Powered by Deep Web Technologies
Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

2

Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Beamlines Beamlines Print Beamlines Directory List of ALS beamlines, techniques, energy ranges, beamline scientists' contact information, and individual beamline schedules. The ALS Beamclock and links to the ALS Energy-Related Beamlines poster and beamclock are also available. Beam Status Current status of the ALS accelerator, updated every minute. Instructions on how to get beam status updates via Twitter @ALSRingStatus or text messages, and request form for beam history information. Research Techniques Research techniques and the corresponding beamlines where they are available (under construction). Schedules Weekly user schedule, current and upcoming long-term operating schedules; individual beamline long-term schedules can be found on the ALS Beamlines Directory.

3

Photon Sciences | NSLS-II Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

4

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

5

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

6

Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

about how nif works Beamline Every NIF beam starts at the master oscillator. The low-energy beam is amplified in the preamplifier module and then in the power amplifier, the main...

7

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Source...

8

U2B Beamline | Photon Sciences | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL People BNL People Photon SciencesInfrared Programs PS Home Infrared Home Beamlines U2A U2B U4IR U10A U10B U12IR Publications User Info Useful Sites Beamline U2B Home Publications Equipment Schedule Beamtime Instrument Spectrometer endstation: Thermo Nicolet Magna 860 Step-Scan FTIR and Continuum IR microscope Frequency Range (cm-1): 500 - 4000 Spectral resolution (cm-1): 4.0 Spatial resolution: diffraction-limit (i.e. ~ 3 to 10 microns) Brightness (compared to a black body): 100x to 1000x Smallest practical targeting aperture size: 3 microns square Beamline angular acceptance: (milliradians): 40H x 40V (100% vertical collection down to 240 cm-1) Optical Configuration A two-mirror system (M1 and M2) collects and re-images the synchrotron infrared source at a point just outside of the storage ring's UHV. M1 is a

9

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

10

Photon Sciences Directorate | 2010 Annual Report | Beamline & Optics R&D:  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Qun Shen "Synchrotron sources have quickly become an essential tool for a wide spectrum of research. All the action takes place at beamlines, each one consisting of a suite of sophisticated scientific instruments. The robust beamlines at NSLS produce remarkable science, and we made excellent progress on developing NSLS-II beamlines and associated science programs." - Qun Shen Director, Photon Division While keeping the existing ring and beamline mechanical systems running, Photon Sciences staff completed a number of R&D projects this year that will improve the tools of researchers at NSLS and, in the near future, NSLS-II. One of the major accomplishments was the installation and commissioning of

11

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

12

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 12.2.2 Beamline 12.2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure

13

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

14

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

15

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

16

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

17

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0.1 Print 7.0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

18

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

19

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

20

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

22

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

23

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

24

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

25

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating

26

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

27

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.3.2 9.3.2 Beamline 9.3.2 Print Tuesday, 20 October 2009 09:06 Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

28

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

29

APS Beamline 6-ID-B,C  

NLE Websites -- All DOE Office Websites (Extended Search)

B,C Home B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. Research on this beamline centers on general x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights LSMO pictures Searching for Next-Generation Electronic Materials December 14, 2009 A new class of layered oxide materials discovered thanks to research at the beamline 6-ID-B offers scientists unprecedented opportunities for creating the next generation of electronic devices. Local Contact: Phil Ryan Local Contacts: Philip Ryan (Surface Diffraction) 630.252.0252 ryan@aps.anl.gov

30

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

31

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

32

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

33

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

34

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

35

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

36

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

37

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

38

NEWTON's General Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

General Science References General Science References Do you have a great general science reference link? Please click our Ideas page. Featured Reference Links: First.gov Science and Technology First.gov Science and Technology This site, sponsered by the US Government provides reference links to topics on science, telecommunications, computers, research agencies, and news. NASA Science NASA Science NASA Science, is a website sponsered by NASA, that supplies resources for understanding our world and the world above. Topics include earth science, heliophysics, the planets, astrophysics and much more. There is also an educator page! Nobel Laueate Listings and Stories Nobel Laueate Listings and Stories See the official site for the Nobel Prize, and read biographies about all of the Nobel Laureates, and there life changing discoveries and accomplishments.

39

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

40

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

42

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

43

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

44

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

45

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

46

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

47

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

48

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

49

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

50

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

51

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

52

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

53

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

54

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

55

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

56

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

57

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

58

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

59

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

60

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

62

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

63

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

64

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

65

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

66

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

0.2 Print 0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

67

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

68

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

69

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

70

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

71

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.2 Print 2.0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

72

Beamlines Directory | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Beamlines Directory Filter by: L bracket Discipline: All Atomic Physics Chemistry Environmental Science GeoScience Life Sciences Materials Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL2/3 level Coherent x-ray scattering Diffraction anomalous fine structure Diffuse x-ray scattering Energy dispersive X-ray diffraction Fiber diffraction Fluorescence spectroscopy General diffraction Grazing incidence diffraction Grazing incidence small-angle scattering High-energy x-ray diffraction High-pressure diamond anvil cell High-pressure multi-anvil press Inelastic x-ray scattering Inelastic x-ray scattering (1 eV resolution) Intensity fluctuation spectroscopy Large unit cell crystallography Laue

73

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2

74

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

3.1 3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

75

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.3.1 2.3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

76

Full-Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring-8  

SciTech Connect

The Engineering Science Research II beamline BL14B2 at SPring-8 is a hard X-ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV, and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in-situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system, in which the adjustment of X-ray optics and the XAFS measurement in transmission mode can be performed automatically.

Honma, Tetsuo; Takagaki, Masashi [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); Oji, Hiroshi; Hirayama, Sayaka; Taniguchi, Yosuke; Ofuchi, Hironori [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 2-23-1 Kouto, Kamigori, Hyogo 678-1205 (Japan)

2010-06-23T23:59:59.000Z

77

Full?Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring?8  

Science Journals Connector (OSTI)

The Engineering Science Research II beamline BL14B2 at SPring?8 is a hard X?ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in?situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system in which the adjustment of X?ray optics and the XAFS measurement in transmission mode can be performed automatically.

Tetsuo Honma; Hiroshi Oji; Sayaka Hirayama; Yosuke Taniguchi; Hironori Ofuchi; Masashi Takagaki

2010-01-01T23:59:59.000Z

78

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

79

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

80

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

82

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

83

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

84

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

85

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

86

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

87

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

88

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

89

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

90

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

91

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

92

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

93

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

94

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

95

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

96

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

97

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

98

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

99

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

100

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

102

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

103

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

104

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

105

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

0.2 0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

106

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

107

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

108

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

109

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

110

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

111

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

112

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

113

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

114

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

115

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

116

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

117

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

118

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

119

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

120

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Beamline 7.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

122

Beamline 7.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

123

National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition  

SciTech Connect

This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

1989-01-01T23:59:59.000Z

124

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

125

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

126

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.3.1 0.3.1 Beamline 10.3.1 Print Tuesday, 20 October 2009 09:14 X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format

127

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

128

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

129

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

12.3.1 Print 12.3.1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

130

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

NLE Websites -- All DOE Office Websites (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

131

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

132

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

133

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

134

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

135

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

4.0.2 Print 4.0.2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

136

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

137

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

138

APS Preliminary Beamline Design Report Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

PRELIMINARY BEAMLINE DESIGN REPORT PRELIMINARY BEAMLINE DESIGN REPORT December 5, 1994 5.1 Preliminary Beamline Design: General Guidelines The Preliminary Design of the beamline represents an approximately 30% design level of each of the beamline components. This level of design permits the CAT to develop cost estimates for the construction of the beamline, as well as a realistic timeline for completion of the construction tasks. A committee from the APS has been charged with reviewing the Preliminary Design Reports and has established the evaluation criteria described below. The Preliminary Beamline Report is expected to expand upon the Conceptual Design Report in the following areas: Beamline Layout Component Design Work Breakdown Structure Cost and Schedule Additional Operational Requirements

139

The Entire General Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

General Topics Archives General Topics Archives General Topics Archives, Since November 1991 Table of Contents: What Sciences are included in Earth Science? Magnetosphere Magnetic Compasses Aftershocks vs. Earthquakes Illinois Earthquakes Center of the Earth Why is the Earth round? Project Mohole Minerals, Rocks, or not? Water Origin of Saltwater Weight of Clouds Barometers Chaos and Weather Forecasting Lightning Strikes Tornado Spinning Tornado Safety in a Building Tornadoes and High Rise Structures Tornadoes Avoiding Downtown Chicago Coldest Temperature? Thermal Inversions Fog Blue Sky Gravitational pull vs. Atmospheric pressure Weights and Measures Science Demonstrations Cyanide Gas Bermuda Triangle X-30 Flower colors Ice Cream Headaches Rubber Egg Silver Dental Fillings and Aluminum Foil Birds and Wires

140

Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation  

SciTech Connect

We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

Panaccione, G.; Vobornik, I.; Fujii, J.; Krizmancic, D.; Annese, E.; Giovanelli, L.; Maccherozzi, F.; Salvador, F.; De Luisa, A.; Benedetti, D.; Gruden, A.; Bertoch, P.; Rossi, G. [TASC Laboratory, INFM-CNR, S.S. 14-Km 163.5 in AREA Science Park, I-34012 Basovizza (Trieste) (Italy); Polack, F. [Synchrotron SOLEIL, B.P. 48, 91192 Gif-sur-Yvette (France); Cocco, D.; Sostero, G.; Diviacco, B. [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34012 Trieste (Italy); Hochstrasser, M.; Maier, U.; Pescia, D. [Laboratorium fuer Festkoerperphysik, ETH Hoenggerberg, CH-8093 Zuerich (Switzerland); and others

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Beamlines Directory ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

142

BNL | ATF Beamline Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Simulation Data and Control Panel Displays Beamline Simulation Data and Control Panel Displays Beamline 0 Beamline 1 Beamline 2 Beamline 0 is directly downstream of the linac and serves to transport the beam from the linac to any one of the three experimental beamlines. Beamline 0 is modeled using MAD. Shown below is a summary of the MAD simulation results. Beamline control system panel (PDF) Transport line control system panel (PDF) MAD input deck Raw output beamline 0 This beam line currently serves the Plasma Acceleration, Current Filamentation Instability and Compton scattering experiments. A summary of the MAD simulation results is shown below. MAD input deck | Output of optical functions | Beamline control system panel (PDF) beamline 1 output ATF beamline 2 previously served the IFEL experiment, the SASE experiment

143

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

144

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

145

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

146

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

147

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

148

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

149

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

150

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

151

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

152

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

153

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

154

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

155

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

156

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

157

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

158

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

159

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

160

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

162

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

163

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

164

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

165

The Phase I MX Beamlines at Diamond Light Source  

SciTech Connect

Three beamlines dedicated to macromolecular crystallography, I02, I03 and I04 at Diamond Light Source are presented. These beamlines formed the life science component of Phase 1 of Diamond Light Source. The article provides details of the design and the current status of the beamlines.

