Powered by Deep Web Technologies
Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GSMSolar formerly Shanghai General Silicon Material Co Ltd | Open Energy  

Open Energy Info (EERE)

GSMSolar formerly Shanghai General Silicon Material Co Ltd GSMSolar formerly Shanghai General Silicon Material Co Ltd Jump to: navigation, search Name GSMSolar (formerly Shanghai General Silicon Material Co Ltd) Place Kunshan, Jiangsu Province, China Zip 215300 Sector Solar Product Chinese solar ingot and wafer manufacturer. Coordinates 31.375509°, 120.949219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.375509,"lon":120.949219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Silicon Materials and Devices (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Silicon Materials and Devices that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

3

Silicon Materials and Devices (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

4

Wetting Properties of Molten Silicon with Graphite Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The wetting behavior of molten-silicon/refractory-materials system is important in ... Electrorefining of Metallurgical Grade Silicon in Molten Salts.

5

Polycrystalline silicon semiconducting material by nuclear transmutation doping  

DOE Patents (OSTI)

A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

Cleland, John W. (Knoxville, TN); Westbrook, Russell D. (Oak Ridge, TN); Wood, Richard F. (Oak Ridge, TN); Young, Rosa T. (Knoxville, TN)

1978-01-01T23:59:59.000Z

6

Review of the silicon material task  

DOE Green Energy (OSTI)

The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane in a Siemens-type process were shown by Hemlock Semiconductor Corporation. The development of other processes is described.

Lutwack, R.

1984-02-01T23:59:59.000Z

7

Solar cell structure incorporating a novel single crystal silicon material  

DOE Patents (OSTI)

A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1983-01-01T23:59:59.000Z

8

Electrochemical Lithiation of Silicon Clathrate Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Due to its high theoretical specific capacity, silicon has been the subject of intense research as an anode for lithium-ion batteries.

9

Nanowire silicon as a material for thermoelectric energy conversion  

Science Conference Proceedings (OSTI)

In order to use silicon as an efficient thermoelectric (TE) material for TE energy conversion, it is necessary to reduce its relatively high thermal conductivity, while maintaining the high power factor. This can be done by structuring silicon into 1-D ...

A. Stranz; J. Khler; S. Merzsch; A. Waag; E. Peiner

2012-08-01T23:59:59.000Z

10

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

11

Method for forming fibrous silicon carbide insulating material  

DOE Patents (OSTI)

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, George C. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

12

Method for forming fibrous silicon carbide insulating material  

DOE Patents (OSTI)

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, G.C.

1983-10-12T23:59:59.000Z

13

Silicon Anode Materials for All-Solid-State Lithium-ion Microbatteries  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Silicon Anode Materials for All-Solid-State...

14

Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Raymond J. Polinski Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager Leechburg, PA 15656 Grain-Oriented Electrical Steel e-mail: Raymond.Polinski@ATImetals.com E. Below are Allegheny Technologies Incorporated's comments on certain issues in which the DOE sought comment. 17. DOE seeks comment on nanotechnology composites and their potential for use in distribution transformers. Soft magnetic and amorphous particles with excellent magnetic properties can be and are currently produced, but the insulating matrix required to eliminate short-circuit paths dissipate power at the operating frequencies for power distribution transformers (50/60 Hz). Such transformer cores are currently only used for high-frequency applications where significant

15

Silicon materials outlook study for 1980-85 calendar years  

DOE Green Energy (OSTI)

Photovoltaic solar cell arrays converting solar energy into electrical energy can become a cost-effective, alternative energy source provided that an adequate supply of low-priced solar cell materials and automated fabrication techniques are available. Presently, the photovoltaic industry is dependent upon polycrystalline silicon which is produced primarily for the discrete semiconductor device industry. This dependency is expected to continue until DOE-sponsored new technology developments mature. Recent industry forecasts have predicted a limited supply of polycrystalline silicon material and a shortage could occur in the early 80's. The Jet Propulsion Laboratory's Technology Development and Application Lead Center formed an ad hoc committee at JPL, SERI and consultant personnel to conduct interviews with key polycrystalline manufacturers and a large cross-section of single crystal ingot growers and wafer manufacturers. Industry consensus and conclusions reached from the analysis of the data obtained by the committee are reported. The highlight of the study is that there is a high probability of polycrystalline silicon shortage by the end of CY 1982 and a strong seller's market after CY 1981 which will foster price competition for available silicon.

Costogue, E.; Ferber, R.; Hasbach, W.; Pellin, R.; Yaws, C.

1979-11-01T23:59:59.000Z

16

General Abstracts: Electronic, Magnetic, and Photonic Materials ...  

Science Conference Proceedings (OSTI)

May 1, 2007... of Nanocrystalline Structure in Metals by Severe Plastic Deformation ... electronic packaging and inter-connection materials, nanomaterials,...

17

Time and Materials Exhibit A General Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 6/14/13) Exhibit A General Conditions 2, 6/14/13) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................. 4 GC-4 SUBCONTRACT INTERPRETATION (Jun 2009) ...................................................................... 4 GC-5 NOTICE TO PROCEED (Jul 2011)............................................................................................. 4

18

Lifetime and diffusion length measurements on silicon material and solar cells. [Intentionally doped with impurities  

DOE Green Energy (OSTI)

Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plat arrays. Results obtained by these methods were compared for mutual consistency. Lifetime measurements were made using a steady-state photoconductivity method, which was compared with a photoconductivity decay technique. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. This method was compared with a direct measurement of diffusion length using a scanning electron microscope. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results were compared with those obtained by others on the same material and devices using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

Othmer, S.; Chen, S.C.

1977-01-01T23:59:59.000Z

19

Fullerene Film as a Coating Material for Silicon Thick Film Anodes ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fullerene Film as a Coating Material for Silicon Thick Film Anodes for Lithium Ion Batteries. Author(s), Arenst Andreas Arie. On-Site Speaker

20

Mechanical properties of silicon carbide. (Latest citations from Engineered Materials abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the mechanical characteristics and properties of silicon carbides. Citations discuss bend strength, crack propagation, creep rupture strength, ductile brittle fracture, fatigue strength, elastic modulus, shear strength, and tensile strength. Structure and chemistry of fiber/matrix interfaces for silicon carbide fiber reinforced materials are included. Sintering of silicon carbide and silicon carbide whisker reinforced composites are covered in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Asia Silicon Qinghai Co Ltd aka Asia Si Material | Open Energy Information  

Open Energy Info (EERE)

Qinghai Co Ltd aka Asia Si Material Qinghai Co Ltd aka Asia Si Material Jump to: navigation, search Name Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) Place Xining, Qinghai Province, China Zip 810007 Product Developing a 6,000-tonne polysilicon factory in Xining, Qinghai Province, supplier to Suntech. References Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) is a company located in Xining, Qinghai Province, China . References ↑ "Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material)" Retrieved from "http://en.openei.org/w/index.php?title=Asia_Silicon_Qinghai_Co_Ltd_aka_Asia_Si_Material&oldid=342359"

22

NREL: Photovoltaics Research - Silicon Materials and Devices R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Materials and Devices R&D Silicon Materials and Devices R&D R&D 100 Awards Since 2010, we have won three R&D 100 Awards. Flash Quantum Efficiency (Flash QE) System for Solar Cells Innovalight Silicon Ink Process Low-Cost Black Silicon Etching Process Graphic of three layers. The bottom layer, called inexpensive substrate, is white. Middle dark blue layer is called the seed. Top light blue layer has the text epi c-Si absorber. Schematic diagram of the film crystal silicon solar cell. A high-quality crystal silicon absorber is grown epitaxially on a seed layer applied to an inexpensive foreign substrate (e.g., display glass or rolled metal foil). At NREL, we are developing various emitter, back-surface field, and light-trapping strategies. NREL has world-leading research capabilities and expertise in silicon

23

Study program to develop and evaluate die and container materials for the growth of silicon ribbons  

DOE Green Energy (OSTI)

The Large Area Silicon Sheet Growth Task objective of lowering the cost of silicon photovoltaic material requires the development of materials which exhibit improved chemical and dimensional stability in contact with molten silicon. These materials may find application as containers and/or shaping dies in processes such as edge-defined film growth. The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials are described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressures. X-ray diffraction and SEM Characterization was performed prior to testing. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. Adsorbed oxygen was also found to increase the degree of attack of molten silicon upon the chemical vapor deposited coatings. Prototypic containers and dies were delivered and cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.

Addington, L.A.; Ownby, P.D.; Yu, B.B.; Barsoum, M.W.; Romero, H.V.; Zealer, B.G.

1979-12-01T23:59:59.000Z

24

Mechanical properties of silicon carbide. (Latest citations from Engineered Materials abstracts). NewSearch  

SciTech Connect

The bibliography contains citations concerning the mechanical characteristics and properties of silicon carbides. Citations discuss bend strength, crack propagation, creep rupture strength, ductile brittle fracture, fatigue strength, elastic modulus, shear strength, and tensile strength. Structure and chemistry of fiber/matrix interfaces for silicon carbide fiber reinforced materials are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

25

Progress in studies on carbon and silicon carbide nanocomposite materials  

Science Conference Proceedings (OSTI)

Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers) in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers), they can modify the ...

Peng Xiao; Jie Chen; Xian-feng Xu

2010-01-01T23:59:59.000Z

26

High temperature investigations of crystalline silicon solar cell materials  

E-Print Network (OSTI)

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01T23:59:59.000Z

27

Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics  

SciTech Connect

We investigate the nonlinear optical properties of Si-rich silicon oxide (SRO) and Si-rich silicon nitride (SRN) samples as a function of silicon content, annealing temperature, and excitation wavelength. Using the Z-scan technique, we measure the non-linear refractive index n{sub 2} and the nonlinear absorption coefficient {beta} for a large number of samples fabricated by reactive co-sputtering. Moreover, we characterize the nonlinear optical parameters of SRN in the broad spectral region 1100-1500 nm and show the strongest nonlinearity at 1500 nm. These results demonstrate the potential of the SRN matrix for the engineering of compact devices with enhanced Kerr nonlinearities for silicon photonics applications.

Minissale, S. [Photonics Center, Boston University, 8 Saint Mary's street, Boston, Massachusetts 02215-2421 (United States) and Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States); Yerci, S. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States); Dal Negro, L. [Photonics Center, Boston University, 8 Saint Mary's street, Boston, Massachusetts 02215-2421 (United States) and Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States)

2012-01-09T23:59:59.000Z

28

Germanium-rich silicon-germanium materials for field-effect modular application  

E-Print Network (OSTI)

The development of electric-field-induced optical modulation in the materials capable of monolithically integrated on silicon (Si) substrates offer the possibility of high-speed modulation in a pico second timeframe as ...

Jongthammanurak, Samerkhae

2008-01-01T23:59:59.000Z

29

Single crystal silicon as a macro-world structural material : application to compact, lightweight high pressure vessels  

E-Print Network (OSTI)

Single crystal silicon has promising inherent structural properties which are attractive for weight sensitive applications. Single crystal silicon, however, is a brittle material which makes the usable strength that can ...

Garza, Tanya Cruz

2011-01-01T23:59:59.000Z

30

Failure Analysis of Commercial Silicon Materials for Lithium-ion ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium ... Electrochemical impedance spectra (EIS) reveal the possible reasons of unsatisfactory ... High Efficiency Materials for Dye-Sensitized Solar Cells.

31

Skutterudite Thermoelectric Materials Jihui Yang, Xun Shi, General Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

the Microstructure of Doped Clathrate and the Microstructure of Doped Clathrate and Skutterudite Thermoelectric Materials Jihui Yang, Xun Shi, General Motors Hsin Wang and Miaofang Chi, Oak Ridge National Laboratory Scientific challenge/problem: Clathrate and Skutterudite are known to be promising thermoelectric materials. The R&D groups at GM and ORNL have found that doping Clathrate (Ba 0.25 Co 4 Sb 12 ) with Yb and La and doping Skutterudite (Ba 8 Ga 16 Ge 30 ) with Ni improve the thermoelectrical properties significantly. The goal of the microscopy characterization is to fundamentally understand how the dopants control the materials properties. Two questions need to be answered at the current stage of our experimental work: how the microstructures are tailored by the dopants and how the dopants distribute

32

ESP - Data From Restarted Life Tests of Various Silicone Materials - 2009  

SciTech Connect

Enhanced Surveillance Project (ESP) funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until ESP funding allowed the restart in FY97. This report will provide data on materials used on various programs and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

J. W. Schneider

2010-02-24T23:59:59.000Z

33

ESP Data from Restarted Life Tests of Various Silicone Materials - 2011  

SciTech Connect

Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. This report will provide data on materials used in production and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

Jim Schneider

2011-12-31T23:59:59.000Z

34

Process feasibility study in support of silicon material task I. Quarterly technical progress report (IV)  

DOE Green Energy (OSTI)

During this reporting period, major efforts were expended on process system properties, chemical engineering, and economic analyses. In Task 1, primary activities were devoted to properties analyses of silicon source materials and silicon tetrafluoride investigation. Experimental data were identified for critical temperature and pressure for silicon tetrafluoride. Major chemical engineering analysis activities in Task 2 were devoted to preliminary process design for a 1000 metric ton/yr plant (solar cell grade silicon) based on the Zn/SiCl/sub 4/ process (Battelle). In Task 3, economic analysis activities were continued including survey results for product cost estimation techniques. Nominal values--product cost subitems for application to alternate processes--were selected. Economic results based on the preliminary process design are presented for the Zn/Sicl/sub 4/ process. Capital investment (fixed) was determined at $10,100,000 for the 1000 metric/tons year plant. Total product cost was estimated at $9.49 per kg of silicon. (WDM)

Hansen, K.C.; Hopper, J.R.; Miller, J.W. Jr.; Yaws, C.L.

1976-09-01T23:59:59.000Z

35

Method of making silicon on insalator material using oxygen implantation  

DOE Patents (OSTI)

The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.

Hite, Larry R. (Dallas, TX); Houston, Ted (Richardson, TX); Matloubian, Mishel (Dallas, TX)

1989-01-01T23:59:59.000Z

36

17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

Sopori, B. L.

2007-08-01T23:59:59.000Z

37

Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same  

DOE Patents (OSTI)

Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

2013-01-22T23:59:59.000Z

38

Process feasibility study in support of silicon material Task I. Final report, October 1, 1975-February 6, 1981  

DOE Green Energy (OSTI)

The Low-Cost Solar Array (LSA) Project is directed toward effective cost reduction in the production of silicon for solar cells. Results are presented for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells. Major physical, thermodynamic and transport property data are reported for the following silicon source and processing chemical materials: silane, silicon tetrachloride, trichlorosilane, dichlorosilane, silicon tetrafluoride, and silicon. The property data are reported for critical temperature, critical pressure, critical volume, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analyses involving the preliminary process design of a plant (1000 MT/yr capacity) to produce silicon via the technology under consideration were accomplished for the following processes: UCC silane process for silicon, BCL process for silicon, conventional polysilicon process (Siemens technology), SiI/sub 4/ decomposition process, and DCS process (dichlorosilane).Major activities in chemical engineering analyses include base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provides detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process. Using detailed data from the process design package, economic analyses for a 1000 MT/yr silicon plant were accomplished. Primary results from the economic analyses included plant capital investment and product cost. Results are presented and discussed. (WHK)

Yaws, C.L.; Li, K.Y.; Hopper, J.R.; Fang, C.S.; Hansen, K.C.

1981-02-06T23:59:59.000Z

39

Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array Project. Fifth quarterly report, March 21, 1977--May 27, 1977  

DOE Green Energy (OSTI)

The multiblade slurry technique capable of slicing 10 cm ingot into wafers 0.25 mm thick with only 0.20 mm kerf loss and 98% yield has been demonstrated. The total silicon requirement represents an ingot to sheet conversion of 0.95 m/sup 2//kg. Full production slicing tests have demonstrated the cost of MS slicing to contribute $40 to $50/m/sup 2/, with ''best effort'' estimates for today's configuration to be $30 to $35/m/sup 2/. By reducing material cost, and increasing the specific capacity of a saw to slice 900 wafers simultaneously, the long-term cost of MS slicing is estimated to be less than $10/m/sup 2/. The conversion of ingot to sheet is shown to be the most valuable contribution of slicing technology. At today's ingot costs, and with the thin wafer, low kerf loss slicing techniques demonstrated, the silicon material represents 5 to 10 times the cost of the wafering process in finished silicon wafers. Increasing the number of blades used in MS slicing from 100 to 150 to 225 to 300 has resulted in a reduction of yield to 33 to 70% for thin slicing, or an increase in wafer thickness to 0.30 mm slices. The limitation is intrinsic misalignment of multiple blades. A technique to correct this condition is presented and forms a key element in low cost slicing. Analysis of blade material accuracy shows that straightness and flatness specifications can be relaxed. The success of the blade alignment technique will allow lower thickness accuracy requirements. The goal is to use blade materials 50% as costly as used presently, reducing the cost of this expendible material.

Holden, S.C.; Fleming, J.R.

1977-07-07T23:59:59.000Z

40

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Fifteenth quarterly report, April-June 1979  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions on the performance of terrestrial silicon solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly Solar Grade silicon. The first reported determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals were performed. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon (C/sub S/) while atomic absorption was used to measure the metal content of the residual liquid (C/sub L/) from which the doped crystals were grown. Gettering of Ti-doped silicon wafers improves cell performance by 1 to 2% (absolute) for the highest temperatures and longest times. The measured profile for Ti centers formed after an 850/sup 0/C gettering operation was fitted by a mathematical expression for the out-diffusion of an impurity species. By means of cell performance data and the newly-measured segregation coefficients curves were computed to predict the variation in cell efficiency with impurity concentration for Mo, Ta, W, Nb, and Co, materials commonly employed in the construction of high temperature silicon processing equipment. Using data for second and third generation n-base ingots the cell performance curves were updated for single impurities in n-type silicon. Most impurities degrade n-base cells less than p-base devices. The effect is larges for Mo, Al, Mn, Ti, and V while Fe and Cr behave much the same in both types of solar cells. In contrast Ni and Cu both degrade n-base devices (apparently by a junction mechanism) more severely than p-base cells. (WHK)

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

General Approach To Materials Classification Using Neutron Analysis Techniques  

Science Conference Proceedings (OSTI)

The 'neutron in, gamma out' method of elemental analysis has been known and used in many applications as an elemental analysis tool. This method is non-intrusive, non-destructive, fast and precise. This set of advantages makes neutron analysis attractive for even wider variety of uses beyond simple elemental analysis. The question that is addressed within this study is under what conditions neutron analysis can be used to differentiate materials of interest from a group or class of materials in the face of knowing that what is truly of interest is the molecular content of any sample under interrogation. Purpose of the study was to develop a neutron-based scanner for rapid differentiation of classes of materials sealed in small bottles. Developed scanner employs D-T neutron generator as a neutron source and HPGe gamma detectors. Materials can be placed into classes by many different properties. However, neutron analysis method can be used only few of them, such as elemental content, stoichiometric ratios and density of the scanned material. Set of parameters obtainable through neutron analysis serves as a basis for a hyperspace, where each point corresponds to a certain scanned material. Sub-volumes of the hyperspace correspond to different classes of materials. One of the most important properties of the materials are stoichiometric ratios of the elements comprising the materials. Constructing an algorithm for converting the observed gamma ray counts into quantities of the elements in the scanned sample is a crucial part of the analysis. Gamma rays produced in both fast inelastic scatterings and neutron captures are considered. Presence of certain elements in materials, such as hydrogen and chlorine can significantly change neutron dynamics within the sample, and, in turn, characteristic gamma lines development. These effects have been studied and corresponding algorithms have been developed to account for them.

Solovyev, Vladimir G. [Saint Gobain Crystals and Detectors, 12345 Kinsman Rd, Newbury, OH 44124 (United States); Koltick, David S. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

2006-03-13T23:59:59.000Z

42

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

DOE Green Energy (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

43

Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report  

DOE Green Energy (OSTI)

The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

1982-02-01T23:59:59.000Z

44

Slicing of silicon into sheet material. Final report, January 9, 1976-September 30, 1979  

DOE Green Energy (OSTI)

Complete results, from raw data to interpretation to recommendations, of a program to investigate the use of multiblade slurry sawing to produce silicon wafers from ingots are presented. During the course of this program, the commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Production of 20 wafers per centimeter length of 100 mm diameter ingot is now possible on a production basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possble are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated. Improved performance was partially demonstrated, but problems (both mechanical and of unknown origin) precluded full demonstration of improved performance.

Fleming, J R; Holden, S C; Wolfson, R G

1979-09-21T23:59:59.000Z

45

Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions  

DOE Green Energy (OSTI)

This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ``R and D Challenges and Opportunities in Si Photovoltaics.'' This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring.

Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

1999-11-23T23:59:59.000Z

46

Combinatorial Approach to Thin-Film Silicon Materials and Devices: Preprint  

DOE Green Energy (OSTI)

We apply combinatorial approaches to thin-film Si materials and device research. Our hot-wire chemical vapor deposition chamber is fitted with substrate xyz translation, a motorized shutter, and interchangable shadow masks to implement various combinatorial methods. For example, we have explored, in detail, the transition region through which thin Si changes from amorphous to microcrystalline silicon. This transition is very sensitive to deposition parameters such as hydrogen-to-silane dilution of the source gas, chamber pressure, and substrate temperature. A material library, on just a few substrates, led to a three-dimensional map of the transition as it occurs in our deposition system. This map guides our scientific studies and enables us to use several distinct transition materials in our solar-cell optimization research. We also grew thickness-graded wedge samples spanning the amorphous-to-microcrystalline Si transition. These single stripes map the temporal change of the thin silicon phase onto a single spatial dimension. Therefore, the structural, optical, and electrical properties can easily be studied through the phase transition. We have examined the nature of the phase change on the wedges with Raman spectroscopy, atomic force microscopy, extended x-ray absorption fine structure (EXAFS), x-ray absorption near-edge spectroscopy (XANES), ultraviolet reflectivity, and other techniques. Combinatorial techniques also accelerate our device research. In solar cells, for example, the combinatorial approach has significantly accelerated the optimization process of p-, i-, n-, and buffer layers through wide exploration of the complex space of growth parameters and layer thicknesses. Again, only a few deposition runs are needed. It has also been useful to correlate the materials properties of single layers in a device to their performance in the device. We achieve this by depositing layers that extend beyond the device dimensions to permit independent characterization of the layers. Not only has the combinatorial approach greatly increased the rate of materials and device experimentation in our laboratory, it has also been a powerful tool leading to a better understanding of structure-property relationships in thin film Si.

