and monitoring. The Energy Storage Test Pad (ESTP) in conjunction with the Energy Storage Analysis Laboratory (ESAL) provides trusted,

  2. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the

  3. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  4. A Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects January 2014 ACKNOWLEDGEMENTS This guide summarizes and synthesizes the work of a series of projects carried out by the Clean Cities Community Readiness and Planning for Plug-In Electric Vehicles and Charging Infrastructure awardee organizations and partnering local Clean Cities coalitions. A full list of these organizations can be found in Appendix I of this report. On behalf of the U.S. Department

  5. Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic

  6. Quadrennial Energy Review Second Installment Electricity: Generation...

    Energy Savers [EERE]

    Quadrennial Energy Review Second Installment Electricity: Generation to End-Use ... Ernest Moniz, United States Secretary of Energy As United States Secretary of Energy, Dr. ...

  7. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  8. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  9. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders

    Broader source: Energy.gov [DOE]

    Meet some of the inspiring Solar Decathlon alumni who have gone on to pursue careers in clean energy and sustainable housing.

  10. Winning with Wind: Electric Co-ops Providing Clean Energy to Customers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Winning with Wind: Electric Co-ops Providing Clean Energy to Customers Winning with Wind: Electric Co-ops Providing Clean Energy to Customers March 12, 2014 - 12:02pm Addthis Mehoopany wind farm in Pennsylvania can produce enough energy to power more than 40,000 homes under a contract with Old Dominion Electric Cooperative and the Southern Maryland Electric Cooperative. Old Dominion was named one of the winners of the Wind Cooperative of the Year Award last week. | Photo

  11. Electricity market design for generator revenue sufficiency with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity market design for generator revenue sufficiency with increased variable generation Title Electricity market design for generator revenue sufficiency with increased...

  12. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

  13. Economic Dispatch of Electric Generation Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the Energy Polict Act of 2005. PDF icon Economic ...

  14. electric generation | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Graham7781(2017) Super contributor 2 August, 2012 - 13:30 The Transparent Cost Database (TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This...

  15. EERE FY 2016 Budget Overview -- Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doug Hollett, Deputy Assistant Secretary March, 2015 Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview 2 Major Administration Energy Goals * Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline * By 2035, generate 80% of electricity from a diverse set of clean energy resources * Double energy productivity by 2030 * Reduce net oil imports by half by 2020 from a 2008 baseline * Reduce CO 2 emissions by 3 billion metric tons cumulatively by

  16. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  17. THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not

  18. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Annual green energy purchases must be at least as large as the AC output of the PV system. This arrangement requires that the customer have two electricity meters: one to measure electricity...

  19. The Easy Way to Use Renewables: Buy Clean Electricity | Department...

    Broader source: Energy.gov (indexed) [DOE]

    local electric company still supplied our electricity and billed us. The difference was that our bill now had an ... fossil fuels for transportation, at home, or away from home. ...

  20. Chapter 4: Advancing Clean Electric Power Technologies | Wind...

    Energy Savers [EERE]

    ... 35% of U.S. power requirements with high grid ... responsible deployment. 8 Market Application Land-based. ... Annual Energy Outlook natural gas-fueled electricity ...

  1. DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has awarded a cooperative agreement to Summit Texas Clean Energy LLC for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage.

  2. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  3. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  4. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Broader source: Energy.gov (indexed) [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and ...

  5. Yangbi Puping Electric Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Puping Electric Power Generation Co Ltd Jump to: navigation, search Name: Yangbi Puping Electric Power Generation Co., Ltd Place: Yunnan Province, China Zip: 672500 Sector: Hydro...

  6. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), ...

  7. EERE FY 2016 Budget Overview -- Renewable Electricity Generation...

    Office of Environmental Management (EM)

    Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview --...

  8. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  9. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact ...

  10. New Zealand Interactive Electricity Generation Cost Model 2010...

    Open Energy Info (EERE)

    Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency...

  11. Yun Xingfu Electricity Generation and Supply Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xingfu Electricity Generation and Supply Co Ltd Jump to: navigation, search Name: Yun Xingfu Electricity Generation and Supply Co., Ltd Place: Lincang City, Yunnan Province, China...

  12. Yancheng Chuangneng Straw Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Yancheng Chuangneng Straw Electricity Generation Co Ltd Jump to: navigation, search Name: Yancheng Chuangneng Straw Electricity Generation Co Ltd Place: Yancheng, Jiangsu Province,...

  13. Category:Electricity Generating Technologies | Open Energy Information

    Open Energy Info (EERE)

    Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

  14. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhenkang County Jineng Electricity Generation Co Ltd Jump to: navigation, search Name: Zhenkang County Jineng Electricity Generation Co., Ltd Place: Lincang, Yunnan Province, China...

  15. Table 11.4 Electricity: Components of Onsite Generation, 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; ... Next MECS will be fielded in 2015 Table 11.4 Electricity: Components of Onsite Generation, ...

  16. Providing Clean, Low-Cost, Onsite Distributed Generation at Very...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). ... in annual Boiler Burner Electrical System Technology (BBEST) for packaged boilers. ...

  17. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  18. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.

  19. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5

    Office of Scientific and Technical Information (OSTI)

    g/hp-h NOx Engine Concept; Final Report (Technical Report) | SciTech Connect Technical Report: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas

  20. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Fired Electricity Generation Market Home There are currently no posts in this category. Syndicate...

  1. Renewable Electricity Standards: Good Practices and Design Considerations. A Clean Energy Regulators Initiative Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  2. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Energy Savers [EERE]

    Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino ...

  3. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  4. Attend a Webinar on AMO's Next Generation Electric Machines Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy a Webinar on AMO's Next Generation Electric Machines Funding Opportunity Attend a Webinar on AMO's Next Generation Electric Machines Funding Opportunity March 24, 2015 - 3:09pm Addthis AMO's Next Generation Electric Machines (NGEM) program recently released the Funding Opportunity Announcement (FOA): Next Generation Electric Machines: Megawatt Class Motors. $20 million will fund four to six projects that develop a new generation of energy efficient, high

  5. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu issued the following statement today on the unveiling of the Beowawe Geothermal Plant in Eastern Nevada. This is the first geothermal project funded under the American Recovery and Reinvestment Act to start generating power.

  6. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  7. Clean the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a

  8. Optimized Hydrogen and Electricity Generation from Wind

    Broader source: Energy.gov [DOE]

    Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

  9. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect (OSTI)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  10. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino

    Energy Savers [EERE]

    County, CA | Department of Energy 6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino

  11. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  12. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  13. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  14. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes Solid Oxide Fuel Cell and Power System Development at PNNL Proton Exchange Membrane Fuel Cells for Electrical Power ...

  15. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar,

  16. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  17. EERE FY 2016 Budget Overview -- Renewable Electricity Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Renewable Electricity Generation, a presentation with Doug Hollett, Deputy Assistant Secretary, March 2015. PDF icon FY 2016 Budget Overview Webinar Presentation -- Renewables More Documents & Publications EERE FY 2015 Budget Request Webinar -- Renewable Power Office of Energy Efficiency and

  18. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth’s crust where

  19. Energy Secretary Moniz Dedicates Clean Energy Research Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dedicates Clean Energy Research Center, New Supercomputer Energy Secretary Moniz Dedicates ... more than doubled generation of electricity from wind, solar and geothermal sources. ...

  20. Secretary Moniz Announces Clean Energy Technologies are Accelerating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Technologies are Accelerating in the U.S. Marketplace According to New ... across 39 states - enough to generate electricity for more than 16 million homes - with ...

  1. Secretary Moniz Announces Clean Energy Technologies are Accelerating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Moniz Announces Clean Energy Technologies are Accelerating in the U.S. Marketplace ... 39 states - enough to generate electricity for more than 16 million homes - with ...

  2. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins ... According to KAir, these batteries store generated electricity and return 98% of the ...

  3. President�s Energy Budget Invests in Innovation, Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generating 80 percent of Americas electricity from clean sources by 2035 as called for by the President. Supports groundbreaking basic science, research and innovation to solve ...