Duke, E. M. H.; Evans, G.; Flaig, R.; Hall, D. R.; Latchem, M.; McAuley, K. E.; Sandy, D. J.; Sorensen, T. L-M.; Waterman, D.; Johnson, L. N. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon. OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

166

LENGTH OF BEAMLINES AND WIDTH OF THE LS-37  

NLE Websites -- All DOE Office Websites (Extended Search)

LENGTH OF BEAMLINES AND WIDTH OF THE LENGTH OF BEAMLINES AND WIDTH OF THE LS-37 November 10, 1985 G. K. Shenoy G. S. Knapp EXPERIMENTAL HALL AT A 6-GeV SYNCHROTRON FACILITY The width of the experimental hall at a 6-GeV facility is closely related to the length of the beamlines. This note addresses this aspect in some de tail. In general, no two beamlines will have identical lengths or the placement of various optical elements. Hence fixing the beamline lengths prior to their assignment to specific experiments is difficult. In spite of this fact, a few general conclusions are made. 1. At least 25m of all the beamlines will be behind the shielding wall. Within this length many beamline components can be accommodated as shown in Fig. 1. 2. For most beamlines on bending magnets (BM), the first optical element will

167

Macromolecular crystallography beamline X25 at the NSLS  

Science Journals Connector (OSTI)

A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented.

H?roux, A.

2014-04-08T23:59:59.000Z

168

APS Beamline 6-ID-D  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights LuFeO Unlikely route to ferroelectricity May 16, 2012 A new type of ferroelectric, LuO2Fe4, has been investigated at the APS by a research team from Julich research center. XAS & XMCD studies on beamline 4-ID-C determined the Fe magnetism and valence, while single crystal x-ray scattering measurements at 6-ID-B & 6-ID-D probed the associated structural and charge ordering.

169

APS Beamline 6-ID-D  

NLE Websites -- All DOE Office Websites (Extended Search)

D Home D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights A New Family of Quasicrystals A New Family of Quasicrystals June 24, 2013 Scientists from the U.S. Department of Energy's Ames Laboratory and Iowa State University have used the high energy x-rays available on beamline 6-ID-D, to confirm the structure of the only known magnetic rare earth icosahedral binary quasicrystals. Contacts: Alan Goldman & Paul Canfield - Iowa State Univ. & Ames Lab Local Contacts:

170

APS 7-BM Beamline: 7-BM Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the 7-BM beamline Overview of the 7-BM beamline The 7-BM beamline is dedicated to time-resolved measurements of complex fluid flowfields using x-ray radiography and fluorescence spectroscopy. Funding for the final commissioning of 7-BM was provided by the DOE Office of Energy Efficiency and Renewable Energy. Commissioning was completed at the end of FY2012. The beamline is currently operated by the X-Ray Science Division of the APS. Major Areas of Research Fuel sprays from automotive fuel injectors, both diesel and gasoline. See more on the X-Ray Fuel Spray web page from Argonne's Energy Systems Division. Sprays for air-breathing propulsion. Fuel injection for rocket injectors. Gas-phase fuel injection and mixing. Beamline Performance Total flux: 4 x 1011 ph/s at 8 keV Energy range: 5.5 - 11 keV, 1.4% ΔE/E

171

Beamline Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

172

Final Beamline Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Beamline Design Report Final Beamline Design Report Guidelines and Review Criteria (SCD 1.20.95) 6.0 Final Beamline Design Report (FDR) Overview The Final Beamline Design Report is part of the Advanced Photon Source (APS) beamline review process and should be planned for when approximately 90% of the total beamline design has been completed. Fifteen copies of the FDR are to be submitted to the APS Users Office. Approval of the Collaborative Access Team's (CAT) designs described in the report is required prior to installation of beamline components in the APS Experiment Hall. Components that have a long lead time for design or procurement can be reviewed separately from the remainder of the beamline, but enough information must be provided so that the reviewer can understand the

173

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 5.0.1 Print Tuesday, 20 October 2009 08:32 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules

174

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

175

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

5.0.2 5.0.2 Beamline 5.0.2 Print Tuesday, 20 October 2009 08:35 Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics

176

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

177

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

178

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

179

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

180

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

5.4.1 5.4.1 Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

182

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

183

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

184

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

185

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

186

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

187

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

188

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

189

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

190

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

191

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

192

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 9.0.2 Beamline 9.0.2 Print Tuesday, 20 October 2009 08:59 Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm

193

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

194

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

195

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

196

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

197

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

198

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

199

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

200

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

202

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

203

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

204

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

205

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

206

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

207

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

208

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

209

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

210

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

211

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

212

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

213

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

214

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

215

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

216

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

3.1 Print 3.1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

217

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

218

Hutch for CSX Beamlines  

ScienceCinema (OSTI)

NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

Ed Haas

2013-07-17T23:59:59.000Z

219

SDSU General Catalog 2013-2014 203 Computer Science  

E-Print Network (OSTI)

SDSU General Catalog 2013-2014 203 CS Computer Science In the College of Sciences OFFICE: Geology/Mathematics/Computer Science 413 TELEPHONE: 619-594-6191 http://www.cs.sdsu.edu Faculty Emeritus: Anantha, Baase-Mayers, Donald, Thomas Offered by the Department Master of Science degree in computer science. Major in computer science

Gallo, Linda C.

220

SDSU General Catalog 2011-2012 199 Computer Science  

E-Print Network (OSTI)

SDSU General Catalog 2011-2012 199 CS Computer Science In the College of Sciences OFFICE: Geology/Mathematics/Computer Science 413 TELEPHONE: 619-594-6191 http://www.cs.sdsu.edu Faculty Emeritus: Anantha, Baase-Mayers, Donald, Riggins Adjunct: Root, Thomas Offered by the Department Master of Science degree in computer science

Gallo, Linda C.

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SDSU General Catalog 2012-2013 201 Computer Science  

E-Print Network (OSTI)

SDSU General Catalog 2012-2013 201 CS Computer Science In the College of Sciences OFFICE: Geology/Mathematics/Computer Science 413 TELEPHONE: 619-594-6191 http://www.cs.sdsu.edu Faculty Emeritus: Anantha, Baase-Mayers, Donald: Root, Thomas Offered by the Department Master of Science degree in computer science. Major in computer

Gallo, Linda C.

222

SDSU General Catalog 2010-2011 195 Computer Science  

E-Print Network (OSTI)

SDSU General Catalog 2010-2011 195 CS Computer Science In the College of Sciences OFFICE: Geology/Mathematics/Computer Science 413 TELEPHONE: 619-594-6191 http://www.cs.sdsu.edu The B.S. degree in Computer Science, Lewis, Riggins Adjunct: Root, Thomas Offered by the Department Master of Science degree in computer

Gallo, Linda C.

223

Instrumentation and Experimental Developments for the Beamlines at the Synchrotron SOLEIL  

SciTech Connect

This paper presents an overview of the instrumentation and experiments developed for the beamlines at Synchrotron SOLEIL in France. Currently fourteen beamlines are opened to users out of the twenty six scheduled. About half of the beamlines cover the soft x-rays region using spectroscopy and imagery techniques. The second half covers the hard x-rays field studying diffraction of matter. Some sample environments carried out for beamlines, for biology, chemistry and surface sciences are described. For the soft x-rays beamlines, carbon contamination of optics is a crucial issue. Different experiments are currently under study in order to reduce or even avoid this effect. Other studies relate to the improvement of metrological methods for beamline optics, to the reduction of vibrational effects for the microbeams and development of computer control for diffractometers. The various types of instruments and experiments will be presented both with an overview of the status of the beamlines in operation and under construction.

Prigent, P.; Bac, S.; Blanchandin, S.; Cauchon, G.; David, G.; Fernandez Varela, P.; Kubsky, S.; Picca, F. [Synchrotron SOLEIL, Division Experiences-L'Orme des merisiers-Saint-Aubin-BP 48-91192 GIF S/YVETTE Cedex (France)

2010-06-23T23:59:59.000Z

224

APS 7-BM Beamline: Beamline Controls and Data Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Controls and Data Acquisition Beamline Controls and Data Acquisition Beamline controls operate through EPICS, with the standard MEDM graphical interface. When needed, Python is used for scripting, based on the PyEpics implementation written by CARS. The beamline workstation has access to the Enthought Python Distribution, which includes many common Python packages, such as numpy, scipy, h5py, and others. Data formats Time resolved data collected at the beamline are typically stored in a locally-defined binary data file. For distribution to users, these files are converted to HDF5, a widely used, hierarchical binary data format that can be accessed using tools in a wide variety of programming languages. Other formats can potentially be accommodated upon request; please contact beamline staff prior to your beamtime if a different format is needed.

225

BNL | ATF Beamline Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Parameters Beamline Parameters Electron beam energy: 25 to 76 MeV Temporal structure: Macropulse length: 3 microseconds Macropulse repetition rate from under 1 PPS to 3 PPS. Micropulse repetition period 12.25 ns or 24.5 ns. Micropulse length variable from about 1 ps FWHM to 10 ps FWHM. Electron beam charge: continuously variable. Single micropulse charge from zero to a few nanoculombs. Bunch train charge up to about 10 nanoculombs. Emittance: depends on various conditions, e.g. peak current, gun field, microbunch length etc. At 1 nC we have measured the emittance at 2.6 mm mrad (rms normalized) at a bunch length of 10 ps FWHM. The local emittance (Slice Emittance) is smaller, measured 1.4 mm mrad for a slice out of the 1 nC bunch. Stability: (approx.) 1 ps in short term phase, 1% of beam diameter

226

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

227

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

228

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

229

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

230

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

231

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

232

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

233

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

234

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

235

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

236

APS Safety Guidelines for Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

237

SC e-journals, Science (General/Popular)  

Office of Scientific and Technical Information (OSTI)

Science (General/Popular) Science (General/Popular) Aestimatio: Critical Reviews in the History of Science - OAJ Air, Soil and Water Research - OAJ Analyst Astronomy and Astrophysics Review, The Australian Journal of Emerging Technologies and Society - OAJ Bioelectromagnetics Biotechnology & Bioengineering Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Catalysis Today College of the Bahamas Research Journal - OAJ Columbia Undergraduate Science Journal - OAJ Continuum Mechanics and Thermodynamics Economist, De Electricity Journal, The Endeavour Eurasia Journal of Mathematics, Science & Technology Education - OAJ EURASIP Journal on Wireless Communications and Networking - OAJ European Food Research and Technology A European Physical Journal C Fibreculture Journal - OAJ

238

Find a Beamline | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Find a Beamline Find a Beamline The Advanced Photon Source consists of 34 sectors; each sector contains one or more beamlines. There are several resources available to help you find information about APS sectors and beamlines. Maps: Interactive Map Clicking on the link above or the picture below will take you to a page where you can see which APS beamlines are operational and relevant to your scientific interests. sectors map thumb Beamlines Map Clicking on the link above or the picture below will take you to a detailed bird's eye view of every beamline at the APS. beamline map thumb Directories: Beamlines Directory The complete listing of all APS beamlines' contacts, specifications, and status. Techniques Directory An explanation of the various research techniques in use at the APS, and a

239

Beamline 29-ID  

NLE Websites -- All DOE Office Websites (Extended Search)

IEX Milestones(4/29/2013) IEX Milestones(4/29/2013) • Spring 2012 ✓ Completion of the IEX EM-VPU insertion device (photos) ✓ Installation of EM-VPU in the storage ring (photo1, photo2) ✓ Installation of high heat-load mirrors M0/M1 (photo) • Summer 2012 ✓ Testing of various polarization mode of EM-VPU with stored beam ✓ Installation of vacuum transport, support tables and diagnostic component; implementation of beamline controls and safety systems (cleanroom, FOE progress, FOE progress2) • Fall 2012 ✓ FDR approval (October 15) ✓ Installation of first optical enclosure components (photo) ✓ First light and testing of white/pink beam components (photo1, photo2) • Winter/Spring 2013 - White beam commissioning ✓ Alignment of mirrors with synchrotron beam ✓ Installation and alignment of support tables (photo)

240

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

General User Proposals Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the...