Wang, Q.; Moutinho, H.; To, B.; Perkins, J.; Ginley, D.; Branz, H. M.; Tessler, L. R.; Han, D.

2003-04-01T23:59:59.000Z

47

Process feasibility study in support of silicon material. Task I. Quarterly technical progress report (XV), April-June 1979  

DOE Green Energy (OSTI)

Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30/sup 0/ and 350/sup 0/C. The binary gas mixtures will include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon. Chemical engineering analysis of the BCL process was continued with major efforts being concentrated to the preliminary process design. Primary activities in the preliminary design were devoted to determining production labor requirements for operating the major process equipment. The plant was divided into the following sections for determining labor: Purification (I), Deposition (II), Electrolysis (III), Waste Treatment (IV) and Product Handling (V). The results indicated the production labor requirements were 0.06309 man-hr/kg silicon production for the plant size of 1,000 metric tons/year.

Li, K.; Hansen, K.C.; Yaws, C.L.

1979-06-01T23:59:59.000Z

48

Evolution of oxidation and creep damage mechanisms in HIPed silicon nitride materials  

DOE Green Energy (OSTI)

Several yttria-fluxed, hot-isostatically pressed (HIPed) silicon nitrides have been tensile creep tested at temperatures representative of gas turbine engines. Creep and oxidation assisted damage mechanisms concurrently evolve when these materials are tested at high temperatures and low stresses (i.e., long exposure times at temperature). Atmospheric creep testing results in creation of oxygen and yttrium gradients across the radial dimension. High concentrations of oxygen and yttrium coincide with dense populations of lenticular-shaped cavities near the surface of crept specimens. The center of the tensile specimens was devoid of oxygen or yttrium; in addition, lenticular cavities were rare. The gradient in lenticular-cavity concentration is coincident with the oxygen and yttrium gradients. Stress corrosion cracking (SCC) also occurs in these HIPed silicon nitrides when they are subjected to stress at high temperatures in ambient air. The size of this damage zone increases when the temperature is higher and/or the applied stress is lower. Stress-corrosion cracking initiates at the surface of the tensile specimen and advances radially inwards. What nucleates SCC has not yet been identified, but it is believed to result from a stress-concentrator (e.g., machining damage) at the surface and its growth is a result of coalescence of microcracks and cavities. The higher concentration of oxygen and yttrium in the grain boundaries near the specimen`s surface lessens the local high temperature mechanical integrity; this is believed to be associated with the growth of the SCC zone. This SCC zone continues to grow in size during tensile loading until it reaches a critical size which causes fracture.

Wereszczak, A.A.; Ferber, M.K.; Kirkland, T.P.; More, K.L.

1994-10-01T23:59:59.000Z

49

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Effect of impurities and processing on silicon solar cells. Phase II. Summary and eleventh quarterly report  

DOE Green Energy (OSTI)

The effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells were investigated. A variety of aspects including thermal treatments, crystal growth rate, base doping concentration (low resistivity), base doping type (n vs. p), grain boundary structure, and carbon/oxygen-metal interactions (float zone vs Czochralski growth) were studied. The effects of various metallic impurities were studied, introduced singly or in combination into Czochralski, float zone and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The totality of the solar cell data (comprising over 4000 cells) indicate that impurity-induced performance loss is primarily due to reduction in base diffusion length. Based on this assumption an analytical model has been developed which predicts cell performance as a function of metal impurity content. The model has now been verified for p-base material by correlating the projected and measured performance of solar cells made on 19 ingots bearing multiple impurities.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1978-07-01T23:59:59.000Z

50

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Effect of impurities and processing on silicon solar cells. Tenth quarterly report, 1 January 1978--31 March 1978  

DOE Green Energy (OSTI)

The objective of this program is to determine how various processes, impurities and impurity-process interactions affect the properties of silicon and the performance of terrestrial solar cells made from silicon. The development of this data base permits the definition of the tolerable impurity levels in a low-cost solar grade silicon and identifies processes which mitigate or enhance impurity effects in silicon. The data further provide the silicon manufacturer with a means to select materials of construction which minimize product contamination and permit the cost effective selection of chemical processes for silicon purification. For the silicon ingot, sheet or ribbon manufacturer the data suggest what silicon feedstock purity must be selected to produce wafers suitable for cell production and what furnace materials minimize wafer contamination. The cell manufacturer may use the data to define an acceptable wafer purity for cell processing or to identify processes which minimize impurity impact on efficiency. In short the data provide a basis for cost-benefit analysis to the producers and users of Solar Grade Silicon. During this quarter the focus of the experimental activity has been in the following four areas: (1) effects of crystal growth rate and thermal processing of silicon on impurity distribution and electrical activity, (2) impurity-grain boundary interactions in polycrystalline silicon, (3) preliminary measurements of impurity trap levels, trap concentrations and capture cross sections by Deep Level Transient Spectroscopy of purposely contaminated solar cells and (4) improvement of the solar cell-impurity concentration data base for n- and p-type silicon for subsequent modeling studies.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1978-01-01T23:59:59.000Z

51

Guidelines for Managing Reactor Vessel Material Uncertainties: Part 1: General Approach Part 2: Implementation Guide  

Science Conference Proceedings (OSTI)

Uncertainties about reactor vessel material toughness properties can be a concern for utilities when characterizing vessel integrity. In addition, recent emphasis on variability in material chemistry and initial toughness properties has added to regulatory concerns. This two-part guidelines document provides a general approach (Part 1) for dealing with weld metal property variability and material uncertainties and demonstrates examples of different approaches (Part 2) for dealing with these uncertainties...

1997-04-30T23:59:59.000Z

52

Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results  

SciTech Connect

DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMA shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

Ortiz-Acosta, Denisse [Los Alamos National Laboratory

2012-08-08T23:59:59.000Z

53

Process feasibility study in support of silicon material Task I. Quarterly technical progress report (XIV), January-March 1979  

DOE Green Energy (OSTI)

Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. In the viscosity investigation, experimentally determined values for gas viscosity of trichlorosilane and dichlorosilane are reported in the temperature range of 40/sup 0/C to 200/sup 0/C. Previous data are not available in this temperature range for either compound. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design. Current engineering efforts are nearing completion for manpower estimate of production labor requirements for the plant.

Li, K.Y.; Hansen, K.C.; Yaws, C.L.

1979-03-01T23:59:59.000Z

54

Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material. Annual report, September 1982-September 1983  

DOE Green Energy (OSTI)

This report first provides some background information on intrinsic point defects, and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. We discuss the co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. We assume that the self-interstitial content of these agglomerates determines their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high-temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. It is suggested that oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO/sub 2/ precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO/sub 2/-Si interface of the precipates gives rise to a continuum of donor states and that these interface states are responsible for at least part of the light-enhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

Goesele, U.; Ast, D.G.

1983-10-01T23:59:59.000Z

55

An assessment of silicon carbide as a cladding material for light water reactors  

E-Print Network (OSTI)

An investigation into the properties and performance of a novel silicon carbide-based fuel rod cladding under PWR conditions was conducted. The novel design is a triplex, with the inner and outermost layers consisting of ...

Carpenter, David Michael

2011-01-01T23:59:59.000Z

56

Ge-on-Si light-emitting materials and devices for silicon photonics  

E-Print Network (OSTI)

The rapid growing needs for high data transmission bandwidth challenge the metal interconnection technology in every area from chip-level interconnects to long distance communication. Silicon photonics is an ideal platform ...

Sun, Xiaochen

2009-01-01T23:59:59.000Z

57

Silicon Materials Task of the Low Cost Solar Array Project (part 2). Second quarterly report, 1 January 1976--31 March 1976  

DOE Green Energy (OSTI)

The objective of this program, Part 2 of the Silicon Materials Task, is to develop and define purity requirements for solar cell grade silicon material by evaluating the effects of metal impurities and impurity concentration on the performance of terrestrial silicon solar cells. During this quarter the growth of all first generation doubly-doped Czochralski ingots was completed (baseline boron + Cr, Mn, Cu, Ni, Fe, Ti, V, Mg, Zn, Al, and Zr), as were 90 percent of the second generation ingots, several third generation ingots, and three multiply-doped (B + Cu/Mn, Cu/Cr, Mn/Cr) ingots. (WDM)

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.

1976-01-01T23:59:59.000Z

58

14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions  

DOE Green Energy (OSTI)

The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

2004-10-01T23:59:59.000Z

59

Chemical Vapor Deposition Epitaxy of Silicon-based Materials using Neopentasilane  

E-Print Network (OSTI)

of dichlorosilane, silane, disilane, and neopentasilane vs. inverse temperature observed in our lab on Si(100 dichlorosilane is not observable, and that for silane and disilane were 0.6 and 8 ECS Transactions, 16 (10) 799 sources of dichlorosilane (DCS), silane, disilane and neopentasilane (NPS) precursor on (100) silicon

60

Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project. Second quarterly report, March 22, 1976--June 20, 1976  

DOE Green Energy (OSTI)

Slicing tests of silicon to show the dependence of cutting rate on operating conditions are complete. Cutting rate is linear with cutting force per blade and bladehead speed, and inversely proportional to kerf width (loss) and kerf length. The dimensionless parameter of cutting efficiency is a good measure of the performance of a multiblade slicing system. Low contact pressure between the blades and the silicon workpiece result in increased wafer accuracy and cutting efficiency. Blade wear seems to be stable for all slicing tests, and is slightly lower with low cutting pressure. (WDM)

Holden, S.C.

1976-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

Sopori, B. L.

2008-09-01T23:59:59.000Z

62

Study program to develop and evaluate die and container materials for the growth of silicon ribbons. Quarterly report No. 5  

DOE Green Energy (OSTI)

Die and container material development efforts under the current program are shared among three organizations: Miami Research Laboratories (MRL) - ceramic process development and overall program management; University of missouri-Rolla (UMR) - silicon sessile drop studies with characterization of reaction products and emphasis on atmospheric effects; and Chemetal Corporation, Pacoima, California - special coatings to be applied to test coupons, die shapes, and containers provided by MRL and tested/characterized by UMR. The completion of a major hardware delivery milestone was accomplished with the delivery of three CNTD Si/sub 3/N/sub 4/ coated hot pressed Si/sub 3/N/sub 4/ crucibles to JPL. A limited characterization of the coating was performed at MRL prior to delivery. The coatings were fine grained ..cap alpha.. - Si/sub 3/N/sub 4/. It has been determined that a two piece die design will be required. At UMR the importance of the role of oxygen in influencing the attack of the CNTD materials by molten silicon has been demonstrated. The stability is greatly enhanced by maintaining the oxygen partial pressure near or below the Si + O/sub 2/ = SiO/sub 2/ equilibrium.

Ownby, P.D.; Yu, B.B.; Barsoum, M.W.

1979-01-01T23:59:59.000Z

63

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

64

Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics  

E-Print Network (OSTI)

A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

2011-01-01T23:59:59.000Z

65

Crystalline Silicon Photovolatic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's...

66

Characterization of Amorphous Silicon Advanced Materials and PV Devices: Final Technical Report, 15 December 2001--31 January 2005  

DOE Green Energy (OSTI)

The major objectives of this subcontract have been: (1) understand the microscopic properties of the defects that contribute to the Staebler-Wronski effect to eliminate this effect, (2) perform correlated studies on films and devices made by novel techniques, especially those with promise to improve stability or deposition rates, (3) understand the structural, electronic, and optical properties of films of hydrogenated amorphous silicon (a-Si:H) made on the boundary between the amorphous and microcrystalline phases, (4) search for more stable intrinsic layers of a-Si:H, (5) characterize the important defects, impurities, and metastabilities in the bulk and at surfaces and interfaces in a-Si:H films and devices and in important alloy systems, and (6) make state-of-the-art plasma-enhanced chemical vapor deposition (PECVD) devices out of new, advanced materials, when appropriate. All of these goals are highly relevant to improving photovoltaic devices based on a-Si:H and related alloys. With regard to the first objective, we have identified a paired hydrogen site that may be the defect that stabilizes the silicon dangling bonds formed in the Staebler-Wronski effect.

Taylor, P. C.

2005-11-01T23:59:59.000Z

67

Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners  

E-Print Network (OSTI)

Convexity of a yield function (or phase-transformation function) and its relations to convexity of the corresponding yield surface (or phase-transformation surface) is essential to the invention, definition and comparison with experiments of new yield (or phase-transformation) criteria. This issue was previously addressed only under the hypothesis of smoothness of the surface, but yield surfaces with corners (for instance, the Hill, Tresca or Coulomb-Mohr yield criteria) are known to be of fundamental importance in plasticity theory. The generalization of a proposition relating convexity of the function and the corresponding surface to nonsmooth yield and phase-transformation surfaces is provided in this paper, together with the (necessary to the proof) extension of a theorem on nonsmooth elastic potential functions. While the former of these generalizations is crucial for yield and phase-transformation condition, the latter may find applications for potential energy functions describing phase-transforming materials, or materials with discontinuous locking in tension, or contact of a body with a discrete elastic/frictional support.

Andrea Piccolroaz; Davide Bigoni

2009-04-24T23:59:59.000Z

68

Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers  

DOE Green Energy (OSTI)

The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

NONE

1998-08-01T23:59:59.000Z

69

The Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposition for High Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications Preprint Alan Goodrich, Michael Woodhouse, and Peter Hacke Presented at the 2012 IEEE Photovoltaic Specialists Conference Austin, Texas June 3-8, 2012 Conference Paper NREL/CP-6A20-55477 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

70

A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery  

Science Conference Proceedings (OSTI)

The fracture of Si particles due to internal stresses formed during the intercalation of lithium ions was described by means of thermal analogy model and brittle fracture damage parameter. The stresses were calculated following the diffusion equation and equations of elasticity with appropriate volumetric expansion term. The damage parameter takes into account triaxiality of the stress state and change in elasticity upon tension and compression, and represents the probability of fracture under given stress state, - an approach suitable for brittle materials. The results were compared with the acoustic emission data from the experiments on electrochemical cycling of Li ion half-cells with silicon electrodes. A good correlation between experiment and prediction was observed.

Daniel, Claus [ORNL; Kalnaus, Sergiy [ORNL; Rhodes, Kevin [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

71

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

72

Stress Management: Revealing Defects in Thin Silicon Films  

NLE Websites -- All DOE Office Websites (Extended Search)

caused by the manufacturing process for strained-silicon films. Strained silicon is a new, rapidly developing material for building enhanced-performance silicon-based...

73

Materials Science and Engineering A244 (1998) 138144 The vacuum hot pressing behavior of silicon carbide fibers coated  

E-Print Network (OSTI)

; Silicon carbide fibers; Densification 1. Introduction Silicon carbide (SiC) fiber reinforced titanium carbide fibers coated with nanocrystalline Ti­6Al­4V Joseph M. Kunze *, Haydn N.G. Wadley Intelligent (VHP) of silicon carbide monofilaments coated with nanocrystalline Ti­6Al­4V has been studied. During

Wadley, Haydn

74

multicrystalline silicon  

DOE Green Energy (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

2010-05-05T23:59:59.000Z

75

Low cost silicon solar array project, silicon materials task. Establishment of the feasibility of a process capable of low-cost, high-volume production of silane (Step I) and the pyrolysis of silane to semiconductor-grade silicon (Step II). Quarterly progress report, October--December 1977. [Silicon tetrachlorides  

DOE Green Energy (OSTI)

Kinetics and equilibria for the hydrogenation of silicon tetrachloride have shown that conversion to trichlorosilane is substantially increased at higher operating pressures; these results greatly improve the practicality of the overall process. An integrated process development unit for converting metallurgical silicon and hydrogen to high-purity silane has been commissioned. A quartz fluid-bed reactor capable of operating at temperatures of up to 1000/sup 0/C was designed, constructed, and successfully operated. A total of 6.7 Kg of silicon powder was produced in two separate experiments in the free-space reactor without opening the reactor between experiments. No measurable impurities were detected in the silicon powder produced by the free-space reactor, using the cathode layer emission spectroscopic technique. A 152 mm-diameter melt consolidation apparatus was attached to the free-space reactor. The first objective for the overall process was the definition of a preliminary set of functional specifications. All process design efforts are based on these specifications. Preliminary block flow diagrams and heat and material balances for every battery-limit stream were completed for the 25 MT/year experimental facility. A brief parametric study was conducted to select an optimum range of operating pressures for the distillation columns. Conceptual designs have been initiated for the hydrogenation reactor, the free-space reactor, and the consolidation system.

Breneman, W.C.; Cheung, H.; Farrier, E.G.; Morihara, H.

1977-01-01T23:59:59.000Z

76

Group III-selenides: new silicon compatible semiconducting materials for phase change memory applications.  

E-Print Network (OSTI)

??This project investigates a series of III-Selenide materials (III xSey), where III=Al, Ga and In, through study of the interacting chemical, kinetic and structural constraints (more)

Lu, Chih-Yuan, 1977-

2007-01-01T23:59:59.000Z

77

Silicon materials task of the low cost solar array project (Phase III): effect of impurities and processing on silicon solar cells. Fourteenth quarterly report, January-March 1979  

DOE Green Energy (OSTI)

The objective of this program is to determine how various processes, impurities, and impurity-process interactions affect the properties of silicon and the performance of terrestrial solar cells made from silicon. The data provide a basis for cost-benefit analysis to the producers and users of Solar Grade Silicon. The Phase III effort encompasses five major topics: (1) examination of the interaction of impurities with processing treatments, (2) generation of a data base and modeling of impurity effects in n-base solar cells, (3) extension of previous p-base studies to include impurities likely to be introduced during silicon production, refining or crystal growth, (4) a consideration of the potential impact of anisotropic (nonuniform) impurity distribution in large Czochralski and ribbon solar cells and, (5) a preliminary investigation of the permanence of impurity effects in silicon solar cells. During this quarter (1) the mechanisms responsible for impurity deactivation during high temperature gettering treatments was examined in detail, (2) the sead to tang and center to edge variation in Czechralski ingot properties for commercial-size ingots doped with Ti and Mn was evaluated, and (3) aging effects in solar cells doped with Ti or Mo were assessed. Also, an analysis of impurity effects on crystal structure breakdown, and the monitoring of ingot lifetimes by photoconductive decay lifetime measurement before and after processing were continued. The highlights of this work are described. (WHK)

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1979-04-01T23:59:59.000Z

78

Nonoriented Silicon Steels  

Science Conference Proceedings (OSTI)

Table 2 Silicon contents, mass densities, and applications of electrical steel sheet and strip...generally used in distribution transformers. Energy savings improve with

79

Generalized Interpolation Material Point Approach to High Melting Explosive with Cavities Under Shock  

E-Print Network (OSTI)

Criterion for contacting is critically important for the Generalized Interpolation Material Point(GIMP) method. We present an improved criterion by adding a switching function. With the method dynamical response of high melting explosive(HMX) with cavities under shock is investigated. The physical model used in the present work is an elastic-to-plastic and thermal-dynamical model with Mie-Gr\\"uneissen equation of state. We mainly concern the influence of various parameters, including the impacting velocity $v$, cavity size $R$, etc, to the dynamical and thermodynamical behaviors of the material. For the colliding of two bodies with a cavity in each, a secondary impacting is observed. Correspondingly, the separation distance $D$ of the two bodies has a maximum value $D_{\\max}$ in between the initial and second impacts. When the initial impacting velocity $v$ is not large enough, the cavity collapses in a nearly symmetric fashion, the maximum separation distance $D_{\\max}$ increases with $v$. When the initial shock wave is strong enough to collapse the cavity asymmetrically along the shock direction, the variation of $D_{\\max}$ with $v$ does not show monotonic behavior. Our numerical results show clear indication that the existence of cavities in explosive helps the creation of ``hot spots''.

X. F. Pan; Aiguo Xu; Guangcai Zhang; Jianshi Zhu

2007-10-11T23:59:59.000Z

80

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base  

DOE Green Energy (OSTI)

The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process feasibility study in support of silicon material, Task I. Quarterly technical progress report (XVIII), December 1, 1979-February 29, 1980  

DOE Green Energy (OSTI)

Analyses of process system properties were continued for important chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major activities were devoted to physical, thermodynamic and transport property data for silicon. Property data are reported for vapor pressure heat of vaporization, heat of sublimation, liquid heat capacity and solid heat capacity as a function of temperature to permit rapid usage in engineering. Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for production of silicon was initiated. The process is based on hydrogen reduction of dichlorosilane (DCS) to produce the polysilicon. The chemical vapor deposition reaction for DCS is faster in rate than the conventional process route which utilizes trichlorosilane (TCS) as the silicon raw material. Status and progress are reported for primary activities of base case conditions (30%), reaction chemistry (25%) and process flow diagram (20%). Discussions with HSC and construction of a process flow diagram are in progress. Preliminary economic analysis of the BCL process (case B) was completed. Cost analysis results are presented based on a preliminary process design of a plant to produce 1000 metric tons/year of silicon. Fixed capital investment for the plant is $14.35 million (1980 dollars) and product cost without profit is 11.08 $/kg of silicon (1980 dollars). Cost sensitivity analysis indicate that the product cost is influenced most by plant investment and least by labor. For profitability, a sales price of 14 $/kg (1980 dollars) gives a 14% DCF rate of return on investment after taxes.

Yaws, C.L.; Li, K.Y.