  4. Energy Department Report Finds Major Potential to Increase Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Administration's goal of generating 80 percent of our nation's electricity from clean resources by 2035. ... integrate other renewable energy sources such as wind and solar power. ...

  5. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and...

  6. Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA ... Of course, Atlanta in particular was on the national news in terms of these incredible ...

  7. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  8. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  9. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  10. Perry Wyoming manure to electricity generation plant | Open Energy...

    Open Energy Info (EERE)

    will build and operate anaerobic digestion systems to convert animal manure into methane for electricity generation. Coordinates: 42.895849, -89.760231 Show Map Loading...

  11. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  12. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  13. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting...

  14. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  15. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  16. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Nuclear Generation and Generating Capacity Data Released: May 26, 2016 Data for: ... 2004 XLS 2003 XLS P Preliminary U.S. Nuclear Generation: 1957 to latest available EIA ...

  17. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    by this Institute of Electrical and Electronics Engineers paper handle high power density winds, and are theoretically capable of delivering a constant 30 MW to the grid. At...

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together such a well-structured and productive forum.

  19. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  20. State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    This fact sheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

  1. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  2. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a step-change that enables more efficient use of electricity, as well as reduced drive system size and weight, ... NGEM: MEGAWATT CLASS MOTORS Five projects were selected in ...

  3. Quadrennial Energy Review Second Installment Electricity: Generation...

    Broader source: Energy.gov (indexed) [DOE]

    ... Today, our member cooperatives provide electricity to over 42 million people in 47 states, many of whom are in "persistent poverty" counties, and they do so in an environment of ...

  4. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric ...

  5. " Electricity Generation by Census Region, Industry...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" ...

  6. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors | Department of Energy Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm Addthis This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors

  7. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  8. Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Secretary Steven Chu today announced that four new corporate partners – Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia – are joining the Energy Department’s National Clean Fleets Partnership, a broad public-private partnership that assists the nation’s largest fleet operators in reducing the amount of gasoline and diesel they use nationwide.

  9. Impacts of a 25% Renewable Electricity Standard as Proposed in the American Clean Energy and Security Act Discussion Draft

    Reports and Publications (EIA)

    2009-01-01

    This report responds to requests from Chairman Edward Markey, for an analysis of a 25% federal renewable electricity standard (RES). The RES proposal analyzed in this report is included in the discussion draft of broader legislation, the American Clean Energy and Security Act (ACESA) of 2009, issued on the Energy and Commerce Committee website at the end of March 2009.

  10. Effects of Title IV of the Clean Air Act Amendments of 1990 on Electric Utilities: An Update, The

    Reports and Publications (EIA)

    1997-01-01

    Describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on SO2 emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. It updates and expands the EIA report, Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990.

  11. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  12. Monthly Electric Generator data - EIA-860M data file

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA estimates the current and near-term unit inventory of electric power generating capacity by integrating the information on these surveys along with ongoing EIA research of new ...

  13. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  14. Fact #799: September 30, 2013 Electricity Generation by Source...

    Broader source: Energy.gov (indexed) [DOE]

    Those emissions are dependent upon the source of electricity generation. Although the ... nearly three-fold while the use of petroleum liquids and coke have dwindled to just 0.6%. ...

  15. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  16. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  17. Annual Electric Generator data - EIA-860 data file

    U.S. Energy Information Administration (EIA) Indexed Site

    60 detailed data with previous form data (EIA-860A/860B) Release Date: October 21, 2015 Final 2014 data Next Release Date: October 15, 2016 Re-Release 2014 data: February 8, 2016 (CORRECTION) The survey Form EIA-860 collects generator-level specific information about existing and planned generators and associated environmental equipment at electric power plants with 1 megawatt or greater of combined nameplate capacity. Summary level data can be found in the Electric Power Annual. Detailed data

  18. The Market for Coal Based Electric Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadmap "CURC/EPRI/DOE Consensus Roadmap" Background Information Go to Roadmap http://www.netl.doe.gov/coalpower/ccpi/pubs/CCT-Roadmap-Background.pdf 04/20/04 The Clean Coal Technology Roadmap is the U.S. Department of Energy's plan to develop the technology needed for future energy plants that use coal to produce electricity and, when economically favored, transportation fuels, and other valuable energy products as well; have near-zero emissions including CO 2 ; are highly efficient;

  19. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  20. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  1. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  2. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  3. We're in the Global Clean Energy Race to Win: Federal Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We're in the Global Clean Energy Race to Win: Federal Investment in California Solar ... has proposed doubling the amount of electricity we generate from clean energy sources ...

  4. Table N13.2. Electricity: Components of Onsite Generation, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional ... use of energy." "Cogeneration includes electricity generated from fossil fuels, such as ...

  5. Construction Begins on First-of-its-Kind Advanced Clean Coal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility ... Integrated Gasification (TRIGTM) technology," said David Ratcliffe, Southern ...

  6. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  7. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  8. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  9. Buying & Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Buying & Making Electricity Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. Read more Planning for a Small Renewable Energy System Planning for a Small Renewable Energy System Planning for a home renewable energy system is a process that includes analyzing your existing

  10. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  11. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  12. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  13. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  14. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  15. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Broader source: Energy.gov (indexed) [DOE]

    Coproduced from Oil and/or Gas Wells | Department of Energy Chena Hot Springs Resort project presentation at the 2013 peer review meeting in Colorado. PDF icon chenahotsprings_peerreview2013.pdf More Documents & Publications Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas Low Temperature Geothermal Energy Low Temperature/Coproduced/Geopressured Subprogram Overview

  16. Small Modular Reactors and U.S. Clean Energy Sources for Electricity

    Broader source: Energy.gov [DOE]

    For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume...

  17. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  19. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Broader source: Energy.gov [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  20. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  1. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  2. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  4. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  5. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  6. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  7. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  8. EERE Day at MIT Inspires Next Generation of Clean Energy Leaders

    Broader source: Energy.gov [DOE]

    It’s easy to break down our research and development investments into the programs we support, the partnerships we’ve built, and the cutting edge clean energy technologies our partners deploy. But...

  9. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  10. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  11. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  12. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  13. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January

  14. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  15. Energy Department Invests Over $7 Million to Deploy Tribal Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 ... The wind turbine is expected to generate about 50% of the electricity used on the ...

  16. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a historic

  17. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature ...

  18. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  19. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  20. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  1. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    Reports and Publications (EIA)

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  2. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  3. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA | Department

    Energy Savers [EERE]

    of Energy 6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact Statement Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA February 25, 2014 EIS-0476: Record of Decision Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA

  4. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  5. The effects of Title IV of the Clean Air Act amendments of 1990 on electric utilities: An update

    SciTech Connect (OSTI)

    1997-03-01

    This report presents data and analyses related to Phase I implementation of the Clean Air Act Amendment by electric utilities. It describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on sulfur dioxide emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. The first year of Phase I demonstrated that the market-based sulfur dioxide emissions control system could achieve significant reductions in emissions at lower than expected costs. Some utilities reduced aggregate emissions below legal requirements due to economic incentives; other utilities purchased additional allowances to avoid noncompliance. More than half of the utilities switched to or blended with lower sulfur coal, due to price reductions in the coal market which were partially due to the allowance trading program. 21 figs., 20 tabs.

  6. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  7. Clean Coal Power Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other ...

  8. Clean Energy Development Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  9. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  10. Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets

    Broader source: Energy.gov [DOE]

    A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

  11. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Penetration Solar Distributed Generation Study on Oahu In 2008, the Hawaii Clean Energy Initiative (HCEI) set a ... to understand the impact on the entire electric power system. ...

