Powered by Deep Web Technologies
Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GSMSolar formerly Shanghai General Silicon Material Co Ltd | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGA SNC

2

Silicon Materials and Devices (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

3

Silicon Materials and Devices (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Silicon Materials and Devices that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

4

Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments  

DOE Patents [OSTI]

While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

Brun, Milivoj Konstantin (Ballston Lake, NY); Luthra, Krishan Lal (Niskayuna, NY)

2003-01-01T23:59:59.000Z

5

Sputtered silicon oxynitride for microphotonics : a materials study  

E-Print Network [OSTI]

Silicon oxynitride (SiON) is an ideal waveguide material because the SiON materials system provides substantial flexibility in composition and refractive index. SiON can be varied in index from that of silicon dioxide ...

Sandland, Jessica Gene, 1977-

2005-01-01T23:59:59.000Z

6

Supporting Information: Holey Silicon as efficient thermoelectric material  

E-Print Network [OSTI]

Supporting Information: Holey Silicon as efficient thermoelectric material Jinyao Tang1, 3, 3 1 Department of Chemistry, 2 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA. 3 Materials Sciences Division, Lawrence Berkeley National

Yang, Peidong

7

Solar cell structure incorporating a novel single crystal silicon material  

DOE Patents [OSTI]

A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1983-01-01T23:59:59.000Z

8

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect (OSTI)

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

9

Method for forming fibrous silicon carbide insulating material  

DOE Patents [OSTI]

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, G.C.

1983-10-12T23:59:59.000Z

10

Method for forming fibrous silicon carbide insulating material  

DOE Patents [OSTI]

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, George C. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

11

Microscopic Investigations on various Silicon Materials  

E-Print Network [OSTI]

to be responsible for the radiation hardness of oxygen enriched silicon. The generation of the acceptor V 2 O interstitials and vacancies form defects with the impurities oxygen and carbon. The radiation induced defects are the shallow doping concentration phosphorous and the concentrations of the impurities oxygen and carbon

12

ESP – Data from Restarted Life Tests of Various Silicon Materials  

SciTech Connect (OSTI)

Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

Schneider, Jim

2010-10-06T23:59:59.000Z

13

Materials Chemistry and Performance of Silicone-Based Replicating Compounds.  

SciTech Connect (OSTI)

Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

2014-11-01T23:59:59.000Z

14

Silicon nitride/silicon carbide composite densified materials prepared using composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

1997-07-01T23:59:59.000Z

15

Published in 'Silicon Carbide and Related Materials -1999', Year: 2000, pp: 273-276 Periodical: Materials Science Forum Vols. 338-342  

E-Print Network [OSTI]

Published in 'Silicon Carbide and Related Materials - 1999', Year: 2000, pp: 273-276 Periodical@scientific.net © 2000 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide and Related Materials - 1999', Year: 2000

Steckl, Andrew J.

16

A Comparison of Mechanical Properties of Three MEMS Materials -Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral  

E-Print Network [OSTI]

A Comparison of Mechanical Properties of Three MEMS Materials - Silicon Carbide investigated the mechanical properties of three new materials for MEMS/NEMS devices: silicon carbide (SiC) from mechanical, electrical, and tribological properties such as silicon carbide (SiC), ultrananocrystalline

Espinosa, Horacio D.

17

High temperature investigations of crystalline silicon solar cell materials  

E-Print Network [OSTI]

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01T23:59:59.000Z

18

Use of silicon oxynitride as a sacrificial material for microelectromechanical devices  

DOE Patents [OSTI]

The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.

Habermehl, Scott D. (Corrales, NM); Sniegowski, Jeffry J. (Edgewood, NM)

2001-01-01T23:59:59.000Z

19

Process for preparing a densified beta-phase silicon nitride material having at least one densification aid, and the material resulting therefrom  

SciTech Connect (OSTI)

A process is described for preparing an alpha-phase silicon nitride material and thereafter sintering to a densified beta-phase silicon nitride material, comprising: (a) comminuting a slurry including a mixture of (i) silicon-containing powder, (ii) water, and (iii) at least one densification aid to aid in later densifying of the silicon nitride material, said comminuting being performed to form fresh, non-oxidized surfaces on the silicon powder and to allow substantial chemical reaction between the silicon and the water, said comminuting being performed to form fresh, non-oxidized surfaces on the silicon powder and to allow substantial chemical reaction between the silicon and the water, yielding a mass; (b) nitriding the mass by exposure to a sufficient amount of a nitriding gas including at least nitrogen at a sufficient temperature for a sufficient length of time to form a mass of substantially alpha-phase silicon nitride; and (c) sintering the resultant silicon nitride mass at a sintering holding temperature of from about 1,450 C to about 2,100 C for a sufficient length of time to convert the silicon nitride from a predominantly alpha-phase material to a predominantly densified beta phase silicon nitride material exhibiting a decrease in bulk volume of the silicon nitride due to the densification.

Edler, J.P.; Lisowsky, B.

1993-05-25T23:59:59.000Z

20

Amorphous Silicon as Semiconductor Material for High Resolution LAPS  

E-Print Network [OSTI]

-08 3.E -08 0 200 400 600 800 displacem ent/µµµµm current/A 1000 2000 3000 4000 1000 2000 3000 4000-substrate Amorphous silicon -4 -2 0 2 4 0,2 0,4 0,6 0,8 1,0 photocurrenta.u. gate voltage/V 600µm x 600µm area scan

Moritz, Werner

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829-832 Periodical: Materials Science Forum Vols. 264-268  

E-Print Network [OSTI]

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

Steckl, Andrew J.

22

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149-1152 Periodical: Materials Science Forum Vols. 264-268  

E-Print Network [OSTI]

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

Steckl, Andrew J.

23

Accepted to Diamond and Related Materials A kinetic model of diamond nucleation and silicon carbide interlayer formation during  

E-Print Network [OSTI]

Accepted to Diamond and Related Materials A kinetic model of diamond nucleation and silicon carbide Engineering, Colorado State University, Fort Collins, CO, USA Abstract The presence of thin silicon carbide diffusion of carbon atoms into the silicon carbide layer, and the morphology and orientation of the diamond

Dandy, David

24

Materials Science and Engineering A245 (1998) 293299 The wettability of silicon carbide by AuSi alloys  

E-Print Network [OSTI]

Materials Science and Engineering A245 (1998) 293­299 The wettability of silicon carbide by Au. Keywords: Wettability; Contact angle; Liquid metals; Silicon carbide 1. Introduction The interface properties of silicon carbide­liquid metals (wetting, adhesion, contact interaction) are im- portant

Grigoriev, Alexei

25

ANALYTICAL NEUTRONIC STUDIES CORRELATING FAST NEUTRON FLUENCE TO MATERIAL DAMAGE IN CARBON, SILICON, AND SILICON CARBIDE  

SciTech Connect (OSTI)

This study evaluates how fast neutron fluence >0.1 MeV correlates to material damage (i.e., the total fluence spectrum folded with the respective material’s displacements-per- atom [dpa] damage response function) for the specific material fluence spectra encountered in Next Generation Nuclear Plant (NGNP) service and the irradiation tests conducted in material test reactors (MTRs) for the fuel materials addressed in the white paper. It also reports how the evaluated correlations of >0.1 MeV fluence to material damage vary between the different spectral conditions encountered in material service versus testing.

Jim Sterbentz

2011-06-01T23:59:59.000Z

26

ESP - Data From Restarted Life Tests of Various Silicone Materials - 2009  

SciTech Connect (OSTI)

Enhanced Surveillance Project (ESP) funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until ESP funding allowed the restart in FY97. This report will provide data on materials used on various programs and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

J. W. Schneider

2010-02-24T23:59:59.000Z

27

ESP – Data from Restarted Life Tests of Various Silicone Materials - 2011  

SciTech Connect (OSTI)

Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. This report will provide data on materials used in production and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

Jim Schneider

2011-12-31T23:59:59.000Z

28

Method of making silicon on insalator material using oxygen implantation  

DOE Patents [OSTI]

The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.

Hite, Larry R. (Dallas, TX); Houston, Ted (Richardson, TX); Matloubian, Mishel (Dallas, TX)

1989-01-01T23:59:59.000Z

29

17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

Sopori, B. L.

2007-08-01T23:59:59.000Z

30

Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same  

DOE Patents [OSTI]

Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

2013-01-22T23:59:59.000Z

31

Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes; Summary Discussion Sessions  

SciTech Connect (OSTI)

This report is a summary of the panel discussions included with the Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme of the workshop was ''Supporting the Transition to World Class Manufacturing.'' This workshop provided a forum for an informal exchange of information between researchers in the photovoltaic and nonphotovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helped establish a knowledge base that can be used for improving device-fabrication processes to enhance solar-cell performance and reduce cell costs. It also provided an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research.

Sopori, B.; Swanson, D.; Sinton, R.; Stavola, M.; Tan, T.

1998-12-08T23:59:59.000Z

32

Process feasibility study in support of silicon material Task I. Final report, October 1, 1975-February 6, 1981  

SciTech Connect (OSTI)

The Low-Cost Solar Array (LSA) Project is directed toward effective cost reduction in the production of silicon for solar cells. Results are presented for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells. Major physical, thermodynamic and transport property data are reported for the following silicon source and processing chemical materials: silane, silicon tetrachloride, trichlorosilane, dichlorosilane, silicon tetrafluoride, and silicon. The property data are reported for critical temperature, critical pressure, critical volume, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analyses involving the preliminary process design of a plant (1000 MT/yr capacity) to produce silicon via the technology under consideration were accomplished for the following processes: UCC silane process for silicon, BCL process for silicon, conventional polysilicon process (Siemens technology), SiI/sub 4/ decomposition process, and DCS process (dichlorosilane).Major activities in chemical engineering analyses include base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provides detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process. Using detailed data from the process design package, economic analyses for a 1000 MT/yr silicon plant were accomplished. Primary results from the economic analyses included plant capital investment and product cost. Results are presented and discussed. (WHK)

Yaws, C.L.; Li, K.Y.; Hopper, J.R.; Fang, C.S.; Hansen, K.C.

1981-02-06T23:59:59.000Z

33

Generalized Hooke's law for isotropic second gradient materials  

E-Print Network [OSTI]

In the spirit of Germain the most general objective stored elastic energy for a second gradient material is deduced using a literature result of Fortun\\'e & Vall\\'ee. Linear isotropic constitutive relations for stress and hyperstress in terms of strain and strain-gradient are then obtained proving that these materials are characterized by seven elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski. Using a suitable decomposition of the strain-gradient, it is found a necessary and sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of the stored elastic energy. The problem of warping in linear torsion of a prismatic second gradient cylinder is formulated, thus obtaining a possible measurement procedure for one of the second gradient elastic moduli.

F. dell'Isola; G. Sciarra; S. Vidoli

2010-08-17T23:59:59.000Z

34

Process Research of Polycrystalline Silicon Material (PROPSM). Quarterly report No. 1, November 8-December 31, 1983  

SciTech Connect (OSTI)

Recent reported results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Most of the studies have been performed on very small grain or short minority-carrier diffusion length silicon. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is 20 to 40 mV less. The goal of this program is to minimize the variations in open-circuit voltage and fill-factor that are caused by structural defects by passivating these defects using a hydrogenation process.

Culik, J.S.

1984-01-01T23:59:59.000Z

35

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

SciTech Connect (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

36

Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations  

E-Print Network [OSTI]

Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

Delonca, M; Gil Costa, M; Vacca, A

2014-01-01T23:59:59.000Z

37

General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide  

E-Print Network [OSTI]

Fields for Silicon Carbide Andres Jaramillo-Botero,* Saber Naserifar, and William A. Goddard, III: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide specific force field parameters for tripod metal templates, tripodMO(CO)3, using the root mean square

Goddard III, William A.

38

Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions  

SciTech Connect (OSTI)

This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ``R and D Challenges and Opportunities in Si Photovoltaics.'' This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring.

Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

1999-11-23T23:59:59.000Z

39

Tenth Workshop on Crystalline Silicon Solar Cell Materials and Processes: A Summary of Discussion Sessions  

SciTech Connect (OSTI)

The 10th Workshop on Silicon Solar Cell Materials and Processes was held in Copper Mountain, Colorado, on August 13-16, 2000. The workshop was attended by 85 scientists and engineers from 15 international photovoltaic (PV) companies and 24 research institutions. Review and poster presentations were augmented by discussion sessions to address the recent progress and critical issues in meeting the goals for Si in the PV Industry Roadmap. The theme of the workshop was Si Photovoltaics: 10 Years of Progress and Opportunities for the Future. Two special sessions were held: Advanced Metallization and Interconnections - covering recent advances in solar cell metallization, printed contacts and interconnections, and addressing new metallization schemes for low-cost cell interconnections; and Characterization Methods - addressing the growing need for process monitoring techniques in the PV industry. The following major issues emerged from the discussion sessions: (1) Mechanical breakage in the P V industry involves a large fraction, about 5%-10%, of the wafers. (2) The current use of Al screen-printed back-contacts appears to be incompatible with the PV Industry Roadmap requirements. (3) The PV manufacturers who use hydrogen passivation should incorporate the plasma-enhanced chemical vapor deposited (PECVD) nitride for antireflection coating and hydrogenation. (4) There is an imminent need to dissolve metallic precipitates to minimize the electrical shunt problem caused by the ''bad'' regions in wafers. (5) Industry needs equipment for automated, in-line monitoring and testing. There are simply not many tools available to industry. (6) In the Wrap-Up Session of the workshop, there was consensus to create four industry/university teams that would address critical research topics in crystalline silicon. (7) The workshop attendees unanimously agreed that the workshop has served well the PV community by promoting the fundamental understanding of industrial processes, forecasting critical issues and research areas, and promoting a climate of openness to facilitate growth of the industry.

Tan, T.; Swanson, D.; Sinton, R.; Sopori, B.

2001-01-22T23:59:59.000Z

40

Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results  

SciTech Connect (OSTI)

DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMA shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

Ortiz-Acosta, Denisse [Los Alamos National Laboratory

2012-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry,  

E-Print Network [OSTI]

Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry, Laboratory Practice (Precourse) Physical Chemistry (4 CP) Introductory Engineering (5 CP) Organic & Inorganic Materials Chemistry (4 CP) Energy Science and Technology I (5 CP) Surfaces/Interfaces/ Heterogen

Pfeifer, Holger

42

An assessment of silicon carbide as a cladding material for light water reactors  

E-Print Network [OSTI]

An investigation into the properties and performance of a novel silicon carbide-based fuel rod cladding under PWR conditions was conducted. The novel design is a triplex, with the inner and outermost layers consisting of ...

Carpenter, David Michael

2011-01-01T23:59:59.000Z

43

14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions  

SciTech Connect (OSTI)

The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

2004-10-01T23:59:59.000Z

44

Center for Nanophase Materials Sciences (CNMS) - General Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and User Executive Committee MEETINGFacilities GENERAL

45

Process research on Semix Silicon Material (PROSSM). Quarterly report No. 5, December 1, 1981-February 28, 1982  

SciTech Connect (OSTI)

Emphasis was shifted from the development of a cost-effective process sequence to research designed to understand the mechanisms of photovoltaic conversion in semicrystalline silicon. With this change has gone a change of title from Module Experimental Process System Development Unit (MEPSDU) to Process Research of Semix Silicon Material (PROSSM). Efforts are now underway to prepare a revised program plan with emphasis on determining the mechanisms limiting voltage and current collection in the semicrystalline silicon. The efforts reported concern work done before the change in emphasis and so the continued development of the cost-effective process sequence is reported. A cost-effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass bead back clean-up; hot spray antireflective coating; wave-soldering of fronts; ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they proved to be unreliable with shorter than advertised shelf life. Equipment for handling and processing solar cells is available for all of the cell processing steps identified in this program. During this quarter efforts included work on spray dopant, edging, AR coating, wave soldering and fluxing, ion milling and cost analysis.

Wohlgemuth, J H; Warfield, D B

1982-01-01T23:59:59.000Z

46

On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials  

E-Print Network [OSTI]

received most interest as a means to produce porous scaffolds by using ice as a template for complexOn the development of ice-templated silicon carbide scaffolds for nature-inspired structural of ceramic scaffolds using the ice-templating, or freeze casting, technique provides a relatively simple

Ritchie, Robert

47

18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

Sopori, B. L.

2008-09-01T23:59:59.000Z

48

Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells  

E-Print Network [OSTI]

-i-n solar cells Chang Hyun Lee and Koeng Su Lim Department of Electrical Engineering, Korea Advanced this film, amorphous silicon (a-Si solar cells with a novel p-a-DLC:H/p-a-SiC double p-layer structure were as window materials for amorphous silicon (a-Si based solar cells.1­4 In using such films as a p layer

Kim, Yong Jung

49

13th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers  

SciTech Connect (OSTI)

The 13th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental aspects of impurities and defects in silicon: their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. A combination of oral, poster, and discussion sessions will review recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands.