1980-03-01T23:59:59.000Z

82

Synchrotron-based investigations of the nature and impact of ironcontamination in multicrystalline silicon solar cell materials  

DOE Green Energy (OSTI)

Synchrotron-based microprobe techniques were used to obtain precise and systematic information about the size distribution, spatial distribution, shape, electrical activity, and chemical states of iron-rich impurity clusters in multicrystalline silicon materials used for cost-effective solar cells. These experimentally observed properties of iron-rich clusters allow one to derive conclusions about the origins of iron contamination, the mechanisms for incorporating large amounts of Fe into mc-Si, quantitative information about the distribution of Fe in mc-Si and the impacts of such contamination on solar cell performance. Two distinct groups of iron-rich clusters have been identified in both materials: (a) the occasional large (diameter greater than or equal to 1 mu-m) particles, either oxidized and/or present with multiple other metal species reminiscent of stainless steels or ceramics, which are believed to originate from a foreign source such as the growth surfaces, production equipment, or feedstock, and (b) the more numerous, homogeneously distributed, and smaller iron silicide precipitates (dia. less than or equal to 800 nm, often < 100 nm), originating from a variety of possible formation mechanisms involving atomically dissolved iron in the melt or in the crystal. It was found that iron silicide nanoprecipitates account for bulk Fe concentrations as high as 1014-15cm-3 and can have a large negative impact on device performance because of their homogeneous distribution along structural defects. The large (dia. greater than or equal to 1 mu-m) particles, while containing elevated amounts of metals, are low in spatial density and thus deemed to have a low direct impact on device performance, although they may have a large indirect impact via the dissolution of Fe, thus assisting the formation of iron silicide nanoprecipitates. These results demonstrate that it is not necessarily the total Fe content that limits mc-Si device performance, but the distribution of Fe within the material.

Buonassisi, Tonio; Istratov, Andrei A.; Heuer, Matthias; Marcus,Matthew A.; Jonczyk, Ralf; Lai, Barry; Cai, Zhonghou; Heald, Steven; Warta, Wilhelm; Isenberg, Joerg; Schindler, Roland; Weber, Eicke R.

2004-11-08T23:59:59.000Z

83

The Quest for Inexpensive Silicon Solar Cells  

To learn more about NREL's silicon solar cell research, visit the Silicon Materials and Devices Web site. Did you find what you needed? Yes No. Thank ...

84

Development of a process for high capacity arc heater production of silicon for solar arrays. Low Cost Silicon Solar Array Project, Silicon Materials Task. Quarterly technical report, October--December 1977  

DOE Green Energy (OSTI)

A program has been established at Westinghouse to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. While the overall program objective is to produce 1000 metric tons of high quality silicon per year on a continuous basis, Phase I was defined as a comprehensive feasibility and engineering review of the reaction process, and a formulation of the design for a test system to experimentally verify the high temperature reaction. Phase II, currently underway, involves a multi-task approach including (1) a detailed engineering analysis of the entire process; (2) design, fabrication, and assembly of the experimental system; (3) experimental testing of the reduction reaction to produce silicon; and (4) complementary research programs to augment the experimental system design. Progress in each of these areas is detailed.

Reed, W.H.

1977-01-01T23:59:59.000Z

85

Structure of Silicon-Based Thin Film Solar Cell Materials: Annual Technical Progress Report, 1 April 2002--31 August 2003  

DOE Green Energy (OSTI)

The purpose of this research is to achieve a better understanding to improve materials used as the intrinsic layers of amorphous and microcrystalline silicon-based solar cells. Fundamental structural properties will be investigated on atomic and nano-scales. A powerful combination of techniques will be used: analytical high-resolution transmission electron microscopy (HRTEM), including special associated spectroscopic methods, small-angle scattering techniques (SAXS, ASAXS, SANS), and conventional wide-angle X-ray diffraction (XRD).

Williamson, D. L.

2004-01-01T23:59:59.000Z

86

General parameter study of a bare, cylindrical reactor having the same materials as Tory II-C  

SciTech Connect

This memorandum describes studies undertaken to investigate the properties of Tory II-C with the aims of reducing weight and size and in increasing performance. Space and weight limitations aboard existing sea-going launch vehicles required this general parameter study which utilizes a bare, cylindrical reactor having the same materials as Tory II-C.

Stubbs, T.

1962-08-24T23:59:59.000Z

87

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Ninth quarterly report, October 1--December 31, 1977  

DOE Green Energy (OSTI)

It was proposed to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort has been in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo and C, and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The lifetime of uncontaminated silicon was mesured as a function of heat treatment temperature (200 to 1200/sup 0/C). The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10/sup 18/cm/sup -3/ of Cr, Mn, Fe, Ni, Ti and V, respectively, were measured. Deep level spectroscopy of metal-contaminated ingots has been employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1977-01-01T23:59:59.000Z

88

Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon Material Task Low-Cost Silicon Solar Array Project. Eighth quarterly progress report, July 1, 1977--September 30, 1977. [Zinc vapor reduction of silicon tetrachloride in fluidized bed of seed particles  

DOE Green Energy (OSTI)

Progress is reported in the design of a large experimental facility for the preparation of high-purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free-flowing granular product. As of July 25, 1977, the capacity goal for the experimental facility was raised from 25 to 50 MT Si/year. Process flow diagrams and materials/energy flow sheets have been revised to conform to the higher capacity and a plant layout has been developed for locating the facility within an available structure. A unit-by-unit review of instrumentation and other requirements has been made, with the inclusion of those items in the flow diagrams and flow sheets. Alternative designs are presented for a silicon carbide-coated carbon-lined fluidized-bed reactor contained in hot-wall stainless steel, including alternative designs for zinc vaporizers based on detailed heat-transfer calculations. Conditions and equipment for the conversion of by-product chlorine to hypochlorite for use in the treatment of sewage effluent locally were defined. The logistics of 19 percent NaOH delivery and pick-up of 14 percent NaOCL was worked out and equipment suppliers were identified. Heat dissipation requirements for the fluidized bed, Zn/ZnCl/sub 2/ condenser, and SiCl/sub 4/ waste disposal sections were established. Resistivity and purity data were obtained for DuPont's silicon prepared by batchwise zinc reduction of SiCl/sub 4/. A preliminary safety review was made of the experimental facility. During the report period, the miniplant was operated to (1) provide 2.2 kg of product for JPL evaluation, (2) evaluate methods of product withdrawal, and (3) test three zinc vaporizer concepts. Results of the zinc vaporizer tests were consistent with concurrent heat-transfer calculations. An average value of approximately 450 Btu hr/sup -1/ ft/sup -2/ F/sup -1/ for heat transfer from graphite to boiling zinc (1 atm) was determined.

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1977-10-20T23:59:59.000Z

89

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS  

Science Conference Proceedings (OSTI)

Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2009-02-18T23:59:59.000Z

90

Generalized Hydrodynamic Treatment of the Interplay between Restricted Transport and Catalytic Reactions in Nanoporous Materials  

SciTech Connect

Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

Ackerman, David M.; Wang, Jing; Evans, James W.

2012-05-30T23:59:59.000Z

91

QQ3, Etched Silicon Pillar Array Solar Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2009 Electronic Materials Conference. Symposium, Electronic Materials Conference. Presentation Title, QQ3, Etched Silicon Pillar...

92

Materials for Energy and Sustainability  

Science Conference Proceedings (OSTI)

Materials Aspects of Corrosion and Fouling in Oil Refining and Exploration ... This symposium will focus on silicon feedstock production, silicon refining and...

93

Silicon Microrefrigerator  

E-Print Network (OSTI)

We fabricated a silicon microrefrigerator on a 500-mu m-thick substrate with the standard integrated circuit (IC) fabrication process. The cooler achieves a maximum cooling of 1 degrees C below ambient at room temperature. Simulations show that the cooling power density for a 40 x 40 mu m(2) device exceeds 500 W/cm(2). The unique three-dimensional (3-D) geometry, current and heat spreading, different from conventional one-dimensional (1-D) thermoelectric device, contribute to this large cooling power density. A 3-D finite element electrothermal model is used to analyze non-ideal factors inside the device and predict its limits. The simulation results show that in the ideal situation, with low contact resistance, bulk silicon with 3-D geometry could cool similar to 20 degrees C with a cooling power density of 1000 W/cm(2) despite the low thermoelectric figure-of-merit (ZT) of the material. The large cooling power density is due to the geometry dependent heat and current spreading in the device. The non-uniformity of current and Joule heating inside the substrate also contributes to the maximum cooling of silicon microrefrigerator, exceeding 30 % limit given in one-dimensional thermoelectric theory Delta T-max = 0.5ZT(c)(2) where T-c is the cold side temperature. These devices can be used c to remove hot spots

Y Zhang; G H. Zeng; A Shakouri; Yan Zhang; Gehong Zeng; Ali Shakouri

2006-01-01T23:59:59.000Z

94

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network (OSTI)

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

95

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Sixth quarterly report, 1 January 1977--March 31, 1977  

DOE Green Energy (OSTI)

Preliminary studies have been conducted to develop a foundation for the work to be carried out in Phase II of the program, which is designed to investigate the effects of processes and impurities on terrestrial silicon solar cells. Solar cells nearly 10% efficient (without AR coatings) can be made on p-type material with resistivities down to about 0.2 ..cap omega..-cm using a process similar to that employed during Phase I of the program. As resistivity falls below about 0.1 ..cap omega..-cm cell efficiency also falls and process instabilities become more prevalent. For this reason the resistivity of the baseline material chosen to study the combined effects of boron and metal doping will probably be in the 0.1 to 0.3 ..cap omega..-cm range. Initial studies on n-base material indicate that 0.2 ..mu..m deep junctions with adequate sheet resistivities can be obtained by boron diffusion from BBr/sub 3/ at 875/sup 0/C. Slow cooling from the diffusion temperature appears necessary to maintain good lifetime and I/sub sc/ values. p/sup +//n/n/sup +/ cells fabricated on a Westinghouse internal program using this type of processing produce coated cells with 16% efficiencies. Future studies will focus on metal impurity doping of low resistivity p-type and n-type substrates and on gettering and heat treatment effects in standard 4 ..cap omega..-cm p-type material.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McCormick, J.R.

1977-01-01T23:59:59.000Z

96

General Materials Data  

Science Conference Proceedings (OSTI)

Table 2   Physical properties of the elements...(14.44) ? 90 (v) ? 4.58 ? ? ? Fermium (Fm) 100 253 ? (?) ? (?) ? (?) ? (?) ? (?) Fm ? (?) ? ? ? ? ? ? ? Fluorine (F) 9 19.00 1.696 (g) (0.06123) (g) -219.6 (-363.3) -188.2 (-306.8) 0.18 (750) 10.1 (18.2) F ? (?) ? ? ? ? ? ? ? Francium (Fr) 87 223 ? (?) 27 (k) (81) (k) ? (?) ? (?) ? (?) Fr ? (?) ? ?...

97

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

98

Types of Silicon Used in Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Siliconused to make some the earliest photovoltaic (PV) devicesis still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after...

99

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

100

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Silicon materials task of the Low-Cost Solar Array Project: Phase IV. Effects of impurities and processing on silicon solar cells. Twenty-first quarterly report, October-December 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600/sup 0/C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after groth, preferentially segregates to grain boundaries and becomes electrically deactivated. Both Al and Au introduce deep levels when grown into silicon crystals. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty-year device lifetime. Combined electrical bias and thermal stressing of silicon solar cells containing Nb, Fe, Cu, Ti, Cr, and Ag, respectively produces no performance loss after 100 hour exposures up to 225/sup 0/C. Ti and V, but not Mo, can be gettered from polycrystalline silicon by POCl/sub 3/ or HCl at temperatures of 1000 and 1100/sup 0/C.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1981-01-30T23:59:59.000Z

102

Fifth workshop on the role of impurities and defects in silicon device processing. Extended abstracts  

DOE Green Energy (OSTI)

This workshop dealt with engineering aspects and material properties of silicon electronic devices. Crystalline silicon growth, modeling, and properties are discussed in general and as applied to solar cells. Topics considered in discussions of silicon growth include: casting, string ribbons, Al backside contacts, ion implantation, gettering, passivation, and ultrasound treatments. Properties studies include: Electronic properties of defects and impurities, dopant and carrier concentrations, structure and bonding, nitrogen effects, degradation of bulk diffusion length, and recombination parameters. Individual papers from the workshop are indexed separately on the Energy Data Bases.

Sopori, B.L.; Luque, A.; Sopori, B.; Swanson, D.; Gee, J.; Kalejs, J.; Jastrzebski, L.; Tan, T.

1995-08-01T23:59:59.000Z

103

Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites. Part 1: Tensile and fatigue behavior  

Science Conference Proceedings (OSTI)

Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eight-ply (0, 90, +45, {minus}45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 C to 427 C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 C than at 24 C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part 2 of this series of articles.

Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Diaz, E.S. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States); Chiang, K.T.; Loh, D.H. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

1995-12-01T23:59:59.000Z

104

Silicon materials task of the Low Cost Silicon Solar Array Project (Part 2). Fifth quarterly report and summary, 1 October 1976--31 December 1976. [Definition of purity requirements  

DOE Green Energy (OSTI)

The objective of this program is to develop and define purity requirements for Solar Grade Silicon by exploring the effects of metal impurities on the performance of terrestrial silicon solar cells. The first phase of this effort is now completed. Fifty-two Czochralski ingots and forty-four dendritic web specimens have been grown, chemically analyzed, sampled, and tested for OCD and PCD lifetime and solar cell performance. The results of this study, compiled with much of the experimental data, are intended both as a summary of the work and as a reference for metal impurity effects on silicon solar cells.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; Seidensticker, R.G.; McCormick, J.R.

1977-01-01T23:59:59.000Z

105

Electrochemical thinning of silicon  

DOE Patents (OSTI)

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

106

Research on High-Bandgap Materials and Amorphous Silicon-Based Solar Cells, Final Technical Report, 15 May 1994-15 January 1998  

DOE Green Energy (OSTI)

This report describes work performed by Syracuse University under this subcontract. Researchers developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential Vbi in a-Si:H-based heterostructure solar cells incorporating microcrystalline or a-SiC:H p layers. Using this new electroabsorption technique, researchers confirmed previous estimates of Vbi {yields} 1.0 V in a-Si:H solar cells with ''conventional'' intrinsic layers and either microcrystalline or a-SiC:H p layers. Researchers also explored the recent claim that light-soaking of a-Si:H substantially changes the polarized electroabsorption associated with interband optical transitions (and hence, not defect transitions). Researchers confirmed measurements of improved (5') hole drift mobilities in some specially prepared a-Si:H samples. Disturbingly, solar cells made with such materials did not show improved efficiencies. Researchers significantly clarified the relationship of ambipolar diffusion-length measurements to hole drift mobilities in a-Si:H, and have shown that the photocapacitance measurements can be interpreted in terms of hole drift mobilities in amorphous silicon. They also completed a survey of thin BP:H and BPC:H films prepared by plasma deposition using phosphine, diborane, trimethylboron, and hydrogen as precursor gases.

Schiff, E. A.; Gu, Q.; Jiang, L.; Lyou, J.; Nurdjaja, I.; Rao, P. (Department of Physics, Syracuse University)

1998-12-28T23:59:59.000Z

107

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in...

108

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

DOE Green Energy (OSTI)

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

109

Silicon Surface and Heterojunction Interface Passivation ...  

Silicon Solar Cell Materials and Processes Vail, Colorado August 10-13, 2003 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado ...

110

Available Technologies: Thinner Film Silicon Solar Cells  

Berkeley Lab scientists have designed a new approach to create highly efficient thin film silicon solar cells. This technology promises to lower solar cell material ...

111

Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior  

DOE Green Energy (OSTI)

The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-23T23:59:59.000Z

112

Preliminary materials assessment for the Satellite Power System (SPS)  

DOE Green Energy (OSTI)

Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

Teeter, R.R.; Jamieson, W.M.

1980-01-01T23:59:59.000Z

113

Silicon web process development  

DOE Green Energy (OSTI)

Silicon dendritic web is a ribbon form of silicon produced from the melt without die shaping, and capable of fabrication into solar cells with greater than 15% AM1 conversion efficiency. This quarterly report describes the work carried out during the period April to June 1980, as part of Phase III of a DOE/JPL-sponsored effort to develop silicon web process technology compatible with the national goals for low cost photovoltaic output power. We have successfully demonstrated eight hours of silicon web growth with closed loop melt level control, a key contract milestone. The result was achieved using a feedback system in which the change in output from a laser melt level sensor was used to control the rate at which silicon pellets were fed to replace the material frozen into web crystal. The melt level was controlled to about +- 0.1mm, well within the range required for stable long term web growth. This is an important step toward the development of a fully automated silicon web growth machine. A second major highlight of this quarter was the completion of an engineering design for a semi-automated web growth machine embodying all the desired features developed so far as part of this program (including e.g. melt replenishment, level sensing and control) as well as some system simplifications. The completed design will serve as a basis for complete system automation.

Duncan, C.S.; Seidensticker, R.G.; McHugh, J.P.; Skutch, M.E.; Hopkins, R.H.

1980-07-15T23:59:59.000Z

114

Development of a process for high capacity arc heater production of silicon for solar arrays. Low-cost solar array project, silicon materials task. Quarterly technical report, January--March 1978  

DOE Green Energy (OSTI)

A program has been established at Westinghouse to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost. The program consists of a four-phase effort directed to the development and implementation of this technology. The initial phase of the program, Phase I, was an eleven-month study funded by JPL which was completed in September, 1977. Phase I was defined as a comprehensive feasibility and engineering review of the reaction process, and a formulation of the design for a test system to experimentally verify the high temperature reaction. Phase II, currently underway, involves a multi-task approach including (1) a detailed engineering analysis of the entire process; (2) design, fabrication, and assembly of the experimental system; (3) experimental testing of the reduction reaction to produce silicon and (4) complementary research programs to augment the experimental system design. The Phase II effort was initiated in October, 1977, and work is described in detail on the various stages of this effort.

Reed, W.H.

1978-01-01T23:59:59.000Z

115

Silicon Materials Task of the Low Cost Solar Array Project (part 2). Third quarterly report, 1 April 1976--30 June 1976  

DOE Green Energy (OSTI)

The objective of this program is to develop and define purity requirements for solar grade silicon by exploring the effects of metal impurities on the performance of terrestrial silicon solar cells. During this quarter the growth of all first, second, and nearly all third generation ingots was completed and the growth of fourth generation ingots was initiated. Several boron-doped silicon dendritic web baseline samples were grown as well as one web doped with chromium. Chemical analysis of the ingots is proceeding on schedule, though, as expected, difficulties in assessing the impurity levels of lightly-doped ingots have developed. Lifetime measurements were completed for all 38 ingots grown to date. (WDM)

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; McCormick, J.R.

1976-01-01T23:59:59.000Z

116

Evaluation of selected chemical processes for production of low-cost silicon: Phase III. Silicon Material Task, Low-Cost Solar Array Project. Sixteenth/seventeenth quarterly progress report, July-December 31, 1979  

DOE Green Energy (OSTI)

The method under development for the production of semiconductor grade silicon is based on the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles. Construction of the PDU was completed during the report period, the fluidized-bed reactor was coated internally with silicon/SiC, and the operation of several systems was checked out. However, problems with the zinc feed system, unrelated to its basic operability, delayed introduction of zinc vapor to the PDU. At the end of the report period, the zinc feed system stood ready for tests of the control of zinc vapor feed rate by regulation of r.f. induction heating directly coupled to the liquid zinc. A study of the zinc distribution in miniplant silicon products containing zinc at the 300 and 3000 ppM levels suggests that the occlusion of zinc is caused by zinc mist entrained from the vaporizer, and it should be possible to drive the level to below 300 ppM by proper equipment design and process control.

Blocher, J.M. Jr.; Browning, M.F.

1980-03-07T23:59:59.000Z

117

Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Twentieth quarterly report, July-September 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Spectral response measurements made on single crystal and polycrystalline silicon solar cells containing specific impurities agreed well with measured cell efficiencies. For polycrystalline cells it is shown that both grain boundaries and metallic impurities reduce carrier lifetime, resulting in reduced red response and reduced cell efficiency. Spectral response and DLTS measurements on chromium-doped polycrystalline silicon cells indicate an interaction between chromium and grain boundaries; the nature of this interaction is not yet understood. Measurements were made to evaluate possible long term effects of copper contamination on solar cell performance. Nine groups of cells, including a baseline cell group, are undergoing electrical/temperature tests to determine whether electric fields play a role in long term cell degradation. A mathematical model for impurity effects in high efficiency solar cells has been developed.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1980-11-14T23:59:59.000Z

118

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

119

Process for strengthening silicon based ceramics  

DOE Patents (OSTI)

A process for strengthening silicon based ceramic monolithic materials and composite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400{degrees}C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts, or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

Kim, Hyoun-Ee; Moorhead, A.J.

1991-03-07T23:59:59.000Z

120

Research on high-band-gap materials and amorphous-silicon-based solar cells. Annual subcontract report, May 15, 1994--May 14, 1995  

DOE Green Energy (OSTI)

We have conducted a survey of thin BP:H and BPC:H films prepared by plasma deposition using phosphine, diborane, tri-methylboron, and hydrogen as precursor gases. The objective of this research is to find out whether such films might offer a superior window layer film for application to wide bandgap a-Si solar cells. The research has shown good optical properties in a-BP:H films, but electrical properties acceptable for use in window layers have not been demonstrated yet. We have also found an interesting, conductive and transparent BPC:H film in a remote deposition region of the reactor, but have been unable to transfer deposition of this film to the standard interelectrode region. We have developed our capability to deposit nip sequence amorphous silicon based solar cells, and have demonstrated an open circuit voltage greater than 0.7 V. We have continued our studies of built-in potentials in a-Si based solar cells using the electroabsorption technique, extending our measurements to include cells with wider bandgap intrinsic layers and Schottky barrier test structures. We have made the first time-of-flight drift mobility measurements on a-Si:H prepared by hot wire (HW) deposition. Initial work has shown that light-soaked HW material can have much better ambipolar diffusion lengths than the plasma-deposited material following extended light soaking. We have performed some theoretical work which addresses a difficulty in understanding photocarrier recombination in a-Si:H first identified by Marvin Silver. In particular, electron-hole recombination is much slower than expected from the well-known {open_quotes}diffusion-controlled{close_quotes} models for Onsager (geminate) recombination and Langevin recombination. This slowness is essential to the success of a-Si in solar cells, but is unexplained. We have done work on high field electron drift mobilities in a-Si:H and on the validity of the Einstein relation connecting the diffusion and drift of holes in a-Si:H.