  12. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  13. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  14. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  15. CHP: A Clean Energy Solution, August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and useful thermal energy from a single fuel source. This paper provides a foundation for national discussions on effective ways to reach the 40 GW target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the

  16. AMO FOA Targets Advanced Components for Next-Generation Electric Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOA Targets Advanced Components for Next-Generation Electric Machines AMO FOA Targets Advanced Components for Next-Generation Electric Machines March 19, 2015 - 10:21am Addthis AMO's Next Generation Electric Machines (NGEM) program announced up to $20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy applications. This Financial Opportunity

  17. EIA's Energy in Brief: How much U.S. electricity is generated from

    Gasoline and Diesel Fuel Update (EIA)

    renewable energy? much U.S. electricity is generated from renewable energy? Last Updated: May 5, 2016 U.S. power plants used renewable energy sources, including water, wind, biomass wood and waste, geothermal, and solar, to generate about 13% of the electricity produced in the United States during 2015. Sources of Renewable Electricity Generation, 2013; chart shaped like an outlet. Renewables are 13% of generation. Renewable breakout: hydropower, 52%; wind, 32%; biomass wood, 8%; biomass

  18. On-line mechanical tube cleaning for steam electric power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-02-18

    In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

  19. State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This fact sheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

  20. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Broader source: Energy.gov [DOE]

    Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and reduce the environmental impact of their electricity use.

  1. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  2. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore » the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  3. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean

  4. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  5. Annual Electric Generator data - EIA-860 data file

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcing "Mission Innovation" Announcing "Mission Innovation" November 29, 2015 - 7:00pm Addthis At the United Nations climate change conference in Paris, President Obama joins world leaders from 19 other countries to launch "Mission Innovation," a new initiative aimed at dramatically accelerating public and private global clean energy research and development. David Turk David Turk Deputy Assistant Secretary for International Climate and Technology Paul Bodnar

  6. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, ...

  7. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, ...

  8. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, ...

  9. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, ...

  10. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, ...

  11. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, ...

  12. DOE Quadrennial Energy Review 1.2, Electricity: Generation to...

    Broader source: Energy.gov (indexed) [DOE]

    ... of critical electric infrastructure information shared with FERC and DOE as part of a major transportation bill. ... In addition to enhancing offerings for residential ...

  13. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  14. Secretary Bodman Visits Clean Energy Museum in Tokyo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Museum in Tokyo Secretary Bodman Visits Clean Energy Museum in Tokyo December ... TEPCO supplies Tokyo and its vicinity with electricity from thermal electric, nuclear, and ...

  15. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  16. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    Reports and Publications (EIA)

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  17. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  18. Low-temperature Stirling Engine for Geothermal Electricity Generation...

    Office of Scientific and Technical Information (OSTI)

    The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215C and a rejection ...

  19. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  20. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a biomass gasifier and a reciprocating engine generator set into a combined platform, ... Draft White Paper, September 2007 Combined Heat and Power Market Potential for Opportunity ...

  1. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of critical energy applications. ...

  2. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CEC), helped build a solar power system, biogas generation from waste systems, and ... facility completed construction on a biogas enhancement facility that co-digests ...

  3. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  4. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  5. Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells

    Broader source: Energy.gov [DOE]

    This study, completed by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology.

  6. A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What

  7. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  8. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  9. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  10. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  11. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  12. Electric Power Generation from Low to Intermediate Temperature Resources

    SciTech Connect (OSTI)

    Gosnold, William D.

    2015-06-18

    This project was designed to test the concept on the Eland-Lodgepole Field near Dickinson, North Dakota in the Williston Basin. The field is in secondary-recovery water-flood and consists of 12 producing oil wells, 5 water injection wells and one disposal well. Water production at the site averages approximately 320 gallons per minute (20.2 l s-1) and the temperature is 100 ⁰C. Engineers at Ormat estimated power production potential with the existing resource to be approximately 350 kWh. Unfortunately, ownership of the field was transferred from Encore, Inc., to Denbury, Inc., within the first week of the project. After two years of discussion and planning, Denbury decided not to pursue this project due to complications with the site location and its proximity to Patterson Lake. Attempts to find other partners operating in the Williston Basin were unsuccessful. Consequently, we were unable to pursue the primary objective of the project. However, during negations with Denbury and subsequent time spent contacting other potential partners, we focused on objectives 2 and 3 and developed a clear understanding of the potential for co-produced production in the Williston Basin and the best practices for developing similar projects. At least nine water bearing formations with temperatures greater than 90 ⁰C extend over areas of several 10s of km2. The total energy contained in the rock volume of those geothermal aquifers is 283.6 EJ (1 EJ = 1018 J). The total energy contained in the water volume, determined from porosities which range from 2 percent to 8 percent, is 6.8 EJ. The aquifers grouped by 10 ⁰C temperature bins (Table 1) include one or more formations due to the bowl-shape structure of the basin. Table 1. Summary of energy available in geothermal aquifers in the Williston Basin Analysis of overall fluid production from active wells, units, fields and formations in North Dakota showed that few sites co-produce sufficient fluid for significant power production with ORC technology. Average co-produced water for 10,480 wells is 3.2 gallons per minute (gpm). Even excluding the tight formations, Bakken and Three Forks, average co-produced water for the remaining 3,337 is only 5 gpm. The output of the highest producing well is 184 gpm and the average of the top 100 wells is 52 gpm. Due to the depth of the oil producing formations in the Williston Basin, typically 3 km or greater, pumps are operated slowly to prevent watering out thus total fluid production is purposefully maintained at low volumes. There remain potential possibilities for development of geothermal fluids in the Williston Basin. Unitized fields in which water production from several tens of wells is collected at a single site are good possibilities for development. Water production in the unitized fields is greater than 1000 gpm is several areas. A similar possibility occurs where infill-drilling between Bakken and Three Forks horizontal wells has created areas where large volumes of geothermal fluids are available on multi-well pads and in unitized fields. Although the Bakken produces small amounts of water, the water/oil ration is typically less than 1, the oil and water mix produced at the well head can be sent through the heat exchanger on an ORC. It is estimated that several tens of MWh of power could be generated by a distributed system of ORC engines in the areas of high-density drilling in the Bakken Formation. Finally, horizontal drilling in water bearing formations is the other possibility. Several secondary recovery water-flood projects in the basin are producing water above 100 ⁰C at rates of 300 gpm to 850 gpm. Those systems also could produce several tens of MWh of power with ORC technology. Objective 3 of the project was highly successful. The program has produced 5 PhDs, 7 MS, and 3 BS students with theses in geothermal energy. The team has involved 7 faculty in 4 different engineering and science disciplines, ChE, EE, GE, and Geol. The team has produced 26 peer-reviewed papers and 62 presentations at professional meetings. Faculty involved in the program developed five graduate level courses covering different elements in heat flow and geothermal energy that are now offered in the Harold Hamm School of Geology and Geological Engineering. Lessons learned – Keys to developing a successful project;1. Determine target formations; a. Data from oil and gas operators, state oil and gas regulatory agencies, and state geological surveys help to identify producing formations and their properties; 2. Determine the quantity of energy available in the target formations; a. A complete thermal analysis of the basin or region yields the most useful information; b. Critical data include: BHT, heat flow, stratigraphy, lithology, lithological properties, and thermal conductivity, subsurface structure; 3. Determine fluid production potential; a. State oil and gas regulatory agencies, and state geological surveys have data on oil, gas and water production. State Water Commission/Agencies have data on water quality, aquifers, and regulations; b. Consider single horizontal wells, multiple conventional wells, and unitized fields; 4. Calculate energy production capacity of each formation based on different well combination and power plant scenarios. This is a broad overview rather than a site specific analysis; 5. Research and understand the local electrical power industry. Obtain the PPA before committing to the project; 6. Work with the high-level personnel in the oil company partner. Obtain an MOU that addresses all issues in the project including what to expect if the company goes out of business, is bought out, changes management, etc; and 7. Be prepared for project delays.

  13. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  14. Water demands for electricity generation in the U.S.: Modeling...

    Office of Scientific and Technical Information (OSTI)

    Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus This content will become publicly available on March 11, 2018 Title: ...