Sopori, B. L.; Rand, J.; Saitoh, T.; Sinton, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.; Al-Jassim, M.

2003-08-01T23:59:59.000Z

50

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

51

Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics  

E-Print Network [OSTI]

A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

2011-01-01T23:59:59.000Z

52

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

53

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

54

Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers  

SciTech Connect (OSTI)

The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

NONE

1998-08-01T23:59:59.000Z

55

Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable  

E-Print Network [OSTI]

The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

Crawford, T. Daniel

56

12th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Summary Discussion Sessions  

SciTech Connect (OSTI)

This report is a summary of the discussion sessions of the 12th Workshop on Crystalline Silicon Solar Cells and Processes. The theme of the workshop was"Fundamental R&D in c-Si: Enabling Progress in Solar-Electric Technology." This theme was chosen to reflect a concern that the current expansion in the PV energy production may redirect basic research efforts to production-oriented issues. The PV industry is installing added production capacity and new production lines that include the latest technologies. Once the technologies are selected, it is difficult to make changes. Consequently, a large expansion can stagnate the technologies and diminish interest in fundamental research. To prevent the fundamental R&D program from being overwhelmed by the desire to address immediate engineering issues, there is a need to establish topics of fundamental nature that can be pursued by the universities and the research institutions. Hence, one of the objectives of the workshop was to identify such areas for fundamental research.

Sopori, B.; Swanson, D.; Sinton, R.; Tan, T.

2003-02-01T23:59:59.000Z

57

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base  

SciTech Connect (OSTI)

The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-01T23:59:59.000Z

58

A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials  

SciTech Connect (OSTI)

We present a method for tomographic reconstruction of objects containing several distinct materials, which is capable of accurately reconstructing a sample from vastly fewer angular projections than required by conventional algorithms. The algorithm is more general than many previous discrete tomography methods, as: (i) a priori knowledge of the exact number of materials is not required; (ii) the linear attenuation coefficient of each constituent material may assume a small range of a priori unknown values. We present reconstructions from an experimental x-ray computed tomography scan of cortical bone acquired at the SPring-8 synchrotron.

Myers, Glenn R. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Thomas, C. David L.; Clement, John G. [Melbourne Dental School, University of Melbourne, Melbourne 3010 (Australia); Paganin, David M. [School of Physics, Monash University, Clayton 3800 (Australia); CSIRO Materials Science and Engineering, PB 33, Clayton South, 3169 (Australia); Gureyev, Timur E. [CSIRO Materials Science and Engineering, PB 33, Clayton South, 3169 (Australia)

2010-01-11T23:59:59.000Z

59

Numerical solution of shock and ramp compression for general material properties  

SciTech Connect (OSTI)

A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.

Swift, D C

2009-01-28T23:59:59.000Z

60

Synchrotron-based investigations of the nature and impact of ironcontamination in multicrystalline silicon solar cell materials  

SciTech Connect (OSTI)

Synchrotron-based microprobe techniques were used to obtain precise and systematic information about the size distribution, spatial distribution, shape, electrical activity, and chemical states of iron-rich impurity clusters in multicrystalline silicon materials used for cost-effective solar cells. These experimentally observed properties of iron-rich clusters allow one to derive conclusions about the origins of iron contamination, the mechanisms for incorporating large amounts of Fe into mc-Si, quantitative information about the distribution of Fe in mc-Si and the impacts of such contamination on solar cell performance. Two distinct groups of iron-rich clusters have been identified in both materials: (a) the occasional large (diameter greater than or equal to 1 mu-m) particles, either oxidized and/or present with multiple other metal species reminiscent of stainless steels or ceramics, which are believed to originate from a foreign source such as the growth surfaces, production equipment, or feedstock, and (b) the more numerous, homogeneously distributed, and smaller iron silicide precipitates (dia. less than or equal to 800 nm, often < 100 nm), originating from a variety of possible formation mechanisms involving atomically dissolved iron in the melt or in the crystal. It was found that iron silicide nanoprecipitates account for bulk Fe concentrations as high as 1014-15cm-3 and can have a large negative impact on device performance because of their homogeneous distribution along structural defects. The large (dia. greater than or equal to 1 mu-m) particles, while containing elevated amounts of metals, are low in spatial density and thus deemed to have a low direct impact on device performance, although they may have a large indirect impact via the dissolution of Fe, thus assisting the formation of iron silicide nanoprecipitates. These results demonstrate that it is not necessarily the total Fe content that limits mc-Si device performance, but the distribution of Fe within the material.

Buonassisi, Tonio; Istratov, Andrei A.; Heuer, Matthias; Marcus,Matthew A.; Jonczyk, Ralf; Lai, Barry; Cai, Zhonghou; Heald, Steven; Warta, Wilhelm; Isenberg, Joerg; Schindler, Roland; Weber, Eicke R.

2004-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Asia Silicon Qinghai Co Ltd aka Asia Si Material | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy CoClimateArtificial MuscleAshmanQinghai

62

Materials Science and Engineering B 134 (2006) 282286 Control of metal impurities in "dirty" multicrystalline silicon for solar cells  

E-Print Network [OSTI]

" multicrystalline silicon for solar cells A.A. Istratova,b,, T. Buonassisia,b,1, M.D. Picketta,b, M. Heuera,b, E processing of solar cells with satisfactory energy conversion efficiency based on inexpensive feedstock.V. All rights reserved. Keywords: Photovoltaics; Solar cells; Solar-grade silicon; Defect engineering

2006-01-01T23:59:59.000Z

63

Crystalline Silicon Photovolatic Cell Basics  

Broader source: Energy.gov [DOE]

Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's...

64

Comparison of electrical CD measurements and cross-section lattice-plane counts of sub-micrometer features replicated in Silicon-on-Insulator materials  

SciTech Connect (OSTI)

Electrical test structures of the type known as cross-bridge resistors have been patterned in (100) epitaxial silicon material that was grown on Bonded and Etched-Back Silicon-on-Insulator (BESOI) substrates. The CDs (Critical Dimensions) of a selection of their reference segments have been measured electrically, by SEM (Scanning-Electron Microscopy) cross-section imaging, and by lattice-plane counting. The lattice-plane counting is performed on phase-contrast images made by High-Resolution Transmission-Electron Microscopy (HRTEM). The reference-segment features were aligned with <110> directions in the BESOI surface material. They were defined by a silicon micromachining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} to the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. The SEM, HRTEM, and electrical CD (ECD) linewidth measurements that are made on BESOI features of various drawn dimensions on the same substrate is being investigated to determine the feasibility of a CD traceability path that combines the low cost, robustness, and repeatability of the ECD technique and the absolute measurement of the HRTEM lattice-plane counting technique. Other novel aspects of the (100) SOI implementation that are reported here are the ECD test-structure architecture and the making of HRTEM lattice-plane counts from both cross-sectional, as well as top-down, imaging of the reference features. This paper describes the design details and the fabrication of the cross-bridge resistor test structure. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors reference segments, as a prelude to making them available for dimensional reference applications.

CRESSWELL,MICHAEL W.; BONEVICH,JOHN E.; HEADLEY,THOMAS J.; ALLEN,RICHARD A.; GIANNUZZI,LUCILLE A.; EVERIST,SARAH C.; GHOSHTAGORE,RATHINDRA, N.; SHEA,PATRICK J.

2000-02-29T23:59:59.000Z

65

JOURNAL OF MATERIALS SCIENCE 40 (2005) 2101 2103 LETTERS Pressureless sintering of silicon nitride/boron nitride  

E-Print Network [OSTI]

, West Lafayette, Indiana 47907-2044, USA Silicon nitride (Si3N4) and boron nitride (BN) are ma- terials2O3 (Alcoa A- 16SG, 0.4 µm in diameter) and 4 wt% Y2O3 (Alfa Aesar REacton, 10 µm in diameter

Trice, Rodney W.

66

Materials Science and Engineering A244 (1998) 138144 The vacuum hot pressing behavior of silicon carbide fibers coated  

E-Print Network [OSTI]

carbide fibers coated with nanocrystalline Ti­6Al­4V Joseph M. Kunze *, Haydn N.G. Wadley Intelligent (VHP) of silicon carbide monofilaments coated with nanocrystalline Ti­6Al­4V has been studied. During micromechanical contact analysis for a metal coated fiber. Final stage densification was analyzed by modifying

Wadley, Haydn

67

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2008-12-09T23:59:59.000Z

68

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

69

PHYSICAL REVIEW B 90, 115209 (2014) Computational search for direct band gap silicon crystals  

E-Print Network [OSTI]

abundance, silicon is the preferred solar-cell material despite the fact that current silicon materials have semiconductor. For this reason, the most widely used solar-cell materials are all silicon based [1]. Current

Lee, Jooyoung

70

General Heat Transfer Characterization and Empirical Models of Material Storage Temperatures for the Los Alamos Nuclear Materials Storage Facility  

SciTech Connect (OSTI)

The Los Alamos National Laboratory's Nuclear Materials Storage Facility (NMSF) is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials. A fully passive cooling scheme, relying on the transfer of heat by conduction, free convection, and radiation has been proposed as a reliable means of maintaining material at acceptable storage temperatures. The storage concept involves placing radioactive materials, with a net heat-generation rate of 10 W to 20 W, inside a set of nested steel canisters. The canisters are, in placed in holding fixtures and positioned vertically within a steel storage pipe. Several hundred drywells are arranged in a linear array within a large bay and dissipate the waste heat to the surrounding air, thus creating a buoyancy driven airflow pattern that draws cool air into the storage facility and exhausts heated air through an outlet stack. In this study, an experimental apparatus was designed to investigate the thermal characteristics of simulated nuclear materials placed inside two nested steel canisters positioned vertically on an aluminum fixture plate and placed inside a section of steel pipe. The heat-generating nuclear materials were simulated with a solid aluminum cylinder containing .an embedded electrical resistance heater. Calibrated type T thermocouples (accurate to ~ O.1 C) were used to monitor temperatures at 20 different locations within the apparatus. The purposes of this study were to observe the heat dissipation characteristics of the proposed `canister/fixture plate storage configuration, to investigate how the storage system responds to changes in various parameters, and to develop and validate empirical correlations to predict material temperatures under various operating conditions

J. D. Bernardin; W. S. Gregory

1998-10-01T23:59:59.000Z

71

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

72

April 2002, L. Henn-Lecordier LAMP general operating procedures 1 Laboratory for Advanced Materials Processing  

E-Print Network [OSTI]

written request ­ Receive safety training from DES ­ Lab orientation with the lab manager ­ Equipment training and qualification #12;April 2002, L. Henn-Lecordier LAMP general operating procedures 9 LAMP "10

Rubloff, Gary W.

73

Electrochemical thinning of silicon  

DOE Patents [OSTI]

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

Medernach, John W. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

74

Electrochemical thinning of silicon  

DOE Patents [OSTI]

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

75

Ultralow-Power Silicon Microphotonic Communications Platform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

second). These peta-scale machines are critical for advanced scientific modelling of climate change, biological simulations, advanced materials, and our Ultralow-Power Silicon...

76

Preliminary materials assessment for the Satellite Power System (SPS)  

SciTech Connect (OSTI)

Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

Teeter, R.R.; Jamieson, W.M.

1980-01-01T23:59:59.000Z

77

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

SciTech Connect (OSTI)

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

78

Response of Nanocrystalline 3C Silicon Carbide to Heavy-Ion Irradiatio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanocrystalline 3C Silicon Carbide to Heavy-Ion Irradiation. Response of Nanocrystalline 3C Silicon Carbide to Heavy-Ion Irradiation. Abstract: Nanostructured materials are...

79

E-Print Network 3.0 - amorphous-silicon-based solar cell Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vol. 609 2000 Materials Research Society Preparation of Microcrystalline Silicon Based Solar Cells at High i-layer Summary: light exposure as do the amorphous silicon-based...

80

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network [OSTI]

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

82

Process for strengthening silicon based ceramics  

SciTech Connect (OSTI)

A process for strengthening silicon based ceramic monolithic materials and composite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400{degrees}C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts, or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

Kim, Hyoun-Ee; Moorhead, A.J.

1991-03-07T23:59:59.000Z

83

Floating Silicon Method  

SciTech Connect (OSTI)

The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

Kellerman, Peter

2013-12-21T23:59:59.000Z

84

Amorphous Silicon  

Broader source: Energy.gov [DOE]

DOE has a proven track record of funding successes in amorphous silicon (a-Si)research. A list of current projects, summary of the benefits, and discussion on the production and manufacturing of...

85

Silicon nitride/silicon carbide composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

1996-06-11T23:59:59.000Z

86

Mechanical Dissipation in Silicon Flexures  

E-Print Network [OSTI]

The thermo-mechanical properties of silicon make it of significant interest as a possible material for mirror substrates and suspension elements for future long-baseline gravitational wave detectors. The mechanical dissipation in 92um thick single-crystal silicon cantilevers has been observed over the temperature range 85 K to 300 K, with dissipation approaching levels down to phi = 4.4E-7.

S. Reid; G. Cagnoli; D. R. M. Crooks; J. Hough; P. Murray; S. Rowan; M. M. Fejer; R. Route; S. Zappe

2005-10-28T23:59:59.000Z

87

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

88

Role of point defects/defect complexes in silicon device processing. Book of abstracts, fourth workshop  

SciTech Connect (OSTI)

The 41 abstracts are arranged into 6 sessions: impurities and defects in commercial substrates: their sources, effects on material yield, and material quality; impurity gettering in silicon: limits and manufacturability of impurity gettering and in silicon solar cells; impurity/defect passivation; new concepts in silicon growth: improved initial quality and thin films; and silicon solar cell design opportunities.

Not Available

1994-06-01T23:59:59.000Z

89

Modified silicon carbide whiskers  

DOE Patents [OSTI]

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, T.N.; Lindemer, T.B.

1991-05-21T23:59:59.000Z

90

Modified silicon carbide whiskers  

DOE Patents [OSTI]

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

91

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

92

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

93

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

94

A Constitutive Model for the Mechanical Behavior of Single Crystal Silicon at Elevated Temperature  

E-Print Network [OSTI]

Silicon in single crystal form has been the material of choice for the first demonstration of the MIT microengine project. However, because it has a relatively low melting temperature, silicon is not an ideal material for ...

Moon, H.-S.

95

Production of high specific activity silicon-32  

DOE Patents [OSTI]

A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

1994-01-01T23:59:59.000Z

96

Nitride-bonded silicon carbide composite filter  

SciTech Connect (OSTI)

The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

Thomson, B.N.; DiPietro, S.G.

1995-12-01T23:59:59.000Z

97

Temperature dependency of MOSFET device characteristics in 4H-and 6H-silicon carbide (SiC)  

E-Print Network [OSTI]

Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC) Md was arranged by Prof. A. Iliadis Abstract The advantages of silicon carbide (SiC) over silicon are significant; Silicon carbide; Temperature variation effect 1. Introduction Silicon carbide, a wide bandgap material

Tolbert, Leon M.

98

Deposition method for producing silicon carbide high-temperature semiconductors  

DOE Patents [OSTI]

An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

1987-01-01T23:59:59.000Z

99

A study of the influence of boron diffusion sources on the material and electrical characteristics of silicon p-n junctions  

E-Print Network [OSTI]

silicon wafers w'th 10-15 ohm-cm re- sistivity, 1$-17 mils thick, and a flat along (110). After initial c' eaning all wafers were subjected to 15 min. steam oxidation at 1100 C which yields approximately 3200 2 of oxide. The wsfers then went through... of the crystal can be deduced. The mask has been originally designed to allow an X-ray beam to scan across a 100x100 mil block of' diffused area 2 followed by a 100x100 mil block of undiffused area alterna- 2 tely. Due to the inevitable bowing of the wafer...

Huang, Kuan-Chun Andrew

1976-01-01T23:59:59.000Z

100

Polycrystalline silicon resistor trimming by laser annealing  

E-Print Network [OSTI]

, and (b) Kelvin resistors. luminum Top oxide Polysilicon Initial oxide ubstrate 26 Fig. 7. Cross sectional view of test cell. an oxidized silicon wafer. The polysilicon was oxidized for passivation, and contact windows were etched for the metal... materials are sfliicon-chrome, nickel-chrome, and tantalum nitride. Another material commonly used for resistors is polycrystalline silicon, or polysilicon. PolysiTicon is used in Metal Oxide Semiconductor (MOS) circuit fabrication as the MOS Field...