Schiff, E.A.; Gu, Q.; Jiang, L.; Wang, Q. [Syracuse Univ., NY (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered ...

122

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

123

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

124

Growth of silicon sheets for photovoltaic applications  

DOE Green Energy (OSTI)

The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The fast growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.

Surek, T.

1980-12-01T23:59:59.000Z

125

Low Cost Solar Array Project. Task I. Silicon material. Gaseous melt replenishment system. Fifth quarterly progress report, 17 April-17 July 1980  

DOE Green Energy (OSTI)

The objective of this program is to develop an improved silicon production reactor with periodic batch delivery of product to either a casting or shotting process or through a liquid silicon transfer system directly to a crystal growth system. Progress is reported. The processes and equipment are scaled such that a modest investment can make available to the Czochralski crystal grower a low cost source of silicon. In addition, the smaller scale of operation means that the systems can be put into operation without large capital investments, guarantees of markets, etc. The chemical reactions are those in commercial usage now: deposition from a hydrogen - chlorosilane mixture. The major innovation is in reactor design which allows a high productivity of silicon. The reactor has been conservatively sized on the basis of epitaxial deposition rates. The conclusion of this calculation is that a reasonably sized system can produce rapidly enough to keep pace with either 10cm or 12cm diameter Czochralski crystal growth operating in a semi-continuous mode. (WHK)

Jewett, D.N.; Bates, H.E.; Hill, D.M.

1980-01-01T23:59:59.000Z

126

11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Extended Abstracts and Papers, 19-22 August 2001, Estes Park, Colorado  

DOE Green Energy (OSTI)

The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PV energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.

Sopori, B.

2001-08-16T23:59:59.000Z

127

Micromachined silicon electrostatic chuck  

DOE Patents (OSTI)

In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

Anderson, R.A.; Seager, C.H.

1994-12-31T23:59:59.000Z

128

Role of point defects/defect complexes in silicon device processing. Book of abstracts, fourth workshop  

DOE Green Energy (OSTI)

The 41 abstracts are arranged into 6 sessions: impurities and defects in commercial substrates: their sources, effects on material yield, and material quality; impurity gettering in silicon: limits and manufacturability of impurity gettering and in silicon solar cells; impurity/defect passivation; new concepts in silicon growth: improved initial quality and thin films; and silicon solar cell design opportunities.

Not Available

1994-06-01T23:59:59.000Z

129

Purification and deposition of silicon by an iodide disproportionation reaction  

DOE Patents (OSTI)

Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

2002-01-01T23:59:59.000Z

130

Modified silicon carbide whiskers  

DOE Patents (OSTI)

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, T.N.; Lindemer, T.B.

1991-05-21T23:59:59.000Z

131

Modified silicon carbide whiskers  

DOE Patents (OSTI)

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

132

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered bulk-scale properties. The energy absorbing material has 3D patterned architectures specially designed for ...

133

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

134

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

135

Silicon materials task of the low cost solar array project(Phase III): effect of impurities and processing on silicon solar cells. Thirteenth quarterly report, October--December 1978  

DOE Green Energy (OSTI)

The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity--process interactions on the performance of terrestrial silicon solar cells. Gettering experiments with phosphorus oxychloride gas phase treatments at 950/sup 0/C, 1000/sup 0/C, and 1150/sup 0/C have been completed for two Ti-doped ingots (3 x 10/sup 13/ cm/sup -3/ and 2.1 x 10/sup 14/ cm/sup -3/ Ti doping levels, respectively), two molybdenum doped ingots (8 x 10/sup 11/ and 4.2 x 10/sup 12/ cm/sup -3/ Mo) and one iron-doped ingot (3 x 10/sup 14/ cm/sup -3/ Fe). First generation Co and W-doped ingots were grown and processed to solar cells. Miniature solar cells and diodes were used to map the characteristics of wafers from a 3 inch diameter ingot doped with Mn or Ti. A model has been developed to describe the behavior of solar cells bearing non-uniform distributions of impurities or defects.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Mollenkopf, H.C.; McCormick, J.R.

1979-01-01T23:59:59.000Z

136

Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications  

DOE Green Energy (OSTI)

This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. (GTE Labs., Inc., Waltham, MA (USA))

1990-04-01T23:59:59.000Z

137

The Silicon Mine | Open Energy Information  

Open Energy Info (EERE)

Mine Mine Jump to: navigation, search Name The Silicon Mine Place Netherlands Sector Solar Product The Silicon Mine (TSM) will produce solar grade polysilicon suitable for the production of wafers or as the base material for the manufacture of solar cells. References The Silicon Mine[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Silicon Mine is a company located in Netherlands . References ↑ "The Silicon Mine" Retrieved from "http://en.openei.org/w/index.php?title=The_Silicon_Mine&oldid=352196" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

138

Composite materials for electromagnetic shielding  

Science Conference Proceedings (OSTI)

The paper shows up the research results on processing and characterization of composite materials with polymeric matrix (silicone rubber). The materials obtained in laboratory contain metallized nettling like reinforcement material and powdery graphite ... Keywords: attenuation, filling additions, frequency, plated nettling, polymeric composite on de basis of silicone rubber, shielding effectiveness

Stoian Elena Valentina; Rizescu Cristiana; Iordache Iulian; Ionita Gheorghe; Bacinschi Zorica

2010-07-01T23:59:59.000Z

139

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

29 June 2011 00:00 Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in...

140

General Abstracts: Structural Materials Division  

Science Conference Proceedings (OSTI)

... Corrosion Inhibition for Hydrochloric Acid Pickling Using Resistance Heating to Create Full-Scale API RP2Z CTOD Samples...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

General Topics In Materials - TMS  

Science Conference Proceedings (OSTI)

The PU(polyurethane) foams for LNG (Liquified Natural Gas) pipe insulation are applied using RIM (Reactive Injection Molding) and covering processes. For the...

142

General Abstracts: Structural Materials Division  

Science Conference Proceedings (OSTI)

Investigation of the Stress Corrosion Cracking of Carbon Steel in Fuel Grade Ethanol Environments Mechanical and Computational Investigation of Ni-Al...

143

General Abstracts: Structural Materials Division  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Non-member price: 208.00. TMS Student Member price: 141.00. Product In Stock . Description These papers are based on presentations...

144

Optical Absorption Characteristics of Silicon Nanowires for Photovoltaic Applications  

E-Print Network (OSTI)

Solar cells have generated a lot of interest as a potential source of clean renewable energy for the future. However a big bottleneck in wide scale deployment of these energy sources remain the low efficiency of these conversion devices. Recently the use of nanostructures and the strategy of quantum confinement have been as a general approach towards better charge carrier generation and capture. In this article we have presented calculations on the optical characteristics of nanowires made out of Silicon. Our calculations show these nanowires form excellent optoelectronic materials and may yield efficient photovoltaic devices.

Parkash, Vidur

2010-01-01T23:59:59.000Z

145

STUDIES ON SILICON NMR CHARACTERIZATION AND KINETIC MODELING OF THE STRUCTURAL EVOLUTION OF SILOXANE-BASED MATERIALS AND THEIR APPLICATIONS IN DRUG DELIVERY AND ADSORPTION.  

E-Print Network (OSTI)

??This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes (more)

Ambati, Jyotrhirmai

2011-01-01T23:59:59.000Z

146

Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites. Part 2: Theoretical modeling of fatigue behavior  

Science Conference Proceedings (OSTI)

Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eight-ply (0, 90, +45, {minus}45 deg) symmetric layup. Mechanistic investigation of the fatigue behavior is presented in Part 1 of this series. In Part 2, theoretical modeling of the fatigue behavior was performed using finite element techniques to predict the four stages of fatigue deflection behavior. On the basis of the mechanistic understanding, the fiber and matrix fracture sequence was simulated from ply to ply in finite element modeling. The predicted fatigue deflection behavior was found to be in good agreement with the experimental results. Furthermore, it has been shown that the matrix crack initiation starts in the 90 deg ply first, which is in agreement with the experimental observation. Under the same loading condition, the stress in the 90 deg ply of the transverse specimen is greater than that of the longitudinal specimen. This trend explains whey the longitudinal specimen has a longer fatigue life than the transverse specimen, as observed in Part 1.

Chiang, K.T.; Loh, D.H. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Diaz, E.S. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

1995-12-01T23:59:59.000Z

147

Silicon materials task of the low cost solar array project (Part 2). Fourth quarterly report, July 1, 1976--September 30, 1976  

DOE Green Energy (OSTI)

During this quarter we have completed the growth of all contract-required Czochralski and silicon dendritic web crystals. The chemical analysis of all the Czochralski ingots is also finished. Preliminary mass spectroscopic evaluation of metal-doped web samples grown at 1.3 cm/min indicates that the effective distribution coefficients for Cu, Ni, and Cr all increase with growth rate as anticipated. For chromium the increase is almost 100 fold compared to the effective k for Czochralski ingots grown at 7.5 cm/hr. PCD lifetime measurements were completed on 46 ingots. The correlation between solar cell performance and PCD lifetime appears valid for all processed wafers except those containing Ti which give lower cell efficiency than would be predicted on the basis of lifetime alone. Solar cell measurements were completed in all but a few of the ingots grown during the contract. In particular, data has now been obtained on the second set of multiply-doped samples containing the impurity combinations Zr/Ti, Cr/Ni, and Cr/Cu/Ni. As in the case of ingots containing only Ti, the Zr/Ti sample shows severely degraded cell efficiency, only about 26% of the baseline. The Cr/Ni and Cr/Cu/Ni samples show efficiencies of 81 and 72% of baseline efficiency reflecting the small effects of Cu and Ni on cell performance and the stronger effect of Cr.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; McCormick, J.R.

1976-01-01T23:59:59.000Z

148

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

DOE Green Energy (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

149

Buckeye Silicon | Open Energy Information  

Open Energy Info (EERE)

Silicon Silicon Jump to: navigation, search Name Buckeye Silicon Address 2600 Dorr Street - Suite 1070 Place Toledo, Ohio Zip 43606 Sector Renewable Energy, Services, Solar Product Consulting; Manufacturing;Raw materials/extraction;Refining;Research and development Website http://www.sphereenergy.net Coordinates 41.6529122°, -83.6066466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6529122,"lon":-83.6066466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Cordierite silicon nitride filters  

SciTech Connect

The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

Sawyer, J.; Buchan, B. (Acurex Environmental Corp., Mountain View, CA (United States)); Duiven, R.; Berger, M. (Aerotherm Corp., Mountain View, CA (United States)); Cleveland, J.; Ferri, J. (GTE Products Corp., Towanda, PA (United States))

1992-02-01T23:59:59.000Z

151

Laser wafering for silicon solar.  

Science Conference Proceedings (OSTI)

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

2011-03-01T23:59:59.000Z

152

Atomistic Study of Crack-Tip Cleavage to Dislocation Emission Transition in Silicon Single Crystals  

E-Print Network (OSTI)

At low temperatures silicon is a brittle material that shatters catastrophically, whereas at elevated temperatures, the behavior of silicon changes drastically over a narrow temperature range and suddenly becomes ductile. ...

Sen, Dipanjan

153

Hybrid silicon nanocrystal silicon nitride dynamic random access memory  

Science Conference Proceedings (OSTI)

This paper introduces a silicon nanocrystal-silicon nitride hybrid single transistor cell for potential dynamic RAM (DRAM) applications that stores charge in silicon nanocrystals or a silicon nitride charge trapping layer or both. The memory operates ...

R. F. Steimle; M. Sadd; R. Muralidhar; Rajesh Rao; B. Hradsky; S. Straub; B. E. White, Jr.

2003-12-01T23:59:59.000Z

154

Cheaper Silicon Found Effective for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheaper Silicon Found Effective for Solar Cells Cheaper Silicon Found Effective for Solar Cells A research team from the University of California at Berkeley, Lawrence Berkeley National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory, using U.S. Department of Energy (DOE) synchrotron light sources, has successfully shown that inexpensive silicon has the potential to be used for photovoltaic (PV) devices, commonly known as solar cells. In a new approach-whose findings were published online in Nature Materials (August 14, 2005)-the researchers used nanodefect engineering to control transition metal contamination in order to produce impurity-rich, performance-enhanced multicrystalline silicon (mc-Si) material. "Solar energy is often touted as the most promising and secure energy

155

Laser wafering for silicon solar.  

SciTech Connect

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

2011-03-01T23:59:59.000Z

156

Crystalline Silicon Photovolatic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics August 19, 2013 - 4:58pm Addthis Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure Illustration of a silicon crystal with its 14 electrons orbiting a nucleus of protons and neutrons. As depicted in this simplified diagram, silicon has 14 electrons. The four electrons that orbit the nucleus in the outermost "valence" energy level are given to, accepted from, or shared with other atoms. All matter is composed of atoms, which are made up of positively charged

157

Metal electrode for amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

158

Materials Innovation Committee - TMS  

Science Conference Proceedings (OSTI)

... SMD Council, - General Committees, ---- Accreditation Committee, ---- Audit Committee, ---- Education Committee, ---- Materials and Society Committee...

159

High-Cycle Fatigue of Single-Crystal Silicon Thin Films  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, fatigue can only take place in toughened solids, i.e., premature fatigue failure would not be expected in materials such as single crystal silicon. The results of this study, however, appear to be at odds with the current understanding of brittle material fatigue. Twelve thin-film ( 20 m thick) single crystal silicon specimens were tested to failure in a controlled air environment (30 0.1 C, 50 2% relative humidity). Damage accumulation and failure of the notched cantilever beams were monitored electrically during the "fatigue life" test. Specimen lives ranged from about 10 s to 48 days, or 1 10 6 to 1 10 11 cycles before failure over stress amplitudes ranging from approximately 4 to 10 GPa. A variety of mechanisms are discussed in light of the fatigue life data and fracture surface evaluation. [642] Index Terms---Fatigue failure, MEMS devices, single-crystal silicon, thin films.

Christopher L. Muhlstein; Stuart B. Brown; Robert O. Ritchie

2001-01-01T23:59:59.000Z

160

NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced silicon photonic modulators  

E-Print Network (OSTI)

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

162

Silicon solar cell assembly  

DOE Patents (OSTI)

A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

Burgess, Edward L. (Albuquerque, NM); Nasby, Robert D. (Albuquerque, NM); Schueler, Donald G. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

163

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, The Minerals, Metals...

164

Electrodeposition of molten silicon  

DOE Patents (OSTI)

Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

De Mattei, Robert C. (Sunnyvale, CA); Elwell, Dennis (Palo Alto, CA); Feigelson, Robert S. (Saratoga, CA)

1981-01-01T23:59:59.000Z

165

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Business Small Business General Information General...

166

Silicon purification melting for photovoltaic applications  

DOE Green Energy (OSTI)

The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

VAN DEN AVYLE,JAMES A.; HO,PAULINE; GEE,JAMES M.

2000-04-01T23:59:59.000Z

167

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

168

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

E-Print Network (OSTI)

Virus-Enabled Silicon Anode for Lithium-Ion Batteries Xilin Chen, Konstantinos Gerasopoulos emerged as one of the most promising next-generation anode materials for lithium-ion batteries due to its with remarkable cycling stability. KEYWORDS: silicon anode · lithium-ion battery · Tobacco mosaic virus · physical

Ghodssi, Reza

169

Potential applications of a toughened silicon-based alloy  

E-Print Network (OSTI)

Silicon has long been used as an alloying element in various metal alloys, in engineered ceramics, and in the semiconductor industry. However, due to its intrinsic low fracture toughness, it is generally perceived as a ...

Lei, Wang S

2008-01-01T23:59:59.000Z

170

Hardfacing material  

SciTech Connect

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

171

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century: Preprint  

DOE Green Energy (OSTI)

Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing and cell design that may yield cell and module performance improvements, both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen, and high-throughput, kinetically-limited materials processing. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

Atwater, H. A. (California Institute of Technology); Sopori, B.; Ciszek, T. (National Renewable Energy Laboratory); Feldman, L. C. (Vanderbilt University); Gee, J. (Sandia National Laboratories); Rohatgi, A. (Georgia Institute of Technology)

1999-04-01T23:59:59.000Z

172

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents (OSTI)

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1982-01-01T23:59:59.000Z

173

Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993  

SciTech Connect

(1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

Alvin, M.A.

1993-04-05T23:59:59.000Z

174

Reactor physics assessment of thick silicon carbide clad PWR fuels  

E-Print Network (OSTI)

High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

Bloore, David A. (David Allan)

2013-01-01T23:59:59.000Z

175

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after...

176

Materials Sustainability: Digital Resource Center - Titanium: The ...  

Science Conference Proceedings (OSTI)

Jul 9, 2008 ... Navigation: Select, Sandbox, Open Discussion Regarding Materials Sustainability, ==== Materials Sustainability ==== Recycling - General...

177

Hydrogenated amorphous silicon photonics.  

E-Print Network (OSTI)

??Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it (more)

Narayanan, Karthik

2011-01-01T23:59:59.000Z

178

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

... continued and costs have been cut dramatically along the production value chain. The most important feedstock for crystalline solar cells is high purity silicon .

179

Silicon Refining II  

Science Conference Proceedings (OSTI)

Research on the Forecast Model of the Boron Removal from Metallurgical Grade ... sufficient level of silicon quality together with relatively low production cost.

180

NUCLEAR FUEL MATERIAL  

DOE Patents (OSTI)

An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

Goeddel, W.V.

1962-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Silicon halide-alkali metal flames as a source of solar grade silicon. Final report  

DOE Green Energy (OSTI)

The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

Olson, D.B.; Miller, W.J.; Gould, R.K.

1980-01-01T23:59:59.000Z

182

Photovoltaic Cell Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Photovoltaic Cell Materials August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made...

183

Preparation of silicon carbide fibers  

DOE Patents (OSTI)

Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

Wei, G.C.

1983-10-12T23:59:59.000Z

184

Method of fabrication of display pixels driven by silicon thin film transistors  

DOE Patents (OSTI)

Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

1999-01-01T23:59:59.000Z

185

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

Ciszek, T.F.

1995-03-28T23:59:59.000Z

186

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

Ciszek, Theodore F. (Evergreen, CO)

1995-01-01T23:59:59.000Z

187

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

188

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

189

Thermally Oxidized Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

190

Washington Silicon Plant Makes Way for Cheaper Solar-and Jobs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington Silicon Plant Makes Way for Cheaper Solar-and Jobs Washington Silicon Plant Makes Way for Cheaper Solar-and Jobs Washington Silicon Plant Makes Way for Cheaper Solar-and Jobs November 2, 2010 - 2:00pm Addthis REC Silicon received a $154 million 48C tax credit for a $1.7 billion expansion of its Moses Lake, WA, plant. | Photo courtesy of REC Silicon | REC Silicon received a $154 million 48C tax credit for a $1.7 billion expansion of its Moses Lake, WA, plant. | Photo courtesy of REC Silicon | Stephen Graff Former Writer & editor for Energy Empowers, EERE In most industries, if it's expensive to make, it's probably expensive to buy. This is particularly evident in the solar world. Refining the raw material used in photovoltaic panels, silicon, is not a cheap endeavor, and has kept the price of panels more expensive than other energy sources.

191

High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995  

DOE Green Energy (OSTI)

The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

Maruska, P. [Spire Corp., Bedford, MA (United States)

1996-09-01T23:59:59.000Z

192

General Concepts  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

193

Evaluation of selected chemical processes for production of low-cost silocon. (Phases I and II. ) Final report, October 9, 1975--July 9, 1978. Silicon Material Task, Low-Cost Solar Array Project  

SciTech Connect

The zinc reduction of silicon tetrachloride in a fluidized bed of seed particles to yield a granular product was studied along with several modifications of the thermal decomposition or hydrogen reduction of silicon tetraiodide. Although all contenders were believed to be capable of meeting the quality requirements of the LSA Project, it was concluded that only the zinc reduction of the chloride could be made economically feasible at a cost below $10/kg silicon (1975 dollars). Accordingly, subsequent effort was limited to evaluating that process. A miniplant, consisting of a 5-cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency (by 0.1 percent per degree C from 72 percent (thermodynamic) at 927 for a stoichiometric mixture). Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl/sub 2/ by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility, visualized as the next stage in the development. Projected silicon costs of $7.35 and $8.71 per kg (1975 dollars) for a 1000 MT/year facilitywere obtained, depending upon the number and size of the fluidized-bed reactors and ZnCl/sub 2/ electrolytic cells used. An energy payback time of 5.9 months was calculated for the product silicon.

Blocher, J.M. Jr.; Browning, M.F.

1978-07-09T23:59:59.000Z

194

Efficiency of silicon solar cells containing chromium  

DOE Patents (OSTI)

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

195

Light Ions Response of Silicon Carbide Detectors  

E-Print Network (OSTI)

Silicon carbide (SiC) Schottky diodes 21 mum thick with small surfaces and high N-dopant concentration have been used to detect alpha particles and low energy light ions. In particular 12C and 16O beams at incident energies between 5 and 18 MeV were used. The diode active-region depletion-thickness, the linearity of the response, energy resolution and signal rise-time were measured for different values of the applied reverse bias. Moreover the radiation damage on SiC diodes irradiated with 53 MeV 16O beam has been explored. The data show that SiC material is radiation harder than silicon but at least one order of magnitude less hard than epitaxial silicon diodes. An inversion in the signal was found at a fluence of 10^15 ions/cm^2.

M. De Napoli; G. Raciti; E. Rapisarda; C. Sfienti

2006-12-14T23:59:59.000Z

196

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

197

Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report  

DOE Green Energy (OSTI)

This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H. [GTE Labs., Inc., Waltham, MA (US)] [GTE Labs., Inc., Waltham, MA (US); Kim, K. [Brown Univ., Providence, RI (US). Div. of Engineering] [Brown Univ., Providence, RI (US). Div. of Engineering

1993-05-01T23:59:59.000Z

198

NREL Core Program (NCPV), Session: Film Silicon (Presentation)  

DOE Green Energy (OSTI)

This project supports the Solar America Initiative by: R and D that contributes to goal of grid parity by 2015; research to fill the industry R and D pipeline for next-generation low-cost scalable products; development of industry collaborative research; and improvement of NREL tools and capabilities for film silicon research. The project addresses both parts of film silicon roadmap: (1) amorphous-silicon-based thin film PV--amorphous and nanocrystalline materials, present '2nd generation' technology, 4% of world PV sales in 2007; (2) advanced R and D toward film crystal silicon--definition, large-grained or single-crystal silicon < 100 {micro}m thick; 3-8 year horizon; and goal of reaching 15% cells at area costs approaching thin films.