  15. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  16. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  17. EERE Success Story—Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  18. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    Gasoline and Diesel Fuel Update (EIA)

    Model Documentation: Electricity Generation and Fuel Consumption Models January 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Model Documentation: Electricity Generation and Fuel Consumption Models i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  19. Water demands for electricity generation in the U.S.: Modeling different

    Office of Scientific and Technical Information (OSTI)

    scenarios for the water-energy nexus (Journal Article) | SciTech Connect Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Citation Details In-Document Search This content will become publicly available on March 11, 2018 Title: Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Authors: Liu, Lu ; Hejazi, Mohamad ; Patel, Pralit ; Kyle, Page ; Davies, Evan ; Zhou, Yuyu ;

  20. Water demands for electricity generation in the U.S.: Modeling different

    Office of Scientific and Technical Information (OSTI)

    scenarios for the water-energy nexus (Journal Article) | DOE PAGES Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus This content will become publicly available on March 11, 2018 Title: Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Authors: Liu, Lu ; Hejazi, Mohamad ; Patel, Pralit ; Kyle, Page ; Davies, Evan ; Zhou, Yuyu ; Clarke, Leon ; Edmonds, James Publication

  1. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. PDF icon coproduced_demoprojects_peerreview2013.pdf More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas track 1: Low Temp | geothermal 2015 peer review

  2. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings. PDF icon low_gosnold_coproduced_fluids.pdf More Documents & Publications Electric Power Generation from Co-Produced and Other Oil Field Fluids AAPG Low-Temperature Webinar Low Temperature/Coproduced/Geopressured Subprogram Overview

  3. Generator Bidding Strategies in a Competitive Electricity Market with Derating and Bid-Segment Considerations

    SciTech Connect (OSTI)

    Lu, Ning; Chow, Joe H.; Desrochers, Alan A.

    2009-07-31

    This paper develops optimal generator bidding strategies in a competitive electricity market. Starting from a generators cost curve, basic bidding concepts such as the break-even bid curve and the maximum profit bid curve can be readily derived. The maximum profit bid curve can be extended to account for generator availability and derating. In addition, multiple-segment block energy bids can be optimized based on the maximum profit curve and the probabilistic distribution of market clearing prices.

  4. Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Plug-in Electric Vehicle Basics . . . . . . . . . . . . . . . . . . . . . 4 Plug-in Electric Vehicle Benefits . . . . . . . . . . . . . . . . . . . 5 Buying the Right Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Driving and Maintaining Your Vehicle . . . . . . . . . . . . . . . 8 Charging Your Vehicle . . . . . . .

  5. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  6. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    SciTech Connect (OSTI)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  7. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  8. Method and apparatus for generating electric power by waves

    SciTech Connect (OSTI)

    Watabe, T.; Dote, Y.; Kondo, H.; Matsuda, T.; Takagi, M.; Yano, K.

    1984-12-25

    At least one caisson which is part or all of a breakwater forms a water chamber therein whose closure is a pendulum having a natural period in rocking or oscillating the same as a period of stationary wave surges caused in the water chamber by rocking movement of the pendulum owing to wave force impinging against the pendulum. At least one double-acting piston and cylinder assembly is connected to the pendulum, so that when a piston of the assembly is reciprocatively moved by the pendulum, pressure difference between cylinder chambers on both sides of the piston of the assembly controls a change-over valve which in turn controls hydraulic pressure discharged from the cylinder chambers to be supplied to a plurality of hydraulic motors respectively having accumulators of a type wherein accumulated pressure and volume of the hydraulic liquid are proportional to each other, whereby driving a common generator alternately by the hydraulic motors.

  9. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  10. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  11. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  12. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  13. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  14. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  15. Analysis of the Clean Energy Standard Act of 2012

    Gasoline and Diesel Fuel Update (EIA)

    5 Appendix D: Request Letter and Bill May 2012 U.S. Energy Information Administration | Analysis of the Clean Energy Standard Act of 2012 16 May 2012 U.S. Energy Information Administration | Analysis of the Clean Energy Standard Act of 2012 17 II 112TH CONGRESS 2D SESSION S. 2146 To amend the Public Utility Regulatory Policies Act of 1978 to create a market-oriented standard for clean electric energy generation, and for other purposes. IN THE SENATE OF THE UNITED STATES MARCH 1, 2012 Mr.

  16. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  17. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  18. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  19. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  20. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  1. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  2. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  3. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J.

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  4. Through its Clean Coal Research Program, FE

    Energy Savers [EERE]

    its inception as part of DOE in 1977, FE's R&D mission has continued to evolve to reflect the nation's key energy supply, security and environmental needs. Coal represents 93 percent of total U.S. fossil fuel reserves and is the largest single source (45 percent) of electricity generation, both currently and projected for the foreseeable future. It also is among the most carbon- intensive energy resources. Continuing the legacy of previous successes in the Clean Coal Technology Development

  5. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  6. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  7. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  8. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  9. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  10. #CleanTechNow

    ScienceCinema (OSTI)

    Moniz, Ernest

    2014-01-10

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  11. #CleanTechNow

    SciTech Connect (OSTI)

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  12. Energy Department Announces Clean Cities Projects to Diversify...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean ... vehicles that run on natural gas, electricity and propane. ...

  13. Secretary Chu Announces Initiatives to Promote Clean Energy at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives to Promote Clean Energy at First Clean Energy Ministerial Secretary Chu ... products that together account for about 15 percent of household electricity use. ...

  14. National Clean Energy Business Plan Competition: OptiBit Wins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OptiBit Wins MIT Clean Energy Prize National Clean Energy Business Plan Competition: ... Technologies presented included a solution to convert ocean wave energy into electricity ...

  15. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  16. Table E13.2. Electricity: Components of Onsite Generation, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row"

  17. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    SciTech Connect (OSTI)

    Araujo, Marcelo Guimaraes; Magrini, Alessandra; Mahler, Claudio Fernando; Bilitewski, Bernd

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  19. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  20. Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The

    Reports and Publications (EIA)

    2009-01-01

    This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

  1. Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

  2. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  3. EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

  4. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  5. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    Reports and Publications (EIA)

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  6. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  7. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  8. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  9. The Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2011-05-03

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  10. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  11. Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications

    Broader source: Energy.gov [DOE]

    Can you imagine a photovoltaic module that’s able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today’s EVs? Innovative solid-state nanocapacitors are making this clean technology possible.

  12. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  13. AEO2016 Electricity Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  14. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  15. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  16. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: Energy.gov [DOE]

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  17. A systems model and potential leverage points for base load electric generating options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.

    1993-09-01

    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  18. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  19. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potential for significant reductions in the plant cost-of-electricity, about 4.5% for the Current Standards case, and more than 7% for the Future Standards case. For Methanol Synthesis, the Novel Gas Cleaning process scheme again shows the potential for significant advantages over the conventional gas cleaning schemes. The plant generating capacity is increased more than 7% and there is a 2.3%-point gain in plant thermal efficiency. The Total Capital Requirement is reduced by about 13% and the cost-of-electricity is reduced by almost 9%. For both IGCC Methanol Synthesis cases, there are opportunities to combine some of the filter-reactor polishing stages to simplify the process further to reduce its cost. This evaluation has devised plausible humid-gas cleaning schemes for the Filter-Reactor Novel Gas Cleaning process that might be applied in IGCC and Methanol Synthesis applications.

  20. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  1. Table 8.2c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage 5 Renewable Energy Other 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar/ PV 9 Wind Total Wood 7 Waste 8 Electricity-Only Plants 11<//td> 1989 1553997999 158,347,542 266,917,576 – 1,979,263,117 529,354,717 [6]

  2. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  3. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  4. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  5. Puget Sound Area Electric Reliability Plan. Appendix B : Local Generation Evaluation : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The information and data contained in this Appendix was extracted from numerous sources. The principle sources used for technical data were Bonneville Power Administration's 1990 Resource Program along with its technical appendix, and Chapter 8 of the Draft 1991 Northwest Conservation and Electric Power Plan. All cost data is reported 1988 dollars unless otherwise noted. This information was supplemented by other data developed by Puget Sound utilities who participated on the Local Generation Team. Identifying generating resources available to the Puget Sound area involved a five step process: (1) listing all possible resources that might contribute power to the Puget Sound area, (2) characterizing the technology/resource status, cost and operating characteristics of these resources, (3) identifying exclusion criteria based on the needs of the overall Puget Sound Electric Reliability Plan study, (4) applying these criteria to the list of resources, and (5) summarizing of the costs and characteristics of the final list of resources. 15 refs., 20 tabs.