Crowley, Robert Terrence

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief  

E-Print Network [OSTI]

of the materials. Solar cells based on thin films of amorphous or polycrystalline silicon require sub- stantially, Urbana, Illinois 61801 ABSTRACT Recently developed classes of monocrystalline silicon solar microcells systems that benefit from thin construction and efficient materials utilization. KEYWORDS Nanoimprint

Rogers, John A.

102

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3  

E-Print Network [OSTI]

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3 burak@ieee.org Leon M: The emergence of silicon carbide- (SiC-) based power semiconductor switches, with their superior features material. Another material, silicon carbide (SiC), with superior properties compared with Si, is a good

Tolbert, Leon M.

103

Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices  

SciTech Connect (OSTI)

SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

Martin U. Pralle; James E. Carey

2010-07-31T23:59:59.000Z

104

Buried oxide layer in silicon  

DOE Patents [OSTI]

A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

2001-01-01T23:59:59.000Z

105

Evaluation of silicon-nitride ceramic valves.  

SciTech Connect (OSTI)

Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

2008-01-01T23:59:59.000Z

106

Metal electrode for amorphous silicon solar cells  

DOE Patents [OSTI]

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

107

Laser wafering for silicon solar.  

SciTech Connect (OSTI)

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

2011-03-01T23:59:59.000Z

108

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material  

SciTech Connect (OSTI)

A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

Vogt, Kirkland

2013-02-01T23:59:59.000Z

109

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

K. and Beguin, F. et. al Materials Science and Engineering BF. Advanced Functional Materials 17, 11, 1828-1836 (2007)and Silicone- Modified Materials ch7, 82-99 (2007) 3. Gädda,

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

110

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

111

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

112

Silicon (100)/SiO2 by XPS  

SciTech Connect (OSTI)

Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

2013-09-25T23:59:59.000Z

113

IMPROVED SPECTRAL RESPONSE OF SILICONE ENCAPSULANTED PHOTOVOLTAIC MODULES  

E-Print Network [OSTI]

IMPROVED SPECTRAL RESPONSE OF SILICONE ENCAPSULANTED PHOTOVOLTAIC MODULES Nick E. Powell 1* , Byung the benefit of using optically superior silicone encapsulant materials over the incumbent ethylene vinyl in the UV region of the solar spectrum. Single cell mini-modules were prepared using two different

114

Epitaxial graphene on silicon carbide: Introduction to structured graphene  

E-Print Network [OSTI]

Epitaxial graphene on silicon carbide: Introduction to structured graphene Ming Ruan 1 , Yike Hu 1, France Abstract We present an introduction to the rapidly growing field of epitaxial graphene on silicon present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now

Paris-Sud XI, Université de

115

Glass-silicon column  

DOE Patents [OSTI]

A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

Yu, Conrad M.

2003-12-30T23:59:59.000Z

116

Etching process for improving the strength of a laser-machined silicon-based ceramic article  

DOE Patents [OSTI]

A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

Copley, S.M.; Tao, H.; Todd-Copley, J.A.

1991-06-11T23:59:59.000Z

117

Etching process for improving the strength of a laser-machined silicon-based ceramic article  

DOE Patents [OSTI]

A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

Copley, Stephen M. (Palos Verdes, CA); Tao, Hongyi (Covina, CA); Todd-Copley, Judith A. (Palos Verdes, CA)

1991-01-01T23:59:59.000Z

118

DESIGN, MODELING, TESTING, AND SPICE PARAMETER EXTRACTION OF DIMOS TRANSISTOR IN 4H-SILICON CARBIDE  

E-Print Network [OSTI]

DESIGN, MODELING, TESTING, AND SPICE PARAMETER EXTRACTION OF DIMOS TRANSISTOR IN 4H-SILICON CARBIDE (DIMOS) transistor structure in 4H-Silicon Carbide (SiC) is presented. Simulation for transport Silicon carbide (SiC), a wide bandgap material, shows a tremendous potential for high temperature

Tolbert, Leon M.

119

Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer  

DOE Patents [OSTI]

A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

Cardinale, Gregory F. (Oakland, CA)

2002-01-01T23:59:59.000Z

120

LASER METALLIZATION AND DOPING FOR SILICON CARBIDE DIODE FABRICATION AND ENDOTAXY.  

E-Print Network [OSTI]

??Silicon carbide is a promising semiconductor material for high voltage, high frequency and high temperature devices due to its wide bandgap, high breakdown electric field… (more)

Tian, Zhaoxu

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

amorphous silicon flat-panel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Asymmetric Electrical Properties of Half Corbino Hydrogenated Amorphous Silicon Thin-Film Transistor and Its Applications to Flat Panel Displays Materials Science...

122

Method for silicon carbide production by reacting silica with hydrocarbon gas  

DOE Patents [OSTI]

A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400.degree. C. to 1000.degree. C. where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100.degree. C. to 1600.degree. C. to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

Glatzmaier, Gregory C. (Boulder, CO)

1994-01-01T23:59:59.000Z

123

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents [OSTI]

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1982-01-01T23:59:59.000Z

124

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

125

Fabrication and characterization of germanium-on-silicon photodiodes  

E-Print Network [OSTI]

Germanium is becoming an increasingly popular material to use in photonic systems. Due to its strong absorption in the near infrared and its relative ease of integration on silicon, it is a promising candidate for the ...

DiLello, Nicole Ann

2012-01-01T23:59:59.000Z

126

Reactor physics assessment of thick silicon carbide clad PWR fuels  

E-Print Network [OSTI]

High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

Bloore, David A. (David Allan)

2013-01-01T23:59:59.000Z

127

Field emission study of cobalt ion implanted porous silicon  

E-Print Network [OSTI]

Porous silicon has become potentially important material for microelectronics applications. By using low energy implantation and energy scan implantation, a stable silicide with good electrical conductivity can be formed, and can be used...

Liu, Hongbiao

1995-01-01T23:59:59.000Z

128

Potential applications of a toughened silicon-based alloy  

E-Print Network [OSTI]

Silicon has long been used as an alloying element in various metal alloys, in engineered ceramics, and in the semiconductor industry. However, due to its intrinsic low fracture toughness, it is generally perceived as a ...

Lei, Wang S

2008-01-01T23:59:59.000Z

129

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

130

Micromachined silicon electrostatic chuck  

DOE Patents [OSTI]

An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

Anderson, R.A.; Seager, C.H.

1996-12-10T23:59:59.000Z

131

Hardfacing material  

DOE Patents [OSTI]

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

132

Substrate for thin silicon solar cells  

DOE Patents [OSTI]

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

Ciszek, T.F.

1995-03-28T23:59:59.000Z

133

Substrate for thin silicon solar cells  

DOE Patents [OSTI]

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

Ciszek, Theodore F. (Evergreen, CO)

1995-01-01T23:59:59.000Z

134

Method of fabrication of display pixels driven by silicon thin film transistors  

DOE Patents [OSTI]

Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

1999-01-01T23:59:59.000Z

135

Improved method of preparing p-i-n junctions in amorphous silicon semiconductors  

DOE Patents [OSTI]

A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

Madan, A.

1984-12-10T23:59:59.000Z

136

High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995  

SciTech Connect (OSTI)

The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

Maruska, P. [Spire Corp., Bedford, MA (United States)] [Spire Corp., Bedford, MA (United States)

1996-09-01T23:59:59.000Z

137

Method for producing silicon nitride/silicon carbide composite  

DOE Patents [OSTI]

Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

1996-07-23T23:59:59.000Z

138

Structure, defects, and strain in silicon-silicon oxide interfaces  

SciTech Connect (OSTI)

The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

Kova?evi?, Goran, E-mail: gkova@irb.hr; Pivac, Branko [Department of Materials Physics, Rudjer Boskovic Institute, Bijeni?ka 56, P.O.B. 180, HR-10002 Zagreb (Croatia)

2014-01-28T23:59:59.000Z

139

AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION  

E-Print Network [OSTI]

-based polymers (silicones) may not show this effect. Although silicones were used to encapsulate solar cells improved, which may make them suitable for encapsulating solar cells once again. We have recentlyAMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION Aarohi Vijh 1

Deng, Xunming

140

Light Ions Response of Silicon Carbide Detectors  

E-Print Network [OSTI]

Silicon carbide (SiC) Schottky diodes 21 mum thick with small surfaces and high N-dopant concentration have been used to detect alpha particles and low energy light ions. In particular 12C and 16O beams at incident energies between 5 and 18 MeV were used. The diode active-region depletion-thickness, the linearity of the response, energy resolution and signal rise-time were measured for different values of the applied reverse bias. Moreover the radiation damage on SiC diodes irradiated with 53 MeV 16O beam has been explored. The data show that SiC material is radiation harder than silicon but at least one order of magnitude less hard than epitaxial silicon diodes. An inversion in the signal was found at a fluence of 10^15 ions/cm^2.

M. De Napoli; G. Raciti; E. Rapisarda; C. Sfienti

2006-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Efficiency of silicon solar cells containing chromium  

DOE Patents [OSTI]

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

142

Phonon Heat Conduction in Corrugated Silicon Nanowires Below the Casimir Limit Christophe Blanc,1  

E-Print Network [OSTI]

very low thermal conductances of highly rough silicon nanowires [7, 18], far below the amorphous limit, 2013) The thermal conductance of straight and corrugated monocrystalline silicon nanowires has been of nanostructured materials or low dimen- sional materials has attracted growing interest [1­4], es- pecially

Paris-Sud XI, Université de

143

Fabrication of porous silicon membranes  

E-Print Network [OSTI]

OF THE FILTER APPLICATION OF POROUS SILICON A. Density of Porous Silicon B. Stabilization of Porous Silicon Membranes C. Flow Test D. Porous Polycrystalline Silicon 54 58 62 65 vn TABLE OF CONTENTS (Continued) CHAPTER VI EXTENSIONS AND CONCLUSIONS... Membranes 13. Density Change of Porous Silicon at 125'C 14. Density Change oi' Porous Silicon at 250 C 15. Nitrogen Flow on a Porous Silicon Membrane Page 15 16 33 39 39 44 46 54 59 59 62 LIST OF FIGURES Figure 10. 12. 14. 17. 18. 19...

Yue, Wing Kong

1988-01-01T23:59:59.000Z

144

Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials  

E-Print Network [OSTI]

boundaries in silicon? Materials research society, Vol.122,bicrystal? Journal of Materials Science, 40(2005)3137- 5.in ZnO? Journal of Materials Science, 40(2005)3067-3074. 6.

Tanju, Mst Sohanazaman

2011-01-01T23:59:59.000Z

145

Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report  

SciTech Connect (OSTI)

This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H. [GTE Labs., Inc., Waltham, MA (US); Kim, K. [Brown Univ., Providence, RI (US). Div. of Engineering

1993-05-01T23:59:59.000Z

146

alternative perovskite materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

147

alternative materials wascon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

148

alternative refractory materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

149

alternative starting materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

150

alternative target material: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

151

Crystalline Silicon Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

152

Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix  

SciTech Connect (OSTI)

The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process.l

Dr. Ronald Baney

2008-12-15T23:59:59.000Z

153

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

154

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents [OSTI]

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

1994-07-26T23:59:59.000Z

155

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents [OSTI]

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

1988-01-01T23:59:59.000Z

156

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents [OSTI]

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C.E.; Benson, D.K.

1984-07-20T23:59:59.000Z

157

Thermal Transport Measurement of Silicon-Germanium Nanowires  

E-Print Network [OSTI]

to the enhanced boundary scattering. Among the nanoscale semiconductor materials, Silicon-Germanium(SiGe) alloy nanowire is a promising candidate for thermoelectric materials The thermal conductivities of SiGe core-shell nanowires with core diameters of 96nm, 129...

Gwak, Yunki

2010-10-12T23:59:59.000Z

158

Optical properties of nanostructured silicon-rich silicon dioxide  

E-Print Network [OSTI]

We have conducted a study of the optical properties of sputtered silicon-rich silicon dioxide (SRO) thin films with specific application for the fabrication of erbium-doped waveguide amplifiers and lasers, polarization ...

Stolfi, Michael Anthony

2006-01-01T23:59:59.000Z

159

Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide...

160

Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial  

SciTech Connect (OSTI)

In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

2004-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Silicon on insulator achieved using electrochemical etching  

DOE Patents [OSTI]

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

McCarthy, Anthony M. (Menlo Park, CA)

1997-01-01T23:59:59.000Z

162

Silicon on insulator achieved using electrochemical etching  

DOE Patents [OSTI]

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

McCarthy, A.M.

1997-10-07T23:59:59.000Z

163

Silicon carbide mirrors for high power applications  

SciTech Connect (OSTI)

The advent of synchrotron radiation (SR) sources and high energy lasers (HEL) in recent years has brought about the need for optical materials that can withstand the harsh operating conditions in such devices. SR mirrors must be ultra-high vacuum compatible, must withstand intense x-ray irradiation without surface damage, must maintain surface figure under thermal loading and must be capable of being polished to an extremely smooth surface finish. Chemical vapor deposited (CVD) silicon carbide in combination with sintered substrate material meets these requirements and offers additional benefits as well. It is an extremely hard material and offers the possibility of being cleaned and recoated many times without degradation of the surface finish, thereby prolonging the lifetime of expensive optical components. It is an extremely strong material and offers the possibility of weight reduction over conventional mirror materials.

Takacs, P.Z.

1981-11-01T23:59:59.000Z

164

Optical substrate materials for synchrotron radiation beamlines  

SciTech Connect (OSTI)

The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

1997-06-01T23:59:59.000Z

165

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents [OSTI]

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

166

Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires  

E-Print Network [OSTI]

, some of the best thermoelectric materials are rare earth, or toxic materials. Recently, however, low-dimensional materials offer the capability of improved thermoelectric performance. The length scale offers a degree material's values were achieved. Enhanced thermoelectric performance was recently demonstrated for silicon

167

Amorphous silicon photovoltaic devices  

DOE Patents [OSTI]

This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

2004-08-31T23:59:59.000Z

168

Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...  

Broader source: Energy.gov (indexed) [DOE]

LiCoO 2 cathodes and, when paired with advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements,...

169

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

170

Direct current, closed furnace silicon technology  

SciTech Connect (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

171

Philips Lumileds Is Exploring the Use of Silicon Substrates to Lower the Cost of LEDs  

Broader source: Energy.gov [DOE]

With the help of DOE funding, Philips Lumileds is exploring the use of nitride epitaxy on 150mm silicon substrates to produce low-cost, warm-white, high-performance general-illumination LEDs. Most LEDs are made with C-plane sapphire substrates, but silicon—at roughly half a penny per square millimeter—is much cheaper, and it's also easier to obtain. Philips Lumileds is attempting to adapt the use of silicon to the manufacture of LEDs, drawing upon the knowledge base and depreciated equipment of the computer industry, which has been using silicon substrates for decades.

172

High resolution amorphous silicon radiation detectors  

DOE Patents [OSTI]

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

1992-05-26T23:59:59.000Z

173

High resolution amorphous silicon radiation detectors  

DOE Patents [OSTI]

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

1992-01-01T23:59:59.000Z

174

Hybrid Silicon Evanescent Lasers John E. Bowersa  

E-Print Network [OSTI]

[2]. Finally a 110 nm thick n-doped InP spacer is used as a bonding interface to silicon. The silicon factors of the silicon waveguide and the QWs can be manipulated by the silicon waveguide dimensions silicon waveguide. For the fabricated waveguide dimensions of a 0.7 µm height (H) and 0.6 µm rib

Bowers, John

175

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

E-Print Network [OSTI]

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to ...

Ganapati, Vidya

176

Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes  

E-Print Network [OSTI]

Highly supersaturated solid solutions of selenium or sulfur in silicon were formed by ion implantation followed by nanosecond pulsed laser melting. n[superscript +]p photodiodes fabricated from these materials exhibit gain ...

Sullivan, Joseph Timothy

177

Reactor physics considerations for implementing silicon carbide cladding into a PWR environment  

E-Print Network [OSTI]

Silicon carbide (SiC) offers several advantages over zirconium (Zr)-based alloys as a potential cladding material for Pressurized Water Reactors: very slow corrosion rate, ability to withstand much higher temperature with ...

Dobisesky, Jacob P. (Jacob Paul), 1987-

2011-01-01T23:59:59.000Z

178

Sacrificial high-temperature phosphorus diffusion gettering for lifetime improvement of multicrystalline silicon wafers  

E-Print Network [OSTI]

Iron is among the most deleterious lifetime-limiting impurities in crystalline silicon solar cells. In as-grown material, iron is present in precipitates and in point defects. To achieve conversion efficiencies in excess ...