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Office General User Proposals Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS...

242

The BEAR Beamline at Elettra  

SciTech Connect

The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation.

Nannarone, S.; Pasquali, L.; Selvaggi, G. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy); Mahne, N. [TASC-INFM, Universita di Trieste, Trieste (Italy); Naletto, G.; Pelizzo, M.G.; Tondello, G. [LUXOR-INFM, Universita di Padova, Padua (Italy)

2004-05-12T23:59:59.000Z

243

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

244

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

245

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

246

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

247

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

248

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

249

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

250

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

251

Generalized Rough Set Models Department of Computer Science  

E-Print Network (OSTI)

Generalized Rough Set Models Y.Y. Yao Department of Computer Science Lakehead University Thunder the rough set theory in early eighties, many proposals have been made for generalizing and interpreting rough sets [3, 4, 19, 27, 37, 38, 39, 46, 47, 51, 52, 54, 55, 63, 65, 66, 67, 68, 69, 70, 71, 72, 83, 92

Yao, Yiyu

252

Photon Sciences | About Photon Sciences | Information for the General  

NLE Websites -- All DOE Office Websites (Extended Search)

About Photon Sciences About Photon Sciences The human eye can see only visible light. It comes in the form of different wavelengths. These wavelengths are what create the colors of the rainbow. Other wavelengths of lights are not visible to the human eye. Although, we cannot see them, these types of light are also used in our everyday life. For example, a TV remote control uses infrared light to adjust the volume or change the channel of the TV. Airport scanners use x-rays to scan luggage. Tanning lamps use ultraviolet light to tan the skin. Microwave ovens use microwaves to cook your food. A synchrotron is a huge machine that produces very bright light of many different wavelengths. The light is much brighter than that found in your TV remote, microwave oven, or dentist's x-ray machine because the

253

Metrology and Tests beamline at SOLEIL Design and first results  

SciTech Connect

The objectives of this project is install at the 2.75 GeV SOLEIL synchrotron radiation source a calibration and metrology test facility for the R and D of optical components and detectors. We have build, on a bending magnet, two branches to cover an energy range from few eV to 28 keV and give access to white beam. This installation will first address the needs of the SOLEIL experimental groups(Optics and Detectors)and will be used by a large community. This beamline will also be valuable as a general-purpose beamline to prepare, test and set up a wide range of experiments in the field of Astrophysics, laser plasma etc...A complementary important aspect of this installation is the realization of primary standard: the metrology beamline of SOLEIL could become the national primary standard source in collaboration with the Laboratoire National d'Essais(LNE)and help in the design and characterization of several diagnostics for the Megajoule Laser in Bordeaux in collaboration with the CEA DIF. The beamline has been designed to provide great flexibility. In this paper, we describe the beamline design, the end station instrumentation and give also some preliminary results.

Idir, Mourad; Mercere, Pascal; Moreno, Thierry; Delmotte, Aurelien; Dasilva, Paulo; Modi, Mohammed H. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48 91192 GIF-sur-YVETTE CEDEX (France)

2010-06-23T23:59:59.000Z

254

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the Participating Research...

255

Design of the LBNE Beamline  

E-Print Network (OSTI)

The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is desi...

Papadimitriou, V; Hylen, J; Kobilarcik, T; Marchionni, A; Moore, C D; Schlabach, P; Tariq, S

2015-01-01T23:59:59.000Z

256

BEAMLINE 4-1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray Absorption Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Environmental / Materials / Chemistry / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler, 0.75 mrad, side station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance unfocused 5,500-38,000eV 10-4 4x18mm 0.75 mrad OPTICS: M0 mirror: Flat, bent vertically collimating, 1 m, Si, Rh-coated, cutoff 9-23 keV, LN2-cooled monochromator. Energies over 22keV are run with the mirror out. MONOCHROMATOR: Si(220) f=0° or Si(220) f=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library

257

BEAMLINE 2-2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CURRENT STATUS: Open with limited support SUPPORTED TECHNIQUES: White light station MAIN SCIENTIFIC DISCIPLINES: X-ray optics characterization and development % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bend Magnet Side Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance unfocused 1000-40000 eV NA 4.0 x 8.0 mm NA 0.4 mrad OPTICS: None MONOCHROMATOR: None (white beam) ABSORPTION: 673 microns Be, 12.4 meters He, 15.2 microns C INSTRUMENTATION: X-Y stages, ion chambers, PMT DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send an email to M$SPEC@ssrl.slac.stanford.edu SUPER

258

BEAMLINE 8-1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Photoemission spectroscopy MAIN SCIENTIFIC DISCIPLINES: BL8-1a: Materials / Surface Chemistry BL8-1b: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bending magnet station (vacuum ultraviolet) BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size (FWHM) flux angular acceptance focused 15 - 185 eV ~1 x 10-3 0.1 mm2 8.0 mrad OPTICS: M0 mirror: Cylindrical, SiC M1 mirror: Spherical, Fused Silica MONOCHROMATOR: 6m toroidal grating monochromator (TGM) Grating Monochromator References Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL support staff.

259

BEAMLINE 4-2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Biological Small Angle X-ray Scattering/Diffraction Macromolecular solution x-ray scattering Lipid membrane diffraction Fiber diffraction Time-resolved x-ray scattering/diffraction Small-angle single crystal diffraction Ultra small-angle x-ray scattering (under development) MAIN SCIENTIFIC DISCIPLINES: Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance focused (crystal) 6000-18000 eV ~5 x 10-4 ~0.2 x 1.0mm < 1.0 mrad focused (multilayers) 8000-12000 eV ~3 x 10-2 ~0.2 x 1.0mm < 1.0 mrad

260

BEAMLINE 9-3  

NLE Websites -- All DOE Office Websites (Extended Search)

9-3 9-3 CURRENT STATUS: Closed (Down-pending mirror repair) SUPPORTED TECHNIQUES: X-ray absorption spectroscopy Single crystal x-ray absorption spectroscopy MAIN SCIENTIFIC DISCIPLINES: Structural Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 16-pole, 2-Tesla wiggler, 2 mrad beam BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size (fwhm) flux* angular acceptance focused 5000-30000 eV 1 x 10-4 0.4 x 3 mm2 ~2 x 1012 2.0 mrad *ph/sec @100 mA / 9 keV w 1x4 mm aperture OPTICS: M0 mirror: Flat, bent, vertically collimating, 1 m, Si, Rh-coated, LN2-cooled monochromator M1 mirror: Bent, cylindrical, 1.2 m, Zerodur, Rh-coated MONOCHROMATOR: Si(220) phi=0°, Si(220) phi=90° double-crystal,

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BEAMLINE 1-4  

NLE Websites -- All DOE Office Websites (Extended Search)

-4 -4 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Small angle x-ray scattering MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bend magnet BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 7100-9000 eV 4.0 x 10-3 0.25 x 1.0 mm ~1010 2.0 mrad OPTICS: MONOCHROMATOR: Bent crystal; Si ABSORPTION: NA INSTRUMENTATION: Small/Low Angle X-ray Scattering Camera System w/CCD Detector DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send an email to M$SPEC@ssrl.slac.stanford.edu RESPONSIBLE STAFF: Chris Tassone, 650-926-3124 BEAM LINE PHONE NUMBER: 650-926-5214

262

BEAMLINE 8-2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray absorption spectroscopy, near edge Photoemission spectroscopy MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bending magnet station (soft x-ray) BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size (FWHM) flux angular acceptance focused 100 - 1300 eV ~4 x 10-4 >0.1 mm2 4.0 mrad OPTICS: M0 mirror: toroidal SiC MONOCHROMATOR: 6m spherical grating monochromator (TGM) Grating Monochromator References ABSORPTION: NA INSTRUMENTATION: User Chambers on VUV Lines DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send

263

BEAMLINE 2-1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Powder diffraction Thin film diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 1.3 Tesla Bend Magnet BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4000-14500 eV ~5 x 10-4 .20 x 0.45 mm 1.5 mrad OPTICS: Bent cylinder, single-crystal Si, Rh-coated mirror Radii: 2900 m (adjustable) x 52 mm Mean angle of incidence: 4.2 milliradians Cut off energy: 14.5 keV, Magnification: 1.1 MONOCHROMATOR: Si(111), Si(220) Si(400), upward reflecting, double-crystal Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

264

BEAMLINE 7-3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray absorption spectroscopy MAIN SCIENTIFIC DISCIPLINES: Structural Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2-Tesla wiggler, 0.8 mrad beam, side station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size (fwhm) flux* angular acceptance unfocused 4600-37000 eV 1 x 10-4 2 x 15 mm2 ~1 x 1012 0.8 mrad *ph/sec @100 mA / 9 keV w 2x15 mm aperture OPTICS: M0 mirror: Flat, bent, vertically collimating, 1 m, Si, Rh-coated, LN2-cooled monochromator MONOCHROMATOR: Si(220) phi=0°, Si(220) phi=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

265

BEAMLINE 7-2  

NLE Websites -- All DOE Office Websites (Extended Search)

7-2 7-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray scattering X-ray diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4600 - 16500 eV 0.12 x 0.50 mm 0.4 mrad OPTICS: Bent cylinder, single crystal Si, Rh-coated M0 mirror Radii: 2945 m (adjustable) x 56.1 mm Mean angle of incidence: 3.81 mrad Cut off energy: 17.7 keV Magnification: 1.0 MONOCHROMATOR: LN2-cooled, sagitally focusing, double crystal Si(111) Upward reflecting Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

266

BEAMLINE 10-2  

NLE Websites -- All DOE Office Websites (Extended Search)

0-2 0-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: 10-2a: X-ray absorption spectroscopy; XAS imaging 10-2b: X-ray scattering MAIN SCIENTIFIC DISCIPLINES: Biology / Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 30-pole, 1.45-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4500 - 30000 eV 0.2 x .43 mm 1.5 mrad unfocused 4500 - 45000 eV 2.0 x 20.0 mm 1.5 mrad OPTICS: Bent cylinder, Rh-coated, single crystal Si, M0 mirror Radii: 1500 m (adjustable) x 32.9 mm Cut off energy: 22 keV, Mean angle of incidence: 2.7 mrad MONOCHROMATOR: Si(111) f=90° or Si(220) f=90° Liquid nitrogen-cooled,