Branz, H. M.

2008-04-01T23:59:59.000Z

199

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century  

DOE Green Energy (OSTI)

Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

Atwater, Harry A.; Ciszek, Ted; Feldman, Leonard C.; Gee, James; Rohatgi, Ajeet; Sopori, Bhushan

1999-07-28T23:59:59.000Z

200

Novel silicon fabrication process for high-aspect-ratio micromachined parts  

Science Conference Proceedings (OSTI)

Bulk micromachining generally refers to processes involving wet chemical etching of structures formed out of the silicon substrate and so is limited to fairly large, crude structures. Surface micromachining allows intricate patterning of thin films of polysilicon and other materials to form essentially two-dimensional layered parts (since the thickness of the parts is limited by the thickness of the deposited films). There is a third type of micromachining in which the part is formed by filling a mold which was defined by photolithographic means. Historically micromachining molds have been formed in some sort of photopolymer, be it with x-ray lithography (``LIGA``) or more conventional UV lithography, with the aim of producing piece parts. Recently, however, several groups including ours at Sandia have independently come up with the idea of forming the mold for mechanical parts by etching into the silicon substrate itself. In Sandia`s mold process, the mold is recessed into the substrate using a deep silicon trench etch, lined with a sacrificial or etch-stop layer, and then filled with any of a number of mechanical materials. The completed structures are not ejected from the mold to be used as piece parts rather, the mold is dissolved from around selected movable segments of the parts, leaving the parts anchored to the substrate. Since the mold is recessed into the substrate, the whole micromechanical structure can be formed, planarized, and integrated with standard silicon microelectronic circuits before the release etch. In addition, unlike surface-micromachined parts, the thickness of the molded parts is limited by the depth of the trench etch (typically 10--50 {mu}m) rather than the thickness of deposited polysilicon (typically 2 {mu}m). The capability of fabricating thicker (and therefore much stiffer and more massive) parts is critical for motion-sensing structures involving large gimballed platforms, proof masses, etc.

Fleming, J.G.; Barron, C.C.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and...

202

Experimental and Molecular Simulation Studies of Silicon ...  

Science Conference Proceedings (OSTI)

Symposium, Solar Cell Silicon ... On the Segregation of Impurities in Solar Silicon ... Silicon PV Wafers: Correlation of Mechanical Properties and Crack...

203

Spray-On Super Nanotubes - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Apr 25, 2013 ... This new coating material consists of multiwall carbon nanotubes and a ceramic made of silicon, boron, carbon, and nitrogen. Boron boosts the...

204

Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals  

E-Print Network (OSTI)

Silicon is an important material not only for semiconductor applications, but also for the development of novel bioinspired and biomimicking materials and structures or drug delivery systems in the context of nanomedicine. ...

Sen, Dipanjan

205

Stable Hydrogenated Amorphous Silicon Germanium for Photovoltaic Applications. Experimental and Computational Studies.  

E-Print Network (OSTI)

??The research was aimed at the optimisation of low band gap amorphous silicon germanium (a-SiGe:H) materials with special emphasis on developing a highly absorbing material (more)

Jimnez Zambrano, R.

2003-01-01T23:59:59.000Z

206

Silicon MOS inductor  

DOE Patents (OSTI)

A device made of amorphous silicon which exhibits inductive properties at certain voltage biases and in certain frequency ranges in described. Devices of the type described can be made in integrated circuit form.

Balberg, Isaac (Princeton, NJ)

1981-01-01T23:59:59.000Z

207

Silicon Production and Refining  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... The photovoltaic (PV) industry is in rapid growth and a large supply of solar grade silicon (SoG-Si) feedstock must be provided to response the...

208

Silicon nanocrystal memories  

Science Conference Proceedings (OSTI)

In this paper, we present an overview of memory structures fabricated by our group by using silicon nanocrystals as storage nodes. These devices show promising characteristics as candidates for future deep-submicron non-volatile memories.

S. Lombardo; B. De Salvo; C. Gerardi; T. Baron

2004-05-01T23:59:59.000Z

209

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

1996-01-01T23:59:59.000Z

210

Hydrogenated amorphous silicon films prepared by glow discharge of disilane  

DOE Green Energy (OSTI)

This report describes the results of an investigation of the properties of hydrogenated amorphous silicon films and the efficiency of amorphous silicon solar cells deposited from disilane at rates of 1.5 nanometers/second or greater. The study was divided into two parts, investigation of basic materials properties of hydrogenated amorphous silicon thin films and the fabrication of glass-P-I-N-metal solar cells. The thin film materials properties investigated included the dark conductivity, photoconductivity, dihydride/monohydride concentration ratio, activation energy, and mobility-lifetime product. Hydrogenated amorphous silicon solar cells were fabricated with an intrinsic layer which was deposited at 1.5 nanometers/second. The absolute and reverse bias quantum yields were measured and solar cell efficiencies of 5% were achieved. Attempts to increase the efficiency by reverse bias annealing are also reported. 7 refs., 27 figs.

Wiesmann, H.J. (UHT Corp., Dobbs Ferry, NY (USA))

1990-01-01T23:59:59.000Z

211

Silicon-based sleeve devices for chemical reactions  

DOE Patents (OSTI)

A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

1996-12-31T23:59:59.000Z

212

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents (OSTI)

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

213

Silicon Wafers for the Mesoscopic Era  

Science Conference Proceedings (OSTI)

... Silicon: Surface COPS - Capacitor Defect ... CoO - Wafer Diameter Expand interaction with Super Silicon Initiative and maintain ...

214

General Materials Science and Engineering Zone  

Science Conference Proceedings (OSTI)

There are currently 0 logged users, and 0 guests browsing this category, making a total of 0. New Messages, Rating, Definitively solved the problem of...

215

General Abstracts: Materials Processing and Manufacturing Division  

Science Conference Proceedings (OSTI)

Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr Coating on a Boiler Steel at 900C Distortion Assessment of a Direct Cast Uranium - 6 wt.

216

About the 2004 Electronic Materials Conference: General ...  

Science Conference Proceedings (OSTI)

TMS reserves the rights to any audio and video reproduction of all presentations at every TMS sponsored meeting. Recording of sessions (audio, video, still...

217

About the 2002 Electronic Materials Conference: General ...  

Science Conference Proceedings (OSTI)

Jun 26, 2002 ... TMS reserves the rights to any audio and video reproduction of all presentations at every TMS sponsored meeting. Recording of sessions...

218

About the 2003 Electronic Materials Conference: General ...  

Science Conference Proceedings (OSTI)

TMS reserves the rights to any audio and video reproduction of all presentations at every TMS sponsored meeting. Recording of sessions (audio, video, still...

219

Materials Week '97 general information page - TMS  

Science Conference Proceedings (OSTI)

You may download the form, which is a portable document format (.pdf) file, using the free software Adobe Acrobat. Print and mail or fax the complete form by...

220

Algorithms for General Materials Modeling and Integrating ...  

Science Conference Proceedings (OSTI)

... subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.)

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

General Abstracts: Materials Processing and Manufacturing Division  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... Non-member price: 132.00. TMS Student Member price: 97.00. Product In Stock. Description These papers are based on presentations...

222

Time and Materials Exhibit A General Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

laws and regulations, including the provisions of the Export Administration Act of 1979 and the U.S. Export Administration Regulations (15 C.F.R. 730-774) promulgated...

223

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

ASD General Information ASD General Information APS Resources & Information A list of useful links for APS staff and users. APS Technical Publications Links to APS technical publications. APS Publications Database The official and comprehensive source of references for APS-related journal articles, conference papers, book chapters, dissertations, abstracts, awards, invited talks, etc. Image Library A collection of APS images. Responsibilities & Interfaces for APS Technical Systems Descriptions of the responsibilities of APS technical groups and how they interface with one another. APS Procedures Operational procedures for the APS. APS Specifications Specifications and approvals for upgrades or changes to existing APS hardware and software. APS Radiation Safety Policy & Procedures Committee Minutes

224

Silicon Based Anodes for Li-Ion Batteries  

SciTech Connect

Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

2012-06-15T23:59:59.000Z

225

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

226

Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial  

DOE Green Energy (OSTI)

In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

2004-11-08T23:59:59.000Z

227

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

228

Method of making monolithic intergrated III-V type laser devices and silicon devices on silicon  

Science Conference Proceedings (OSTI)

This patent describes a method of fabricating compound semiconductor devices of III-V or II-VI material and semiconductor devices of silicon on a common substrate. It comprises: forming Si electronic devices on selected areas of the substrate; forming a mask layer over the Si devices and the selected regions; forming openings through the mask layer to exposure the selected regions; forming layers of the compound semi-conductor over at least the exposed selected regions which layers are single crystalline and form optoelectronic compound semiconductor devices with a lasing layer; forming contact metallization on the devices; removing regions of silicon adjacent and underlying portions of the compound semiconductor devices leaving the compound semiconductor devices isolated from silicon on lateral sides with two cantilevered beam sections of compound semiconductor devices extending in opposite directions; and separating the cantilevered sections from the compound semiconductor devices to provide end facets for the compound semiconductor devices.

Zavracky, P.M.

1990-07-10T23:59:59.000Z

229

Akros Silicon | Open Energy Information  

Open Energy Info (EERE)

Akros Silicon Akros Silicon Jump to: navigation, search Name Akros Silicon Place Folsom, California Zip 95630 Product Akros Silicon specilizes in fabless semicondutors used for Power Over Ethernet, networks, and broadband. References Akros Silicon[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Akros Silicon is a company located in Folsom, California . References ↑ "Akros Silicon" Retrieved from "http://en.openei.org/w/index.php?title=Akros_Silicon&oldid=341960" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

230

It's Elemental - The Element Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Number: 3 Group Number: 14 Group Name: none What's in a name? From the Latin word for flint, silex. Say what? Silicon is pronounced as SIL-ee-ken. History and Uses: Silicon was...

231

Silicon carbide/SRBSN composites  

Science Conference Proceedings (OSTI)

Ceramic matrix composites have been produced using unidirectionally aligned Textron SCS-6 fibers in a sintered reaction bonded silicon nitride (SRBSN) matrix. A tape casting technique was used to produce a prepreg sheet that could be cut and stacked to form a layup. Sintering aids were MgO, Al2O3, and Y2O3 either singly or in combination, final sintering being carried out under pressure at temperatures up to 1750 C. The three-point bend strength of the material varied between 448 and 513 MPa and showed no variation with oxidation time at 1000 C up to 25 hours. Interfacial shear strength measured by indentation was 4 MPa; some samples had a reaction layer at the interface and a shear strength of greater than MPa. Within sections 6 mm from exposed fiber ends, the interfacial carbon layers were partially removed, and the interfacial shear strength was reduced with increasing oxidation time. 4 refs.

Razzell, A.G.; Lewis, M.H.

1991-08-01T23:59:59.000Z

232

High cycle fatigue of polycrystalline silicon thin films in laboratory air  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, cyclic fatigue can only take place where there is some degree of toughening, implying that premature fatigue failure would not be expected in polycrystalline silicon where such toughening is absent. However, the fatigue failure of polysilicon is reported in the present work, based on tests on thirteen thin-film (2 m thick) specimens cycled to failure in laboratory air (~25C, 30-50 % relative humidity), where damage accumulation and failure of the notched cantilever beams were monitored electrically during the test. Specimen lives ranged from about 10 seconds to 34 days (5 x 10 5 to 1 x 10 11 cycles) with the stress amplitude at failure being reduced to ~50 % of the low-cycle strength for lives in excess of 10 9 cycles.

C. L. Muhlstein; S. B. Brown; R. O. Ritchie

2000-01-01T23:59:59.000Z

233

Silicon on insulator achieved using electrochemical etching  

DOE Patents (OSTI)

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

McCarthy, A.M.

1997-10-07T23:59:59.000Z

234

Radiation Hard Silicon Detectors For the SLHC  

E-Print Network (OSTI)

While the CERN Large Hadron Collider (LHC) will start taking data this year, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to incrase the luminosity of the LHC at CERN around 2016. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrader, Super-LHC (SLHC) of the ATLAS micro-stip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and detectors under study. This involves designing silicon detectors, irradiating them to the SLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS...

The ATLAS collaboration

2009-01-01T23:59:59.000Z

235

Silicon on insulator achieved using electrochemical etching  

DOE Patents (OSTI)

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

McCarthy, Anthony M. (Menlo Park, CA)

1997-01-01T23:59:59.000Z

236

Cavitation contributes substantially to tensile creep in silicon nitride  

Science Conference Proceedings (OSTI)

During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress ({dot {var_epsilon}} {proportional_to} {sigma}{sup n}, 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride.

Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

1995-08-01T23:59:59.000Z

237

Argonne CNM: Shipping MaterialsM  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM General In general, users are not permitted to transport hazardous material on the Argonne site or arrange for shipment directly to the CNM. Hazardous materials must be...

238

Crystalline silicon processing  

DOE Green Energy (OSTI)

This presentation (consisting of vugraphs) first provides the background motivation for Sandia`s effort for the development of improved crystalline silicon solar cells. It then discusses specific results and progress, and concludes with a brief discussion of options for next year.

Basore, P.A.

1994-07-13T23:59:59.000Z

239

Inspector General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of the Under Secretary for Nuclear Security Edward B. Held (Acting) Under Secretary for Nuclear Security DEPARTMENT OF ENERGY Office of the Under Secretary for Management & Performance Vacant Under Secretary for Management and Performance Office of the Under Secretary for Science & Energy Vacant Under Secretary for Science and Energy Southwestern Power Administration Bonneville Power Administration Western Area Power Administration Southeastern Power Administration U.S. Energy Information Administration Loan Programs Office Advanced Research Projects Agency - Energy General Counsel Assistant Secretary for Congressional & Intergovernmental Affairs Chief Human Capital Officer

240

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents (OSTI)

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, Raoul B. (Haifa, IL)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents (OSTI)

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

242

Effect of Magnetic Field Applied During Secondary Annealing on Texture and Grain size of Silicon Steel.  

E-Print Network (OSTI)

,2,3]. Grain Non-oriented silicon steels (GNO) are commonly used in hydroelectric power plant generators, Magnetic Annealing, Texture, Grain Growth. #12;1. Introduction Silicon steel is a soft magnetic material, is produced as a consequence of grain boundary migration during recovery, recrystallization, and grain growth

243

Silicon Atom Substitution Enhances Interchain Packing in a Thiophene-Based Polymer System  

SciTech Connect

A new silole-containing low bandgap polymer is synthesized by replacing the 5-position carbon of PCPDTBT with a silicon atom (PSBTBT). Through experiments and computational calculations, we show that the material properties, particular the packing of polymer chains, can be altered significantly. As a result, the polymer changes from amorphous to highly crystalline with the replacement of the silicon atom.

H Chen; J Hou; A Hayden; H Yang; K Houk; Y Yang

2011-12-31T23:59:59.000Z

244

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunrise and Sunset Visual Differences Sunrise and Sunset Visual Differences Name: Joey Status: other Grade: other Country: Canada Date: Spring 2012 Question: It seems that sunrise and sunset don't look symmetric. I mean that sunsets tend to have much redder skies and sunrise is usually a bit gloomier. If you see a picture, many times you can tell if its sunrise or sunset, even though I would think they should like identical, except that the sun is either going up or going down. Why do they not appear the same but in reverse? Replies: Funny you should ask as a paper just arrived which is sure to have the answer and I will read it now....... OK, the morning sky, and the sky in general, is blue due to Rayleigh scattering [which affects short wavelengths the most] of the sun light by air molecules and other microscopic particles.

245

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

246

Optical Materials  

Science Conference Proceedings (OSTI)

Oct 30, 2013... 1Fraunhofer Center for Silicon Photovoltaics CSP; 2Centre for Innovation Competence SiLi-nano; 3South Westphalia University of Applied...

247

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Density and Centripet Demonstration Density and Centripet Demonstration Name: Howard Status: teacher Grade: 4-5 Location: CT Country: USA Date: Spring 2012 Question: I am trying to create a teaching tool that shows how blood separates in a centrifuge. I want to be able to shake up three liquids in a sealed jar and then have them separate into three component levels after a minute or so--like blood does in a centrifuge. I can do this with water and red food coloring (representing red blood cells) and vegetable oil (representing blood plasma), but I cannot figure out what a third white liquid (representing white blood cells) would be and that third liquid needs to float above the water. Any ideas? Replies: Use a solid material to represent blood cells and dye your water white. Maybe a fine red sand for blood cells?

248

Silicon/Pyrex Planar Microbattery A Silicon Process-Compatible Micro-Power Source  

DOE Green Energy (OSTI)

The design, fabrication, and performance of a planar microbattery made from a silicon wafer with a bonded lid are presented. The battery is designed with two compartments, separated by four columns of micro-posts. These posts are 3 or 5 micrometers in diameter. The posts permit transport of liquid electrolyte, but stop particles of battery material from each compartment from mixing. The anode and cathode battery compartments, the posts, fill holes, and conductive vias are all made using high-aspect-ratio reactive ion (Bosch) etching. After the silicon wafer is completed, it is anodically bonded or adhesive bonded to a Pyrex{reg_sign} wafer lid. The battery materials are made from micro-disperse particles that are 3-5 micrometers in diameter. The lithium-ion chemistry is microcarbon mesobeads and lithium cobalt oxide. The battery capacity is 1.83 micro-amp-hrs/cm{sup 2} at a discharge rate of 25 microamps.

KRAVITZ, STANLEY H.; INGERSOLL, DAVID; BELL, NELSON S.; ZMUDA, SHERRY A.; SHUL, RANDY J.; WROBLEWSKI, BRIAN

2003-02-01T23:59:59.000Z

249

High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon  

DOE Green Energy (OSTI)

The authors performed a detailed study to examine the limiting performance available using photovoltaic-grade Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations.The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-{micro}s bulk lifetimes and 17.6%-efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.

Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept.; King, R.R.; Mitchell, K.W. [Siemens Solar Industries, Camarillo, CA (United States)

1996-12-01T23:59:59.000Z

250

High resolution amorphous silicon radiation detectors  

DOE Patents (OSTI)

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

1992-01-01T23:59:59.000Z

251

High resolution amorphous silicon radiation detectors  

DOE Patents (OSTI)

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

1992-05-26T23:59:59.000Z

252

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

253

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

254

Silicon Cells | Open Energy Information  

Open Energy Info (EERE)

Cells Cells Jump to: navigation, search Name Silicon Cells Place United Kingdom Product Technology developer based upon a low cost method of processing silicon to produce a new generation of high energy density batteries. References Silicon Cells[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Silicon Cells is a company located in United Kingdom . References ↑ "Silicon Cells" Retrieved from "http://en.openei.org/w/index.php?title=Silicon_Cells&oldid=351081" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

255

Superconducting Super Collider silicon tracking subsystem research and development  

SciTech Connect

The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-{mu}m structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria.

Miller, W.O.; Thompson, T.C.; Ziock, H.J. (Los Alamos National Lab., NM (USA)); Gamble, M.T. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Materials Science and Engineering)

1990-12-01T23:59:59.000Z

256

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents (OSTI)

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

Pankove, J.I.; Wu, C.P.

1982-03-30T23:59:59.000Z

257

Reactor physics considerations for implementing silicon carbide cladding into a PWR environment  

E-Print Network (OSTI)

Silicon carbide (SiC) offers several advantages over zirconium (Zr)-based alloys as a potential cladding material for Pressurized Water Reactors: very slow corrosion rate, ability to withstand much higher temperature with ...

Dobisesky, Jacob P. (Jacob Paul), 1987-

2011-01-01T23:59:59.000Z

258

Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films  

E-Print Network (OSTI)

The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

Danielson, David T. (David Thomas)

2008-01-01T23:59:59.000Z

259

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

E-Print Network (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to ...

Ganapati, Vidya

260

ARC Centre of Excellence for Advanced Silicon Photovoltaics  

E-Print Network (OSTI)

for conversion by #12;2 the cell. Cells based on "hot" carriers are also being investigated since they offer line of research. A third is the investigation of schemes for implementing hot-carrier cells. 15 Figure known as solar cells. Silicon is the most common material used to make these cells, as well as being

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear breeder reactor fuel element with silicon carbide getter  

DOE Patents (OSTI)

An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

1987-01-01T23:59:59.000Z

262

Implementation Challenges for Sintered Silicon Carbide Fiber ...  

Science Conference Proceedings (OSTI)

The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system...

263

Nanostructured plasmonics silicon solar cells  

Science Conference Proceedings (OSTI)

We report a plasmonics silicon solar cell design, with the possibility of lower cost and higher efficiency. The proposed solar cell consists of a radial p-n junction silicon nanopillar arrays in combination with metallic nanoparticles resolved at the ... Keywords: Antireflection coating, Optical absorption, Power conversion efficiency, Solar cells

Pushpa Raj Pudasaini, Arturo A. Ayon

2013-10-01T23:59:59.000Z

264

Compensated amorphous silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

265

Compensated amorphous silicon solar cell  

SciTech Connect

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

266

Formation and Characterization of Silicon Self-assembled Nanodots  

Science Conference Proceedings (OSTI)

Silicon self-assembled quantum dots have been successfully prepared on corning glass (7059) substrate. The samples were fabricated using the common technique RF magnetron sputtering system depend on plasma excitation at varying growth parameters and high temperature of more than 500 deg. C. The measurements of average dots size estimated to be 36 nm is confirmed by using AFM. The PL peak located at 570 nm, informed band gap energy = 2.10 eV larger than bulk material band gap, that confirmed the miniaturized of the dots. To measure the Silicon atomic% deposit on corning glass (7059) substrate EDX has been used.