Scott, Stephanie Morgan

2014-01-01T23:59:59.000Z

179

Analysis of silicon carbide based semiconductor power devices and their application in power factor correction  

E-Print Network [OSTI]

cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. Material technologies superior to Si are needed for future power device developments. Silicon Carbide (SiC) based semiconductor devices...

Durrani, Yamin Qaisar

2005-11-01T23:59:59.000Z

180

Identification and mitigation of performance-limiting defects in epitaxially grown kerfless silicon for solar cells  

E-Print Network [OSTI]

Reducing material use is a major driver for cost reduction of crystalline silicon photovoltaic modules. The dominant wafer fabrication process employed in the industry today, ingot casting & sawing, wastes approximately ...

Powell, Douglas M. (Douglas Michael)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Phosphor suspended in silicone, molded/formed and used in a remote phosphor configuration  

DOE Patents [OSTI]

A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome.

Kolodin, Boris; Deshpande, Anirudha R

2014-09-16T23:59:59.000Z

182

Argonne and CalBattery strike deal for silicon-graphene anode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and CalBattery strike deal for silicon-graphene anode material By Angela Hardin * February 25, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National...

183

Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur  

E-Print Network [OSTI]

We apply soft x-ray emission spectroscopy (XES) to measure the electronic structure of crystalline silicon supersaturated with sulfur (up to 0.7 at. %), a candidate intermediate-band solar cell material. Si L[subscript ...

Sullivan, Joseph Timothy

184

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

185

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

186

Making silicon stronger.  

SciTech Connect (OSTI)

Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

Boyce, Brad Lee

2010-11-01T23:59:59.000Z

187

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents [OSTI]

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

Pankove, J.I.; Wu, C.P.

1982-03-30T23:59:59.000Z

188

Diamond-silicon carbide composite  

DOE Patents [OSTI]

Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

Qian, Jiang; Zhao, Yusheng

2006-06-13T23:59:59.000Z

189

A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam  

SciTech Connect (OSTI)

This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

Cuenca, Jacques, E-mail: jcuenca@kth.se; Van der Kelen, Christophe; Göransson, Peter [Marcus Wallenberg Laboratory for Sound and Vibration Research, Royal Institute of Technology (KTH), Teknikringen 8, SE-10044 Stockholm (Sweden)

2014-02-28T23:59:59.000Z

190

Ultrasmall silicon quantum dots F. A. Zwanenburg,1,a  

E-Print Network [OSTI]

by a model based on the Poisson equation. The smallest dots 12 nm allow identification of the last charge-down planar silicon devices,1­3 produced by etching bulk materials down to nanometer dimensions, often show understanding of the specific system. This has allowed us to realize the first experimental identification

191

Nuclear breeder reactor fuel element with silicon carbide getter  

DOE Patents [OSTI]

An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

1987-01-01T23:59:59.000Z

192

Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires  

E-Print Network [OSTI]

conductivity of SiNWs is about 2 orders of magnitude smaller than that of bulk crystals.18,19 The low thermal conductivity (0.05 W/m K) found in layered materials.22 So it is indispensable to reduce the thermal conUltralow Thermal Conductivity of Isotope-Doped Silicon Nanowires Nuo Yang, Gang Zhang,*, and Baowen

Li, Baowen

193

Fabrication and properties of microporous silicon  

E-Print Network [OSTI]

Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

Shao, Jianzhong

1994-01-01T23:59:59.000Z

194

Chemistry of Organic Electronic Materials 6483-Fall  

E-Print Network [OSTI]

Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

Sherrill, David

195

In situ tensile and creep testing of lithiated silicon nanowires  

SciTech Connect (OSTI)

We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.

Boles, Steven T.; Kraft, Oliver [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany)] [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany); Thompson, Carl V. [Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139 (United States)] [Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Mönig, Reiner [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany) [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), 89069 Ulm (Germany)

2013-12-23T23:59:59.000Z

196

Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

197

Silicon on insulator with active buried regions  

DOE Patents [OSTI]

A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

McCarthy, Anthony M. (Menlo Park, CA)

1998-06-02T23:59:59.000Z

198

Silicon on insulator with active buried regions  

DOE Patents [OSTI]

A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

McCarthy, A.M.

1996-01-30T23:59:59.000Z

199

Silicon on insulator with active buried regions  

DOE Patents [OSTI]

A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

McCarthy, Anthony M. (Menlo Park, CA)

1996-01-01T23:59:59.000Z

200

Silicon on insulator with active buried regions  

DOE Patents [OSTI]

A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

McCarthy, A.M.

1998-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

IR permittivities for silicides and doped silicon  

SciTech Connect (OSTI)

The complex permittivity for Pt, Pd, Ni, and Ti-silicide films as well as heavily doped p- and n-type silicon were determined by ellipsometry over the energy range 0.031 eV to 4.0 eV. Fits to the Drude model gave bulk plasma and relaxation frequencies. Rutherford backscattering spectroscopy, X-ray diffraction, scanning electron microscopy, secondary ion mass spectrometry, and four-point probe measurements complemented the optical characterization. Calculations from measured permittivities of waveguide loss and mode confinement suggest that the considered materials are better suited for long-wavelength surface-plasmon-polariton waveguide applications than metal films.

Cleary, J. W.; Peale, R. E.; Smith, C. W.; Ishigami, M. [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Shelton, D. J.; Boreman, G. D. [College of Optics (CREOL), University of Central Florida, Orlando, Florida 32816 (United States); Soref, R.; Drehman, A.; Buchwald, W. R. [Sensors Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts 01731 (United States)

2010-04-15T23:59:59.000Z

202

Hybrid stretchable circuits on silicone substrate  

SciTech Connect (OSTI)

When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

2014-04-14T23:59:59.000Z

203

Origami-enabled deformable silicon solar cells  

SciTech Connect (OSTI)

Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2014-02-24T23:59:59.000Z

204

6N Silicon Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering9centuryGeneralN Silicon Inc

205

Breakthrough materials for energy storage  

E-Print Network [OSTI]

Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

206

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

207

Optical Damage Threshold of Silicon for Ultrafast Infrared Pulses  

SciTech Connect (OSTI)

While silicon has several properties making it an attractive material for structure-based laser-driven acceleration, its optical damage threshold, a key parameter for high-gradient acceleration, has been unknown. Here we present measurements of the optical damage threshold of crystalline silicon for ultrafast pulses in the mid-infrared. The wavelengths tested span a range from the telecommunications band at 1550 nm extending longer toward the two-photon absorption threshold at around 2200 nm. We discuss the prevailing theories of ultrafast optical breakdown, describe the experimental setup and preliminary results, and propose a relevant performance parameter for candidate accelerator structures.

Cowan, B.; /SLAC

2006-09-07T23:59:59.000Z

208

Transmissive metallic contact for amorphous silicon solar cells  

DOE Patents [OSTI]

A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

Madan, A.

1984-11-29T23:59:59.000Z

209

Photovoltaic Crystalline Silicon Cell Basics  

Broader source: Energy.gov [DOE]

To separate electrical charges, crystalline silicon cells must have a built-in electric field. Light shining on crystalline silicon may free electrons within the crystal lattice, but for these electrons to do useful work—such as provide electricity to a light bulb—they must be separated and directed into an electrical circuit.

210

Recent developments in silicon calorimetry  

SciTech Connect (OSTI)

We present a survey of some of the recent calorimeter applications of silicon detectors. The numerous attractive features of silicon detectors are summarized, with an emphasis on those aspects important to calorimetry. Several of the uses of this technology are summarized and referenced. We consider applications for electromagnetic calorimetry, hadronic calorimetry, and proposals for the SSC.

Brau, J.E.

1990-11-01T23:59:59.000Z

211

Ultraviolet selective silicon photodiode  

E-Print Network [OSTI]

(' silicon surfa&(& that n&ost of t h&) phologeneraied hole-el( & tron pairs are k&st by surface rccornbinai ion before being nolle&. trxl hy a pr). jun?i, ion. The major cause of surl'a&. e re?omhination is probably due Io lifetim(. shortening ol' Lhe... drpth corresponded to a high& r shor4wav? length rcsponsiv- ity tlirough liis ( xperimcnial diodes with junction dcpl ha ol'0. -'I to 2 0 pm. I indmayer and Allison [4I] I'abri&. ated n+-p solar cells with junction &lcpths of approximately 0. 1, 0. 15...

Chintapalli, Koteswara Rao

1992-01-01T23:59:59.000Z

212

Compensated amorphous silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

213

Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses  

SciTech Connect (OSTI)

Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600?nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material.

Gemini, Laura [Advanced Research Center for beam Science, Institute for Chemical Research, Kyoto University, 611-0011 Kyoto (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto (Japan); FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); HiLASE Project, Institute of Physics, ASCR, 18221 Prague (Czech Republic); Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for beam Science, Institute for Chemical Research, Kyoto University, 611-0011 Kyoto (Japan); Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto (Japan); Limpouch, Jiri [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Mocek, Tomas [HiLASE Project, Institute of Physics, ASCR, 18221 Prague (Czech Republic)

2013-11-21T23:59:59.000Z

214

Amorphous silicon/crystalline silicon heterojunctions: The future of high-efficiency silicon solar cells  

E-Print Network [OSTI]

;5 Record efficiencies #12;6 Diffused-junction solar cells Diffused-junction solar cell Chemical passivation to ~650 mV #12;7 Silicon heterojunction solar cells a-Si:H provides excellent passivation of c-Si surface Heterojunction solar cell Chemical passivation Chemical passivation #12;8 Voc and silicon heterojunction solar

Firestone, Jeremy

215

Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars" (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Eres, Gyula [ORNL

2012-01-01T23:59:59.000Z

216

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

DOE Patents [OSTI]

A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

1999-01-01T23:59:59.000Z

217

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

DOE Patents [OSTI]

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

2002-01-01T23:59:59.000Z

218

Crystalline silicon growth in nickel/a-silicon bilayer  

SciTech Connect (OSTI)

The effect of substrate temperature on amorphous Silicon crystallization, mediated by metal impurity is reported. Bilayers of Ni(200nm)/Si(400nm) are deposited on fused silica substrate by electron beam evaporator at 200 and 500 Degree-Sign C. Raman mapping shows that, 2 to 5 micron size crystalline silicon clusters are distributed over the entire surface of the sample. X-ray diffraction and X-ray absorption spectroscopy studies demonstrate silicon crystallizes over the metal silicide seeds and grow with the annealing temperature.

Mohiddon, Md Ahamad; Naidu, K. Lakshun [School of Physics, University of Hyderabad, Hyderabad-500046 (India) and Department of Physics, University of Trento, 38123 POVO (Trento) (Italy); Dalba, G. [Department of Physics, University of Trento, 38123 POVO (Trento) (Italy); Rocca, F. [IFN-CNR, Institute for Photonics and Nanotechnologies, Unit FBK-Photonics of Trento, 38123, Trento (Italy); Krishna, M. Ghanashyam [School of Physics, University of Hyderabad, Hyderabad-500046 (India)

2013-02-05T23:59:59.000Z

219

FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS  

E-Print Network [OSTI]

FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS of Michigan, Ann Arbor, MI 48109, USA ABSTRACT Hydrogenated amorphous silicon (a-Si:H) single- junction solar). It is found that the p-layer that leads to high Voc a-Si:H solar cells is a mixed-phase material that contains

Deng, Xunming

220

Silicon nitride ceramic comprising samaria and ytterbia  

DOE Patents [OSTI]

This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comparison of electronic structure of as grown and solar grade silicon samples  

SciTech Connect (OSTI)

A comparison of the electronic structure of two different types of silicon materials viz., (i) as grown silicon and (ii) solar silicon has been carried out utilizing maximum entropy method and pair distribution function using powder X-ray data sets. The precise electron density maps have been elucidated for the two samples. The covalent nature of the bonding between atoms in both the samples is found to be well pronounced and clearly seen from the electron density maps. The electron densities at the middle of the Si-Si bond are found to be 0.47 and 0.45 e/A{sup 3} for as grown silicon and solar silicon respectively. In this work, the local structural information has also been obtained by analyzing the atomic pair distribution functions of these two samples.

Saravanan, R., E-mail: saragow@dataone.in; Sheeba, R. A. J. R. [Madura College, Research Centre and PG Department of Physics (India)

2012-04-15T23:59:59.000Z

222

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

223

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

224

Process for forming retrograde profiles in silicon  

DOE Patents [OSTI]

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

225

Silicone plesiotherapy molds  

SciTech Connect (OSTI)

Plesiotherapy, the treatment of superficial lesions by radioactive molds has largely been replaced by teletherapy techniques involving high energy photon and electron beams. There are, however, situations for which a short distance type treatment, in one form or another, is superior to any other presently available. Traditionally, molds have taken the form of rigid devices incorporating clamps to attach them to the patient. This ensures a reproducible geometry about a localized region since the molds are applied on a daily basis. To make such devices requires considerable skill and patience. This article describes an alternative method that eliminates the use of cumbersome devices in many situations. Silicone molds made from a plaster cast model have been found suitable for the treatment of surface lesions and especially for lesions in the oral and nasal cavities. With the use of radioactive gold seeds the molds may be left in place for a few days without fear of them moving.

Karolis, C.; Reay-Young, P.S.; Walsh, W.; Velautham, G.

1983-04-01T23:59:59.000Z

226

Concentrator silicon cell research  

SciTech Connect (OSTI)

This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

1992-04-01T23:59:59.000Z

227

Lithium Ion Battery Performance of Silicon Nanowires With Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

228

Rheology of silicon carbide/vinyl ester nanocomposites  

E-Print Network [OSTI]

New York, 1999. SILICON CARBIDE/VINYL ESTER NANOCOMPOSITESRheology of Silicon Carbide/Vinyl Ester NanocompositesABSTRACT: Silicon carbide (SiC) nanoparticles with no

Yong, Virginia; Hahn, H. Thomas

2006-01-01T23:59:59.000Z

229

Method of forming buried oxide layers in silicon  

DOE Patents [OSTI]

A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir City, TN)

2000-01-01T23:59:59.000Z

230

Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites  

SciTech Connect (OSTI)

A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

Singh, M.; Levine, S.R.

1995-07-01T23:59:59.000Z

231

Mater. Res. Soc. Symp. Proc. Vol. 1408 2012 Materials Research Society DOI: 10.1557/opl.2012. 4  

E-Print Network [OSTI]

of California, Santa Barbara, CA ABSTRACT Silicon nanowires (NWs) are promising thermoelectric materials. INTRODUCTION Bulk silicon is considered a poor thermoelectric material due to its high thermal conductivity, and T is the average temperature. Commercial thermoelectric materials such as Bi2Te3 typically have a ZT of ~1 at 300 K

Bowers, John

232

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

SciTech Connect (OSTI)

In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

233

Antifuse with a single silicon-rich silicon nitride insulating layer  

DOE Patents [OSTI]

An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

Habermehl, Scott D.; Apodaca, Roger T.

2013-01-22T23:59:59.000Z

234

Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant 585

235

Time and Materials Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L L E1, 4/9/13)

236

Time and Materials Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L L E1, 4/9/13)2,

237

Time and Materials Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L L E1,

238

Time and Materials Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L L E1,4,

239

Development of in-situ toughened silicon-rich alloys : a new class of castable engineering ceramics  

E-Print Network [OSTI]

Despite having a broad set of desirable properties, silicon's potential as a primary constituent in a structural material has not yet been realized because of its extremely low fracture toughness. Motivated by the ...

Fischer, David S., Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

240

3.012 Fundamentals of Materials Science, Fall 2003  

E-Print Network [OSTI]

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

Marzari, Nicola

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hole Selective MoOx Contact for Silicon Solar Cells Corsin Battaglia,,,  

E-Print Network [OSTI]

Hole Selective MoOx Contact for Silicon Solar Cells Corsin Battaglia,,, Xingtian Yin,,,§, Maxwell, University of California, Berkeley, California 94720, United States Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § Electronic Materials Research

Javey, Ali

242

High temperature mechanical performance of a hot isostatically pressed silicon nitride  

SciTech Connect (OSTI)

Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others] [and others

1996-01-01T23:59:59.000Z

243

Anchored nanostructure materials and method of fabrication  

DOE Patents [OSTI]

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

244

Thin Silicon MEMS Contact-Stress Sensor  

SciTech Connect (OSTI)

This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

Kotovsky, J; Tooker, A; Horsley, D A

2009-12-07T23:59:59.000Z

245

Large scale molecular dynamics modeling of materials fabrication processes  

SciTech Connect (OSTI)

An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

1994-02-01T23:59:59.000Z

246

Microstructure and properties of IN SITU toughened silicon carbide  

SciTech Connect (OSTI)

A silicon carbide with a fracture toughness as high as 9.1 MPa.m1/2 has been developed by hot pressing b-SiC powder with aluminum, boron, and carbon additions (ABC-SiC). Central in this material development has been systematic transmission electron microscopy (TEM) and mechanical characterizations. In particular, atomic-resolution electron microscopy and nanoprobe composition quantification were combined in analyzing grain boundary structure and nanoscale structural features.