267

BEAMLINE 6-2  

NLE Websites -- All DOE Office Websites (Extended Search)

6-2 6-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: BL6-2a: Rapid-scanning xRF imaging Advanced x-ray spectroscopy (XES, XRS, RIXS) XES: Resonant and non-resonant x-ray emission spectroscopy XRS: Non-resonant x-ray Raman scattering BL6-2b: Rapid-scanning xRF imaging Advanced x-ray spectroscopy (XES, XRS, RIXS) XES: Resonant and non-resonant x-ray emission spectroscopy XRS: Non-resonant x-ray Raman scattering BL6-2c: Transmission X-ray Microscopy MAIN SCIENTIFIC DISCIPLINES: Biology / Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 56-pole, 0.9-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance

268

BEAMLINE 4-3  

NLE Websites -- All DOE Office Websites (Extended Search)

4-3 4-3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray Absorption Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Environmental / Materials / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla wiggler, 0.75 mrad, side station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance unfocused 2400-14000 eV 10-4 3 x 16 mm 0.75 mrad OPTICS: M0 mirror: Flat, bent vertically collimating, 1 m, Si, Rh-coated, cutoff 4-14 keV, LN2-cooled monochromator MONOCHROMATOR: Si(111) f=0° or Si(111) f=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

269

BEAMLINE 5-4  

NLE Websites -- All DOE Office Websites (Extended Search)

5-4 5-4 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Very High Energy Resolution; Photoemission Angle-Resolved Photoelectron Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 10-period undulator, maximum field 0.61 T BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance focused 7-40 eV 1700 l/mm: 7-18 eV, E/DE > 10000 2800 l/mm: 16-32 eV, E/DE> 10000 3600 l/mm: 20-40 eV, E/DE> 10000 ≥1 x 10-4 0.5 x 0.6 mm2 ~1011 >1.5 mrad OPTICS: M0: horizontal deflecting, flat, water-cooled M1: vertical focusing 10:1, elliptically cylinder M3: horizontal refocusing 1:1, cylinder M4: vertical refocusing 1:1, cylinder

270

Transportation Beamline at the Advanced Photon Source | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

271

APS 7-BM Beamline: Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

272

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

273

New Soft X-ray Beamline (BL10) at the SAGA Light Source  

SciTech Connect

A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

Yoshimura, D.; Setoyama, H.; Okajima, T. [Beamline group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

274

Overview of the SPring-8 Diagnostics Beamlines  

SciTech Connect

We present an overview of the two SPring-8 diagnostics beamlines, the beamline I (dipole magnet source) and II (insertion device source). At the beamline I, synchrotron radiation (SR) in both the X-ray and the visible bands is exploited for characterizations of the electron beam. At the beamline II, by observing the spectral, spatial, and temporal characteristics of X-ray SR of the insertion device (ID), new techniques for accelerator diagnostics are investigated. Irradiation experiments with the ID to develop accelerator components such as photon absorbers, and production of intensive 10 MeV {gamma}-rays by backward Compton scattering of external far infrared (FIR) laser photons are being prepared at the beamline II.

Takano, S.; Masaki, M.; Tamura, K.; Mochihashi, A.; Nakamura, T.; Suzuki, S.; Oishi, M.; Shoji, M.; Taniuchi, Y.; Okayasu, Y.; Ohkuma, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); Okajima, S. [Center of Advanced Metrology, Chubu University, Kasugai, Aichi, 487-8501 (Japan)

2010-06-23T23:59:59.000Z

275

APS Beamline Questionnaire Form | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Beamline Motor Drive Questionnaire Form APS Beamline Motor Drive Questionnaire Form * indicates required field Please send a separate email to Thomas Barkalow with an attached beamline drawing or sketch showing where the groups are located and the distances they are apart. First Name*: Middle Initial/Name: Last Name*: Beamline Designation*: What is the total number of driver units with makes and models?: How are driver units grouped together and each group's location within the beamline?: What number of driver units are in use simultaneously for each group?: What is the maximum amperage setting actually used for each unit?: What is the number of groups in use simultaneously and which groups are they?: Verification: We need to make sure you are a human. Please solve the challenge below, and click the I'm a Human button to get a confirmation code. To make this

276

Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C  

SciTech Connect

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

2011-05-01T23:59:59.000Z

277

Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C  

SciTech Connect

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

2011-12-31T23:59:59.000Z

278

Diagnostic X-Multi-Axis Beamline  

SciTech Connect

Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.

Paul, A C

2000-04-05T23:59:59.000Z

279

Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Beryllium windows, 100 m and 120 m. Distance source point - mask plane 10.35 meter. DEX 02 scanner, from Jenoptik GmbH. Micromachining II (XRLM2), Port 2B, 10 mrad...

280

CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams  

SciTech Connect

The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

NONE

1999-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Beamlines Directory | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL23 level...

282

Berkeley Lab's SPOT Suite Transforms Beamline Science  

NLE Websites -- All DOE Office Websites (Extended Search)

samples onto barcoded sample holders at home and ship them to the ALS. At the facility, a robot arm transfers each new sample to the measurement stage, where it is automatically...

283

Photon Sciences | NSLS-II Beamline Map  

NLE Websites -- All DOE Office Websites (Extended Search)

(2016-2018) Complex Materials Scattering (CMS) Magneto, Ellipso, High Pressure IR (METFIS) Metrology & Instrumentation Dev. (MID) In-situ X-ray Diffraction Studies (IXD)...

284

A Test Beamline on Diamond Light Source  

SciTech Connect

A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire-OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

285

Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY  

SciTech Connect

I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

Wagner, Ulrich H. [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Rau, Christoph [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Northwestern University, Chicago (United States)

2010-06-23T23:59:59.000Z

286

Roadmap: Political Science General -Bachelor of Arts [AS-BA-POL-GENL  

E-Print Network (OSTI)

Roadmap: Political Science ­ General - Bachelor of Arts [AS-BA-POL-GENL] College of Arts and Sciences Department of Political Science Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30-Sept-13 Important Notes Semester One: [14-17 Credit Hours] POL 10100 American Politics or POL 10300 Public Policy 3

Sheridan, Scott

287

Roadmap: Political Science General -Bachelor of Arts [AS-BA-POL-GENL  

E-Print Network (OSTI)

Roadmap: Political Science ­ General - Bachelor of Arts [AS-BA-POL-GENL] College of Arts and Sciences Department of Political Science Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 8-May-12/LNHD Important Notes Semester One: [14-17 Credit Hours] POL 10100 American Politics or POL 10300 Public Policy 3

Sheridan, Scott

288

GENERAL ARTICLES CURRENT SCIENCE, VOL. 106, NO. 5, 10 MARCH 2014 685  

E-Print Network (OSTI)

GENERAL ARTICLES CURRENT SCIENCE, VOL. 106, NO. 5, 10 MARCH 2014 685 Gheorghe Svoiu-mail: gsavoiu@yahoo.com The impact of inter-, trans- and multidisciplinarity on modern taxonomy of sciences Gheorghe Svoiu The beginnings of taxonomy in the science of the universe, and its rigorous development

Joshi, Yogesh Moreshwar

289

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must procedure for removal of solder wasteSolder B CLOSE OUT Secure the beamline and disable shutter/beam before for this beamline:I understand the instructions given to me on beamline operations and safety awareness. Date UAdm

Ohta, Shigemi

290

Beamline 6.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

phase; foils, powders, films up to 20 cm in diameter Sample environment High vacuum or UHV Scientific disciplines Applied sciences Scientific applications Solid-state chemistry,...

291

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals Print Tuesday, 01 June 2010 09:36 General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS...

292

Beamline Safety Design Review Steering Committee Charter  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Minutes internal link Meeting Minutes internal link Reviews internal link Beamline Safety Design Review Steering Committee (BSDRSC) 1. Purpose The Beamline Safety Design Review Steering Committee (BSDRSC) oversees the review of all safety aspects related to beamline and critical component design, regardless of who generated the design, and includes facility operational issues when reviewing non-APS generated designs. 2. Membership Members appointed by the APS Division Directors will be comprised of a pre-selected standing committee with membership chosen by function. The following functions will be included: AES User Technical Interface (Committee Chair) AES Technical Operations Specialist APS Electrical / Electronics Technical Representative AES QA Engineering Specialist APS Radiation Safety Shielding Committee Chair

293

1-ID: Sector 1, Insertion Device Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

1-ID beamline schematic 1-ID beamline schematic ID on-axis brilliance values 1-ID - Sector 1, Insertion Device Beamline Responsible Scientists Jon Almer, phone: (630) 252-1049, e-mail: almer@aps.anl.gov Sarvjit Shastri, phone: (630) 252-0129, e-mail: shastri@aps.anl.gov John Okasinski, phone: (630) 252-0162, e-mail: okasinski@aps.anl.gov Peter Kenesei, phone: (630) 252-0133, e-mail: kenesei@aps.anl.gov Scientific Programs Coupled high-energy SAXS/WAXS studies (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Single-grain studies Stress/strain/texture studies Pair-distribution function (PDF) measurements High-energy fluorescence Source Characteristics Upstream insertion device: APS Undulator A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device

294

Development and Application of the STARS-based Beamline Control System at the Photon Factory  

SciTech Connect

STARS{sup [1-2]}(Simple Transmission and Retrieval System) is a message transferring software for small-scale control systems with TCP/IP sockets, originally developed at the Photon Factory (PF). Because it has a server-client architecture using TCP/IP sockets and can work on various types of operating systems, the design and application are quite flexible. We have developed a common low-level beamline control system based on the STARS technology. Many kinds of useful STARS clients (device drivers, data acquisitions, user interfaces etc.) are available now, and so far, the system has been installed at 22 PF beamlines. We will describe the development and generalize of the STARS-based beamline control system at the PF.

Kosuge, Takashi; Nigorikawa, Kazuyuki; Nagatani, Yasuko; Saito, Yuuki [Photon Factory, 1-1 Oho Tsukuba-shi Ibaraki-ken 305-0801 (Japan)

2010-06-23T23:59:59.000Z

295

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

296

Center for Nanophase Materials Sciences (CNMS) - General Characterizat...  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL CHARACTERIZATION FACILITIES Neutron Scattering CNMS users are encouraged to take advantage of the world-class neutron scattering facilities that are available at ORNL's...

297

Beamline Phone Numbers| Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

298

Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline  

SciTech Connect

Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a 'photon hungry' technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the microsecond time scales. In general, the 10-fold increase in brightness of the NSLS-II, compared to other sources, will allow for measurements of dynamics on time-scales that are two orders of magnitude faster than what is currently possible. We also conclude that the common approximations used in evaluating the transverse coherence length would not be sufficiently accurate for the calculation of the coherent properties of an undulator-based beamline, and a thorough beamline optimization at a low-emittance source such as the NSLS-II requires a realistic wave-front propagation analysis.