Idrees, Fatima Aldaw; Sakrani, Samsudi; Othaman, Zulkafli [Physics Dept, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru (Malaysia)

2011-05-25T23:59:59.000Z

267

Transmissive metallic contact for amorphous silicon solar cells  

DOE Patents (OSTI)

A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

Madan, A.

1984-11-29T23:59:59.000Z

268

Micromachined silicon seismic transducers  

SciTech Connect

Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

1995-08-01T23:59:59.000Z

269

Texas General Land Office Leasing and Easement Guidelines | Open...  

Open Energy Info (EERE)

Texas General Land Office Leasing and Easement Guidelines Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Texas General Land Office Leasing and...

270

Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979  

DOE Green Energy (OSTI)

Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

1980-02-15T23:59:59.000Z

271

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

2002-01-01T23:59:59.000Z

272

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

1999-01-01T23:59:59.000Z

273

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, G.S.; Luthra, K.L.

1999-09-14T23:59:59.000Z

274

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct-Write of Silicon and Germanium Nanostructures Print Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University of Washington, in collaboration with the ALS and the Pacific Northwest National Laboratory, has devised a strategy that could make this task a little easier. They have demonstrated the ability to directly "write" nanostructures of Si, Ge, and SiGe with deterministic size, geometry, and placement control. As purity is essential for electronic-grade semiconductors, the resulting patterns were carefully evaluated for carbon contamination using photoemission electron microscopes at ALS Beamlines 7.3.1 and 11.0.1.

275

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents (OSTI)

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C.E.; Benson, D.K.

1984-07-20T23:59:59.000Z

276

Characterization of the impurities in tungsten/silicon-germanium contacts  

DOE Green Energy (OSTI)

Secondary ion mass spectrometry and Auger electron spectrometry depth profiling were used to determine impurity distributions in sputter deposited tungsten films over N-type and P-type 80/20 silicon-germanium elements of thermoelectric devices. These analyses showed that silicon, oxygen, sodium, boron, and phosphorous were present as impurities in the tungsten film. All these impurities except oxygen and sodium came from the substrate. Oxygen was gettered by the tungsten films, while sodium was possibly the result of sample handling. Further, the results from this study indicate that an oxide build-up, primarily at the tungsten/silicon-germanium interface of the N-type materials, is the major contributor to contact resistance in thermoelectric devices.

Gregg, H.A. Sr.

1986-03-26T23:59:59.000Z

277

Silicon nitride ceramic comprising samaria and ytterbia  

Science Conference Proceedings (OSTI)

This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

278

Process for forming retrograde profiles in silicon  

SciTech Connect

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

279

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

Science Conference Proceedings (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

280

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

Science Conference Proceedings (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The future of amorphous silicon photovoltaic technology  

DOE Green Energy (OSTI)

Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

Crandall, R.; Luft, W.

1995-06-01T23:59:59.000Z

282

Cordierite silicon nitride filters. Final report  

SciTech Connect

The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

Sawyer, J.; Buchan, B. [Acurex Environmental Corp., Mountain View, CA (United States); Duiven, R.; Berger, M. [Aerotherm Corp., Mountain View, CA (United States); Cleveland, J.; Ferri, J. [GTE Products Corp., Towanda, PA (United States)

1992-02-01T23:59:59.000Z

283

Silicon subsystem mechanical engineering work for the solenoidal detector collaboration  

SciTech Connect

The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C. [and others

1995-02-01T23:59:59.000Z

284

Comparison of electronic structure of as grown and solar grade silicon samples  

Science Conference Proceedings (OSTI)

A comparison of the electronic structure of two different types of silicon materials viz., (i) as grown silicon and (ii) solar silicon has been carried out utilizing maximum entropy method and pair distribution function using powder X-ray data sets. The precise electron density maps have been elucidated for the two samples. The covalent nature of the bonding between atoms in both the samples is found to be well pronounced and clearly seen from the electron density maps. The electron densities at the middle of the Si-Si bond are found to be 0.47 and 0.45 e/A{sup 3} for as grown silicon and solar silicon respectively. In this work, the local structural information has also been obtained by analyzing the atomic pair distribution functions of these two samples.

Saravanan, R., E-mail: saragow@dataone.in; Sheeba, R. A. J. R. [Madura College, Research Centre and PG Department of Physics (India)

2012-04-15T23:59:59.000Z

285

Deposited Silicon Photonics: Optical Interconnect Devices In Polycrystalline Silicon .  

E-Print Network (OSTI)

??Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 (more)

Preston, Kyle

2011-01-01T23:59:59.000Z

286

Concentrator silicon cell research  

Science Conference Proceedings (OSTI)

This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

1992-04-01T23:59:59.000Z

287

Silicone plesiotherapy molds  

SciTech Connect

Plesiotherapy, the treatment of superficial lesions by radioactive molds has largely been replaced by teletherapy techniques involving high energy photon and electron beams. There are, however, situations for which a short distance type treatment, in one form or another, is superior to any other presently available. Traditionally, molds have taken the form of rigid devices incorporating clamps to attach them to the patient. This ensures a reproducible geometry about a localized region since the molds are applied on a daily basis. To make such devices requires considerable skill and patience. This article describes an alternative method that eliminates the use of cumbersome devices in many situations. Silicone molds made from a plaster cast model have been found suitable for the treatment of surface lesions and especially for lesions in the oral and nasal cavities. With the use of radioactive gold seeds the molds may be left in place for a few days without fear of them moving.

Karolis, C.; Reay-Young, P.S.; Walsh, W.; Velautham, G.

1983-04-01T23:59:59.000Z

288

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 23, 2012 ... Boron and phosphorous are used as dopants in solar cell silicon and their content in silicon feedstock for PV production must be very low.

289

Antifuse with a single silicon-rich silicon nitride insulating layer  

DOE Patents (OSTI)

An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

Habermehl, Scott D.; Apodaca, Roger T.

2013-01-22T23:59:59.000Z

290

Nano fabrication of silicon fins.  

E-Print Network (OSTI)

??We describe the formation of silicon micro- and nano-fins, with (111)-plane sidewall facets, for selective sidewall epitaxy of III-Nitride semiconductors. The fins were produced by (more)

Liu, Lianci

2012-01-01T23:59:59.000Z

291

Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites  

SciTech Connect

A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

Singh, M.; Levine, S.R.

1995-07-01T23:59:59.000Z

292

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

293

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

DOE Green Energy (OSTI)

In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

294

MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980  

DOE Green Energy (OSTI)

The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

Anderson, W.A.

1980-12-01T23:59:59.000Z

295

Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Carbide Technology Breakthrough Silicon Carbide Technology Breakthrough Silicon carbide (SiC) is a semiconductor material under rapid development for use in power electronic (PE) systems due to its unique material and electronic properties. SiC potentially offers several advantages over conventional silicon (Si) for use in PE devices. Comparatively, individual SiC devices (in theory) can endure temperatures up to 600°C (standard Si PE devices are typically limited to 150°C), withstand more voltage, tolerate a larger current density, and operate at a higher frequency. This augmented performance of SiC devices in turn leads to PE devices that are significantly more energy efficient in their operation. Research and development is ongoing to produce SiC PE products with higher currents

296

Advanced material appearance modeling  

Science Conference Proceedings (OSTI)

For many years, appearance models in computer graphics focused on general models for reflectance functions coupled with texture maps. Recently, it has been recognized that even very common materials such as hair, skin, fabric, and rusting metal require ...

Julie Dorsey; Holly Rushmeier

2009-08-01T23:59:59.000Z

297

Direct Production of Silicones From Sand  

Science Conference Proceedings (OSTI)

Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

2001-09-30T23:59:59.000Z

298

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

Science Conference Proceedings (OSTI)

In this program we have been developing a technology for fabricating thin (cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

299

Research on the basic understanding of high efficiency in silicon solar cells. Annual report, 1 December 1982-30 November 1983  

DOE Green Energy (OSTI)

This report presents results of research designed to develop a basic understanding of high-efficiency silicon solar cells and achieve cell efficiencies greater than 17% by employing innovative concepts of material preparation, cell design, and fabrication technology. The research program consisted of a theoretical effort to develop models for very high-efficiency cell designs, experimental verification of the designs, and improved understanding of efficiency-limiting mechanisms such as heavy doping effects and bulk and surface recombination. Research was performed on high-lifetime float-zone silicon, the baseline materials, low-resistivity gallium-doped czochralski silicon, and boron-doped float-zone silicon.

Rohatgi, A.; Rai-Choudhury, P.

1984-09-01T23:59:59.000Z

300

Development of in-situ toughened silicon-rich alloys : a new class of castable engineering ceramics  

E-Print Network (OSTI)

Despite having a broad set of desirable properties, silicon's potential as a primary constituent in a structural material has not yet been realized because of its extremely low fracture toughness. Motivated by the ...

Fischer, David S., Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulated Co-Optimization of Crystalline Silicon Solar Cell Throughput and Efficiency Using Continuously Ramping Phosphorus Diffusion Profiles  

E-Print Network (OSTI)

Defect engineering is essential for the production of high-performance silicon photovoltaic (PV) devices with cost-effective solar-grade Si input materials. Phosphorus diffusion gettering (PDG) can mitigate the detrimental ...

Morishige, Ashley Elizabeth

302

Directionally solidified materials | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Clean Energy National Security Neutron Science Nuclear Science Supercomputing and Computation More Science Hubs, Centers and Institutes US ITER Home | Science & Discovery | Advanced Materials SHARE Directionally solidified materials May 15, 2013 A false-color image of molybdenum pillars, formed as a grid of nearly defect-free single crystal rods, sticking out of a silicon carbide matrix. Through a process known as directional solidification, ORNL researchers have grown materials with micrometer-sized nearly-perfect "pillars." When they tested these materials, they found that the pillars had strength

303

Anchored nanostructure materials and method of fabrication  

Science Conference Proceedings (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

304

GENERAL@ELECTtiIC COMPINY  

Office of Legacy Management (LM)

GENERAL@ELECTtiIC GENERAL@ELECTtiIC COMPINY ~9013 ~APPROVAL NO. 143 Article II, Section 8(b) PICHLAND, WASHINGTON .~. "ANFORD ATOMlC PlOD"CTS O*Ert*,ION ,. u/S; Atomic Energy Comisaion Hailfbrd operations Office Richland, Washington Attention: Mr. J. E. Travis, Manager Gentlemen: EXTRUSION OF URANIUM DIOXIDE FOR GENERAL ~ED&'RIC - APED The Atoinic Power Equipment Depart!++ of ~the The uranium dioxide necess :Material License No. C-3351. for establishing the value'of the.material will be developed with appropriate representatives of your office in accordance with established procedures. A small amount of scrap will be generated in the process but, since this will be usable and is needed in waging studies at Hanford, we do not propose to charge for reprocessing.

305

Amorphous Silicon Based Neutron Detector  

SciTech Connect

Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; Various single-junction and double junction detector devices have been fabricated; The detector devices fabricated have been systematically tested and analyzed. Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies developed here could be used to develop X-ray and neutron monitors that could be used in the future for security checks at the airports and other critical facilities. The project would lead to devices that could significantly enhance the performance of multi-billion dollar neutron source facilities in the US and bring our nation to the forefront of neutron beam sciences and technologies which have enormous impact to materials, life science and military research and applications.

Xu, Liwei

2004-12-12T23:59:59.000Z

306

Epitaxial silicon growth for solar cells. Final report  

DOE Green Energy (OSTI)

The objectives of this contract were: (1) to determine the feasibility of silicon epitaxial growth on low-cost silicon substrates for the development of silicon sheet capable of producing low-cost, high efficiency solar cells; (2) to achieve a goal of 12% (AM-0) efficient solar cells fabricated on thin epitaxial layers (<25 ..mu..m) grown on low-cost substrates; and (3) to evaluate the add-on cost for the epitaxial process and to develop low-cost epitaxial growth procedures for application in conjunction with low-cost silicon substrates. The basic epitaxial procedures and solar-cell fabrication and evaluation techniques are described, followed by a discussion of the development of baseline epitaxial solar-cell structures, grown on high-quality conventional silicon substrates. This work resulted in the definition of three basic structures which reproducibly yielded efficiencies in the range of 12 to 13.7%. These epitaxial growth procedures and baseline structures were then used to grow diagnostic layers and solar cells on four potentially low-cost silicon substrates. A description of the crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials is given. The major results were the achievement of cell efficiencies of 10.6 to 11.2% on multigrained substrates and approx. 13% on a low-cost single-crystal substrate. An advanced epitaxial reactor, the Rotary Disc, is described. The results of growing solar-cell structures of the baseline type and on low-cost substrates are given. The add-on cost for the epitaxial process is assessed. These cost estimates show a value of approx. 0.46/W using existing or near-term technologies and project an add-on cost of $0.10/W for future reactors.

D'Aiello, R.V.; Robinson, P.H.; Richman, D.

1979-04-01T23:59:59.000Z

307

BY SILICON CRYSTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

c October 29, 1942 a 1 1 _MIGH aECTgFXCATIOH - BY SILICON CRYSTALS . . c .. I n. The excellent pesformmce of Brftieh "red dot" c r y s t a l s f e explained R R due t o the kgife edge contact i n a t A polfehod ~ X ' f l i C B o H i g h frequency m c t l f f c n t f o n 8ependre c r i t i c a l l y on the ape%e;y of the rectifytnc boundary layer o f the crystal, C, For hl#$ comvere~on e f f i c i e n c y , the product c d t h i ~ capacity m a o f ' t h e @forward" (bulk) re-. sistance Rb o f the crystnl must b@ sm%P, depende primarily on the breadth of tha b f f e edge i t s lbngth. The contact am &harefore ~ E L V Q a rather large area wMQh prevents burn-out, thh3 t h e breadth of &h@ knife edge should be bdt8~1 than E~$O$B% % f I - ' amo For a knife edge, this produet very 14ttle upom For a wavsIL~n+3tih of PO emo the eowp,o%a%8sne 4

308

Thin Silicon MEMS Contact-Stress Sensor  

SciTech Connect

This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

Kotovsky, J; Tooker, A; Horsley, D A

2009-12-07T23:59:59.000Z

309

Background and General Concepts  

Science Conference Proceedings (OSTI)

...T.C. Fowler, Value Analysis in Materials Selection and Design, Materials Selection and Design, Vol 20, ASM Handbook,

310

Formation of thin-film resistors on silicon substrates  

DOE Patents (OSTI)

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

311

Process for producing dispersed particulate composite materials  

DOE Patents (OSTI)

This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)

1995-01-01T23:59:59.000Z

312

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

313

Hybrid Silicon Photonic Integrated Circuit Technology  

E-Print Network (OSTI)

modulators for sili- con photonics, in Proc. IEEE Photon.J.E. Bowers, Hybrid silicon photonics for optical Intercon-The evolution of silicon photonics as an enabling technology

2013-01-01T23:59:59.000Z

314

Design of a silicon waver breaker  

E-Print Network (OSTI)

Usually multiple MEMS or IC devices are fabricated on a single silicon wafer. Manually separating the components from each other involves scribing and fracturing the silicon. This thesis presents a design for a tool to aid ...

Mukaddam, Kabir James, 1983-

2005-01-01T23:59:59.000Z

315

Nucleation and solidification of silicon for photovoltaics  

E-Print Network (OSTI)

The majority of solar cells produced today are made with crystalline silicon wafers, which are typically manufactured by growing a large piece of silicon and then sawing it into ~200 pm wafers, a process which converts ...

Appapillai, Anjuli T. (Anjuli Tara)

2010-01-01T23:59:59.000Z

316

Cermet layer for amorphous silicon solar cells  

DOE Patents (OSTI)

A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

317

Becancour Silicon Inc BSI | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Becancour Silicon Inc (BSI) Place St. Laurent, Quebec, Canada Zip H4M2M4 Sector Solar Product Canadian supplier of silicon metal for the...

318

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

319

Ceramic composites reinforced with modified silicon carbide whiskers  

DOE Patents (OSTI)

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

320

About the 2002 Electronic Materials Conference: Conference ...  

Science Conference Proceedings (OSTI)

Jun 26, 2002... emitters, metallization technology, superconductors, and low thermal-budget processing and includes general papers on electronic materials...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recycling and Material Price - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Recycling General Session. Presentation Title, Recycling and Material Price:...

322

The undersigned support THE ORLANDO MATERIALS ...  

Science Conference Proceedings (OSTI)

May 14, 2012 ... Technical Advisory Board. Research and Innovation Center. Ford Motor Company. Robert Schafrik. General Manager. Materials & Process.

323

Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues  

SciTech Connect

Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.

Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

2009-06-18T23:59:59.000Z

324

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

325

System and method for liquid silicon containment  

SciTech Connect

This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

2013-05-28T23:59:59.000Z

326

Silicon crystal growing by oscillating crucible technique  

DOE Patents (OSTI)

A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

Schwuttke, G.H.; Kim, K.M.; Smetana, P.

1983-08-03T23:59:59.000Z

327

Demonstration of a silicon raman laser  

E-Print Network (OSTI)

The need for low-cost photonic devices has stimulated significant amount of research in silicon photonics. One avenue of this research is building active devices based on nonlinear properties of silicon. Raman effect in silicon is an attractive way of realizing these devices. In the last few years, spontaneous and stimulated Raman scattering have been demonstrated in Silicon-on-insulator (SOI) waveguides, showing the possibility of active functionalities based

Bahram Jalali; Ozdal Boyraz; Dimitri Dimitropoulos; Varun Raghunathan

2004-01-01T23:59:59.000Z

328

Solar Cell Silicon - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, TMS Extraction and...

329

Copper doped polycrystalline silicon solar cell  

DOE Patents (OSTI)

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

330

Silicon Photonics: The Inside Story  

E-Print Network (OSTI)

The electronic chip industry embodies the height of technological sophistication and economics of scale. Fabricating inexpensive photonic components by leveraging this mighty manufacturing infrastructure has fueled intense interest in silicon photonics. If it can be done economically and in an energy efficient manner, empowering silicon with optical functionality will bring optical communications to the realm of computers where limitations of metallic interconnects are threatening the industry's future. The field is making stunning progress and stands to have a bright future, as long as the community recognizes the real challenges, and maintains an open mind with respect to its applications. This talk will review recent 'game changing' developments and discuss promising applications beyond data communication. It will conclude with recent observation of extreme-value statistical behavior in silicon photonics, a powerful example of how scientific discoveries can unexpectedly emerge in the course of technology d...

Jalali, Bahram

2008-01-01T23:59:59.000Z

331

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents (OSTI)

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

332

Process of preparing tritiated porous silicon  

DOE Patents (OSTI)

A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

Tam, Shiu-Wing (Downers Grove, IL)

1997-01-01T23:59:59.000Z

333

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

334

Erbium diffusion in silicon dioxide  

SciTech Connect

Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

Lu Yingwei; Julsgaard, B.; Petersen, M. Christian [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, R. V. Skougaard [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Pedersen, T. Garm; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark); Larsen, A. Nylandsted [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark)

2010-10-04T23:59:59.000Z

335

Serial Powering of Silicon Sensors  

E-Print Network (OSTI)

Serial powering is a technique to provide power to a number of serially chained detector modules. It is an alternative option to independent powering that is particularly attractive when the number of modules is high, as in largescale silicon tracking detectors for particle physics. It uses a single power cable and a constant current source. On each module power is derived using local shunt regulators. Design aspects of local shunt regulators and system aspects of serial powering will be discussed. Test results and measurements obtained with a silicon strip supermodule will be presented. Specifications of radiation-hard custom serial powering circuitry will be discussed.

Villani, E G; Tyndel, M; Apsimon, R

2007-01-01T23:59:59.000Z

336

Draft General Conformity Determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Draft General Conformity Determination U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix I Draft General Conformity Determination Draft General Conformity Determination Cape Wind Energy Project Prepared by Minerals Management Service Herndon, VA November 2008 i TABLE OF CONTENTS 1.0 INTRODUCTION TO THE PROPOSED ACTION............................................................... 1 2.0 GENERAL CONFORMITY REGULATORY BACKGROUND .......................................... 2 2.1 GENERAL CONFORMITY REQUIREMENTS.................................................................... 2 2.2 GENERAL CONFORMITY APPLICABILITY.....................................................................

337

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

338

NEWTON's General Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

General Science Videos Do you have a great general science video? Please click our Ideas page. Featured Videos: Videos from National Geographic Kids Videos from National Geographic...

339

NEWTON's General Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

General Science Archive: Loading Most Recent General Science Questions: What is Equilibrium? Banana and Human Genetics Hair Examination Body Buffer Action Jellyfish : Plant or...

340

Silicon dendritic web material process development. Second quarterly report  

DOE Green Energy (OSTI)

The properties of the cells to be used in the first 30 cm by 60 cm module are given. The average efficiency was 12.4 +- 0.8%. The highest efficiency measured was 14.2%. A satisfactory lamination has been made with polyvinyl butyral replacing ethylene vinyl acetate.

Stapleton, R. E.; Meier, D. L.; Sienkiewicz, L.; Campbell, R. B.; Rai-Choudhury, P.

1980-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Silicon Based Hybrid Materials: A Novel Ensamble of Hydrogen ...  

Science Conference Proceedings (OSTI)

Electric Cell-impedance Spectroscopy at the Biological-inorganic Interface, Shewanella Oneidensis - Gold, for Microbial Fuel Cell Applications Encapsulating...

342

Porous Silicon/Carbon Nanocomposite as Anode Materials for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

343

Release of impurities from structural defects in polycrystalline silicon solar cells  

DOE Green Energy (OSTI)

It is critical to understand the behavior of metallic impurities in polycrystalline silicon used for solar cells. These impurities significantly increase the minority carrier recombination rate and, in turn, degrade cell performance. Impurity gettering is a commonly used method to remove these impurities from the material, however, past work has suggested that impurity release from structural defects drastically limits the gettering process. Presently, there is only a limited understanding of impurity release from structural defects. In this work, a correlation between structural defects and the location of metal impurities in as-grown material is established and the release of nickel and copper from structural defects in polycrystalline silicon was studied in as-grown material and after sequential thermal treatments which dissolve the impurities into the silicon matrix. Synchrotron-based x-ray fluorescence impurity mapping with spatial resolution of {approx} 1 {micro}m, was used to determine impurity distributions after each thermal treatment.