De Jonghe, Lutgard C.; Ritchie, Robert O.; Zhang, Xiao Feng

2003-05-01T23:59:59.000Z

247

Formation of thin-film resistors on silicon substrates  

DOE Patents [OSTI]

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

248

Ceramic composites reinforced with modified silicon carbide whiskers  

DOE Patents [OSTI]

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

249

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

hydrogen dilution in silane on light induced degradation of hydrogenated amor- phous silicon films for solar photovoltaichydrogen content from 14-22%[76]. Hydrogenated amorphous silicon has promise as a photovoltaic

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

250

Nucleation and solidification of silicon for photovoltaics  

E-Print Network [OSTI]

The majority of solar cells produced today are made with crystalline silicon wafers, which are typically manufactured by growing a large piece of silicon and then sawing it into ~200 pm wafers, a process which converts ...

Appapillai, Anjuli T. (Anjuli Tara)

2010-01-01T23:59:59.000Z

251

Equilibrium shapes of polycrystalline silicon nanodots  

SciTech Connect (OSTI)

This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

2014-02-21T23:59:59.000Z

252

System and method for liquid silicon containment  

DOE Patents [OSTI]

This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

2013-05-28T23:59:59.000Z

253

Silicon Micromachined Dimensional Calibration Artifact for Mesoscale...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2...

254

System and method for liquid silicon containment  

SciTech Connect (OSTI)

This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

2014-06-03T23:59:59.000Z

255

Copper doped polycrystalline silicon solar cell  

DOE Patents [OSTI]

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

256

Silicon crystal growing by oscillating crucible technique  

DOE Patents [OSTI]

A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

Schwuttke, G.H.; Kim, K.M.; Smetana, P.

1983-08-03T23:59:59.000Z

257

Composite materials comprising two jonal functions and methods for making the same  

DOE Patents [OSTI]

The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

Fareed, Ali Syed (Newark, DE); Garnier, John Edward (Newark, DE); Schiroky, Gerhard Hans (Newark, DE); Kennedy, Christopher Robin (Newark, DE); Sonuparlak, Birol (Longmont, CO)

2001-01-01T23:59:59.000Z

258

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents [OSTI]

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

259

Process of preparing tritiated porous silicon  

DOE Patents [OSTI]

A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

Tam, S.W.

1997-02-18T23:59:59.000Z

260

Process of preparing tritiated porous silicon  

DOE Patents [OSTI]

A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

Tam, Shiu-Wing (Downers Grove, IL)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics  

DOE Patents [OSTI]

A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

Becher, Paul F. (Oak Ridge, TN); Lin, Hua-Tay (Oak Ridge, TN)

2011-06-28T23:59:59.000Z

262

Final report on LDRD Project: Quantum confinement and light emission in silicon nanostructures  

SciTech Connect (OSTI)

Electrochemically formed porous silicon (PS) was reported in 1991 to exhibit visible photoluminescence. This discovery could lead to the use of integrated silicon-based optoelectronic devices. This LDRD addressed two general goals for optical emission from Si: (1) investigate the mechanisms responsible for light emission, and (2) tailor the microstructure and composition of the Si to obtain photoemission suitable for working devices. PS formation, composition, morphology, and microstructure have been under investigation at Sandia for the past ten years for applications in silicon-on-insulator microelectronics, micromachining, and chemical sensors. The authors used this expertise to form luminescent PS at a variety of wavelengths and have used analytical techniques such as in situ Raman and X-ray reflectivity to investigate the luminescence mechanism and quantify the properties of the porous silicon layer. Further, their experience with ion implantation in Si lead to an investigation into alternate methods of producing Si nanostructures that visibly luminesce.

Guilinger, T.R.; Kelly, M.J.; Follstaedt, D.M. [and others

1995-02-01T23:59:59.000Z

263

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

264

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

265

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

266

Real-time process sensing and metrology in amorphous and selective area silicon plasma enhanced chemical vapor deposition using in situ  

E-Print Network [OSTI]

Real-time process sensing and metrology in amorphous and selective area silicon plasma enhanced Materials Processing, North Carolina State University, Raleigh, North Carolina 27695 Received 11 July 1996 silicon deposition. The ability of mass spectrometry to observe process faults in real time is also

Rubloff, Gary W.

267

Flight capabilities of high-speed-missile radome materials  

SciTech Connect (OSTI)

Flight-performance modeling is conducted to compare the qualities of four radome materials in the light of three radome materials currently in use. The current radome materials are slip-cast fused silica, Rayceram 8, and Pyroceram 9606, and the ceramics tested for possible application are celsian, nitroxyceram, hot-pressed silicon nitride, and reaction-bonded silicon nitride. A computer model called URLIM for performing time-dependent heating analyses for radome geometries is described, and a radome model is defined for each material and flown on a thermally stressful trajectory. The materials are evaluated in terms of thermal stress, boresight error slope change, erosion resistance, and nuclear blast. The mixed results show that: (1) slip-cast fused silica shows good electrical and mechanical performance; (2) hot-pressed silicon nitride offers good erosion resistance; and (3) cordierites provide poor electrical performance. 10 refs.

Kouroupis, J.B. (Johns Hopkins Univ., Laurel, MD (United States))

1992-09-01T23:59:59.000Z

268

Microelectromechanical pump utilizing porous silicon  

DOE Patents [OSTI]

A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

2011-07-19T23:59:59.000Z

269

Dispersion toughened silicon carbon ceramics  

DOE Patents [OSTI]

Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

Wei, G.C.

1984-01-01T23:59:59.000Z

270

Method for fabricating silicon cells  

DOE Patents [OSTI]

A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

1998-08-11T23:59:59.000Z

271

Method for fabricating silicon cells  

DOE Patents [OSTI]

A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

Ruby, D.S.; Basore, P.A.; Schubert, W.K.

1998-08-11T23:59:59.000Z

272

Silicon Sensors for Trackers at High-Luminosity Environment  

E-Print Network [OSTI]

The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than the one of LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented.

Timo Peltola

2014-11-26T23:59:59.000Z

273

Electronic Supplementary Material Scalable preparation of porous silicon nanoparticles and  

E-Print Network [OSTI]

and their application for lithium-ion battery anodes Mingyuan Ge1 , Jiepeng Rong1 , Xin Fang1 , Anyi Zhang1 , Yunhao Lu2. The term PV is of the order of 10­5 eV, and TS is of the order of the thermal energy, which is much smaller

Zhou, Chongwu

274

Anhui Tiansheng Silicon Material Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments |Anhui Kangyuan Electric Power Group

275

Shaanxi Tianhong Silicon Material Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren, New Jersey:Information

276

Narrow band gap amorphous silicon semiconductors  

DOE Patents [OSTI]

Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

Madan, A.; Mahan, A.H.

1985-01-10T23:59:59.000Z

277

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

Iverson, Daniel C. (Aiken, SC)

1990-01-01T23:59:59.000Z

278

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

279

Effects of surface grinding conditions on the reciprocating friction and wear behavior of silicon nitride  

SciTech Connect (OSTI)

The relationship between two significantly different surface grinding conditions and the reciprocating ball-on-flat friction and wear behavior of a high-quality, structural silicon nitride material (GS-44) was investigated. The slider materials were silicon nitride NBD 200 and 440C stainless steel. Two machining conditions were selected based on extensive machining and flexural strength test data obtained under the auspices of an international, interlaboratory grinding study. The condition categorized as {open_quotes}low strength{close_quote} grinding used a coarse 80 grit wheel and produced low flexure strength due to machining-induced flaws in the surface. The other condition, regarded as {open_quotes}high strength grinding,{close_quotes} utilized a 320 grit wheel and produced a flexural strength nearly 70% greater. Grinding wheel surface speeds were 35 and 47 m/s. Reciprocating sliding tests were conducted following the procedure described in a newly-published ASTM standard (G- 133) for linearly-reciprocating wear. Tests were performed in directions both parallel and perpendicular to the grinding marks (lay) using a 25 N load, 5 Hz reciprocating frequency, 10 mm stroke length, and 100 m of sliding at room temperature. The effects of sliding direction relative to the lay were more pronounced for stainless steel than for silicon nitride sliders. The wear of stainless steel was less than the wear of the silicon nitride slider materials because of the formation of transfer particles which covered the sharp edges of the silicon nitride grinding grooves and reduced abrasive contact. The wear of the GS-44 material was much greater for the silicon nitride sliders than for the stainless steel sliders. The causes for the effects of surface-grinding severity and sliding direction on friction and wear of GS-44 and its counterface materials are explained.

Blau, P.J.; Martin, R.L.; Zanoria, E.S.

1997-12-31T23:59:59.000Z

280

Influence Of Ultrasonic Waves On The Formation Of High Pores Silicon Carbide  

SciTech Connect (OSTI)

The Challenge to produce a quality Silicon Carbide that combination high surface area is promising and this material can be used in many application such as Hydrogen storage materials. Synthesis of high surface area carbon materials by selective etching of Silicon Carbide with choric acid while exposing ultrasonic wave have been made.Powder Of Sic (surface area 17.8 m{sup 2}/g) was treated in the chloric acetic as well as their mixture of various compositions and various time exposure of ultrasonic waves. Surface area and pore size can be controlled by temperature and concentration composition of Chloric and time exposure of ultrasonic wave.The resultant carbon and carbon-silicon carbide composite powders were characterized X-ray diffraction and Electron microscope. To determine a conversion degree of silicon carbide due to influence of the ultrasonic wave, the samples were annealed in open air at 1000 deg. C. There by carbon component of the carbon/silicon carbide composite was completely oxidized. The analysis of the samples shows the strong influence of time exposure of ultrasonic waves on the formation of pores.

Toana, Musfirah C. F. [Physics Dept. University of Tadulako (Indonesia); Soegijono, B.; Hikam, M. [Physics Dept. University of Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Silicon buried gratings for dielectric laser electron accelerators  

SciTech Connect (OSTI)

This paper describes design and simulations of dielectric laser electron accelerators that achieve Gigavolt-per-meter (GV/m) accelerating gradients and wide electron channels (>1??m). The accelerator design is based on a silicon buried grating structure that enables flexible phase synchronization, large electron channel fields, and low standing-wave ratio in the material. This design increases the accelerating gradients to more than double those of reported quartz grating accelerators, thereby reducing the input laser fluence by 60% for the same accelerating gradient. With a 100 fs pulsed laser, our silicon buried gratings can achieve a maximum gradient of 1.1 GV/m, indicating that these accelerators have potential for numerous electron-accelerator applications.

Chang, Chia-Ming, E-mail: cachang@alumni.stanford.edu [Bell Labs, Alcatel-Lucent, 791 Holmdel Road, Holmdel, New Jersey 07733 (United States); Solgaard, Olav [E. L. Ginzton Lab., Stanford University, Stanford, California 94305 (United States)

2014-05-05T23:59:59.000Z

282

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

283

First-principles Approaches to Simulate Lithiation in Silicon Electrodes  

E-Print Network [OSTI]

Silicon is viewed as an excellent electrode material for lithium batteries due to its high lithium storage capacity. Various Si nano-structures, such as Si nanowires, have performed well as lithium battery anodes and have opened up exciting opportunities for the use of Si in energy storage devices. The mechanism of lithium insertion and the interaction between Li and the Si electrode must be understood at the atomic level; this understanding can be achieved by first-principles simulation. Here, first-principles computations of lithiation in silicon electrodes are reviewed. The review focuses on three aspects: the various properties of bulk Li-Si compounds with different Li concentrations, the electronic structure of Si nanowires and Li insertion behavior in Si nanowires, and the dynamic lithiation process at the Li/Si interface. Potential study directions in this research field and difficulties that the field still faces are discussed at the end.

Zhang, Qianfan; Wang, Enge

2013-01-01T23:59:59.000Z

284

Performance of the CLAS12 Silicon Vertex Tracker modules  

SciTech Connect (OSTI)

For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

Antonioli, Mary Ann [JLAB; Boiarinov, Serguie; Bonneau, Peter R. [JLAB; Elouadrhiri, Latifa [JLAB; Eng, Brian J. [JLAB; Gotra, Yuri N. [JLAB; Kurbatov, Evgeny O. [Moscow State U.; Leffel, Mindy A. [JLAB; Mandal, Saptarshi [JLAB; McMullen, Marc E. [JLAB; Merkin, Mikhail M. [Moscow State U.; Raydo, Benjamin J. [JLAB; Teachey, Robert W, [JLAB; Tucker, Ross J. [Arizona State U.; Ungaro, Maurizio [JLAB; Yegneswaran, Amrit S. [JLAB; Ziegler, Veronique [JLAB

2013-12-01T23:59:59.000Z

285

Synthesis and characterization of a new silicone multiblock polymer  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has an active interest in the synthesis of new polysiloxanes as base polymers for cellular silicone materials. These elastomers have properties uniquely suited to very specific engineering requirements. While the polymers which we have prepared via random equilibrium of various cyclic tetrasiloxanes have adequate properties for certain applications, there is evidence to suggest that alternating block polysiloxanes prepared via condensation-polymerization techniques have properties more suited to our end uses as flexible foam materials (cushions). The synthetic sequence developed to prepare these materials involves reactions of functionally terminated (silylamino and silanol) polysiloxane oligomers to produce alternating multiblock (ABAB...) materials of high molecular weight. Dialkylamines are condensation byproducts in this reaction. The analysis and characterization of these multiblock polymers is reported.

Riley, M.O.; Kolb, J.R.; Jessop, E.S.

1982-05-10T23:59:59.000Z

286

Self-Assembly in Systems Containing Silicone Compounds  

SciTech Connect (OSTI)

Chemical systems formed by silicone solvents and surfactants have potential applications in a variety of industrial products. In spite of their technological relevance, there are few reports on the scientific literature that focus on characterizing such ternary systems. In this work, we have aimed to develop a general, structural investigation on the phase diagram of one system that typically comprises silicone-based chemicals, by means of the SAXS (small-angle X-ray scattering) technique. Important features such as the presence of diverse aggregation states in the overall system, either on their own or in equilibrium with other structures, have been detected. As a result, optically isotropic chemical systems (direct and/or reversed microemulsions) and liquid crystals with lamellar or hexagonal packing have been identified and characterized.

Ferreira, Maira Silva; Loh, Watson [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brasil Caixa Postal 6154, CEP 13083-970 (Brazil)

2009-01-29T23:59:59.000Z

287

Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films  

SciTech Connect (OSTI)

Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (?-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0?nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4?nm and P5 from 570.2 to 587.8?nm with temperature increasing from 600 to 900?°C. But then are both blue-shifted, P4 to 500.2?nm and P5 to 573.8?nm from 900 to 1200?°C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich ?-SiC: H materials.

Wen, Guozhi [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Electronic and Electrical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023 (China); Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixin; Liao, Wugang [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2014-04-28T23:59:59.000Z

288

General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version) ThelongEmailStatusGeneralGeneral

289

Amorphous silicon passivated contacts for diffused junction silicon solar cells  

SciTech Connect (OSTI)

Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

Bullock, J., E-mail: james.bullock@anu.edu.au; Yan, D.; Wan, Y.; Cuevas, A. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [École Polytechnique Fédérale de Lausanne (EPFL), Institute of micro engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory, Maladière 71, CH-200 Neuchâtel (Switzerland)

2014-04-28T23:59:59.000Z

290

General Engineer / Physical Scientist (Classification Analyst)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a General Engineer or Physical Scientist in the Materials Control & Accountability and Information Security Branch, Office of Assistant...

291

Interdisciplinary General Engineer/Physical Scientist  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as an Interdisciplinary General Engineer/Physical Scientist supporting advanced lightweight materials technology development and manufacturing...

292

Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

Coronel, Naomi (Naomi Cristina)

2009-01-01T23:59:59.000Z

293

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network [OSTI]

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

Nominanda, Helinda

2004-01-01T23:59:59.000Z

294

The CDF silicon vertex trigger  

SciTech Connect (OSTI)

The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.