Fluerasu A.; Chubar, O.; Kaznatcheev, K.; Baltser, J.; Wiegart, Lutz; Evans-Lutterodt, K.; Carlucci-Dayton, M.; Berman, L.

2011-08-21T23:59:59.000Z

299

362 SDSU General Catalog 2012-2013 Naval Science  

E-Print Network (OSTI)

turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting Power and Maritime Affairs (3) Sea power and maritime affairs; general concept of sea power including Merchant Marine; role of naval warfare components used to support the Navy's mission; sea power

Gallo, Linda C.

300

368 SDSU General Catalog 2013-2014 Naval Science  

E-Print Network (OSTI)

turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting Power and Maritime Affairs (3) Sea power and maritime affairs; general concept of sea power including Merchant Marine; role of naval warfare components used to support the Navy's mission; sea power

Gallo, Linda C.

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On Generalizing Rough Set Theory Department of Computer Science, University of Regina  

E-Print Network (OSTI)

On Generalizing Rough Set Theory Y.Y. Yao Department of Computer Science, University of Regina formulations of the standard rough set theory. It demonstrates how those formulations can be adopted to develop different generalized rough set theories. The relationships be- tween rough set theory and other theories

Yao, Yiyu

302

On Line Beamline Commissioning Activity Approval Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Activity Approval Form Commissioning Activity Approval Form This form is to be filled by the Commissioning Activity Team Leader. No beamline commissioning activities will be allowed to run without a properly completed, approved, and posting of this commissioning approval form. You will be notified by e-mail upon approval. Sector Beamline Expected Start Date Expected Duration 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 BM ID ( Give a Unit) Activity Description( Give only a brief description) Commissioning Team Members First and Last Name Affiliation Phone Number 1. 2. 3. 4. 5. 6. Special Safety Concerns Commissioning Activity Team Leader Name E-Mail Address Submit Commissioning Activity Approval Form Clear all Fields and start All over again!!!

303

Performance measurements at the SLS SIM beamline  

SciTech Connect

The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

304

1993 CAT workshop on beamline optical designs  

SciTech Connect

An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

Not Available

1993-11-01T23:59:59.000Z

305

436 SDSU General Catalog 2011-2012 In the College of Sciences  

E-Print Network (OSTI)

of probability and mathe- matical statistics, a complementary knowledge of basic methods for data collection436 SDSU General Catalog 2011-2012 Statistics In the College of Sciences OFFICE: Geology Coordinator for Statistics: Lui Professors: Fan, Levine, Lui Associate Professor: Lin Assistant Professors

Gallo, Linda C.

306

SDSU General Catalog 2012-2013 441 In the College of Sciences  

E-Print Network (OSTI)

of probability and mathe- matical statistics, a complementary knowledge of basic methods for data collectionSDSU General Catalog 2012-2013 441 STAT Statistics In the College of Sciences OFFICE: Geology Coordinator for Statistics: Lui Professors: Fan, Levine, Lui Associate Professor: Lin Assistant Professors

Gallo, Linda C.

307

436 SDSU General Catalog 2010-2011 In the College of Sciences  

E-Print Network (OSTI)

of probability and mathe- matical statistics, a complementary knowledge of basic methods for data collection436 SDSU General Catalog 2010-2011 Statistics In the College of Sciences OFFICE: Geology: Shen Coordinator for Statistics: Lui Professors: Fan, Levine, Lui Associate Professor: Lin Assistant

Gallo, Linda C.

308

446 SDSU General Catalog 2013-2014 In the College of Sciences  

E-Print Network (OSTI)

of probability and mathe- matical statistics, a complementary knowledge of basic methods for data collection446 SDSU General Catalog 2013-2014 Statistics In the College of Sciences OFFICE: Geology Coordinator for Statistics: Lui Professors: Fan, Levine, Lui Associate Professors: Bailey, Chen, Lin Assistant

Gallo, Linda C.

309

Generalization of Rough Sets using Modal Logics Department of Computer Science, Lakehead University  

E-Print Network (OSTI)

Generalization of Rough Sets using Modal Logics Y.Y. Yao Department of Computer Science, Lakehead@cs.sjsu.edu Abstract The theory of rough sets is an extension of set theory with two addi­ tional unary set operators in modal logics. By explor­ ing the relationship between rough sets and modal logics, this paper

Lin, Tsau Young

310

General User Proposal Scores  

NLE Websites -- All DOE Office Websites (Extended Search)

General User Proposal Scores General User Proposal Scores General User Proposal Scores Print Tuesday, 01 June 2010 10:34 Scoring Proposals are scored on a scale of 1 to 5, with 1 being the best score and 5 the worst. Reviewers are requested to use the following ranking schema: Must do High Priority Medium Priority Low priority Don't do Beam time is assigned based on each proposal's score in relation to all other proposals for a given beamline. For beamlines where beamtime requests exceed available beamtime, a cutoff score is assigned after which no beam time is allocated. proposal scores Beam Time Cutoff Scores for the Current Cycle The table below lists the percent of beam time shifts allocated/requested for each beamline, and the cutoff scores, below which no beam time was assigned.

311

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X7B  

E-Print Network (OSTI)

shoes Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y Warning signs Training High pressure Y Y Warning signs Training Cutting/razor blades Be aware of hand

Ohta, Shigemi

312

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X8A  

E-Print Network (OSTI)

concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics a designated area, periodically clean surfaces Cutting/razor blades Y Y Be aware of hand positioning Use safety

Ohta, Shigemi

313

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X22B  

E-Print Network (OSTI)

glasses, nitrile gloves Soldering Y Y Use a designated area, periodically clean surfaces High temperature Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

314

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X6B  

E-Print Network (OSTI)

check gas lines Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Beryllium use Y Y Handle articles

Ohta, Shigemi

315

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U3C  

E-Print Network (OSTI)

gloves Enclosed shoes Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Visible light Y Y Covers Warning

Ohta, Shigemi

316

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18A  

E-Print Network (OSTI)

Laser registration, warning signs Soldering Y N Use a designated area, periodically clean surfaces High OpCo if damaged Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible

Ohta, Shigemi

317

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X14A  

E-Print Network (OSTI)

-out, turbo pump set- up, set-up displex Y Y Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area, periodically clean surfaces High temperature ­ furnace with beryllium OpCo if damaged Material Handling/Crane Y N Training Cutting/razor blades Y Y Be aware of hand

Ohta, Shigemi

318

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X27C  

E-Print Network (OSTI)

/lifting ­ detector has to be moved often (~ 40 lbs) Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures ­ moving detector Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces High temperature ­ heat stage Y Y BLOSA

Ohta, Shigemi

319

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U4B  

E-Print Network (OSTI)

guidance/checklist from PRM 5.1.0 Soldering Y Y Use a designated area, periodically clean surfaces High Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

320

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X24C  

E-Print Network (OSTI)

cryogens (pockets, cuffs) Cryogen or heavy gloves Enclosed shoes Soldering Y N Use a designated area Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider

Ohta, Shigemi

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18B  

E-Print Network (OSTI)

, warning signs Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant

Ohta, Shigemi

322

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X19A  

E-Print Network (OSTI)

Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area fixed, or HEPA filtered exhaust Cutting/razor blades Y Y Be aware of hand positioning Use safety knife

Ohta, Shigemi

323

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT to me on beamline operations and safety awareness. Date UAdmTrainer's Signature J. Jordan-Sweet C

Ohta, Shigemi

324

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must containerDisposal - Sharps A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT Secure the beamline and disable shutter/beam before you leaveDisabling Beam A Review

Ohta, Shigemi

325

Science Cafe  

NLE Websites -- All DOE Office Websites (Extended Search)

Cafés Cafés Science Cafe November 1, 2013 Print Tuesday, 24 September 2013 15:00 Friday, November 1@ 12 noon in USB 15-253 jackson Exposing the Trade Secrets of Ancient Roman Engineers: Nano-Structure and Material Properties of Al-tobermorite in 2000-Year-Old Seawater Harbor Concrete Marie Jackson, UC Berkeley, Beamlines 5.3.2, 12.2.2,12.3.2 DNA Labelled with Gold Greg Hura, Physical Biosciences Division, Beamline 12.3.1 robin Pseudo-Single-Bunch Operation with Adjustable Frequency - A New Operation Mode for the ALS Dave Robin, AFRD August 29, 2013 Print Thursday, 11 April 2013 08:37 Date-Change: Thursday, August 29 @ 12 noon in USB 15-253 beavers Under Pressure: Why Diamonds Are a Crystallographer's Best Friend! Christine Beavers, Experimental Systems Group, Beamline 11.3.1

326

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

327

Status of the LBNE Neutrino Beamline  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the status of the conceptual design and the associated challenges.

Papadimitriou, Vaia; /Fermilab

2011-12-01T23:59:59.000Z

328

Boosting Beamline Performance | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

please visit science.energy.gov. breakthroughs in computational methods Experimental results are greatly improved with the application of Swift and high-performance computing....

329

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline  

E-Print Network (OSTI)

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline Objective, in ambience or with gas flow Capabilities: X14A, EERE-sponsored PRT beamline · High photon flux: typically 9x

Ohta, Shigemi

330

E-Print Network 3.0 - absorption beamline x-11 Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of beamline: 9... open Checkpoints on the X9 side of beamline: 2. Bremsstrahlung shield (BS 1) in place and banded... photo 11. Mirror windows (3) covered in lead as per photo...

331

APS beamline standard components handbook, Version 1. 3  

SciTech Connect

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

332

A New Beamline For Time Resolved And Extreme Conditions X-Ray Absorption Spectroscopy  

SciTech Connect

The ESRF has recently started an ambitious project spread over 10 years aimed at an upgrade of the accelerator, beamlines and infrastructure. Through this upgrade, we are proposing a refurbishment of the scanning EXAFS beamline BM29 and of the Energy Dispersive XAS (EDXAS) beamline ID24.

Mathon, Olivier; Mairs, Trevor; Pascarelli, Sakura [ESRF, BP220, 38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

333

Photon Sciences | Beamlines | XPD: X-ray Powder Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

XPD: X-ray Powder Diffraction XPD: X-ray Powder Diffraction Poster | Fact Sheet | Preliminary Design Report Scientific Scope XPD is a tunable facility with the ability to collect diffraction data at high x-ray energies (40keV-80keV), offering rapid acquisition (millisecond) and high angular resolution capabilities on the same instrument. XPD addresses future scientific challenges in, for example, hydrogen storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. Such materials of high technological value often are complex, nanostructured and heterogeneous. The scientific grand challenge is to obtain robust and quantitative (micro)structural information, not only in the ground state at ambient conditions, but also in situ or in operando with varying temperature, pressure, magnetic/electric/stress

334

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science newsroomassetsimagesscience-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science...

335

Beamline standard component designs for the Advanced Photon Source  

SciTech Connect

The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings.

Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

1994-12-01T23:59:59.000Z

336

Physics Potential of the Fermilab NuMI beamline  

E-Print Network (OSTI)

We explore the physics potential of the NuMI beamline with a detector located 10 km off-axis at a distant site (810 km). We study the sensitivity to $\\sin^2 2 \\theta_{13}$ and to the CP-violating parameter $\\sin \\delta$ as well as the determination of the neutrino mass hierarchy by exploiting the $\

Olga Mena; Stephen Parke

2005-07-25T23:59:59.000Z

337

Beamline Control and Instrumentation System using Industrial Interface Techniques  

SciTech Connect

How should a beamline be designed, which satisfies the needs and requirements of scientists and is easy to build and operate? Today, most control and instrumentation systems for beamlines are based on scientific requirements. Scientific details of the beamline, e.g. vacuum and beam physics details; are usually extensively described. However, control system specifications are often reduced to few requirements, e.g. which beam-related device to use. Lots of these systems work perfectly from the physicist's point of view, but are hard to bring into service and operate and difficult to extend with additional equipment. To overcome this, the engineering company ENZ has developed components using industrial standard interfaces to guarantee high flexibility for equipment extension. Using special interface boards and galvanic isolation offers increased stability of motion control axes. This saves resources during commissioning and service. A control system was developed and installed at a Soft-X-ray beamline at ASP Melbourne. It is operated under EPICs on distributed embedded IOC's based on PC-hardware. Motion and vacuum systems, measurement devices, e.g. a Low-Current Monitor (LoCuM) for beam position monitoring, and parts of the equipment protection system were developed and most of them tested in cooperation with DELTA at the Technical University of Dortmund.

Enz, F. [ENZ Engineering company for environmental electronic and automation, F.-Woehler-Str. 2, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

338

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users mustVent System A Avoid skin contact with soldering iron to prevent burns to the skinBurns B Use caution when and safety awareness. Date UAdmTrainer's Signature Bin Dong LU-BLOSA-U3C R = NSLS Content A = Applicable

Ohta, Shigemi

339

Feeding habit of goats in the scavenging system of Bangladesh Dept of General Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh  

E-Print Network (OSTI)

Feeding habit of goats in the scavenging system of Bangladesh MR Alam Dept of General Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh In the mixed farming system goats of these feed resources is required for devising of effective grazing management systems. The study involved

Boyer, Edmond

340

Investigation of pin-post monochromators for a wiggler beamline  

SciTech Connect

Three water-cooled pin-post monochromators, to be used on a wiggler beamline at the Advanced Photon Source (APS), were built with the heat exchanger engineered to provide very high heat transfer. The geometry of the heat exchanger as well as calculated data on the heat transfer will be presented. Before using the monochromators on the beamline, they were checked by x-ray diffraction topography. Reflections (333) and (220) in Bragg case were utilized. In all crystals, similar patterns of strain in the diffracting silicon layers were revealed, which can be attributed to the geometry of the heat exchangers, the bonding technology, and the thickness of the top layer. Conclusions about construction of future pin-post monochromators have been drawn.

Krasnicki, S.; Maj, J. [Argonne National Lab., IL (United States); Schildkamp, W. [Univ. of Chicago, IL (United States); Tonnessen, T. [Boeing North American, Albuquerque, NM (United States). Albuquerque Operations

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Performance of Saga-University Beamline with Planer Undulator  

SciTech Connect

A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation. The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.

Azuma, J.; Takahashi, K.; Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Ohkuma, H. [Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198 (Japan); Yamamoto, S. [High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

342

Science Brief Submission Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Brief Submission Form Science Brief Submission Form Science Brief Submission Form Print Tuesday, 01 May 2007 00:00 Science Brief Guidelines and Submission Form Please fill out the form below to submit a Science Brief and send ONE image (may be a composite of up to four images) from your publication directly to us at alscommunications@lbl.gov. Please note: The image must be high resolution, and, if there is text on the image, it must be scalable. We will let you know as soon as it is posted! * Required Your Name * Your Email Address * Your Affiliation Title of Publication * Link to Publication (if available) Beamline(s) * Journal Citation * Description of Research * 200 word maximum Image Caption * 50 word maximum Submit Never submit passwords through Google Forms. Powered by Google Docs Report Abuse - Terms of Service - Additional Terms

343

10 Questions for a Beamline Scientist: Apurva Mehta | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta November 4, 2011 - 1:02pm Addthis Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to help a friend build beamline parts at the Stanford Synchrotron Radiation Lightsource (SSRL). Today, he's "still mucking around with beamlines."
 
In the latest 10 Questions, Dr. Mehta shares how he landed at SLAC and his adventures in a wide range of projects, from advanced semiconductors to

344

SDSU General Catalog 2014-2015 443 OFFICE: Geology/Mathematics/Computer Science 413  

E-Print Network (OSTI)

with a good background for employment or graduate work in statistics, biostatistics, or in that science-594-6191 Faculty Emeritus: Burdick, Macky, Park, Romano Chair: Levine Coordinator for Statistics: Lui Professors: Manchester, Noble Offered by the Department of Mathematics and Statistics Master of Science degree

Gallo, Linda C.

345

Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source  

Science Journals Connector (OSTI)

Beamline 2.1, a transmission soft X-ray microscope at the Advanced Light Source of Lawrence Berkeley National Laboratory, is described.

Le Gros, M.A.

2014-10-01T23:59:59.000Z

346

E-Print Network 3.0 - als infrared beamlines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2002 Advances in Bioengineering RADIATIVE PROPERTIES OF POLAR BEAR HAIR Summary: synchroton infrared spectromicroscopy beamline was utilized to provide a continuous spectrum of...

347

BEAMLINE 11-3 Materials Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray scattering Thin film diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 26-pole, 2.0-Tesla ID Side Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 12735 eV ~5 x 10-4 3.1 x 0.15 mm Usable 0.15 x 0.15 mm OPTICS: Single-crystal Si, Rh-coated - vertically focusing mirror MONOCHROMATOR: Bent cube-root I_beam Si(311), Side deflecting Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL support staff. ABSORPTION: INSTRUMENTATION: Standard detector: MAR345 Imaging Plate - 345 mm

348

SCience  

NLE Websites -- All DOE Office Websites (Extended Search)

all all SCience Chicago Office Environment, Safety and Health Functions, Responsibilities, and Authorities Manual December 2012 ~5 {?JI-- l L-H1- I Roxanne E. Purucker, Manager Date SC-CH FRAM Revision 7 Office of Science - Chicago Office SC-CH Revision History TITLE: SC-CH Functions, Responsibilities, and Authorities Manual POINT OF CONTACT: Karl Moro SCMS MANAGEMENT SYSTEM: Environment, Safety and Health (ES&H) TO BE UPDATED: December 31, 2013 Revision Date Reason/Driver Description 5 Oct 10 Annual review and revision of the SC-CH ES&H Functions, Responsibilities, and Authorities Manual Changes were primarily made to address administrative and organizational changes and general improvement of text and presentation. I 6 Nov 11 Annual review and revision of

349

The Nanofocus Endstation of the MINAXS Beamline of PETRA III  

SciTech Connect

The Micro- and Nanofocus X-ray Scattering Beamline (MINAXS) of the new 3rd generation source PETRA III is equipped with two endstations, out of which the farthest from the high beta undulator source is designed to provide a high flux, monochromatic X-ray beam focused to a size in the order of 100 nmx100 nm routinely used for microdiffraction experiments (nanofocus endstation). This contribution presents an overview on the current status of the nanofocus endstation and outlines the to-be-used experimental setup.

Krywka, C. A. [IEAP, Christian-Albrechts-Universitaet zu Kiel, Leibnizstrasse 19, D-24098 Kiel (Germany); Doehrmann, R.; Roth, S. V. [DESY, Notkestrasse 85, D-22063 Hamburg (Germany); Mueller, M. [GKSS Forschungszentrum Geesthacht, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2010-06-23T23:59:59.000Z

350

The holography endstation of beamline P10 at PETRA III  

SciTech Connect

We present the design and instrumentation of a novel holography endstation for the P10 coherence beamline at PETRA III at DESY. The experimental imaging scheme is based on a highly coherent and divergent (cone) beam illumination, achieved by fixed curvature focusing mirrors with additional spatial and coherence filtering by x-ray waveguides. The optical elements along the beam path and the instrument under construction are described. Preliminary results obtained in a similar setting under comparable parameters are given as a benchmark, and first simulations of one of the two mirrors are presented to study the effect of imperfections on the field distribution in the focal plane.

Kalbfleisch, S.; Osterhoff, M.; Giewekemeyer, K.; Neubauer, H.; Krueger, S. P.; Hartmann, B.; Bartels, M.; Salditt, T. [Institut fuer Roentgenphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Sprung, M.; Leupold, O. [HASYLAB at DESY, Notkestr. 85, 22607 Hamburg (Germany); Siewert, F. [Helmholtz Zentrum Berlin, BESSY-II, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

351

ANL/APS/TB-54, Dose Calculations using MARS for Bremsstrahlung Beam Stops and Collimators in APS Beamline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOSE CALCULATIONS USING MARS FOR BREMSSTRAHLUNG BEAM STOPS AND COLLIMATORS IN APS BEAMLINE STATIONS Jeffrey C. Dooling Accelerator Systems Division Advanced Photon Source August 2010 This work is sponsored by the US Department of Energy Office of Science The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display

352

Higher Order Suppressor (HOS) for the PolLux Microspectroscope Beamline at the Swiss Light Source SLS  

SciTech Connect

The mechanical design and performance of a device to suppress higher orders of a spherical grating monochromator at a constant deviation angle is described. The higher order suppressor (HOS) is used for a scanning transmission x-ray microspectroscope beamline (PolLux) at a bending magnet of the Swiss Light Source (SLS). The instruments allow microspectroscopy in polymer science, of biological samples in the water window as well as the study of magnetic materials with circular or linear polarized light in a photon energy range of 200 eV to 1400 eV. The HOS uses three mirrors acting as a low pass filter for soft x-rays to improve the absorption spectroscopy of carbon, oxygen and nitrogen 1s core levels. The successful installation and operation of the HOS located after the monochromator is reported. First results obtained using samples from materials research and environmental sciences exemplify the improved spectroscopy capabilities of the instrument.

Frommherz, U.; Stefani, R.; Ellenberger, U. [Paul Scherrer Institut, Division of Mechanical Engineering Sciences, 5232 Villigen PSI (Switzerland); Raabe, J.; Watts, B. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

353

Automation of the EMBL Hamburg protein crystallography beamline BW7B  

Science Journals Connector (OSTI)

The automation of the EMBL Hamburg wiggler beamline BW7B for protein crystallography is described. The beamline features an automated end-station, a robotic sample changer, semi-automated sample centering based on UV fluorescence and new control software including intuitive graphical user interfaces.

Pohl, E.