McHugo, S.A. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Imaizumi, M. [Toyota Technological Inst., Nagoya (Japan)

1997-04-01T23:59:59.000Z

344

Amorphous silicon technology  

SciTech Connect

The growth methods discussed in this volume include both regular and remote plasma enhanced chemical vapor deposition (PECVD), catalytic CVD (CTLCVD), atmospheric pressure CVD (APCVD), very high frequency plasma CVD (VHCVD) and magnetron sputtering. Some of the papers discuss the use of disilane to increase growth rates. The general questions of the kinetics of film growth is an important topic of discussion in this volume. Several mechanisms for monitoring film growth and lasma diagnostics are also topics of discussion.

Madan, A. (Glasstech Solar, Inc., Wheatridge, CO (USA)); Thompson, M.J. (Xerox Palo Alto Research Center, CA (USA)); Taylor, P.C. (Univ. of Utah, Salt Lake City, UT (US)); LeComber, P.G. (Univ. of Dundee, Dundee (GB)); Hamakawa, Y. (Osaka Univ., Osaka (JP))

1988-01-01T23:59:59.000Z

345

Defect structure of web silicon ribbon  

DOE Green Energy (OSTI)

Web silicon ribbon has recently emerged as a material for the production of high efficiency solar cells. Since defects introduced during growth may influence locally minority carrier recombination rates, there is now a need to examine the defect structure in detail and to correlate it with electrical activity. This work describes initial observations made on web material by EBIC and HVEM. Although EBIC investigations have shown that dislocations emerging at the web surface enhance minority carrier recombination rates, their density is low enough (typically 10/sup 5/cm/sup -2/) to have only a small effect on the efficiency of the material as a solar cell. Since a condition for dendritic web growth is that the dendrites contain at least two twin boundaries it is usual to find that some of these boundaries extend into the web. These boundaries are formed parallel to the (111) growth surface and are found to be sites of strong electrical activity. HVEM has been used to study the defect structure at the twin boundary. Two types of dislocation networks lying on different (111) planes have been observed, presumably corresponding to two adjacent twin boundaries.

Cunningham, B.; Strunk, H.; Ast, D.

1980-10-01T23:59:59.000Z

346

Heat exchanger: ingot casting/slicing process. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project. First quarterly report, November 20, 1975--December 31, 1975  

DOE Green Energy (OSTI)

Designs for changes to the existing crystal casting furnace and multi-wafer slicer were completed prior to the contract. Equipment supplies necessary for the modifications and silicon material were ordered during the first one and one-quarter month period covered. Assembly preparation and check-out of all systems are on schedule. (auth)

Schmid, F.

1975-12-31T23:59:59.000Z

347

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

348

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

349

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

350

Beyond Silicon: Cutting the Costs of Solar Power | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond Silicon: Cutting the Costs of Solar Power Beyond Silicon: Cutting the Costs of Solar Power Stories of Discovery & Innovation Beyond Silicon: Cutting the Costs of Solar Power Enlarge Photo Courtesy of University of Illinois Mechanically flexible, high efficiency solar module that uses an interconnected array of microscale GaAs photovoltaic cells, grown in a multilayer stack on a wafer and then printed onto a sheet of plastic. Enlarge Photo 04.15.11 Beyond Silicon: Cutting the Costs of Solar Power New method of fabricating semiconductors from gallium arsenide promises more affordable solar power, improved semiconductor devices. The biggest single barrier to widespread adoption of solar power continues to be the cost of solar cells. University of Illinois materials scientists supported by the DOE Office of Science have scored a

351

Evaluation of Radiation Resistance for Organic Materials  

E-Print Network (OSTI)

carbide fiber Evaluation of semiconductor devices for space use Creation of carnations with variety Research Activities for Quantum Beam Applications Polymer electrolyte membrane for fuel cells Silicon for organic materials used in atomic energy- related facilities J-PARC ITER Si-polymer Forming : fiber

McDonald, Kirk

352

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

353

Microelectromechanical pump utilizing porous silicon  

DOE Patents (OSTI)

A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

2011-07-19T23:59:59.000Z

354

Method for fabricating silicon cells  

DOE Patents (OSTI)

A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

Ruby, D.S.; Basore, P.A.; Schubert, W.K.

1998-08-11T23:59:59.000Z

355

Method for fabricating silicon cells  

DOE Patents (OSTI)

A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

1998-08-11T23:59:59.000Z

356

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

Science Conference Proceedings (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

2010-05-05T23:59:59.000Z

357

Uncertain generalized aggregation operators  

Science Conference Proceedings (OSTI)

The aim of this paper is to extend the generalized ordered weighted averaging operator and provide a new class of operators called the uncertain generalized ordered weighted averaging (UGOWA) operator. It provides a very general formulation that includes ... Keywords: Aggregation, Decision making, Generalized mean, OWA operator, Operator weights

Li-Gang Zhou; Hua-You Chen; Jos M. Merig; Anna M. Gil-Lafuente

2012-01-01T23:59:59.000Z

358

Mechanics of Lithiation in Silicon  

Science Conference Proceedings (OSTI)

Atomic Scale Modeling of Point Defects in Materials: Coupling Ab Initio and Elasticity Approaches ... Electrochemical Shock of Lithium Battery Materials.

359

History of the Crystalline Silicon Photovoltaic Cell Research Program at Sandia National Laboratories  

DOE Green Energy (OSTI)

The Sandia Photovoltaic Program conducted research in crystalline-silicon solar cells between 1986 and 2000 for the U.S. Department of Energy. This period saw rapid improvements in the fundamental understanding of c-Si materials and devices, improvements in c-Si PV manufacturing and control, and a rapid expansion of c-Si PV manufacturing capacity. Crystalline-silicon technology has provided the basis for PV to emerge as a serious option for global energy needs. The c-Si cell research at Sandia examined c-Si materials, devices, processing, and process integration. This report summarizes research conducted in this program over the past 15 years.

RUBY, DOUGLAS S.; GEE, JAMES M.

2001-04-01T23:59:59.000Z

360

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric deviceswhich convert heat into energythat can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Amorphous-silicon thin-film heterojunction solar cells  

DOE Green Energy (OSTI)

The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

1981-01-01T23:59:59.000Z

362

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

363

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

364

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

365

Half-Metallicity in Europium Oxide Conductively Matched with Silicon  

SciTech Connect

EuO1-x--a remarkably versatile ferromagnetic semiconductor with variable transport properties--incorporated into a heterostructure with n+ doped silicon is shown to be {approx}90% spin polarized by Andreev reflection (AR) spin spectroscopy. The AR measurements were done in a planar geometry with an InSn superconducting film. A simple reactive growth technique was used to controllably introduce oxygen vacancies into EuO1-x to adjust its carrier concentration. We demonstrate by direct measurements of spin polarization that half-metallicity of EuO1-x can be achieved in the films conductively matched with Si, thus making EuO1-x one of the most attractive materials for silicon-based spintronics.

Panguluri,R.; Santos, T.; Negusse, E.; Dvorak, J.; Idzerda, Y.; Moodera, J.; Nadgorny, B.

2008-01-01T23:59:59.000Z

366

First-principles Approaches to Simulate Lithiation in Silicon Electrodes  

E-Print Network (OSTI)

Silicon is viewed as an excellent electrode material for lithium batteries due to its high lithium storage capacity. Various Si nano-structures, such as Si nanowires, have performed well as lithium battery anodes and have opened up exciting opportunities for the use of Si in energy storage devices. The mechanism of lithium insertion and the interaction between Li and the Si electrode must be understood at the atomic level; this understanding can be achieved by first-principles simulation. Here, first-principles computations of lithiation in silicon electrodes are reviewed. The review focuses on three aspects: the various properties of bulk Li-Si compounds with different Li concentrations, the electronic structure of Si nanowires and Li insertion behavior in Si nanowires, and the dynamic lithiation process at the Li/Si interface. Potential study directions in this research field and difficulties that the field still faces are discussed at the end.

Zhang, Qianfan; Wang, Enge

2013-01-01T23:59:59.000Z

367

Influence Of Ultrasonic Waves On The Formation Of High Pores Silicon Carbide  

SciTech Connect

The Challenge to produce a quality Silicon Carbide that combination high surface area is promising and this material can be used in many application such as Hydrogen storage materials. Synthesis of high surface area carbon materials by selective etching of Silicon Carbide with choric acid while exposing ultrasonic wave have been made.Powder Of Sic (surface area 17.8 m{sup 2}/g) was treated in the chloric acetic as well as their mixture of various compositions and various time exposure of ultrasonic waves. Surface area and pore size can be controlled by temperature and concentration composition of Chloric and time exposure of ultrasonic wave.The resultant carbon and carbon-silicon carbide composite powders were characterized X-ray diffraction and Electron microscope. To determine a conversion degree of silicon carbide due to influence of the ultrasonic wave, the samples were annealed in open air at 1000 deg. C. There by carbon component of the carbon/silicon carbide composite was completely oxidized. The analysis of the samples shows the strong influence of time exposure of ultrasonic waves on the formation of pores.

Toana, Musfirah C. F. [Physics Dept. University of Tadulako (Indonesia); Soegijono, B.; Hikam, M. [Physics Dept. University of Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

368

Defect behavior of polycrystalline solar cell silicon  

DOE Green Energy (OSTI)

The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P. [Arizona State Univ., Tempe, AZ (US). Center for Solid State Electronics Research

1993-05-01T23:59:59.000Z

369

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

370

Development of mullite substrates and containers. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Silicon Solar array Project. Quarterly report No. 1, October 6, 1977--November 14, 1977  

DOE Green Energy (OSTI)

Eight mullite bodies of varied compositions and microstructures have been prepared and are being characterized. These compositions will be submersed in molten silicon to study the impurity and surface effects. These various mullite materials will be analyzed for use as substrates for Honeywell Contract No. 954356, silicon on ceramic program and for use as a container of molten silicon. Low cost processing methods are being developed and evaluated for manufacturing large mullite sheets and mullite containers. At present, a state-of-the-art roll compaction process has shown promising initial results for substrates. However, these 0.5mm x 10cm x 1m are extremely fragile. Slip casting or iso pressing are anticipated for containers.

Wirth, D.G.; Sibold, J.D.

1977-12-05T23:59:59.000Z

371

Interactions of structural defects with metallic impurities in multicrystalline silicon  

DOE Green Energy (OSTI)

Interactions between structural defects and metallic impurities were studied in multicrystalline silicon for solar cells applications. The objective was to gain insight into the relationship between solar cell processing, metallic impurity behavior and the resultant effect on material/device performance. With an intense synchrotron x-ray source, high sensitivity x-ray fluorescence measurements were utilized to determine impurity distributions with a spatial resolution of {approx} 1{micro}m. Diffusion length mapping and final solar cell characteristics gauged material/device performance. The materials were tested in both the as-grown state and after full solar cell processing. Iron and nickel metal impurities were located at structural defects in as-grown material, while after solar cell processing, both impurities were still observed in low performance regions. These results indicate that multicrystalline silicon solar cell performance is directly related to metal impurities which are not completely removed during typical processing treatments. A discussion of possible mechanisms for this incomplete removal is presented.

McHugo, S.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Hieslmair, H.; Weber, E.R. [Univ. of California, Berkeley, CA (US). Dept. of Materials Science and Mineral Engineering; Rosenblum, M.D.; Kalejs, J.P. [ASE Americas Inc., Billerica, MA (US)

1996-11-01T23:59:59.000Z

372

General Dynamics, Electric Boat  

Science Conference Proceedings (OSTI)

General Dynamics, Electric Boat. NVLAP Lab Code: 100560-0. Address and Contact Information: 75 Eastern Point Road ...

2013-08-16T23:59:59.000Z

373

Mechanics of Advanced Materials and Structures, 18:1431, 2011 Copyright Taylor & Francis Group, LLC  

E-Print Network (OSTI)

is scrutinized. Results are also pre- sented for a fiber-reinforced titanium/silicon carbide composite cylinder with functionally graded fiber orientation. The silicon carbide fibers are oriented in the axial direction solution, graded fiber orientation 1. INTRODUCTION Functionally graded materials (FGMs) are advanced com

Vel, Senthil

374

Method for making defect-free zone by laser-annealing of doped silicon  

DOE Patents (OSTI)

This invention is a method for improving the electrical properties of silicon semiconductor material. The method comprises irradiating a selected surface layer of the semiconductor material with high-power laser pulses characterized by a special combination of wavelength, energy level, and duration. The combination effects melting of the layer without degrading electrical properties, such as minority-carrier diffusion length. The method is applicable to improving the electrical properties of n- and p-type silicon which is to be doped to form an electrical junction therein. Another important application of the method is the virtually complete removal of doping-induced defects from ion-implanted or diffusion-doped silicon substrates.

Narayan, Jagdish (Knoxville, TN); White, Clark W. (Oak Ridge, TN); Young, Rosa T. (Knoxville, TN)

1980-01-01T23:59:59.000Z

375

Exploring the parameter space of disc shaped silver nanoparticles for thin film silicon photovoltaics  

E-Print Network (OSTI)

We numerically simulate, using finite-difference time-domain, the optical properties of silver nano discs deposited on the front surface of silicon solar cells. We explore the effect of each of the parameters of such a system, in order to draw some general design rules for the subsequent fabrication of such structures.

Figeys, Bruno

2011-01-01T23:59:59.000Z

376

Recycling General Sessions  

Science Conference Proceedings (OSTI)

... and design based on recyclability; life-cycle analysis of materials; properties; and ... Al Recycling Batch Planning in a Constrained Secondary Material Market ... Mullites Bodies Produced From the Kaolin Residue Using Microwave Energy.

377

Diamond-silicon carbide composite and method  

DOE Patents (OSTI)

Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

Zhao, Yusheng (Los Alamos, NM)

2011-06-14T23:59:59.000Z

378

Photovoltaic Materials  

DOE Green Energy (OSTI)

As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

379

DMDI Institute General Information  

Science Conference Proceedings (OSTI)

... Page 12. Core Technical Areas Advanced Analysis Capitalize on advances in high-performance computing to develop models of material, ...

2013-07-11T23:59:59.000Z

380

Structural alloy with a protective coating containing silicon or silicon-oxide  

DOE Patents (OSTI)

This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

Natesan, K.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Toward accurate and large-scale silicon photonics  

E-Print Network (OSTI)

Silicon photonics, emerging from the interface of silicon technology and photonic technology, is expected to inherit the incredible integration ability of silicon technology that has boomed the microelectronic industry for ...

Sun, Jie, Ph.D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

382

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network (OSTI)

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

383

Investigation of polarization anisotropy in individual porous silicon nanoparticles  

Science Conference Proceedings (OSTI)

Polarization anisotropy is investigated in single porous silicon nanoparticles containing multiple chromophores. Two forms of nanoparticle samples are studied; low current density (LCD) and high current density (HCD). Photoluminescence measurements reveal ... Keywords: Anisotropy, Photoluminescence, Polarization, Porous silicon, Silicon nanocrystal

Daniel J. Gargas; Donald J. Sirbuly; Michael D. Mason; Paul J. Carson; Steven K. Buratto

2008-09-01T23:59:59.000Z

384

Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using inside diameter (ID) saws. First quarterly report  

SciTech Connect

An STC 16 inch automated ID slicing machine (Model SMA-4401) is being used for this effort. The saw has been modified to accept an STC Programmable Electric Feed System, STC Crystal Rotating System and an STC Dyna-Track Blade Monitoring and Control System. The saw and accessories will be used to slice 100 mm diameter single crystal silicon ingots while rotating them. The automated saw will automatically recover the wafers and load them into a cassette. The amount of material lost during slicing is being reduced by using smaller blades than ones normally used to slice 100 mm wafers. Some blades have been manufactured with cutting edge thickness as low as 0.20 mm. Initial slicing runs on 75 mm diameter silicon has been successful on blades in the 0.23 to 0.24 mm cutting edge thickness range. The thinner blades will be used to slice 100 mm silicon while rotating the boule.

Aharonyan, P.

1979-01-01T23:59:59.000Z

385

Engineering Metal Impurities in Multicrystalline Silicon Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

386

Silicon Nano-Crystal Waveguide (SNOW) Laser  

Silicon Nano-Crystal Waveguide (SNOW) Laser Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

387

Nanoscale Characterization of Polymer Precursor Derived Silicon ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale mechanical properties of silicon carbide derived ... Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix Composites.

388

Surface alloying of silicon into aluminum substrate.  

SciTech Connect

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

389

Method For Passivating Crystal Silicon Surfaces - Energy ...  

The photovoltaic market remains dominated by silicon wafer-based solar cells. Therefore, there is a need for improvements in the manufacturing ...

390

Silicon nitride having a high tensile strength  

Science Conference Proceedings (OSTI)

A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

1998-01-01T23:59:59.000Z

391

Enriched Silicon: Going for Four Nines  

Science Conference Proceedings (OSTI)

... Getting to the next order-of-magnitude improvement will take some time. ... a gas pressure for the silicon about four orders of magnitude higher than ...

2013-01-03T23:59:59.000Z

392

Semipermeable Membranes for Micromachined Silicon Surfaces ...  

Technology Marketing Summary Sandia National Laboratories has developed semipermeable silicon nitride membranes using an etch process to be co-manufactured on a ...

393

Material Challenges and Perspectives  

Science Conference Proceedings (OSTI)

General history and principals of Li-ion battery, characterization techniques and terminology of its operation will be discussed and explained. Current Li-ion battery applications and comparison to other energy storage and conversion systems will be outlined. Chemistry, material and design of currently commercialized Li-ion batteries will be discussed including various electrode materials for cathodes and anodes. The electrode material candidates and its physical and chemical properties including crystal structure, capacity, cycling stability, cost and safety. Also, current limitations of Li-ion batteries will be discussed.

Choi, Daiwon; Wang, Wei; Yang, Zhenguo

2011-12-14T23:59:59.000Z

394

Renzo Tomellini, EC Directorate General for Research and innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Critical Materials, ChairsAnimateurs: Jeff Skeer, DOE Office of Policy and International Affairs and Renzo Tomellini, EC Directorate General for Research and Innovation...

395

Office of the Assistant General Counsel for Civilian Nuclear Programs  

Energy.gov (U.S. Department of Energy (DOE))

The Office of the Assistant General Counsel for Civilian Nuclear Programs (GC-52) provides legal advice and support to the Department on issues involving nuclear materials, including:

396

Texas Construction General Permit (TXR1500000) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Texas Construction General Permit (TXR1500000) edit Details Activities (0) Areas (0)...

397

Development of large-area monolithically integrated silicon-film photovoltaic modules  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1992-07-01T23:59:59.000Z

398

Impurity-defect interaction in polycrystalline silicon for photovoltaic applications. The role of hydrogen  

E-Print Network (OSTI)

of the cell ? ii) Will the defects of the polycrystalline material hinder the photovoltaic properties..., leading also to a degradation of the efficiency of the photovoltaic cells ? iii) What would655 Impurity-defect interaction in polycrystalline silicon for photovoltaic applications. The role

Paris-Sud XI, Université de

399

Amorphous silicon research. Annual subcontract report, October 1, 1994--September 30, 1995  

DOE Green Energy (OSTI)

The major effort in this program is to develop cost-effective processes which satisfy efficiency, yield, and material usage criteria for mass production of amorphous silicon-based multijunction modules. New and improved processes were developed for the component cells and a more robust rear contact was developed for better long term stability.

Arya, R.R.; Bennett, M.; Bradley, D. [and others

1996-02-01T23:59:59.000Z

400

Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode  

SciTech Connect

A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

Gilbert, Marian (Flossmoor, IL); Kaun, Thomas D. (New Lenox, IL)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Integration of functional epitaxial oxides into silicon: from high-k application to nanostructures  

Science Conference Proceedings (OSTI)

We will present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. Additional oxygen supply during growth improves the dielectric properties significantly. Experimental results ... Keywords: Gadolinium oxide, Heterostructures, High-k material, Molecular beam epitaxy

H. J. Osten; M. Czernohorsky; R. Dargis; A. Laha; D. Khne; E. Bugiel; A. Fissel

2007-09-01T23:59:59.000Z

402

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

403

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

404

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

405

Training Materials  

Science Conference Proceedings (OSTI)

Training Materials. NIST Handbook 44 Self-Study Course. ... Chapter 3 Organization and Format of NIST Handbook 44 DOC. ...

2011-08-10T23:59:59.000Z

406

Development of Solar Grade (SoG) Silicon  

DOE Green Energy (OSTI)

The rapid growth of the photovoltaics (PV) industry is threatened by the ongoing shortage of suitable solar grade (SoG) silicon. Until 2004, the PV industry relied on the off spec polysilicon from the electronics industry for feedstock. The rapid growth of PV meant that the demand for SoG silicon predictably surpassed this supply. The long-term prospects for PV are very bright as costs have come down, and efficiencies and economies of scale make PV generated electricity ever more competitive with grid electricity. However, the scalability of the current process for producing poly silicon again threatens the future. A less costly, higher volume production technique is needed to supply the long-term growth of the PV industry, and to reduce costs of PV even further. This long-term need was the motivation behind this SBIR proposal. Upgrading metallurgical grade (MG) silicon would fulfill the need for a low-cost, large-scale production. Past attempts to upgrade MG silicon have foundered/failed/had trouble reducing the low segregation coefficient elements, B, P, and Al. Most other elements in MG silicon can be purified very efficiently by directional solidification. Thus, in the Phase I program, Crystal Systems proposed a variety of techniques to reduce B, P, and Al in MG silicon to produce a low cost commercial technique for upgrading MG silicon. Of the variety of techniques tried, vacuum refining and some slagging and additions turned out to be the most promising. These were pursued in the Phase II study. By vacuum refining, the P was reduced from 14 to 0.22 ppmw and the Al was reduced from 370 ppmw to 0.065 ppmw. This process was scaled to 40 kg scale charges, and the results were expressed in terms of half-life, or time to reduce the impurity concentration in half. Best half-lives were 2 hours, typical were 4 hours. Scaling factors were developed to allow prediction of these results to larger scale melts. The vacuum refining required the development of new crucibles, as well as liners and coatings to allow the vacuum to be achieved. These developments also hold the promise of lower cost ingot growth, because several of these developments led to a reusable crucible. Liners and coatings were tested on 37 runs, under a variety of conditions. Although many of these did not fulfill the requirements of the program, several were very successful, particularly in allowing the crucible to be reused several times. The most interesting result was with slags and additives used to reduce P and Al. Although slags have been much studied with little success in removing P and B effectively, certain modeling suggested a particular type of slagging might be effective. This was tried, and found to be highly effective for P and surprisingly effective for B, as well. The best results indicate that > 99% of the P was removed, and > 75% of the B was removed by a slagging treatment. An operability issue involving separation of the slag and silicon was the final technical problem preventing the full-scale use of this technique, and there has been progress on this front. A slagging/additive technique is highly promising, because the rates of equilibration are very high, and this is a rapid technique that scales very well to large volumes with little increase in time. Materials of containment and slag/metal separation are issues that are continuing to be developed.