B. Ashmanskas; A. Barchiesi; A. Bardi

2003-06-23T23:59:59.000Z

295

Spectral Reflectance of Silicon Photodiodes  

E-Print Network [OSTI]

Introduction Silicon photodiodes are among the most popular photodetectors that combine high performance over a wide wavelength range with unparalleled ease of use. High-quality photodiodes, in the form of a trap detector, 1,2 have many significant applications in precision radiometry. Their predictable responsivity in visible and near-infrared ~NIR! wavelengths allows the realization of high-accuracy spectral responsivity scales. 3,4 The spectral responsivity scales can be utilized in, for example, realization of luminous intensity 5,6 and spectral irradiance scales. 7,8 The spectral responsivity of a silicon photodiode is determined by the reflectance of the diode surface r~l! and the internal quantum deficiency d~l!. The values of d~l! and r~l! can be extrapolated 4 by mathematical models. To extrapolate the val

Atte Haapalinna; Petri Kärhä; Erkki Ikonen

296

3500-hour durability testing of commercial ceramic materials. Interim report  

SciTech Connect (OSTI)

A two-year durability testing program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500/sup 0/F and 3500 h. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered ..cap alpha..-SiC and British Nuclear Fuels, Ltd. Refel reaction sintered silicon carbide marketed by Pure Carbon Co. These materials initially were exposed to 350 h/1750 cycles at 1200 and 1370/sup 0/C (2200 and 2500/sup 0/F). Subsequent exposures to 1050, 2100, and 3500 h were performed on the materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimension changes, weight changes, dye penetrant, specific damping capacity changes, Scanning Electron Microscope (SEM) fractography and x-ray diffraction.

Carruthers, W.D.; Richerson, D.W.; Benn, K.W.

1980-07-01T23:59:59.000Z

297

Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies  

DOE Patents [OSTI]

A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

Blewer, Robert S. (Albuquerque, NM); Gullinger, Terry R. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

298

Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer  

E-Print Network [OSTI]

We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle ...

Isaacson, David M.

299

Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells  

SciTech Connect (OSTI)

In order to improve the efficiencies of silicon solar cells, paste to silicon contact formation mechanisms must be more thoroughly understood as a function of paste chemistry, wafer properties and firing conditions. Ferro Corporation has been involved in paste development for over 30 years and has extensive expertise in glass and paste formulations. This project has focused on the characterization of the interface between the top contact material (silver paste) and the underlying silicon wafer. It is believed that the interface between the front contact silver and the silicon wafer plays a dominant role in the electrical performance of the solar cell. Development of an improved front contact microstructure depends on the paste chemistry, paste interaction with the SiNx, and silicon (“Si”) substrate, silicon sheet resistivity, and the firing profile. Typical front contact ink contains silver metal powders and flakes, glass powder and other inorganic additives suspended in an organic medium of resin and solvent. During fast firing cycles glass melts, wets, corrodes the SiNx layer, and then interacts with underlying Si. Glass chemistry is also a critical factor in the development of an optimum front contact microstructure. Over the course of this project, several fundamental characteristics of the Ag/Si interface were documented, including a higher-than-expected distribution of voids along the interface, which could significantly impact electrical conductivity. Several techniques were also investigated for the interfacial analysis, including STEM, EDS, FIB, EBSD, and ellipsometry.

Duty, C.; Jellison, D. G.E. P.; Joshi, P.

2012-04-05T23:59:59.000Z

300

Nonlinear absorption in silicon nanocrystals  

SciTech Connect (OSTI)

The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)

Korovin, S B; Orlov, A N; Prokhorov, A M; Pustovoi, V I [Natural Science Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Konstantaki, M; Couris, S; Koudoumas, E [Foundation for Research and Technology-Hellas (IESL-FORTH), Institute of Electronic Structure and Lasers, Crete (Greece)

2001-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Silicon Sheets By Redox Assisted Chemical Exfoliation  

E-Print Network [OSTI]

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.

Tchalala, Mohamed Rachid; Enriquez, Hanna; Kara, Abdelkader; Lachgar, Abdessadek; Yagoubi, Said; Foy, Eddy; Vega, Enrique; Bendounan, Azzedine; Silly, Mathieu G; Sirotti, Fausto; Nitshe, Serge; Chaudanson, Damien; Jamgotchian, Haik; Aufray, Bernard; Mayne, Andrew J; Dujardin, Gérald; Oughaddou, Hamid

2013-01-01T23:59:59.000Z

302

Diamond-silicon carbide composite and method  

DOE Patents [OSTI]

Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

Zhao, Yusheng (Los Alamos, NM)

2011-06-14T23:59:59.000Z

303

Structural alloy with a protective coating containing silicon or silicon-oxide  

DOE Patents [OSTI]

This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

Natesan, K.

1992-01-01T23:59:59.000Z

304

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices  

E-Print Network [OSTI]

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist. The Si NW arrays were embedded in SOG to form a dense and robust composite material for device

Bowers, John

305

Transition metal interaction and Ni-Fe-Cu-Si phases in silicon T. Buonassisi,b  

E-Print Network [OSTI]

precipitation may reduce the lattice mismatch compared to single-metal precipitates, rendering mixed-metal-silicide recombination activity of metal silicide clusters. Common solar cell materials are not contaminated with justTransition metal interaction and Ni-Fe-Cu-Si phases in silicon M. Heuer,a T. Buonassisi,b A. A

306

The electrical and optical properties of thin lm diamond implanted with silicon  

E-Print Network [OSTI]

:Si alloys were formed by the implantation of Si into polycrystalline diamond ®lms grown by che- mical vaporThe electrical and optical properties of thin ®lm diamond implanted with silicon K.J. Roea,* , J of diamond make it an attractive material for use in extreme conditions. Diamond devices have been fabricated

Kolodzey, James

307

THE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON  

E-Print Network [OSTI]

devices. The C:Si alloys were formed by the implantation of Si into polycrystalline diamond films grownTHE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON K. J. Roe and J and electrical properties of diamond make it an attractive material for use in extreme conditions. Diamond

Kolodzey, James

308

FIELD EMISSION FROM BORON-DOPING POLYCRYSTALLINE DIAMOND FILMS ON SILICON  

E-Print Network [OSTI]

FIELD EMISSION FROM BORON-DOPING POLYCRYSTALLINE DIAMOND FILMS ON SILICON J. A. N. Gonçalves, G. M material fail. The field emission current from boron-doped polycrystalline diamond films grown by hot Campos, SP, Brazi Abstract This work deals with the study and development of the boron-doped diamond

309

Estimation of solidification interface shapes in a boronphosphorus compensated multicrystalline silicon ingot via photoluminescence imaging  

E-Print Network [OSTI]

0200, Australia b APOLLON SOLAR, 66 Cours Charlemagne, 69002 Lyon, France a r t i c l e i n f o Article solar cells from this kind of material lies in the ability of the silicon growth process to obtain presented to attach cameras on two sides of a transparent furnace, allowing interface shapes to be estimated

310

Present status and future prospects of electro-magnetic casting for silicon solar cells  

SciTech Connect (OSTI)

The development research of Electro-Magnetic Casting (EMC) for silicon crystal manufacturing technology has been carried out for years with the purpose of providing low cost multicrystalline silicon substrate for solar cells. The EMC technology is a new concept, in which electromagnetic force is utilized to suspend molten metal without contact to crucible wall for melting and solidification of silicon material. At present, the research has been carried out for the development of casting technique with an ingot size of 22 x 22 cm{sup 2} cross section, and the furnace construction for producing a 35 x 35 cm{sup 2} cross sectioned ingot has been begun. Solar cell conversion efficiencies using EMC ingot crystals are ranging from 13--14% at the present, and the quality of EMC material reaches within that of conventional mold casting material. By the improvements of higher casting speed, higher material quality and larger ingot size at the EMC technology, it is expected that a new casting technique for lower cost ingot production will be realized. The paper describes the features of EMC technology, the silicon EMC furnace, crystalline properties of EMC ingots, electric power consumption of EMC, and cost comparison of the EMC and Czychralski pulling methods.

Kaneko, Kyojiro; Kawamura, Ritsuo; Misawa, Teruoki [Sumitomo SiTiX Corp., Amagasaki, Hyogo (Japan). Research and Development Center

1994-12-31T23:59:59.000Z

311

4600 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2006 Silicon Photonics  

E-Print Network [OSTI]

the lowest cost (per unit area) and the highest crystal quality of any semiconductor material. The industry of the state of the art in silicon photonics and outlines challenges that must be overcome before large corporations and government agencies that have fueled spectacular progress in the last five years. Rather than

Jalali. Bahram

312

Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel  

E-Print Network [OSTI]

Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers 26, 2009 (Doc. ID 102944); published March 3, 2009 Micro-Raman spectroscopy was used to study transparent hydro- gel polymer materials through a high (or medium) nu- merical aperture (NA) objective

Novotny, Lukas

313

Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Abstract: Silicon (Si) has a...

314

Microstructure and properties of IN SITU toughened silicon carbide  

E-Print Network [OSTI]

IN SITU TOUGHENED SILICON CARBIDE LUTGARD C. DE JONGHE 1,2 ,In Situ Toughened Silicon Carbide Lutgard C. De Jonghe 1,2 ,USA ABSTRACT A silicon carbide with a fracture toughness as

De Jonghe, Lutgard C.; Ritchie, Robert O.; Zhang, Xiao Feng

2003-01-01T23:59:59.000Z

315

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

316

Advanced crystallization techniques of ''solar grade'' silicon  

SciTech Connect (OSTI)

Microstructural, electrical and photovoltaic characteristics of polycristalline silicon solar cells fabricated with silicon ingots containing 5, 100 and 500 ppmw iron are reported and discussed. All silicon ingots were grown by the directional solidification technique in graphite or special quartz molds and doped intentionally with iron, in order to evaluate the potentiality of the D.S. technique when employed with solar silicon feedstocks. Results indicate that structural breakdown limits the amount of the ingot which is usable for solar cells fabrication, but also that efficiencies in excess of 10% are obtained using the ''good'' region of the ingot.

Gasparini, M.; Alessandri, M.; Calligarich, C.; Pizzini, S.; Rava, P.; Redaelli, F.; Sardi, L.

1982-09-01T23:59:59.000Z

317

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

318

Silicon nitride having a high tensile strength  

DOE Patents [OSTI]

A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

1998-01-01T23:59:59.000Z

319

Engineering Metal Impurities in Multicrystalline Silicon Solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from inexpensive low-grade silicon. Artist's impression of an intense beam of synchrotron light striking a solar cell and the resulting fluorescence image of the distribution of...

320

Enabling Thin Silicon Solar Cell Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

322

Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications  

SciTech Connect (OSTI)

Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

2013-11-14T23:59:59.000Z

323

Experimental studies of radiation damage of silicon detectors. Internal report  

SciTech Connect (OSTI)

New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences.

Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A. [Univ. of Bucharest (Romania); Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A. [JINR, Dubna (Russian Federation); Biggeri, U.; Borchi, E.; Bruzzi, M. [Univ. of Florence (Italy)]|[INFN, Florence (Italy); Li, Z.; Kraner, H.W. [Brookhaven National Lab., Upton, NY (United States)

1994-02-01T23:59:59.000Z

324

Characterization of nitrided silicon-silicon dioxide interfaces  

SciTech Connect (OSTI)

A newly-developed technique for the simultaneous characterization of the oxide-silicon interface properties and of bulk impurities was used for a systematic study of the nitridation process of thin oxides. This technique is based upon surface recombination velocity measurements, and does not require the formation of a capacitor structure, so it is very suitable for the characterization of as-grown interfaces. Oxides grown both in dry and in wet environments were considered, and nitridation processes in N{sub 2}O and in NO were compared to N{sub 2} annealing processes. The effect of nitridation temperature and duration were also studied, and RTO/RTN processes were compared to conventional furnace nitridation processes. Surface recombination velocity was correlated with nitrogen concentration at the oxide-silicon interface obtained by Secondary Ion Mass Spectroscopy (SIMS) measurements. Surface recombination velocity (hence surface state density) decreases with increasing nitrogen pile-up at the oxide-silicon interface, indicating that in nitrided interfaces surface state density is limited by nitridation. NO treatments are much more effective than N{sub 2}O treatments in the formation of nitrogen-rich interface layer and, as a consequence, in surface state reduction. Surface state density was measured in fully processed wafers before and after constant current stress. After a complete device process surface states are annealed out by hydrogen passivation, however they are reactivated by the electrical stress, and surface state results after stress were compared with data of surface recombination velocity in as-processed wafers.

Polignano, M.L.; Alessandri, M.; Brazzelli, D. [and others

2000-07-01T23:59:59.000Z

325

Advanced Measurements of Silicon Carbide Ceramic Matrix Composites  

SciTech Connect (OSTI)

Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of in-service degradation. Examples include composite density, distribution of porosity, fiber-matrix bond character, uniformity of weave, physical damage, and joint quality at interface bonds.

Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

2012-08-01T23:59:59.000Z

326

General Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepool QuarterlyGeneraland Ernest O.General

327

General Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch to sponsorGeneral Atomics

328

General Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version) ThelongEmailStatusGeneral Publications

329

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

330

Synthesis and Characterization of Silicon Clathrates for Anode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE...

331

Mesoporous Silicon Sponge as an Anti-Pulverization Structure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for...

332

Atomistic modeling of amorphous silicon carbide using a bond...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modeling of amorphous silicon carbide using a bond-order potential. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Abstract: Molecular dynamics...

333

Irradiation-induced defect clustering and amorphization in silicon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

334

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

335

Vehicle Technologies Office Merit Review 2014: Silicon Nanowire...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Merit Review 2014: Silicon Nanowire Anodes for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for...

336

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

337

Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based...

338

amorphous silicon carbon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

339

amorphous silicon film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

340

amorphous hydrogenated silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gunther; Baets, Roel 2011-01-01 36 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

amorphous silicon epid: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

342

amorphous silicon arrays: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amorphous carbon Wang, Zhong L. 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

343

amorphous silicon alloy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

344

amorphous silicon studied: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yang, Cheng-Chieh 2012-01-01 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

345

amorphous silicon films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

346

amorphous silicon sensor: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

347

amorphous silicon nanoparticles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

348

amorphous silicon alloys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

349

amorphous silicon solar: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

350

amorphous silicon thin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 6 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

351

amorphous silicon tft: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

352

amorphous silicon photovoltaic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties Mazur, Eric 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

353

amorphous silicon final: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

354

amorphous silicon diodes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

355

amorphous silicon surfaces: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

356

amorphous silicon technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies is presented. Then 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

357

amorphous silicon electronic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies is presented. Then 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

358

amorphous silicon dioxide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

359

amorphous silicon oxynitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 15 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

360

amorphous silicon schottky: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

amorphous silicon nitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paris-Sud XI, Universit de 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

362

amorphous silicon layers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 16 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

363

amorphous silicon detector: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

364

area amorphous silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

365

amorphous silicon measured: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

366

amorphous silicon deposited: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 23 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

367

amorphous silicon flat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

368

amorphous silicon modules: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

369

amorphous silicon sensors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

370

amorphous silicon carbonitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

371

amorphous silicon research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

372

amorphous silicon prepared: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nominanda, Helinda 2008-10-10 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

373

amorphous silicon microdisk: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 24 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

374

amorphous silicon germanium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Si-I or Ge Wang, Wei Hua 37 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

375

amorphous silicon radiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

376

amorphous silicon pixel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 14 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

377

area silicon sheet: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(ii) an aluminium oxidesilicon nitride stack. The rear contacts to the silicon base% on monocrystalline silicon wafers 1. Among others two loss mechanisms limit the conversion...

378

Silicon Nanostructure-based Technology for Next Generation Energy...  

Broader source: Energy.gov (indexed) [DOE]

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells...

379

Hydrogen Bubbles and Formation of Nanoporous Silicon during Electroche...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Abstract: Many...

380

PROPERTIES OF DEFECTS AND IMPLANTS IN Mg+ IMPLANTED SILICON CARBIDE  

SciTech Connect (OSTI)

As a candidate material for fusion reactor designs, silicon carbide (SiC) under high-energy neutron irradiation undergoes atomic displacement damage and transmutation reactions that create magnesium as one of the major metallic products. The presence of Mg and lattice disorder in SiC is expected to affect structural stability and degrade thermo-mechanical properties that could limit SiC lifetime for service. We have initiated a combined experimental and computational study that uses Mg+ ion implantation and multiscale modeling to investigate the structural and chemical effects in Mg implanted SiC and explore possible property degradation mechanisms.