2004-08-17T23:59:59.000Z

354

A Beamline for Fast Polarization Switching at NSLS-II  

SciTech Connect

The first XUV beamline (200-2000 eV) at NSLS-II will have two branches, one optimized for photon hungry experiments requiring high coherent flux and one optimized for studies of polarization sensitive materials and interfaces based on fast polarization switching. We describe here the branch designed for fast polarization switching with frequencies up to 1 kHz, high photon flux, and good energy resolution. The beamline will be served by two canted undulators and is based on the focusing variable line spacing grating monochromator. The two beams will be focused at the same spot of approximately 80x10 {mu}m (hor.xver.). The expected circular polarized flux at the sample from each device up to 1.4 keV will be higher than 10{sup 12} photons/s at a resolving power better than 10{sup 4}. An additional KB focusing system will deliver the two beams to a spot in the {mu}m range.

Reininger, R.; Sanchez-Hanke, C.; Hulbert, S. L. [NSLS and NSLS-II, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2010-06-23T23:59:59.000Z

355

The Diamond Beamline I13L for Imaging and Coherence  

SciTech Connect

I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

Rau, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Feinberg School of Medicine, Northwestern University, Chicago, Illinois (United States); Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Robinson, I. K. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Laboratory for Nanomaterials, University College London, London, London (United Kingdom)

2010-06-23T23:59:59.000Z

356

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X17B2  

E-Print Network (OSTI)

/3a laser Y Y Laser registration, warning signs Soldering Y N Use a designated area, periodically is being moved Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when

Ohta, Shigemi

357

Political Science College of Arts and Sciences  

E-Print Network (OSTI)

Political Science College of Arts and Sciences Degree Options Bachelor of Arts in Political Science General Political Science Global Politics Political Science Pre-Law Minors Political Science Program Law Campaign worker Politics Marketing and sales Nonprofit administration Consultant Certification

Collins, Gary S.

358

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline  

SciTech Connect

Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

Llorens, Isabelle [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); Synchrotron SOLEIL - MARS beamline, L'Orme des Merisiers, F-91192 Gif sur Yvette (France); Lahera, Eric; Delnet, William; Proux, Olivier [Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS Universite Joseph Fourier, F-38041 Grenoble cedex 9 (France); BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Braillard, Aurelien; Hazemann, Jean-Louis; Prat, Alain; Testemale, Denis [BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay [Institut de Mineralogie et de Physique des Milieux Condenses, UMR 7590, 4 place Jussieu, F-75005 Paris (France); Bardou, Nathalie [Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay, F-91460 Marcoussis (France); Ulrich, Olivier [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); BM32/IF beamline, ESRF, F-38043 Grenoble cedex 9 (France); Arnaud, Stephan; Berar, Jean-Francois; Boudet, Nathalie; Caillot, Bernard [Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); BM02/D2AM beamline, ESRF, F-38043 Grenoble cedex 9 (France); Chaurand, Perrine; Rose, Jerome [Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement, UMR 7730, F-13545 Aix en Provence (France); and others

2012-06-15T23:59:59.000Z

359

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science  

E-Print Network (OSTI)

Roadmap: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General Major GPA Overall GPA 73 2.000 2.000 #12;Roadmap: Electrical/Electronic Engineering Technology Updated: 27-Sept-12/JS This roadmap is a recommended semester-by-semester plan of study for this major

Sheridan, Scott

360

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Measuring The Source Brilliance at An Undulator Beamline  

SciTech Connect

Third-generation X-ray synchrotrons like the European Synchrotron Radiation Facility (ESRF) are optimized to produce intense undulator radiation. Insertion devices, such as undulators, ensure the highest possible brilliance--the key parameter for the success of e.g. coherent scattering, which is one of the main techniques employed at ESRF's TROIKA beamline. Nowadays, the constant efforts to reduce the emittance and improve the stability of the electron beam allow using small-gap insertion devices and increase the brilliance. Obviously, it is important to have an experimental technique for evaluating the performance of the undulator source. Here we present a method based on measuring the diffuse scattering from a light amorphous material by a photon counting detector. The measured spectral intensities show a very good agreement with the simulated spectra, demonstrating the high brilliance (above 10{sup 20} ph/s/0.1%bw/mrad{sup 2}/mm{sup 2}) achieved at modern facilities.

Zontone, Federico; Madsen, Anders; Konovalov, Oleg [European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

362

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS/TB-44 Rev. 4 APS/TB-44 Rev. 4 Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source Revision 4 Advanced Photon Source About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

363

ANL/APS/TB-21 Radiation Shielding of Insertion Device Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Radiation Shielding of Insertion Device Beamlines Using a Mirror as the First Optical Element W. Yun, B. Lai, K. J. Randall, S. Davey, D. R. Haeffner, P. K. Job, and D. Shu February 1995 Abstract The radiation shielding for an Advanced Photon Source (APS) insertion device beamline using a mirror as the first optical component is discussed. The beamline layout for a specific Synchrotron Radiation Instrumentation Collaborative Access Team beamline (sector 2 of SRI CAT) is described, and the methodology used to determine the radiation shielding is presented. Results indicate that, by using a x-ray mirror with a critical energy of 32 keV for total reflection, an undulator beam containing nearly all x-rays in the 0 - 32 keV spectral range can be delivered

364

E-Print Network 3.0 - aps beamline front Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 11 Policy& Procedure : 3.1.37 Summary: The beamline front end provides the UHV transition from the APS storage ring through the ratchet wall... to the portions of the...

365

Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron  

SciTech Connect

Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill pattern in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.

Boland, M. J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Rassool, R. P.; Peake, D. J.; Sobott, B. A.; Lee, V.; Schubert, A. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); LeBlanc, G. S.; Kirby, N. [Australian Synchrotron, Clayton, Victoria 3168 (Australia)

2010-06-23T23:59:59.000Z

366

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

367

E-Print Network 3.0 - aps wiggler beamline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

SPX BEAMLINES The crab cavity scheme (sections 3.5 and 6... .1), offers a unique tunable high average flux source of 1ps x-rays. We propose to develop two ... Source:...

368

Science DMZ for ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS ALS About ESnet Overview ESnet Staff Governance Our Network Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ CU Science DMZ Penn State & VTTI Science DMZ NOAA Science DMZ NERSC Science DMZ ALS Multi-facility Workflow LCLS ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Careers Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ for ALS Many beamline scientists at Berkeley Lab's Advanced Light Source (ALS) are or will be experiencing slower network speeds because of instrument upgrades. These new instruments, or more specifically detectors, are

369

ANL/APS/TB-14 APS Beamline Design and Construction Requirements:  

NLE Websites -- All DOE Office Websites (Extended Search)

14 14 APS Beamline Design and Construction Requirements: A Reference Manual for Designers and Builders Version 1.0 May 1994 iii TABLE OF CONTENTS SECTION I DEFINITIONS, GUIDELINES, AND REVIEW CRITERIA ............................1 1. Introduction (July 21, 1998) ...............................................................................................1 1.1 About the Advanced Photon Source ...........................................................................1 1.2 About this Manual.......................................................................................................1 2. Beamline Definitions and Responsibilities (July 21, 1998) .................................................2 2.1 Definitions...................................................................................................................2

370

Fundamental Neutron Physics Beamline at the Spallation Neutron Source at ORNL  

E-Print Network (OSTI)

We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

N. Fomin; G. L. Greene; R. Allen; V. Cianciolo; C. Crawford; T. Ito; P. R. Huffman; E. B. Iverson; R. Mahurin; W. M. Snow

2014-08-04T23:59:59.000Z

371

Automatic sample Dewar for MX beam-line  

SciTech Connect

It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of the loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.

Charignon, T.; Tanchon, J.; Trollier, T.; Ravex, A. [Absolut-System, Meylan, 38240 (France); Theveneau, P. [European Synchrotron Radiation Facility, Grenoble, 38000 (France)

2014-01-29T23:59:59.000Z

372

Science  

Science Journals Connector (OSTI)

As a self-confessed purveyor of ``frequently outrageous views,'' Steve Fuller can be relied on for a spirited and provocative text - and so this proves. Jerry Ravetz's gushing endorsement on the back cover claims that the public's understanding of science ``will never be the same again'' and that the book proves Steve Fuller to be ``actually science's best friend.'' But those of an orthodox scientific persuasion (though perhaps not his intended audience) are likely to be provoked into dyspeptic displeasure by the first few sideswipes at what they hold most dear. This short text comprises one volume of the series `` Concepts in Social Science,'' in publishing order sandwiched between Rights and Liberalism. Its expressed aim is that the reader come away thinking ``that the idea and institution of `science' go to the very heart of what the social sciences are about.'' In a style that is always inspired but for all save the cognoscenti can sometimes verge on the abstruse, Fuller argues that social and scientific realities are inextricably intertwined. Science's implausible knowledge claims of detachment and objectivity succeed only in perpetuating self-delusion, sowing the seeds for science's own demise. For those familiar with the sociology of scientific knowledge (SSK) debates, the overall message will not be entirely new - and indeed the book is in part a reworking of some of Fuller's previously-published journal articles - but the liveliness of this contentious prose and its immodest, sweeping polemical style present a critical case against science that is often uncomfortably near the bone. What is impressive is Fuller's intellectual boldness in weaving together a wealth of sociological, philosophical and historical arguments that aim to reveal for public scrutiny the true nature of science. The picture of science created is of its frailty and everydayness - qualities that Fuller claims have been disguised by an unattractive mix of intellectual cunning and social naivet from scientists. Fuller portrays a lay public that combines insight and innocence. Sometimes the public can see through science's ploys for extravagant research proposals, thereby ``displaying a fundamentally sound instinctive response to science.'' At other times, the public is foolish enough to regard scientific knowledge as distinct and authoritative - ``reliable'' lay beliefs about science he says are sadly rare. Thus, in Fuller's eyes, misunderstandings of science abound. Whereas some critics see the yearly panjandrum that constitutes Science Weeks as a clumsy and politically naive stab at ``public relations,'' Fuller sees darker forces of ignorance at work - ``evidence of the scientific community misunderstanding something significant about the social conditions that enable its existence.'' Tackling the public understanding of science (PUS) debate in such a spirit in Chapter 1 sets the tone for the protracted dissection of science that follows. But Fuller's aim is more to do with the revelation of sociological phenomena than with ridicule of science. For example, in Chapter 2 the idiosyncrasies of particular scientific disciplines are picked apart (in the best sociological tradition, physics comes in for a good deal of epistemological stick). Fuller succeeds in portraying the various branches of science as fundamentally different, with distinct working practices shaped by different histories and presumptions. Why, the author then muses, are interdisciplinary wars within science rare, in contrast to social science? With such questions to crack, science is rich pickings for sociological inquiry. In Chapter 3, Fuller's concern is the many-layered meanings of the terms science, scientific and scientists. Here the author takes us through the sociological and philosophical twists and turns of meaning with ideological ease, neatly contrasting today's science with that of the past. For example, long gone is science's unquestioned claim always to serve the best interest of the state; now science is self-serving. Much missed too is science's ability to stab

Jeff Thomas, Centre for Science Education, The Open

1998-01-01T23:59:59.000Z

373

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and Cloud Processes in the Atmosphere  

E-Print Network (OSTI)

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and long-range levels. The author here offers a systematic discussion of the transfer of solar and thermal important topics in atmospheric radiation, cloud physics, and thermal equilibrium. Aspects

Liou, K. N.