  6. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect (OSTI)

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  7. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  8. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  9. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  10. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  11. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  12. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  13. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid Electric Delivery Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans M. Lammert and K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-5400-55658 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  14. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  15. Table A28. Components of Onsite Electricity Generation by Census Region, Cens

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Onsite Electricity Generation by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,"Renewables" ,,,"(excluding Wood",,"RSE" " "," "," ","and"," ","Row" "Economic Characteristics(a)","Total","Cogeneration(b)","Other

  16. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  17. New Clean Renewable Energy Bonds

    Broader source: Energy.gov [DOE]

    New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital expenditures incurred by governmental bodies (including states and municipalities), public power providers, or cooperative electric companies for a "qualified renewable energy facility."

  18. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  19. Exploring the Business Link Opportunity: Transmission & Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West ... of Indian Energy and Office of Electricity Delivery and Energy Reliability was ...

  20. City of Palo Alto Utilities- Palo Alto CLEAN (Clean Local Energy Accessible Now)

    Broader source: Energy.gov [DOE]

    City Palo Alto Utility's Clean Local Energy Accessible Now (CLEAN) program provides fixed payments for electricity produced by approved photovoltaic systems over a fixed period of time. This type...

  1. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  2. Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking Down Conventional Policy Categories

    SciTech Connect (OSTI)

    Couture, T. D.; Jacobs, D.; Rickerson, W.; Healey, V.

    2015-02-01

    A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many of these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.

  3. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.; Umstadter, Karl R.; Starodub, Elena; Zhuang, Guorong V.

    2015-10-13

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUV light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.

  4. Texas Clean Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Texas Clean Energy Project Texas Clean Energy Project On March 12, 2010, DOE announced the award of a Cooperative Agreement to Summit Texas Clean Energy, LLC to construct the Texas Clean Energy Project (TCEP), an integrated gasification combined cycle (IGCC) poly-generation facility with fully integrated CO2 capture. Under Round 3 of the Clean Coal Power Initiative (CCPI), DOE is providing up to $450 million in financial assistance, including funding from the Recovery Act of 2009. Due to the

  5. Energy Department Invests $17 Million in Small Businesses to Accelerate Clean Energy Innovation

    Broader source: Energy.gov [DOE]

    Building on President Obama’s Climate Action Plan to continue U.S. leadership in clean energy innovation, the Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) today awarded $17 million in Small Business Innovation Research (SBIR) projects to help small businesses in 13 states develop prototype technologies that could improve manufacturing energy efficiency, reduce the cost of installing clean energy projects, and generate electricity from renewable energy sources.

  6. Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Life Cycle of Tribal Clean Energy Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy June 29, 2016 11:00AM to 12:30PM MDT According to DOE's National Renewable Energy Laboratory, most of the hundreds of lifecycle assessments published on electricity generation technologies over the last 30 years only assemble lifecycle inventories, quantifying the emissions to the environment or the use of resources rather than reporting effects on environmental

  7. Proposed guidelines for reporting performance of a solar dish/Stirling electric generation system

    SciTech Connect (OSTI)

    Stine, W.B.; Powell, M.A.

    1992-12-31

    Experimental performance data from dish/Stirling system testing can be analyzed to generate a system performance model. An approach to developing an experimentally based performance model of a dish/Stirling system is given. Two methods for analyzing the experimental data are described. To provide information that will permit comparison of dish/Stirling systems, it is necessary to define many of the details involved in calculating system performance data such as the net system output and system solar-to-electric efficiency. This paper describes a set of guidelines for these calculations, based on past experience, especially with the Vanguard dish/Stirling system. Also presented are a set of rating conditions at which a maximum value for system efficiency can be calculated. Comparison between systems of their rated peak solar-to-electric efficiency is made possible when these rating conditions are in common use by manufacturers and testing agencies.

  8. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  9. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation E. Ela, 1 M. Milligan, 1 A. Bloom, 1 A. Botterud, 2 A. Townsend, 1 and T. Levin 2 1 National Renewable Energy Laboratory 2 Argonne National Laboratory Technical Report NREL/TP-5D00-61765 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

  10. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy D. Palchak and P. Denholm Technical Report NREL/TP-6A20-62275 July 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  11. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated

    Reports and Publications (EIA)

    2001-01-01

    To assist reporters in estimating emissions and emission reductions, The Energy Information Administration (EIA) has made available in the instructions to Forms EIA-1605 and EIA-1605EZ emission coefficients for most commonly used fossil fuels and electricity. These coefficients were based on 1992 emissions and generation data. In 1999, updated coefficients were prepared based on the most recent data (1998) then available; however, the updated coefficients were not included in the instructions for the 1999 data year. This year, they have been updated again, but based on three years worth of data (1997, 1998, and 1999) rather than a single year.

  12. United States Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",14568,14637,14840,15009,15219 "Hydro Conventional",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 "Wind",26589,34450,55363,73886,94652 "Wood/Wood Waste",38762,39014,37300,36050,37172 "MSW Biogenic/Landfill

  13. United States Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2885295,2992238,2926731,2726452,2883361 " Coal",1990511,2016456,1985801,1755904,1847290 " Petroleum",64166,65739,46243,38937,37061 " Natural Gas",816441,896590,882981,920979,987697 " Other Gases",14177,13453,11707,10632,11313

  14. BAE/Orion Hybrid Electric Buses at New York City Transit: A Generational Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BAE/Orion Hybrid Electric Buses at New York City Transit A Generational Comparison R. Barnitt Technical Report NREL/TP-540-42217 Revised March 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No.

  15. EIS-0486: Plains & Eastern Clean Line Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the potential environmental impacts of participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead ± 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver approximately 3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an interconnection with the Tennessee Valley Authority (TVA).

  16. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  17. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  18. Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011

    Broader source: Energy.gov [DOE]

    The April 2011 DOE workshop, “Computational Needs for the Next Generation Electric Grid,” brought together some of the Nation’s leading researchers and experts to identify computational challenges...

  19. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  20. Insidious vapors: infrared determination of NO/sub 2/ generated in a high-voltage electric arc

    SciTech Connect (OSTI)

    Carlson, E.M.; LeFevre, P.G.; Williams, R.C.

    1984-11-01

    A study of the quantities of nitrogen dioxide generated by a high-voltage electric discharge was conducted. The amount of nitrogen dioxide present was measured using infrared spectroscopy. Paraffin was used to protect the KBr sample cell from damage and NO/sub 2/. The relative toxicities of phosgene and NO/sub 2/, both generated by arcing of electrical equipment, are presented. 10 references, 2 figures, 2 tables.

  1. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect (OSTI)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: 1. Timely adapted licensing process and regulations, codes and standards for such application and design; 2. An industry oriented R and D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector; 3. Identification of an end user (or a consortium of) willing to fund a FOAK. (authors)

  2. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  3. Results from the OECD report on international projections of electricity generating costs

    SciTech Connect (OSTI)

    Paffenbarger, J.A.; Bertel, E.

    1998-07-01

    The International Energy Agency and Nuclear Energy Agency of the OECD have periodically undertaken a joint study on electricity generating costs in OECD Member countries and selected non-Member countries. This paper presents key results from the 1998 update of this study. Experts from 19 countries drawn from electric utility companies and government provided data on capital costs, operating and maintenance costs, and fuel costs from which levelized electricity generating costs (US cents/kWh) for baseload power plants were estimated in each country using a common set of economic assumptions. Light water nuclear power plants, pulverized coal plants, and natural gas-fired combined cycle gas turbines were the principal options evaluated. five and 10% discount rates, 40-year operating lifetime, and 75% annual load factor were the base assumptions, with sensitivity analyses on operating lifetime and load factor. Fuel costs and fuel escalation were provided individually by country, with a sensitivity case to evaluate costs assuming no real fuel price escalation over plant lifetimes. Of the three principal fuel/technology options, none is predominantly the cheapest option for all economic assumptions. However, fossil-fueled options are generally estimated to be the least expensive option. The study confirms that gas-fired combined cycles have improved their economic performance in most countries in recent years and are strong competitors to nuclear and coal-fired plants. Eleven out of the 18 countries with two or more options show gas-fired plants to be the cheapest option at 10% discount rate. Coal remains a strong competitor to gas when lower discount rates are used. Nuclear is the least expensive at both 5 and 10% discount rate in only two countries. Generally, with gas prices above 5 US$/GJ, nuclear plants constructed at overnight capital costs below 1 650 $/kWe have the potential to be competitive only at lower discount rates.