Jiang, Weilin; Zhu, Zihua; Varga, Tamas; Bowden, Mark E.; Manandhar, Sandeep; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

2013-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

III-V Growth on Silicon Toward a Multijunction Cell  

SciTech Connect (OSTI)

A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

2005-11-01T23:59:59.000Z

382

Assembly and magnetic properties of nickel nanoparticles on silicon nanowires  

SciTech Connect (OSTI)

The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

Picraux, Samuel T [Los Alamos National Laboratory; Manandhar, Pradeep [Los Alamos National Laboratory; Nazaretski, E [Los Alamos National Laboratory; Thompson, J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

383

Computational modeling and analysis of thermoelectric properties of nanoporous silicon  

SciTech Connect (OSTI)

In this paper, thermoelectric properties of nanoporous silicon are modeled and studied by using a computational approach. The computational approach combines a quantum non-equilibrium Green's function (NEGF) coupled with the Poisson equation for electrical transport analysis, a phonon Boltzmann transport equation (BTE) for phonon thermal transport analysis and the Wiedemann-Franz law for calculating the electronic thermal conductivity. By solving the NEGF/Poisson equations self-consistently using a finite difference method, the electrical conductivity ? and Seebeck coefficient S of the material are numerically computed. The BTE is solved by using a finite volume method to obtain the phonon thermal conductivity k{sub p} and the Wiedemann-Franz law is used to obtain the electronic thermal conductivity k{sub e}. The figure of merit of nanoporous silicon is calculated by ZT=S{sup 2}?T/(k{sub p}+k{sub e}). The effects of doping density, porosity, temperature, and nanopore size on thermoelectric properties of nanoporous silicon are investigated. It is confirmed that nanoporous silicon has significantly higher thermoelectric energy conversion efficiency than its nonporous counterpart. Specifically, this study shows that, with a n-type doping density of 10{sup 20}?cm{sup –3}, a porosity of 36% and nanopore size of 3 nm ×?3?nm, the figure of merit ZT can reach 0.32 at 600?K. The results also show that the degradation of electrical conductivity of nanoporous Si due to the inclusion of nanopores is compensated by the large reduction in the phonon thermal conductivity and increase of absolute value of the Seebeck coefficient, resulting in a significantly improved ZT.

Li, H.; Yu, Y.; Li, G., E-mail: gli@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921 (United States)

2014-03-28T23:59:59.000Z

384

Evaluation of CVD silicon carbide for synchrotron radiation mirrors  

SciTech Connect (OSTI)

Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.

Takacs, P.Z.

1981-07-01T23:59:59.000Z

385

A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector  

SciTech Connect (OSTI)

Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

2011-01-01T23:59:59.000Z

386

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

387

Physical understanding and modeling of chemical mechanical planarization in dielectric materials  

E-Print Network [OSTI]

Chemical mechanical planarization (CMP) has become the enabling planarization technique of choice for current and emerging silicon integrated circuit (IC) fabrication processes. This work studies CMP in dielectric materials ...

Xie, Xiaolin, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

388

Heterogeneous lithium niobate photonics on silicon substrates  

E-Print Network [OSTI]

Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

Fathpour, Sasan

389

Bitcoin and the Age of Bespoke Silicon  

E-Print Network [OSTI]

Bitcoin and the Age of Bespoke Silicon Michael B. Taylor Associate Professor University of California, San Diego #12;This Talk Introduction An Overview of the Bitcoin Cryptocurrency Bitcoin's Computing Evolution Bespoke Silicon #12;Interesting Facts about Bitcoin The most successful digital

Wang, Deli

390

Buckeye Silicon | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village inBrownfieldBrussels,Buchtel, Ohio:Silicon Jump

391

Compensated amorphous-silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

392

Fabricating solar cells with silicon nanoparticles  

DOE Patents [OSTI]

A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

2014-09-02T23:59:59.000Z

393

Micro benchtop optics by bulk silicon micromachining  

DOE Patents [OSTI]

Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

394

Development of Spintronic Bandgap Materials  

SciTech Connect (OSTI)

The development of Ge/Si quantum dots with high spatial precision has been pursued, with the goal of developing a platform for “spintronics bandgap materials”. Quantum dots assemblies were grown by molecular beam epitaxy on carbon-templated silicon substrates. These structures were characterized by atomic force microscopy. Vertically gated structures were created on systems with up to six well-defined quantum dots with a controlled geometric arrangement, and low-temperature (mK) transport experiments were performed. These experiments showed evidence for a crossover from diamagnetic to Zeeman energy shifts in resonant tunneling of electrons through electronic states in the quantum dots.

Levy, Jeremy; Awschalom, David; Floro, Jerrold

2014-02-16T23:59:59.000Z

395

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

396

Hybrid sol-gel optical materials  

DOE Patents [OSTI]

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

397

Hybrid sol-gel optical materials  

DOE Patents [OSTI]

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, J.M.

1993-04-20T23:59:59.000Z

398

Hybrid sol-gel optical materials  

DOE Patents [OSTI]

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

399

Thermoelectric materials having porosity  

DOE Patents [OSTI]

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

400

Growth of silicon quantum dots by oxidation of the silicon nanocrystals embedded within silicon carbide matrix  

SciTech Connect (OSTI)

A moderately low temperature (?800 °C) thermal processing technique has been described for the growth of the silicon quantum dots (Si-QD) within microcrystalline silicon carbide (?c-SiC:H) dielectric thin films deposited by plasma enhanced chemical vapour deposition (PECVD) process. The nanocrystalline silicon grains (nc-Si) present in the as deposited films were initially enhanced by aluminium induced crystallization (AIC) method in vacuum at a temperature of T{sub v} = 525 °C. The samples were then stepwise annealed at different temperatures T{sub a} in air ambient. Analysis of the films by FTIR and XPS reveal a rearrangement of the ?c-SiC:H network has taken place with a significant surface oxidation of the nc-Si domains upon annealing in air. The nc-Si grain size (D{sub XRD}) as calculated from the XRD peak widths using Scherrer formula was found to decrease from 7 nm to 4 nm with increase in T{sub a} from 250 °C to 800 °C. A core shell like structure with the nc-Si as the core and the surface oxide layer as the shell can clearly describe the situation. The results indicate that with the increase of the annealing temperature in air the oxide shell layer becomes thicker and the nc-Si cores become smaller until their size reduced to the order of the Si-QDs. Quantum confinement effect due to the SiO covered nc-Si grains of size about 4 nm resulted in a photoluminescence peak due to the Si QDs with peak energy at 1.8 eV.

Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in [Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032 (India)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror  

SciTech Connect (OSTI)

Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

Zhang Lin [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

402

Mechanical Research and Development of monocrystalline silicon neutron beam window for CSNS  

E-Print Network [OSTI]

The monocrystalline silicon neutron beam window is one of the key components of neutron spectrometers and thin circular plate.Monocrystalline silicon is a brittle material and its strength is not constant but is consistent with the Weibull distribution. The window is designed not simply through the average strength, but according to the survival rate. Bending deformation is the main form of the window, so dangerous parts of the neutron beam window is stress-linearized to the combination of membrane stress and bending stress. According to the Weibull distribution of bending strength of monocrystalline silicon based on a large number of experimental data, finally the optimized neutron beam window is 1.5mm thick. Its survival rate is 0.9994 and its transmittance is 0.98447; it meets both physical requirements and the mechanical strength.

Zhou Liang; Qu Hua-Min

2014-11-24T23:59:59.000Z

403

Laser shock ignition of porous silicon based nano-energetic films  

SciTech Connect (OSTI)

Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131?MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

2014-08-07T23:59:59.000Z

404

Performance of MHD insulating materials in a potassium environment  

SciTech Connect (OSTI)

The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

Natesan, K.; Park, J.H.; Rink, D.L. (Argonne National Lab., IL (United States)); Thomas, C.A. (USDOE Pittsburgh Energy Technology Center, PA (United States))

1991-12-01T23:59:59.000Z

405

Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

2013-10-15T23:59:59.000Z

406

Gelcasting of CRYSTAR{reg_sign} silicon carbide ceramics. CRADA final report  

SciTech Connect (OSTI)

This Cooperative Research and Development Agreement (CRADA) was undertaken to assess the applicability the gelcasting process for forming ceramic green bodies using Saint-Gobain/Norton Industrial Ceramics Corporation`s proprietary CRYSTAR{reg_sign} silicon carbide powder. A gelcasting process, specifically tailored to Saint-Gobain/Norton`s powder composition, was developed and used successfully to form green bodies for property evaluation. This preliminary evaluation showed that the gelcast material had characteristics and properties comparable to Norton`s baseline material. Wafer carrier molds were received from Norton for gelcasting a complex-shaped configuration with CRYSTAR{reg_sign} silicon carbide. Gelcasting experiments showed that Norton`s standard plaster of paris molds were incompatible with the gelcasting process. Mold surface treatments and the use of alternative castable mold materials were investigated, however, a successful process was not identified. The highest quality parts were cast in either glass or aluminum molds.

Nunn, S.D.; Willkens, C.A.

1998-12-31T23:59:59.000Z

407

Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices  

E-Print Network [OSTI]

Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices A thesis presented Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices Eric Mazur James E. Carey III silicon and reports on its first application in optoelectronic devices. Irradia- tion of a silicon surface

Mazur, Eric

408

Surface Modification of Silicone Elastomer Using Perfluorinated Ether  

E-Print Network [OSTI]

of a silicone-coated substrate.29 In addition, higher molecular weight perfluoropolyethers have been included

Chaudhury, Manoj K.

409

Kerfless Silicon Precursor Wafer Formed by Rapid Solidification: October 2009 - March 2010  

SciTech Connect (OSTI)

1366 Direct Wafer technology is an ultra-low-cost, kerfless method of producing crystalline silicon wafers compatible with the existing dominant silicon PV supply chain. By doubling utilization of silicon and simplifying the wafering process and equipment, Direct Wafers will support drastic reductions in wafer cost and enable module manufacturing costs < $1/W. This Pre-Incubator subcontract enabled us to accelerate the critical advances necessary to commercialize the technology by 2012. Starting from a promising concept that was initially demonstrated using a model material, we built custom equipment necessary to validate the process in silicon, then developed sufficient understanding of the underlying physics to successfully fabricate wafers meeting target specifications. These wafers, 50 mm x 50 mm x 200 ..mu..m thick, were used to make prototype solar cells via standard industrial processes as the project final deliverable. The demonstrated 10% efficiency is already impressive when compared to most thin films, but still offers considerable room for improvement when compared to typical crystalline silicon solar cells.

Lorenz, A.

2011-06-01T23:59:59.000Z

410

Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report  

SciTech Connect (OSTI)

The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

1994-10-01T23:59:59.000Z

411

Process for forming silicon carbide films and microcomponents  

DOE Patents [OSTI]

Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

1999-01-01T23:59:59.000Z

412

Effect of environmental stress on Sylgard 170 silicone elastomer  

SciTech Connect (OSTI)

Dow Corning Sylgard 170 Silicone Elastomer has been investigated to characterize its response to accelerated thermal aging, radiation exposure, and its behavior under applied compressive forces. Sylgard 170 response to accelerated thermal aging suggests the material properties are not particularly age dependent. Radiation exposures, however, produce significant, monotonic changes in both elongation and hardness with increasing absorbed radiation dose. Elastomer response to an applied compressive force was strongly dependent on environment temperature and degree of material confinement. Variations in temperature produced large changes in compressive forces applied to confined samples. Attempts to mitigate force fluctuations by means of pressure relief paths resulted in total loss of the applied compressive force. Thus, seal applications employing this elastomer in Class 1E equipment required to function during or following an accident should consider the potential loss of compressive force from long-term aging and potential LOCA-temperature transient conditions.

Buckalew, W.H.; Wyant, F.J.

1985-05-01T23:59:59.000Z

413

Monolithic amorphous silicon modules on continuous polymer substrate  

SciTech Connect (OSTI)

This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

1992-03-01T23:59:59.000Z

414

Cooling Enhancement Using Inhomogeneous Thermoelectric Materials Zhixi Bian and Ali Shakouri  

E-Print Network [OSTI]

Cooling Enhancement Using Inhomogeneous Thermoelectric Materials Zhixi Bian and Ali Shakouri Baskin The maximum cooling temperature of a thermoelectric refrigerator made of uniform bulk material is limited for a thermoelectric cooler based on single crystal silicon. Maximum Cooling of Thermoelectric Materials It is well

415

Mechanisms for Fatigue of Micron-Scale Silicon StructuralFilms  

SciTech Connect (OSTI)

Although bulk silicon is not susceptible to fatigue,micron-scale silicon is. Several mechanisms have been proposed to explainthis surprising behavior although the issue remains contentious. Here wedescribe published fatigue results for micron-scale thin siliconfilms andfind that in general they display similar trends, in that lower cyclicstresses result in larger number of cycles to failure in stress-lifetimedata. We further show that one of two classes of mechanisms is invariablyproposed to explain the phenomenon. The first class attributes fatigue toa surface effect caused by subcritical (stable) cracking in thesilicon-oxide layer, e.g., reaction-layer fatigue; the second classproposes that subcritical cracking in the silicon itself is the cause offatigue in Si films. It is our contention that results to date fromsingle and poly crystalline silicon fatigue studies provide no convincingexperimentalevidence to support subcritical cracking in the silicon.Conversely, the reaction-layer mechanism is consistent with existingexperimental results, and moreover provides a rational explanation forthe marked difference in fatigue behavior of bulk and micron-scalesilicon.

Alsem, Daan Hein; Pierron, Olivier N.; Stach, Eric A.; Muhlstein,Christopher L.; Ritchie, Robert O.

2006-11-03T23:59:59.000Z

416

ABSTRACT : The direct analysis of the dynamic response of materials is possible using Split Hopkinson pressure bar method. For soils, it has to be adapted since the specimen has generally poor  

E-Print Network [OSTI]

Hopkinson pressure bar method. For soils, it has to be adapted since the specimen has generally poor mechanical properties. An original experimental arrangement called "Three-Dimensional Split Hopkinson response of soils. Different types of confinement systems are used. The results on different loading paths

Paris-Sud XI, Université de

417

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells  

E-Print Network [OSTI]

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

Deng, Xunming

418

Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure  

E-Print Network [OSTI]

Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide Received 30 October 2003; accepted 18 November 2003 We investigated a double silicon-carbide p-layer structure consisting of a undiluted p-type amorphous silicon-carbide (p-a-SiC:H) window layer and a hydrogen

Kim, Yong Jung

419

Manufacture of silicon carbide using solar energy  

DOE Patents [OSTI]

A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

Glatzmaier, Gregory C. (Boulder, CO)

1992-01-01T23:59:59.000Z

420

Protein separations using porous silicon membranes  

E-Print Network [OSTI]

charge or as the absence of an electron in the crystal structure of silicon. The properties of boron doped siTicon are exploited experimentally by setting up an etch cell in which one surface of the silicon serves as the anode and by using... terminals located on the top surface of the etch cell. The current to be used in the experiment and the total time were previously calculated to produce the desired average pore size and porous silicon film thickness, respectively. The power source...

Pass, Shannon Marie

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS  

SciTech Connect (OSTI)

Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is obs

DR. DENNIS NAGLE; DR. DAJIE ZHANG

2009-03-26T23:59:59.000Z

422

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

SciTech Connect (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

423

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

424

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

425

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

426

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

427

Critical Materials:  

Broader source: Energy.gov (indexed) [DOE]

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

428

Material and processes selection in conceptual design  

E-Print Network [OSTI]

Materials and manufacturing processes are an integral part of the design of a product. The need to combine materials and manufacturing processes selection during the early stages of the design has previously been realized. The work that generally...

Krishnakumar, Karthikeyan

2005-02-17T23:59:59.000Z

429

E-Print Network 3.0 - aastaks silicon valleysse Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding the Fundamentals of Silicon for Advanced... . Microelectronic chips use bulk-silicon wafers to power computers, and silicon is used for increasingly important......

430

A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM  

E-Print Network [OSTI]

BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

Quinn, G.C.

2011-01-01T23:59:59.000Z

431

amorphous silicon thin-film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

432

Electronic properties and reliability of the silicon dioxide / silicon carbide interface.  

E-Print Network [OSTI]

??Silicon carbide has been preferred over other wide band-gap semiconductors for high power applications because of its unique ability to grow a thermal oxide, challenges… (more)

Rozen, John

2008-01-01T23:59:59.000Z

433

Engineering of silicon/HfO{sub 2} interface by variable energy proton irradiation  

SciTech Connect (OSTI)

Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

Maurya, Savita, E-mail: mauryasavita5@gmail.com; Maringanti, Radhakrishna [Division of Electronics and Microelectronics, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211012 (India); Tribedi, L. C. [DNAP, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005 (India)

2014-08-18T23:59:59.000Z

434

Radiation Machines and Radioactive Materials (Iowa)  

Broader source: Energy.gov [DOE]

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

435

High index contrast platform for silicon photonics  

E-Print Network [OSTI]

This thesis focuses on silicon-based high index contrast (HIC) photonics. In addition to mature fiber optics or low index contrast (LIC) platform, which is often referred to as Planar Lightwave Cirrcuit (PLC) or Silica ...