Joyce, David B; Schmid, Frederick

2008-01-18T23:59:59.000Z

407

Material matting  

Science Conference Proceedings (OSTI)

Despite the widespread use of measured real-world materials, intuitive tools for editing measured reflectance datasets are still lacking. We present a solution inspired by natural image matting and texture synthesis to the material matting problem, ... Keywords: appearance models, material separation, matting, spatially-varying BRDFs, texture synthesis

Daniel Lepage; Jason Lawrence

2011-12-01T23:59:59.000Z

408

Materializing energy  

Science Conference Proceedings (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

409

Fact Sheet: Award-Winning Silicon Carbide Power Electronics ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award-Winning Silicon Carbide Power Electronics (October 2012) Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012) Operating at high temperatures and with...

410

Composite Silicon Carbon Nano-fiber Anode for High Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, Composite Silicon Carbon Nano-fiber Anode for High .... of Super P Carbon Black and Silicon Carbide in Si-based Lithium Ion Batteries.

411

Light generation, size constraints, and dynamic cavities in silicon photonics.  

E-Print Network (OSTI)

??Silicon photonics is a rapidly-developing field at the confluence of silicon microelectronicsand fiber optics. In this talk we explore several interesting systems of light in (more)

Shainline, Jeffrey M

2011-01-01T23:59:59.000Z

412

Potential of Silicon Solar Cells from Metallurgical Process Route  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Potential of Silicon Solar Cells from...

413

SunShot Initiative: Crystalline Silicon Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

silicon PV cells are the most common solar cells used in commercially available solar panels, representing 87% of world PV cell market sales in 2011. Crystalline silicon...

414

Techniques of Nanoscale Silicon Texturing of Solar Cells ...  

Patent 6,329,296: Metal catalyst technique for texturing silicon solar cells Textured silicon solar cells and techniques for their manufacture ...

415

The QSE-Reduced Nuclear Reaction Network for Silicon Burning.  

E-Print Network (OSTI)

??Iron and neighboring nuclei are formed by silicon burning in massive stars before core collapse and during supernova outbursts. Complete and incomplete silicon burning is (more)

Parete-Koon, Suzanne T

2008-01-01T23:59:59.000Z

416

Stress and Fracture of Silicon Solar Cells as Revealed by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress and Fracture of Silicon Solar Cells as Revealed by ... thinner and thinner silicon in the solar photovoltaic (PV) technologies due to the...

417

Editorial: Photovoltaic Materials and Devices  

Science Conference Proceedings (OSTI)

As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

Sopori, B.; Tan, T.; Rupnowski, P.

2012-01-01T23:59:59.000Z

418

DOE General Competencies  

Energy.gov (U.S. Department of Energy (DOE))

The DOE General Competencies are the personal and professional attributes that are critical to successful performance. A competency model is a collection of competencies that together define...

419

Photon Generalized Parton Distributions  

E-Print Network (OSTI)

We present a calculation of the generalized parton distributions of the photon using overlaps of photon light-front wave functions.

Asmita Mukherjee; Sreeraj Nair

2011-09-30T23:59:59.000Z

420

Photon Generalized Parton Distributions  

E-Print Network (OSTI)

We present a calculation of the generalized parton distributions of the photon using overlaps of photon light-front wave functions.

Mukherjee, Asmita

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

1998 EMC: General Information  

Science Conference Proceedings (OSTI)

For information regarding the DRC, please contact Emmanuel Crabb, DRC General Meeting Chair, IBM SRDC, MS-E40, Building 630, 1580 Route 52,...

422

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution...

423

High-efficiency solar cells using HEM silicon  

DOE Green Energy (OSTI)

Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

Khattak, C.P.; Schmid, F. [Crystal Systems, Inc., Salem, MA (United States); Schubert, W.K. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

424

PROPERTIES OF DEFECTS AND IMPLANTS IN Mg+ IMPLANTED SILICON CARBIDE  

SciTech Connect

As a candidate material for fusion reactor designs, silicon carbide (SiC) under high-energy neutron irradiation undergoes atomic displacement damage and transmutation reactions that create magnesium as one of the major metallic products. The presence of Mg and lattice disorder in SiC is expected to affect structural stability and degrade thermo-mechanical properties that could limit SiC lifetime for service. We have initiated a combined experimental and computational study that uses Mg+ ion implantation and multiscale modeling to investigate the structural and chemical effects in Mg implanted SiC and explore possible property degradation mechanisms.

Jiang, Weilin; Zhu, Zihua; Varga, Tamas; Bowden, Mark E.; Manandhar, Sandeep; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

2013-09-25T23:59:59.000Z

425

III-V Growth on Silicon Toward a Multijunction Cell  

DOE Green Energy (OSTI)

A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

2005-11-01T23:59:59.000Z

426

Assembly and magnetic properties of nickel nanoparticles on silicon nanowires  

SciTech Connect

The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

Picraux, Samuel T [Los Alamos National Laboratory; Manandhar, Pradeep [Los Alamos National Laboratory; Nazaretski, E [Los Alamos National Laboratory; Thompson, J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

427

Advanced Measurements of Silicon Carbide Ceramic Matrix Composites  

Science Conference Proceedings (OSTI)

Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The Advanced Measurements work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of in-service degradation. Examples include composite density, distribution of porosity, fiber-matrix bond character, uniformity of weave, physical damage, and joint quality at interface bonds.

Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

2012-08-01T23:59:59.000Z

428

Liquid Silane Routes to Electronic Materials  

DOE Green Energy (OSTI)

New chemistries based upon liquid cyclohexasilane (Si{sub 6}H{sub 12} or CHS) have been used as precursors to silicon-containing electronic materials. Spin-coating of CHS-based inks with subsequent UV light and/or thermal treatment yielded amorphous silicon (a-Si:H) films. While initial ink chemistries gave a-Si:H with high resistivity (i.e., > 10{sup 6} {Omega}.cm), several doping strategies are under development to address this limitation. In this contribution, the current status of solution processed rectifying diodes and field effect transistors fabricated from CHS-based inks will be presented. Additionally, a new printing approach termed collimated aerosol beam direct write (CAB-DW{sup TM}) was developed that allows the deposition of printed Ag lines 5 {mu}m in width. A status update will be given where CHS-based inks have been used to CAB-DW silicon-based features with linewidths <10 {mu}m. Assuming silicon thin film materials with good electrical properties will be developed, there may be significant cost advantages associated with the ability to controllably deposit the semiconductor in a metered fashion.

Douglas L. Schulz; Xuliang Dai; Kendric J. Nelson; Konstantin Pokhodnya; Justin M. Hoey; Iskander S. Akhatov; Orven F. Swenson; Jeremiah Smith; John Lovaasen; Matt Robinson; Scott Payne; Philip R. Boudjouk

2008-12-04T23:59:59.000Z

429

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

430

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

431

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

432

Physical understanding and modeling of chemical mechanical planarization in dielectric materials  

E-Print Network (OSTI)

Chemical mechanical planarization (CMP) has become the enabling planarization technique of choice for current and emerging silicon integrated circuit (IC) fabrication processes. This work studies CMP in dielectric materials ...

Xie, Xiaolin, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

433

Designing a mechanism to cleave silicon wafers  

E-Print Network (OSTI)

A device was designed and manufactured to precisely cleave silicon wafers. Two vacuum chucks were designed to support a 150 mm diameter silicon wafer and cleave it by providing a pure moment at a pre-etched v-notch while ...

Figueroa, Victor, 1982-

2004-01-01T23:59:59.000Z

434

The CDF Silicon Vertex Detector  

Science Conference Proceedings (OSTI)

A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

1993-09-01T23:59:59.000Z

435

Photovoltaic Cz Silicon Module Improvements  

DOE Green Energy (OSTI)

Work focused on reducing the cost per watt of Cz silicon photovoltaic modules under Phase II of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described in this report. New module designs were deployed in this phase of the contract, improvements in yield of over 10% were realized, and further implementation of Statistical Process Control was achieved during this phase. Module configurations representing a 12% cost reduction per watt were implemented in small scale production under Phase II of this contract. Yield improvements are described in detail, yield sensitivity to wafer thickness is quantified, and the deployment of SPC in critical process steps is reported here.

Jester, T. L.

1998-09-01T23:59:59.000Z

436

general_atomics.cdr  

Office of Legacy Management (LM)

2000. DOE-owned legacy irradiated fuel materials from the site were shipped to the Idaho National Engineering and Environmental Laboratory at Idaho Falls, Idaho, for interim...

437

1999 EMC: General Information  

Science Conference Proceedings (OSTI)

Jul 2, 1999... in the Commercial Application of High-Temperature Superconductors" plus an optional subscription to Journal of Electronic Materials, a joint...

438

Hybrid sol-gel optical materials  

DOE Patents (OSTI)

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

439

Hybrid sol-gel optical materials  

DOE Patents (OSTI)

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. the linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling. 3 figs.

Zeigler, J.M.

1990-02-13T23:59:59.000Z

440

Hybrid sol-gel optical materials  

DOE Patents (OSTI)

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, J.M.

1993-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hybrid sol-gel optical materials  

DOE Patents (OSTI)

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

442

NUFinancials General Ledger  

E-Print Network (OSTI)

NUFinancials General Ledger Reference TroubleshootingGuide Last Updated 11/24/2012 mac © 2010 Northwestern University FMS711 Corrections, Sales, and Transfers Page 1 of 5 Troubleshooting Actuals Journals;NUFinancials General Ledger Reference TroubleshootingGuide Last Updated 11/24/2012 mac © 2010 Northwestern

Shull, Kenneth R.

443

Generalized Region Connection Calculus  

Science Conference Proceedings (OSTI)

The Region Connection Calculus (RCC) is one of the most widely referenced system of high-level (qualitative) spatial reasoning. RCC assumes a continuous representation of space. This contrasts sharply with the fact that spatial information obtained from ... Keywords: (Generalized) Boolean connection algebra, (Generalized) Region Connection Calculus, Continuous space, Discrete space, Mereology, Mereotopology, Qualitative spatial reasoning

Sanjiang Li; Mingsheng Ying

2004-12-01T23:59:59.000Z

444

OFFICE OF INSPECTOR GENERAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APP-005 APP-005 Planning for and Measuring Office of Inspector General Results FY 2002 Annual Performance Report and FY 2003 Annual Performance Plan Office of Inspector General U.S. Department of Energy Inspector General's Message We are pleased to present the Office of Inspector General's (OIG) consolidated Fiscal Year 2002 Annual Performance Report and Fiscal Year 2003 Annual Performance Plan. This document evaluates our actual Fiscal Year (FY) 2002 performance and establishes the performance goals and strategies we will pursue in FY 2003 to fulfill our mission. As mandated by the Inspector General Act, the OIG promotes the effective, efficient, and economical operation of the Department of Energy's programs and operations, including the National Nuclear Security Administration (NNSA).

445

Silicon heat pipes for cooling electronics  

SciTech Connect

The increasing power density of integrated circuits (ICs) is creating the need for improvements in systems for transferring heat away from the chip. In earlier investigations, diamond films were used to conduct heat from ICs and spread the energy across a heat sink. The authors` investigation has indicated that a 635 {mu}m (25 mil) thick silicon substrate with embedded heat pipes could perform this task better than a diamond film. From their study, it appears that the development of a heat-pipe heat-spreading system is both technically and commercially feasible. The major challenge for this heat-spreading system is to develop an effective wick structure to transport liquid to the heated area beneath the chip. This paper discusses the crucial design parameters for this heat-pipe system, such as the required wick properties, the material compatibility issues, and the thermal characteristics of the system. The paper also provides results from some recent experimental activities at Sandia to develop these heat-pipe heat spreader systems.

Adkins, D.R.; Shen, D.S.; Palmer, D.W.; Tuck, M.R.

1994-12-31T23:59:59.000Z

446

Micro benchtop optics by bulk silicon micromachining  

DOE Patents (OSTI)

Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

447

Ultralow-Power Silicon Microphotonic Communications Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultralow-Power Silicon Ultralow-Power Silicon Microphotonic Communications Platform 1 R&D 100 Entry Ultralow-Power Silicon Microphotonic Communications Platform 2 R&D 100 Entry Submitting Organization Sandia National Laboratories P. O. Box 5800 Albuquerque New Mexico 87185-1082 USA Michael R. Watts Phone: (505) 284-9616 Fax: (505) 284-7690 mwatts@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________ Michael R. Watts Joint Entry Not applicable Product Name Ultralow-Power Silicon Microphotonic Communications Platform Brief Description We have developed an ultralow-power, high-bandwidth silicon microphotonic communications platform that addresses the bandwidth and power consumption

448

Compensated amorphous-silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

449

Solar silicon definition. Progress report, 15 October 1974--15 September 1975  

DOE Green Energy (OSTI)

This project was conducted to determine the optimum silicon quality for cost-effective solar cells suitable for large-scale terrestrial utilization. The effects of selected impurities upon the solar cell performance were investigated by preparation and characterization of a matrix of silicon samples. Evaluation of the I-V curves to obtain the slope of the forward current of simple p-n junctions provided rapid material evaluation. Experimental techniques were demonstrated for achieving reliable data from diodes and solar cells. The primary electrical parameters measured were I-V characteristics. (auth)

Wakefield, G.F.; Brown, G.A.; Chu, T.L.; Harrap, V.

1975-09-01T23:59:59.000Z

450

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

451

Center for Nanophase Materials Sciences (CNMS) - General Characterizat...  

NLE Websites -- All DOE Office Websites (Extended Search)

neutron scattering facilities that are available at ORNL's High-Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). Beamlines of particular relevance to CNMS...

452

Sampling artifacts from conductive silicone tubing  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling artifacts from conductive silicone tubing Sampling artifacts from conductive silicone tubing Title Sampling artifacts from conductive silicone tubing Publication Type Journal Article Year of Publication 2009 Authors Timko, Michael T., Zhenhong Yu, Jesse Kroll, John T. Jayne, Douglas R. Worsnop, Richard C. Miake-Lye, Timothy B. Onasch, David Liscinsky, Thomas W. Kirchstetter, Hugo Destaillats, Amara L. Holder, Jared D. Smith, and Kevin R. Wilson Journal Aerosol Science and Technology Volume 43 Issue 9 Pagination 855-865 Date Published 06/03/2009 Abstract We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: (1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and (2) silicone tubing emits organic contaminants containing siloxane that are adsorbed onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and the tubing should, therefore, be used with caution. Contamination associated with the use of silicone tubing was observed at ambient temperature and, in some cases, was enhanced by mild heating (<70°C) or pre-exposure to a solvent (methanol). Further evaluation is warranted to quantify systematically how the contamination responds to variations in system temperature, physicochemical particle properties, exposure to solvent, sample contact time, tubing age, and sample flow rates.

453

Thin films of silicon on low-cost substrates. Quarterly report No. 5, January 1-March 31, 1978  

DOE Green Energy (OSTI)

Parametric studies of silicon deposition were conducted employing the horizontal Energy Beam system. Chemical equilibrium calculations pertaining to the Energy Beam deposition conditions were performed. These calculations indicated that the reaction efficiency for hydrogen reduction of silicon tetrachloride is over 95% for any chlorosilane concentration at the Energy Beam temperature of 4300/sup 0/K. Because lower temperatures exist near the substrate surfaces, the kinetics of establishing the low temperature equilibrium will determine obtainable material efficiencies. From deposition experiments, the material efficiency was found to be strongly dependent on input chlorosilane concentrations. The highest material efficiency and growth rate obtained concurrently to date were 70% and 10 ..mu..m/min using the horizontal Energy Beam system. The Thermal Expansion Shear Separation (TESS) process for producing self supporting silicon films was further investigated.

Sarma, K.R.; Gurtler, R.W.; Baghdadi, A.; Cota, M.

1978-01-01T23:59:59.000Z

454

Minor Materials  

Science Conference Proceedings (OSTI)

Table 1   Materials used in glass manufacture...Table 1 Materials used in glass manufacture Material Purpose Antimony oxide (Sb 2 O 3 ) Decolorizing and fining agent Aplite (K, Na, Ca, Mg, alumina silicate) Source of alumina Aragonite (CaCO 3 ) Source of calcium oxide Arsenic oxide (As 2 O 3 ) Fining and decolorizing agent Barite/barytes (BaSO 4 )...

455

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

456

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

457

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

458

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

459

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

460

Micromachined silicon seismic accelerometer development  

Science Conference Proceedings (OSTI)

Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Montague, S. [and others

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

462

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Materials Negotiable Licensing Microseismic Tracer Particles for Hydraulic Fracturing Negotiable Licensing A Photo-Stimulated Low Electron Temperature High Current...

463

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and...

464

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

465

Materials Studio  

Science Conference Proceedings (OSTI)

Jan 14, 2008 ... G. Fitzgerald; G. Goldbeck-Wood; P. Kung; M. Petersen; L. Subramanian; J. Wescott, " Materials Modeling from Quantum Mechanics to The...

466

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and...

467

Waste Material Management: Energy and materials for industry  

DOE Green Energy (OSTI)

This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

Not Available

1993-05-01T23:59:59.000Z

468

DEFINING THE CORE MATERIALS CURRICULUM: II: Looking ...  

Science Conference Proceedings (OSTI)

TITLE TBA: James C. Williams, General Electric Aircraft Engines, 1201 Edison Drive, Cincinnati, OH 45216. 2:30 pm. THE STRUCTURE OF MATERIALS...

469

Radiation Machines and Radioactive Materials (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

470

Division Personnel - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

  1. Organizer of the "Advances in Focused Ion Beam Microscopy" workshop at the Argonne Users Meeting, 2011.
  2. Session chair for Materials Science General Physics...

471

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

472

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

473

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

474

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

475

Accuracy of truncated Leiden and Berlin virial expansions for pure gases and sealing joints between silicon carbide and stainless steel  

E-Print Network (OSTI)

Pure gases such as methane, carbon dioxide and steam were used to make comparisons between Leiden and Berlin virial expansions for the calculation of the compressibility factor, fugacity coefficient and enthalpy residual. Results show that the Leiden expansion is better than the Berlin expansion with truncation after the second virial coefficient for both expansions, and also with truncation after the third virial coefficient for both expansions. Also, joining techniques to join silicon carbide to steel were studied. Brazing is the technique more used, and several active filler metals such as Ag-Cu-In-Ti, Ag-Cu-Ti, plus carbon fibers Ag-Cu-Hf and Niobium were used. This review shows that the strength of the joint is affected by the amount of active filler metal in the alloy, heating element and atmosphere, composition and surface of SiC, thickness of the joint, and time. In general, brazing temperature is limited by the melting point of the filler metals, which is generally below 1000 ?C. An alternative to overcome this problem in brazing is using a functionally graded material (FGM) that is formed with the native elements. This FGM has one end of almost 100% stainless steel, which is joined using very well known processes of joining metals. The other end of the FGM, which is almost 100% SiC, is joined using a reaction-forming method that produces an interlayer of SiC plus Si and supports temperatures as high as 1350 ?C.

Santana Rodriguez, Gabriel Enrique

2003-01-01T23:59:59.000Z

476

Heat exchanger-ingot casting/slicing process. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Final report, Phase I, November 20, 1975--November 20, 1977  

DOE Green Energy (OSTI)

The proof of concept for silicon casting by the Heat Exchanger Method has been established. One of the major hurdles of ingot cracking has been eliminated with the development of graded crucibles. Such crucibles are compatible with the casting process in that the integrity of the container is maintained at high temperature; however, during the cool-down cycle the crucible fails, thereby leaving a crack-free boule. The controlled growth, heat-flow and cool-down has yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material have yielded conversion efficiency of over 9% (AMI). Representative characterizations of silicon grown has demonstrated a dislocation density of less than 100/cm/sup 2/ and a minority carrier diffusion length of 31 ..mu..m. Excellent surface quality, i.e., surface smoothness and 3 to 5 ..mu..m surface damage, was achieved by multiple wire slicing with fixed diamond abrasive. To achieve this, the silicon workpiece was non-synchronously rocked to produce a radial cut profile and minimize wire contact length. Wire wander was reduced an order of magnitude over the original results by supporting and guiding the wires with grooved rollers. Commercially available impregnated wires that were used failed due to diamond pull-out. Plating after impregnation or electroplating diamonds directly on the core minimized diamond pull-out and corresponding loss in cutting effectiveness. Tungsten wire was the best core material tested because of its high strength, high Young's modulus, and resistance to hydrogen embrittlement. A lighter and longer blade carriage can be used for slicing with wire. This will allow the blade carriage to be reciprocated more rapidly to increase the surface speed. A projected add-on cost calculation shows that these methods will yield silicon for solar cell applications within ERDA/JPL cost goals.

Schmid, F; Khattak, C P

1977-12-01T23:59:59.000Z

477

Fourth workshop on the role of point defects/defect complexes in silicon device processing. Summary report  

DOE Green Energy (OSTI)

The 4th Point Defect Workshop was aimed at reviewing recent new understanding of the defect engineering techniques that can improve the performance of solar cells fabricated on low-cost silicon substrates. The theme of the workshop was to identify approaches that can lead to 18% commercial silicon solar cells in the near future. These approaches also define the research tasks for the forthcoming new DOE/NREL silicon