  4. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  5. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  6. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  7. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  8. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  9. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect (OSTI)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  10. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  11. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    Open Energy Info (EERE)

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  12. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  13. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  15. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  16. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  17. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect (OSTI)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G.; Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  18. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells

    SciTech Connect (OSTI)

    Cherepov, Sergiy; Khalili Amiri, Pedram; Alzate, Juan G.; Wong, Kin; Lewis, Mark; Upadhyaya, Pramey; Nath, Jayshankar; Bao, Mingqiang; Wang, Kang L.; Bur, Alexandre; Wu, Tao; Carman, Gregory P.; Khitun, Alexander

    2014-02-24

    In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub (1?x)}[PbTiO{sub 3}]{sub x} substrate was used for this purpose. By applying an AC voltage to the piezoelectric, an oscillating electric field is created within the piezoelectric material, which results in an alternating strain-induced magnetic anisotropy in the magnetostrictive Ni layer. The resulting anisotropy-driven magnetization oscillations propagate in the form of spin waves along a 5??m wide Ni/NiFe waveguide. Control experiments confirm the strain-mediated origin of the spin wave excitation. The voltage-driven spin wave excitation, demonstrated in this work, can potentially be used for low-dissipation spin wave-based logic and memory elements.

  19. Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,349,185 5,803 NA NA NA NA 1,354,988 NA 5,420 4,339,470 1950 2,199,111

  20. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  1. Clean Energy 2030: Building a Sustainable Future - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  2. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  3. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m

  4. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  5. Clean Cities: Ann Arbor Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  6. #CleanTechNow: Your Best Clean Energy Photos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos September 27, 2013 - 12:45pm Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications Learn More: Follow @energy on Instagram to check out more great photos and videos about energy technology. Read an Energy Department report about the recent advances of wind, solar panels, electric vehicles and LED lighting in the consumer marketplace. Check out Secretary Moniz's blog post

  7. Energy Department Announces $25 Million to Develop Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines for Industrial Energy Savings | Department of Energy 25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings Energy Department Announces $25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings March 11, 2016 - 8:16am Addthis As part of the Obama Administration's Mission Innovation effort to double clean energy research and development (R&D) investments over the next five years, the Energy Department

  8. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  9. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  10. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  11. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  12. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  13. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  14. Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

  15. The Recovery Act and Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act and Clean Energy The Recovery Act and Clean Energy February 26, 2016 - ... sources and then provide that electricity to customers when demand is at its highest. ...

  16. President's Energy Budget Invests in Innovation, Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To lead the world in clean energy, we must act now. We can't afford not to. Through our ... of America's electricity from clean sources by 2035 as called for by the President. ...

  17. Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Helping Wisconsin Tribe Achieve Sustainability Goals Clean Energy Projects Helping ... up to 35,000 kilowatt hours of clean electricity; A 2.0 megawatt anaerobic digester to ...

  18. Choices related to chemical cleaning of fossil plant equipment

    SciTech Connect (OSTI)

    Shields, K.

    1995-01-01

    Choices faced by utility personnel responsible for cleanliness of steamside and waterside surfaces of fossil plant equipment are identified and discussed. Electric Power Research Institute (EPRI) guidelines for chemical cleaning are introduced. A chemical cleaning case history is presented.

  19. Electric power generation expansion and integration, Micronesia (Yap, Kosrae, Pohnpei, Chuuk) power plants project. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The State of Yap in the Federated States of Micronesia is now entirely dependent on oil for electric power generation. The present high costs and limited capacity for electric power generation are major disincentives to the economic development of Yap. Preliminary proposals from two U.S. companies regarding waste-to-energy plants might furnish electricity to Yap below present costs. Yap and its sister state of Kosrae have agreed to jointly seek a grant from the U.S. Trade and Development Program (TDP) to cover three areas: An assessment of projected power generating requirements; A review of generating alternatives with emphasis on waste to energy generation; and An environmental analysis of the waste to energy alternatives. The government in Yap has two objectives: reduce the amount of money spent for diesel fuel now and in the future and make sufficient electricity available at a reasonable price to attract development for the economy of Yap. Officials on both Pohnpei and Kosrae echoed these objectives.

  20. Biotechnology for Clean Vehicles

    Broader source: Energy.gov [DOE]

    The Sustainable Transportation Summit session, Biotechnology for Clean Vehicles: Harnessing Synthetic Biology to Enable Next-Generation Biomaterials and Biofuels, will introduce transportation stakeholders to novel biomaterials and engineered biological systems with unique applicability to vehicle efficiency and sustainability. Further, it will illustrate how synthetic biology tools can be employed to enable the production of new biomaterials and advanced, low-carbon biofuel to benefit and promote a sustainable transportation sector.

  1. Keeping Nuclear as a Viable Option for Electric Power Generation in the Brazilian Matrix

    SciTech Connect (OSTI)

    Henning, F.

    2004-10-06

    This paper discusses all alternatives that are part of the general solution for the electric energy problem in Brazil.

  2. President Obama Announces $2.4 Billion in Funding to Support Next Generation Electric Vehicles

    Broader source: Energy.gov [DOE]

    DOE Support for Advanced Battery Manufacturing and Electric Vehicle Deployment to Create Tens of Thousands of U.S. Jobs

  3. Renewable Power Options for Electricity Generation on Kaua’i: Economics and Performance Modeling

    Broader source: Energy.gov [DOE]

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii.

  4. Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity

    SciTech Connect (OSTI)

    Scott Barnett

    2007-09-30

    In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

  5. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation | Department of Energy Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on-site, clean distributed and renewable generation. PDF icon Enhancing the Smart Grid: Integrating Clean

  6. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  7. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A.

    2011-08-11

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  8. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nations energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEACs. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEACs for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEACs for EPAs Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the awards incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  9. Clean Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Research Clean Coal Research DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled power plants by increasing overall system efficiencies and reducing capital costs. In the near-term, advanced technologies that increase the power generation efficiency for new plants and technologies to capture carbon dioxide (CO2) from new and existing

  10. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  11. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  12. MEMORANDUM TO: Honorable Steven Chu, Secretary Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery

    Energy Savers [EERE]

    Electricity Advisory Committee DATE: March 10, 2011 RE: Recommendations to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Introduction In response to longstanding Congressional requirements in the Clean Air Act and Clean Water Act, and in response to more recent court orders, the U.S Environmental Protection Agency (EPA) has been developing a series of proposed rules (herein, the "Regulations") that are

  13. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity

  14. Power System Modeling of 20% Wind-Generated Electricity by 2030 (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-07-01

    This presentation describes the methods used to analyze the potential for provided 20% of our nation's electricity demand with wind energy by 2030

  15. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  16. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  17. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  18. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  19. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  20. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  1. Hawaii Clean Energy Final PEIS Summary

    Energy Savers [EERE]

    HAWAI'I CLEAN ENERGY FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT SUMMARY U.S. DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability Office of Energy Efficiency and Renewable Energy (DOE/EIS-0459) SEPTEMBER 2015 COVER SHEET TITLE: Hawai i Clean Energy Final Programmatic Environmental Impact Statement (Final PEIS) RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE), Offices of Electricity Delivery and Energy Reliability (OE) and Energy Efficiency and Renewable

  2. New Incubator Network to Help Clean-Energy Entrepreneurs - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Incubator Network to Help Clean-Energy Entrepreneurs February 4, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and the Electric Power Research...

  3. NYDOCS01/1646893 Plains and Eastern Clean Line Participation...

    Office of Environmental Management (EM)

    ... or owning new electric power transmission facilities and ... with the Clean Line Entities in the design, ... The project will seek 150 - 200 foot wide easements in which ...

  4. Secretary Chu Announces Funding for Clean Energy Projects on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Projects on Tribal Lands and Alaska Villages Secretary Chu Announces Funding ... can provide reliable power supplies while reducing heating and electricity costs. ...