Akiyama, Shoji, 1972-

2004-01-01T23:59:59.000Z

436

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

film is deposited over the window. . . . . . . . . . . . . . . . . . . . . . . . .A carbon film is deposited over the window. Figure 4.11:films and the silicon is unknown. However, changes in geometry such as varying the window

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

437

Silver transport in CVD silicon carbide  

E-Print Network [OSTI]

Ion implantation and diffusion couple experiments were used to study silver transport through and release from CVD silicon carbide. Results of these experiments show that silver does not migrate via classical diffusion in ...

MacLean, Heather J. (Heather Jean), 1974-

2004-01-01T23:59:59.000Z

438

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

439

Transient analysis of silicon carbide power MOSFET.  

E-Print Network [OSTI]

??This thesis illustrates the transient performance of Silicon carbide (4H-SiC) Power MOSFET. Transient analysis enables the designer to understand the thermal stress the semiconductor device… (more)

Pushpakaran, Bejoy

2012-01-01T23:59:59.000Z

440

Device integration for silicon microphotonic platforms  

E-Print Network [OSTI]

Silicon ULSI compatible, high index contrast waveguides and devices provide high density integration for optical networking and on-chip optical interconnects. Four such waveguide systems were fabricated and analyzed: ...

Lim, Desmond Rodney

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nano-Optoelectronic Integration on Silicon  

E-Print Network [OSTI]

Crystal Si Nanopillars,” Nano Lett. , vol. 10, no. 11, pp.?V Nanowires on Silicon,” Nano Letters, vol. 4, no. 10, pp.and nanoribbon lasers,” Nano Letters, vol. 4, no. 2, pp.

Chen, Roger

2012-01-01T23:59:59.000Z

442

Silicon cast wafer recrystallization for photovoltaic applications  

E-Print Network [OSTI]

Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

Hantsoo, Eerik T. (Eerik Torm)

2008-01-01T23:59:59.000Z

443

Texturization of multicrystalline silicon solar cells  

E-Print Network [OSTI]

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

444

SUPPORTING INFORMATION Multicolored vertical silicon nanowires  

E-Print Network [OSTI]

. The nanowires have radii of about 50 nm and are 1 µm long. Light from a Xe arc lamp was focused into an optical on the single crystalline silicon wafer. Inductively coupled plasma- reactive ion etch (STS) was used

445

Simulation and design of various configurations of silicon detectors for high irradiation tolerance up to 6x10{sup 14} n/cm{sup 2} in LHC application  

SciTech Connect (OSTI)

Various new configurations (n{sup +}/p/p{sup +}, n{sup +}/n/p{sup +}, and p{sup +}/n/n{sup +}) of silicon detector designs have been simulated using processing and device simulation tools, before and after irradiation to various fluences. The aim of material selection and detector design is to ensure adequate charge collection after being irradiated up to 10{sup 15} n/cm{sup 2} (or 6x10{sup 14}{pi}/cm{sup 2}) in LHC environment, which corresponds to a net increase (with long term anneal) of space charge of 7x10{sup 13} cm{sup -3}. Starting materials selected for simulations include high resistivity p-type silicon, medium and low resistivity n-type silicon. Design of multi-guard-rings structure for high voltage operation is also considered. First irradiation data of low resistivity silicon detector is presented.

Li, Z.; Chen, W.; Beuttenmuller, R. [and others

1997-06-01T23:59:59.000Z

446

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

447

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, Vinod K. (Lexington, MA)

1990-01-01T23:59:59.000Z

448

Cermet materials  

DOE Patents [OSTI]

A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

Kong, Peter C. (Idaho Falls, ID)

2008-12-23T23:59:59.000Z

449

Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films  

SciTech Connect (OSTI)

The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p{sup {minus}} porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n{sup +} and p{sup +} porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure.

Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

1994-12-31T23:59:59.000Z

450

Nondestructive evaluation of advanced ceramic composite materials  

SciTech Connect (OSTI)

Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

Lott, L.A.; Kunerth, D.C.; Walter, J.B.

1991-09-01T23:59:59.000Z

451

Silicon bulk micromachined hybrid dimensional artifact.  

SciTech Connect (OSTI)

A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

2010-03-01T23:59:59.000Z

452

Sampling Artifacts from Conductive Silicone Tubing  

SciTech Connect (OSTI)

We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

2009-05-15T23:59:59.000Z

453

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

2001-01-01T23:59:59.000Z

454

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-02-12T23:59:59.000Z

455

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

1999-12-21T23:59:59.000Z

456

Combinatorial sythesis of organometallic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-07-16T23:59:59.000Z

457

Irradiation and annealing of p-type silicon carbide  

SciTech Connect (OSTI)

The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ? 1.5 × 10{sup 18} cm{sup ?3} occurs at an irradiation dose of ?1.1 × 10{sup 16} cm{sup ?2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ?1000°C. The conductivity is almost completely restored at T ? 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

2014-02-21T23:59:59.000Z

458

CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS  

E-Print Network [OSTI]

CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS Yongling Ren, Natalita M Nursam, Da Wang and Klaus J Weber Centre for Sustainable Energy Systems, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia ABSTRACT

459

Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide  

E-Print Network [OSTI]

by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume of the SHS mode (Fig.1a) is that locally initiated, the self-sustained reaction rapidly propagatesCombustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S

Mukasyan, Alexander

460

Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics  

DOE Patents [OSTI]

Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

Stoddard, Nathan G. (Gettysburg, PA)

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver  

E-Print Network [OSTI]

of obtaining self-aligned sub- lithographic dimensions. In many processes were spacers are applied to separate-etching affects the dimensions of the spacer which could lead to a lack of control over the spacer-related deviceLPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver DIMES Delft

Technische Universiteit Delft

462

Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics  

DOE Patents [OSTI]

Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

Stoddard, Nathan G

2014-01-14T23:59:59.000Z

463

STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS  

SciTech Connect (OSTI)

Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

2014-09-01T23:59:59.000Z

464

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

465

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

466

Material Symbols   

E-Print Network [OSTI]

What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

Clark, Andy

2006-01-01T23:59:59.000Z

467

Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

Mailoa, Jonathan P

2012-01-01T23:59:59.000Z

468

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High-Efficiency Sub-5 keV Electron Detection  

E-Print Network [OSTI]

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High for Scanning Electron Microscopy, based on ultrashallow p+ n boron-layer photodiodes, features nm-thin anodes, closely-packed photodiodes and through-wafer apertures allow flexible configurations for optimal material

Technische Universiteit Delft

469

906 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, APRIL 2003 Silicon Epitaxial Layer Recombination and  

E-Print Network [OSTI]

- sortium (SiWEDS) (Astropower, GriTek Ltd., Intel Corp., Komatsu Electronic Metals, LG Siltron, MEMC906 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, APRIL 2003 Silicon Epitaxial Layer Electronic Materials, National Renewable Energy Laboratory, Okmetic, Samsung Electronics, SUMCO, Texas

Schroder, Dieter K.

470

Development of Acicular Mullite Materials for Diesel Particulate...  

Broader source: Energy.gov (indexed) [DOE]

Acicular Mullite 0.85 wt% 1.22 wt% 1.32 wt% Cordierite 13.7 wt% 26.5 wt% --- Silicon Carbide 0.17 wt% 0.48 wt% 0.51 wt% Effect Of 10% Nitric Acid On Various Honeycomb Materials...

471

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

472

Structural behavior of silicone bonded glass block panels  

SciTech Connect (OSTI)

Silicone sealant was submitted for mortar in bonding glass blocks. The sealant`s tensile and shear strengths and stiffnesses were determined. Joints bonding two glass blocks were tested for stiffness and strength in tension, bending, out-of-plane shear, and in-plane shear. Bending tests were done on specimens one block wide and four blocks long to evaluate one-way bending behavior. A six block by six block panel, supported on all four sides, was built and tested under simulated wind load. An analytical model with material nonlinearity in the joints was developed for the one-way bending case. It gave good comparisons with the experimental data to load levels approaching failure. A more complex analytical model was developed for the two-way panel. It was only valid for lower load levels, in the range of potential allowable design loads, but compared well with test results. Silicone bonded glass block panels have potential for meeting the wind load requirements necessary for exterior use.

Chang, K.F. [Structural Engineering Associates, Inc., San Antonio, TX (United States); Sandberg, L.B. [Michigan Technological Univ. Houghton, MI (United States)

1996-12-31T23:59:59.000Z

473

Crystallization and doping of amorphous silicon on low temperature plastic  

DOE Patents [OSTI]

A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

Kaschmitter, James L. (Pleasanton, CA); Truher, Joel B. (Palo Alto, CA); Weiner, Kurt H. (Campbell, CA); Sigmon, Thomas W. (Beaverton, OR)

1994-01-01T23:59:59.000Z

474

Crystallization and doping of amorphous silicon on low temperature plastic  

DOE Patents [OSTI]

A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

1994-09-13T23:59:59.000Z

475

Cryogenic silicon surface ion trap  

E-Print Network [OSTI]

Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

Michael Niedermayr; Kirill Lakhmanskiy; Muir Kumph; Stefan Partel; Johannes Edlinger; Michael Brownnutt; Rainer Blatt

2014-03-20T23:59:59.000Z

476

Dynamics of hydrogen in silicon  

SciTech Connect (OSTI)

The frequency of local hydrogen vibration in silicon and its decay process have been studied theoretically. It is believed that the H in Si is located at the bond center in equilibrium. By analyzing the discrepancy between the frequency of the antisymmetric stretching mode in a frozen-phonon calculation and the frequency in a molecular dynamic simulation, it is found that the Si–H–Si bond is dynamically bending. The reason is that the adiabatic potential along a direction perpendicular to the bond axis is so flat that random thermal motion of atoms easily scatters the H atom from the axis. A fast relaxation (?1 ps) around the axis hides this bending from observation by slow-response measurements. One consequence of the bending is that it renders the frequency of the symmetric stretching mode higher than when the bond is not bent. Another, more interesting consequence of this bending is the fast decay rate of the antisymmetric stretching mode, in spite of its local-mode character. Again, the ease of conversion of the H motion from parallel to perpendicular to the bond axis is the cause of this fast decay, which is otherwise difficult to explain by a simple combination law of frequencies.

Shirai, Koun [ISIR, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hamada, Ikutaro [International Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Katayama-Yoshida, Hiroshi [Grad. School of Eng. Sci., Osaka University, 1-3, Machikaneyama, Toyonaka 560-8531 (Japan)

2014-02-21T23:59:59.000Z

477

Lead carbonate scintillator materials  

DOE Patents [OSTI]

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

Derenzo, S.E.; Moses, W.W.

1991-05-14T23:59:59.000Z

478

Near-infrared free carrier absorption in heavily doped silicon  

SciTech Connect (OSTI)

Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500?nm, and the range of dopant densities between ?10{sup 18} and 3?×?10{sup 20}?cm{sup ?3}. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis.

Baker-Finch, Simeon C., E-mail: simeon.bakerfinch@gmail.com [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); PV Lighthouse, Coledale, NSW 2515 (Australia); McIntosh, Keith R. [PV Lighthouse, Coledale, NSW 2515 (Australia); Yan, Di; Fong, Kean Chern; Kho, Teng C. [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

2014-08-14T23:59:59.000Z

479

Stretchable silicon could be next wave in electronics http://www.physorg.com/news9110.html 1 of 3 12/21/2005 6:04 PM  

E-Print Network [OSTI]

Stretchable silicon could be next wave in electronics http://www.physorg.com/news9110.html 1 of 3 Physics New thin film lithium technology may power Christmas of the future 2 hours ago Space and Earth ago General Science Sweden to scrutinize eugenics past 2 hours ago General Science Fear of death

Rogers, John A.

480

Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature  

E-Print Network [OSTI]

, of general formula Mn+1AXn where n = {1,2,3}, M is an early transition metal, A is an A-group (mostly IIIADamages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic Thanks to their refractoriness, carbides are sensed as fuel coating for the IVth generation of reactors

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "general silicon material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Generalized correlation for foam flow in tubes  

E-Print Network [OSTI]

. Data collected allow for the determination of material parameters. The corresponding friction factors and generalized Reynolds numbers are calculated and their relationship examined. Results indicate that the flow of foam follows the same f = 16/NRe,gen...

Cotter, Carol Lynnette

1996-01-01T23:59:59.000Z

482

Organization of the Catalog General Campus Colleges  

E-Print Network [OSTI]

(see School of Public Health) Materials Science and Engineering Mechanical, Aerospace, and Nuclear Theater Arts General Campus Professional Schools School of Engineering and Applied Science Chemical Engineering Civil Engineering Computer Science Electrical Engineering Environmental Science and Engineering

Grether, Gregory

483

Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers  

DOE Patents [OSTI]

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, T.N.; Lindemer, T.B.

1991-02-19T23:59:59.000Z

484

Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers  

DOE Patents [OSTI]

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

485

Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines  

SciTech Connect (OSTI)

This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

1999-01-01T23:59:59.000Z

486

Microfluidic systems with embedded materials and structures and method thereof  

DOE Patents [OSTI]

Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

Morse, Jeffrey D. (Martinez, CA); Rose, Klint A (Boston, MA); Maghribi, Mariam (Livermore, CA); Benett, William (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA); Graff, Robert T. (Modesto, CA); Jankowski, Alan (Livermore, CA)

2007-03-06T23:59:59.000Z

487

Silicon ball grid array chip carrier  

DOE Patents [OSTI]

A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

Palmer, David W. (Albuquerque, NM); Gassman, Richard A. (Greensboro, NC); Chu, Dahwey (Albuquerque, NM)

2000-01-01T23:59:59.000Z

488

California: TetraCell Silicon Solar Cell Improves Efficiency...  

Energy Savers [EERE]

California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award August 16, 2013 -...

489

Flaw-limited transport in germanium-on-silicon photodiodes  

E-Print Network [OSTI]

Epitaxial germanium growth on silicon substrates has enabled a new class of photodiodes that can be integrated with traditional silicon electronics. Previous workers using lowthroughput growth techniques have demonstrated ...

Orcutt, Jason S. (Jason Scott)

2008-01-01T23:59:59.000Z

490

Temperature Dependent Pspice Model of Silicon Carbide Power MOSFET  

E-Print Network [OSTI]

Temperature Dependent Pspice Model of Silicon Carbide Power MOSFET Yutian Cui1 Madhu Chinthavali2-- This paper provides a behavioral model in Pspice for a silicon carbide (SiC) power MOSFET rated at 1200 V

Tolbert, Leon M.

491

Iron-oxide catalyzed silicon photoanode for water splitting  

E-Print Network [OSTI]

This thesis presents an integrated study of high efficiency photoanodes for water splitting using silicon and iron-oxide. The fundamental limitations of silicon to water splitting applications were overcome by an ultrathin ...

Jun, Kimin

2011-01-01T23:59:59.000Z

492

Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1*  

E-Print Network [OSTI]

breakage. However, manufacturing limitations have prevented a strong and biocompatible silicon electrode as well as the in vitro electrical characterization of the gold and platinum micro electrodes. Keywords - parylene cable; neural prosthesis; silicon probe I. INTRODUCTION An important

Andersen, Richard

493

D0 layer 0 innermost layer of silicon microstrip tracker  

SciTech Connect (OSTI)

A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

Hanagaki, K.; /Fermilab

2006-01-01T23:59:59.000Z

494

aspect ratio silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

silicon-nitride hard-mask for high aspect-ratio silicon fins V. Jovanovi, S, Zagreb, Croatia Abstract - A method for using hard-masks to achieve sub- 100 nm patterning of...

495

Fabrication of Memristors with Poly-Crystalline Silicon Nanowires  

E-Print Network [OSTI]

- silicon nanowire, SiNWFET, spacer technique, polycrystalline silicon, poly-Si, ambipolar, memristor of device dimensions, new phenomena have been claimed to be responsible for the memristor behavior

De Micheli, Giovanni

496

assisted grown silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

497

acid modified silicone: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

498

athermal silicon microring: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

499

Metal catalyst technique for texturing silicon solar cells  

DOE Patents [OSTI]

Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

Ruby, Douglas S. (Albuquerque, NM); Zaidi, Saleem H. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

500

Coherent Control of a Single Silicon-29 Nuclear Spin Qubit  

E-Print Network [OSTI]

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.

Jarryd J. Pla; Fahd A. Mohiyaddin; Kuan Y. Tan; Juan P. Dehollain; Rajib Rahman; Gerhard Klimeck; David N. Jamieson; Andrew S. Dzurak; Andrea Morello

2014-08-06T23:59:59.000Z