  5. Secretary Chu to Attend Second Clean Energy Ministerial in Abu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates Secretary Chu to Attend ... million people without access to grid electricity by 2015, and help encourage women to ...

  6. Secretary Moniz Announces San Francisco as Site of Seventh Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Francisco as Site of Seventh Clean Energy Ministerial Secretary Moniz Announces San ... targets for the share of the state's electricity from renewable sources and for energy ...

  7. National Clean Energy Business Plan Competition: REEcycle Wins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REEcycle Wins at Caltech FLoW National Clean Energy Business Plan Competition: REEcycle Wins ... Axiom Exergy's Refrigeration BatteryTM technology reduces the electricity ...

  8. Secretary Bodman in India Highlights Clean Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    India Highlights Clean Energy Investment and Innovation as Key to Energy Security and ... growing demand for electricity and joint efforts to advance non-proliferation cooperation. ...

  9. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The ... of their total market (e.g. electricity, cars and lighting), they are growing rapidly. ...

  10. Energy Department Announces Up to $7 Million to Expand Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up to 7 Million to Expand Clean Energy and Energy Efficiency on Tribal Lands Energy ... energy systems that can provide electricity, heating, or cooling to many buildings ...

  11. DOE Announces Clean Energy Projects for Low-Carbon Communities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Projects for Low-Carbon Communities of the Americas Initiative DOE Announces ... The project will bring together DOE, Costa Rica's electricity and telecommunications group ...

  12. National Clean Fleets Partnership Fact Sheet and Progress Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements. PDF ...

  13. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  14. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  15. The reduced environmental liability of clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M.

    1997-08-01

    In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

  16. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrastructure, and future generation vehicles; energy storage-advanced batteries and hydrogen storage; clean advanced combustion; and future generation vehicle networks and...

  17. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  18. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean

  19. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  20. Clean Cities: Wisconsin Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  1. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  2. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications (EIA)

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  3. ReEDS Modeling of the President’s 2020 U.S. Renewable Electricity Generation Goal

    Broader source: Energy.gov [DOE]

    The primary objective of the analysis is to project future contributions from wind, solar, and geothermal technologies to the U.S. electricity generation mix in the 2020 time period. While this exercise is motivated by an interest in assessing the feasibility of achieving the Obama's Administration's goal of doubling renewable generation during that timeframe, the analysis only evaluates one interpretation of the goal and does not comprehensively evaluate others. The report introduction provides further background for this motivation. The analysis presented in this report was requested by the Office of Energy Efficiency and Renewable Energy in the U.S. Department of Energy.

  4. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  5. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of

  6. Clean Cities Coalition Regions

    Broader source: Energy.gov [DOE]

    Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle...

  7. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  8. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  9. NCAT Harvesting Clean Energy

    Broader source: Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  10. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  11. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  12. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  13. Renewable Electricity Futures for the United States

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  14. Renewable Electricity Futures Study Executive Summary

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  15. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  16. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  17. Clean Line Plains and Eastern Section 1222 Decision Documents | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Clean Line Plains and Eastern Section 1222 Decision Documents Clean Line Plains and Eastern Section 1222 Decision Documents On March 25, 2016, U.S. Secretary of Energy Dr. Ernest Moniz announced that the Department of Energy (DOE) will participate in the development of the Plains & Eastern Clean Line project (Project), a major clean energy infrastructure project. Through section 1222 of the Energy Policy Act of 2005, Congress authorized DOE to promote electric transmission

  18. PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 1222 of the Energy Policy Act 2005 » PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE On March 25, 2016, U.S. Secretary of Energy Dr. Ernest Moniz announced that the Department of Energy (DOE) will participate in the development of the Plains & Eastern Clean Line project (Project), a major clean energy infrastructure project. Through section 1222 of the Energy Policy Act of 2005, Congress authorized DOE to promote electric

  19. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Energy Savers [EERE]

    Hawaii Clean Energy Initiative (HCEI) Hawaii Clean Energy Initiative (HCEI) The Hawaii Clean Energy Initiative (HCEI) is an unprecedented effort to transform the entire Hawaii economy from getting 95% of its energy, including most electricity, from imported oil today, to meeting the state's energy needs from 70% clean energy (primarily indigenous renewables and efficiency) by 2030. DOE's work on the HCEI was initiated and coordinated through OE's then Deputy Assistant Secretary William Parks, an

  20. Energy Department Announces $20 Million to Develop Advanced Components for Next Generation Electric Machines

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $20 million in available funding to spur the development of high speed industrial motors and drives, using high power-density designs and integrated power electronics to increase efficiency. The industrial sector consumes over a quarter of the electricity produced in the United States and is projected to increase its use by approximately 30% by 2040.

  1. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; Ela, Erik; Botterud, Audun; Townsend, Aaron; Levin, Todd

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  2. Sixth clean coal technology conference: Proceedings. Volume 1: Policy papers

    SciTech Connect (OSTI)

    1998-12-01

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 1 contains 38 papers arranged under the following topical sections: International business forum branch; Keynote session; Identification of the issues; CCTs--Providing for unprecedented environmental concerns; Domestic competitive pressures for CCTs; Financing challenges for CCTs; New markets for CCTs; Clean coal for the 21st century: What will it take? Conclusions and recommendations. The clean coal technologies discussed include advanced pulverized coal-fired boilers, atmospheric fluidized-bed combustion (FBC), pressurized FBC, integrated gasification combined-cycle systems, pressurized pulverized coal combustion, integrated gasification fuel cell systems, and magnetohydrodynamic power generation.

  3. Clean Fuels/Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2016 2 Welcome to the January 2016 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between January 1, 2016 and January 15, 2016 by Clean Cities coordinators, fuel providers, and other Clean Cities

  4. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  5. Electricity rate effects of 150 MW shop assembled turbocharged boiler generating units

    SciTech Connect (OSTI)

    Drenker, S.; Fancher, R.

    1984-08-01

    Major upheavals in the environment in which electric utilities operate began in the 1960's. Modular construction, developed and perfected by process industry engineering firms, in conjuction with small turbocharged boiler power plants (currently under development), can respond to these forces by shortening construction time. Benefits from this approach, resulting from better matching of load growth and reducing planning horizon, can equal 15% to 60% of the capital cost of large pulverized coal plants.

  6. State Clean Energy Practices: Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Hurlbut, D.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, a renewable portfolio standard (RPS) mandates an increase in the use of wind, solar, biomass, and other alternatives to fossil and nuclear electric generation. This paper provides a summary of the policy objectives that commonly drive the establishment of an RPS, the key issues that states have encountered in implementing an RPS, and the strategies that some of the leading states have followed to address implementation challenges. The factors that help an RPS function best generally have been explored in other analyses. This study complements others by comparing empirical outcomes, and identifying the policies that appear to have the greatest impact on results.

  7. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  8. Clean Cities: Norwich Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  9. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  10. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative

    Broader source: Energy.gov [DOE]

    This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits.

  11. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  12. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  13. Electric co-generation units equipped with wood gasifier and Stirling engine

    SciTech Connect (OSTI)

    Bartolini, C.M.; Caresana, F.; Pelagalli, L.

    1998-07-01

    The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

  14. Supply Curves for Solar PV-Generated Electricity for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2008-11-01

    Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

  15. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load

  16. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15%

  17. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    2004-09-30

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  18. State and Local Energy Investment Partnerships: Partnerships for Low Cost Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Local Energy Investment Partnerships Partnerships for Low Cost Clean Energy The Vision 1. Double the deployment of wind, solar, geothermal, and other renewable electricity generation by 2020. 2. Cut in half the energy wasted by our homes and businesses over the next 20 years. - President Barack Obama, 2013 State of the Union Address The Challenge 1. Taxpayer and ratepayer funds alone cannot finance a 20% increase in energy efficiency across all of America's buildings. 2. Nor can diminishing

  19. Method to Reduce Neutron Production in Small Clean Fusion Reactors Inventor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --- Samuel A. Cohen | Princeton Plasma Physics Lab Method to Reduce Neutron Production in Small Clean Fusion Reactors Inventor --- Samuel A. Cohen This invention describes a method to reduce neutron production of D-3He-fueled, steady state, small FRC fusion reactors using periodic, co-streaming, energetic ion beams generated by RF. Use of this method will lessen damage to and activation of reactor components and, in doing so, can advance the development of fusion reactors for electrical

  20. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  1. A Comprehensive View of Global Potential for Hydro-generated Electricity

    SciTech Connect (OSTI)

    Zhou, Yuyu; Hejazi, Mohamad I.; Smith, Steven J.; Edmonds, James A.; Li, Hongyi; Clarke, Leon E.; Calvin, Katherine V.; Thomson, Allison M.

    2015-09-01

    In this study, we assess global hydropower potential using runoff and stream flow data, along with turbine technology performance, cost assumptions, and environmental considerations. The results provide the first comprehensive quantification of global hydropower potential including gross, technical, economic, and exploitable estimates. Total global potential of gross, technical, economic, and exploitable hydropower are estimated to be approximately 128, 39, 32, and 27 petawatt hours per year, respectively. The economic and exploitable potential of hydropower are calculated at less than 9 cents/kWh. We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region. Globally, hydropower can potentially supply about 1.5 times the total electricity demand in 2005. Estimated hydropower resources in a number of countries are sufficient to accommodate their demand for electricity in 2005, e.g., Brazil (5.6 times), Russia (4.6 times), and Canada (3.5 times). A sensitivity analysis indicates that hydropower estimates are not highly sensitive to five key parameters: design flow (varying by -2% to +1% at less than 9 cents/kWh), cost and financing options (by -7% to +6%), turbine efficiency (by -10% to +10%), stream flow (by -10% to +10%), and fixed charge rate (by -6% to 5%). This sensitivity analysis emphasizes the reliable role of hydropower for future energy systems, when compared to other renewable energy resources with larger uncertainty in their future potentials.

  2. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  3. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7891 April 2010 Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative S. Busche and E. Doris National ...

  4. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  5. Coastal zone energy management: a multidisciplinary approach for the integration of solar electric systems with Florida's power generation system

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    In order for Florida to ''accomplish effective coastal land management, it must have a comprehensive statewide approach closely relating land and water management development decisions in Florida must be made with understanding of the proposed development effects on the state's water resources''. This approach is very sensible in view of the issues raised in the introduction. Whether a power plant is sited inland or on the coast has tremendous implications for water use. Offshore siting of power plants is an alternative which should be carefully evaluated using CZEM. Of particular importance is the existence of renewable energy sources, such as OTEC, Wind and Ocean current, in the offshore areas of Florida. Many Solar Electric options could be sited in the coastal and offshore areas. The main technological problem associated with offshore power plants is the transmission of the electricity to shore. The solution to this problem may be using Hydrogen as an intermediary energy carrier. The use of Solar Electric Systems would be consistent with the policy to diversify the generation mix. If Florida is called upon to develop its offshore energy resources in the national interest, the use of CZEM would allow decision makers to make more environmentally sensitive decisions. This would allow the balancing of energy production and environmental quality.

  6. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  7. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  8. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  9. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C.

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  10. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C.

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  11. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  12. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007

  13. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    6 Cost of an Electric Quad Used in the Buildings Sector ($2010 Billion) Residential Commercial Buildings Sector 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 11.82 11.82 11.82 11.94 11.68 11.82 10.59 10.83 10.70 11.41 11.58 11.48 11.68 11.33 11.51 11.49 10.77 11.15 11.71 11.67 11.69 11.72 11.52

  14. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    SciTech Connect (OSTI)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    SciTech Connect (OSTI)

    Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  16. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  17. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  18. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  19. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers

    SciTech Connect (OSTI)

    Yamanishi, Masamichi Hirohata, Tooru; Hayashi, Syohei; Fujita, Kazuue; Tanaka, Kazunori

    2014-11-14

    Free running line-widths (>100?kHz), much broader than intrinsic line-widths ?100?Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the present model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ?300?K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10?kHz.

  20. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  1. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  2. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  3. Upcoming Webinars to Focus on Topics Addressed in the National Academies of Sciences’ "Analytical Foundations for the Next Generation Electric Grid" Report

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences’ Board of Mathematical Sciences and Their Application will conduct two webinars in April, 2016 in conjunction with the recent release of its report entitled Analytical Foundations for the Next Generation Electric Grid. The focus of the study, which was funded in part by the Office of Electricity Delivery and Energy Reliability, was to identify the critical areas of mathematical and computational research that must be addressed for the next-generation electric transmission and distribution system. The report also includes a series of recommendations.

  4. The Clean Energy Race

    Broader source: Energy.gov [DOE]

    Assistant Secretary David Sandalow documents his experiences at the inaugural Clean Cities Stakeholder Summit at the Indianapolis Motor Speedway.

  5. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  6. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  7. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68

  8. PURPA Resource Development in the Pacific Northwest : Case Studies of Ten Electricity Generating Powerplants.

    SciTech Connect (OSTI)

    Washington State Energy Office.

    1990-07-01

    The case studies in this document describe the Public Utilities, Regulatory Policies Act (PURPA) development process for a variety of generating technologies. Developer interactions with regulatory agencies and power purchasers are described in some detail. Equipment, installation, and maintenance costs are identified; power marketing considerations are taken into account; and potential environmental impacts, with corresponding mitigation approaches and practices are summarized. The project development case studies were prepared by the energy agencies of the four Northwest states, under contract to the Bonneville Power Administration.

  9. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  10. Finding the cheapest Clean power options

    SciTech Connect (OSTI)

    Casten, Thomas R.; Smith, Jeffrey A.

    2009-12-15

    Speculation about why policies favor high-cost low-carbon generation options could fill a book. Vested interests? Lack of knowledge? Industry lobbying? Cost-plus regulatory mentality? Regardless of reasons, the data show that efficient generation that uses energy twice is largely ignored. While all other generation, both clean and dirty, receives large subsidies, energy recycling is ignored. (author)

  11. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  12. FACT SHEET: Clean Coal University Research Awards and Project...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Coal University Research Awards and Project Descriptions IMPROVED ALLOYS By ... power, advanced ultrasupercritical (AUSC) coal-fired power plants improve generation ...

  13. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture...

    Office of Scientific and Technical Information (OSTI)

    use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells. ...

  14. Wave-actuated power take-off device for electricity generation

    SciTech Connect (OSTI)

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'€™s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels €”e.g., 10 to 100kW?

  15. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models ... EV Everywhere is a Clean Energy Grand Challenge to enable plug-in electric vehicles (PEVs) ...

  16. Clean Cities: Clean Cities-Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  17. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  18. Experimentally validated long-term energy production prediction model for solar dish/Stirling electric generating systems

    SciTech Connect (OSTI)

    Stine, W.B.

    1995-12-31

    Dish/Stirling solar electric systems are currently being tested for performance and longevity in order to bring them to the electric power generation market. Studies both in Germany and the United States indicate that a significant market exists for these systems if they perform in actual installations according to tested conditions, and if, when produced in large numbers their cost will drop to goals currently being projected. In the 1980`s, considerable experience was gained operating eight dish/Stirling systems of three different designs. One of these recorded the world`s record for converting solar energy into electricity of 29.4%. The approach to system performance prediction taken in this presentation results from lessons learned in testing these early systems, and those currently being tested. Recently the IEA through the SolarPACES working group, has embarked on a program to develop uniform guidelines for measuring and presenting performance data. These guidelines are to help potential buyers who want to evaluate a specific system relative to other dish/Stirling systems, or relative to other technologies such as photovoltaic, parabolic trough or central receiver systems. In this paper, a procedure is described that permits modeling of long-term energy production using only a few experimentally determined parameters. The benefit of using this technique is that relatively simple tests performed over a period of a few months can provide performance parameters that can be used in a computer model requiring only the input of insolation and ambient temperature data to determine long-term energy production information. A portion of this analytical procedure has been tested on the three 9-kW(e) systems in operation in Almeria, Spain. Further evaluation of these concepts is planned on a 7.5-kW(e) system currently undergoing testing at Cal Poly University in Pomona, California and later on the 25 kW(e) USJVP systems currently under development.

  19. South Carolina Clean Energy Summit

    Broader source: Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  20. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.