374

Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Electronic Nose Sniffs Out Toxic Gases  

E-Print Network (OSTI)

at concentrations known to be immediately dangerous to life or health were included. The laboratory studies usedSpace Science Technology Health General Sci-fi & Gaming Oddities International Business Politics serious health risks in the workplace or through accidental exposure. "Our device is simply a digital

Suslick, Kenneth S.

375

Design of a High Flux Vacuum-Ultraviolet Beamline for Circular Dichroism Experiments  

SciTech Connect

A vacuum-ultraviolet bending-magnet beamline for circular dichroism (CD) experiments has been designed. To maximize the photon flux and minimize the focused beam size, a cylindrical mirror and a cylindrical grating with independent optical functions are utilized. The beamline can collect a 30 mrad horizontal by 7 mrad vertical solid angle of synchrotron radiation. By using a 600 grooves/mm grating, the calculated photon flux is greater than 1x10{sup 13} photons/sec and the focused beam size is 0.4 mmx0.65 mm for the spectral range from 130 nm to 330 nm with the energy resolving power set at 1000. The linear polarization degree is better than 75% and can be increased to 90% by reducing the vertical acceptance angle down to 2 mrad. In addition to the high flux mode described above, this beamline can also be operated in a high resolution mode. By using a 1200 grooves/mm grating, a resolving power greater than 10,000 can be achieved for the spectral range from 180 to 330 nm. This beamline can provide photon flux as high as the best synchrotron CD beamlines in the world while offers simultaneously a smaller focused beam size.

Fu, H. W.; Fung, H. S.; Chung, S. C.; Huang, L. J.; Chen, C. T. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

2010-06-23T23:59:59.000Z

376

Application of Partially coherent Wavefront Propagation Calculations for Design of Coherence-Preserving Synchrotron Radiation Beamlines  

SciTech Connect

Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. 'Extraction' of 'coherent portion' of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using 'Synchrotron Radiation Workshop' (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

O Chubar; Y Chu; K Kaznatcheev; h Yan

2011-12-31T23:59:59.000Z

377

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Sedoheptulose phosphate may be an important intermediate in carbohydrate metabolism in animals as well as in plants, the NIH scientists observe. ... NOL Makes Magnetic Material ...

1952-06-23T23:59:59.000Z

378

Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2  

SciTech Connect

The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

Prasad, T. T.; Modi, M. H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Ultilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

379

The Design of Superconducting Wiggler Beamline BL7 at SAGA-LS  

SciTech Connect

A new hard X-ray beamline has been designed at Saga Light Source. The beamline, named BL7, uses a newly developed 4-Tesla superconducting wiggler as a light source in order to cover a wide energy range to 30 keV. This beamline has a simple optics: a double-crystal monochromator and a Rh-coated bent-cylindrical mirror and can supply a focused beam with a photon flux about 1x10{sup 10} photons/s and a sub-millimeter size. Several experiments will be performed in the experimental station: e.g. protein crystallography; X-ray micro computed tomography; X-ray absorption fine structure measurement.

Kawamoto, M.; Sumitani, K.; Okajima, T. [Beamline Group, Kyushu Synchrotron Light Research Center, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

380

Data acquisition and control software for XRD beamline at Indus?2  

Science Journals Connector (OSTI)

X?ray diffraction (XRD) beamline is under commissioning on Indus?2 synchrotron radiation facility. The experimental setup of XRD beamline consists of a six?circle diffractometer and various detector systems such as scintillation detector ionization chamber and image plate. The diffractometer can be controlled via EIA232 serial interface or Ethernet. Standard data acquisition software with a graphical user interface has been developed using LabVIEW. A firm safety and error handling scheme is implemented for failsafe operation of the experimental station. This paper describes in detail the data acquisition and control software for the experimental station.

Sanjeev R. Kane; C. K. Garg; A. K. Sinha

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

APS beamline standard components handbook, Version 1.3. Revision 1  

SciTech Connect

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

382

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

383

The X-ray microscopy beamline UE46-PGM2 at BESSY  

SciTech Connect

The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

Follath, R.; Schmidt, J. S. [Helmholtz-Center Berlin, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Weigand, M. [Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Fauth, K. [University Erlangen, Experimental Physics 4, Am Hubland, 97074 Wuerzburg (Germany)

2010-06-23T23:59:59.000Z

384

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Neutral V-particles were first discovered in 1947 at the University of Manchester where researchers observed v-shaped tracks in a magnetic cloud chamber exposed to cosmic rays. ...

1953-08-17T23:59:59.000Z

385

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network (OSTI)

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

386

7-GeV advanced photon source beamline initiative: Conceptual design report  

SciTech Connect

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

387

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

388

Generalized Adaptive A* Xiaoxun Sun  

E-Print Network (OSTI)

Generalized Adaptive A* Xiaoxun Sun USC Computer Science Los Angeles, California xiaoxuns spaces changes. Adaptive A* [7] is a Cite as: Generalized Adaptive A*, Xiaoxun Sun, Sven Koenig

Yeoh, William

389

Optical design and performance of the inelastic scattering beamline at the National Synchrotron Light Source  

SciTech Connect

Phase I of the X21 beamline at the National Synchrotron Light Source was commissioned during 1993. The research program at the X21 beamline is focused on the study of electronic excitations in condensed matter with total energy resolution of 0.1 eV to 1.0 eV. The source is a 27 pole hybrid wiggler. A water-cooled horizontal focusing Si(220) monochromator and a spherically bent Si(444) analyzer were installed and commissioned. At 8 keV the energy resolution of the monochromator is about 0.7 eV, and the energy resolution of the analyzer is about 0.1 eV. Results from several selected experiments are also discussed.

Kao, C.C.; Siddons, D.P.; Oversluizen, T.; Hastings, J.B. [Brookhaven National Lab., Upton, NY (United States); Hamalainen, K. [Helsinki Univ. (Finland). Dept. of Physics; Krisch, M. [European Synchrotron Radiation Facility, 38 - Grenoble (France)

1994-12-31T23:59:59.000Z

390

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

391

Beamline Front-End for Minipole Undulator at the Photon Factory Storage Ring  

SciTech Connect

The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum minipole undulators. The first to third minipole undulators SGU no. 17, SGU no. 03 and SGU no. 01 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006 and 2009, respectively. The beamline front ends for SGU0 no. 3 and SGU0 no. 1 are described in this paper.

Miyauchi, Hiroshi; Tahara, Toshihiro; Asaoka, Seiji [Photon Factory, High Energy Accelerator Research Organization, KEK Oho, Tsukuba, Ibakaki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

392

AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory  

SciTech Connect

Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi [Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tukuba, Ibaraki, 300-8585 (Japan)

2010-06-23T23:59:59.000Z

393

Design of the angiography beamline for the Argonne Advanced Photon Source  

Science Journals Connector (OSTI)

The angiography beamline planned for the Argonne Advanced Photon Source (APS) is a very special beamline dedicated to medical imaging. It is especially designed to enhance the art of digital subtraction angiography. It is different from the angiography beamlines presently in operation that scan the X-ray picture line by line, in that it will take both the high and low energy angiography X-ray pixtures simultaneously as full frame pictures. Pictures with 0.25 mm resolution and good signal to noise will be possible with 2 ms exposure times. This is possible because of the increase in flux that is available at the APS. The source of the 33 keV photons is a special high intensity wiggler. The photon beam is separated into two parts, spread out in the vertical direction, and monochro- matized with two convex bent crystals. These two crystals are bent in a non-uniform way that allows one to both make the photon flux uniform over the 15 cm 15 cm examining area and stabilize the shape of the surface of the diffraction crystal against distortion caused by the heat load on the crystal. Most of the energy of the photon beam is absorbed by a fast shutter placed in front of the crystals. The two images at the two different energies are recorded in two large position-sensitive detectors.

Robert K. Smither; Edwin M. Westbrook

1988-01-01T23:59:59.000Z

394

Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source  

E-Print Network (OSTI)

A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

2014-01-01T23:59:59.000Z

395

Time-Resolved Research at the Advanced Photon Source Beamline 7-ID  

SciTech Connect

The Sector 7 undulator beamline (7-ID) of the Advanced Photon Source (APS) is dedicated to time-resolved x-ray research and is capable of ultrafast measurements on the order of 100 ps. Beamline 7-ID has a laser laboratory featuring a Ti:Sapphire system (average power of 2.5W, pulse duration <50 fs, repetition rate 1-5 kHz) that can be synchronized to the bunch pattern of the storage ring. The laser is deliverable to x-ray enclosures, which contain diffractometers, as well as motorized optical tables for table-top experiments. Beamline 7-ID has a single APS Undulator A and uses a diamond (111) double-crystal monochromator, providing good energy resolution over a range of 6-24 keV. Available optics include Kirkpatrick-Baez (KB) mirrors to microfocus the x-ray beam. A variety of time-resolved diffraction and spectroscopy research is available at 7-ID, with experiments being done in the atomic, molecular, optical, chemistry, and solid state (bulk and surface) fields.

Dufresne, Eric M.; Adams, Bernhard; Arms, Dohn A.; Chollet, Matthieu; Landahl, Eric C.; Li, Yuelin; Walko, Donald A.; Wang, Jin

2010-08-02T23:59:59.000Z

396

Inspector General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of the Under Secretary for Nuclear Security Edward B. Held (Acting) Under Secretary for Nuclear Security DEPARTMENT OF ENERGY Office of the Under Secretary for Management & Performance Vacant Under Secretary for Management and Performance Office of the Under Secretary for Science & Energy Vacant Under Secretary for Science and Energy Southwestern Power Administration Bonneville Power Administration Western Area Power Administration Southeastern Power Administration U.S. Energy Information Administration Loan Programs Office Advanced Research Projects Agency - Energy General Counsel Assistant Secretary for Congressional & Intergovernmental Affairs Chief Human Capital Officer

397

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

398

Photon Sciences Training Courses  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Sciences Training Courses Photon Sciences Training Courses Beamline Ops (BLOSA) BNL Web Courses (Help) BNL Class Schedules Business Systems & Software Contractor Orientation Cranes, Forklifts, Aerial Lifts Electrical Environmental ESH Briefings ESH Tours GERT GERT Reciprocity Human Resources IRP (Briefings) (Procedures) Job Briefings JRAs and FRAs Lasers Lead Machine Shops Medical Surveillance Nano Materials NSLS-II (Bldg 740) Photographic Dark Rm Procedures (Control Rm) Procedures (PRMs) (SOPs) Radiological Remedial (GERT) (NSLS) Roster Form (.docx) R2A2s Source Dev Lab Staff Development Study Guides Supervisory Training Training Course Dev Form User Training Work Control All Photon Sciences (PS) courses and some BNL courses (HP, OM, TQ, and GE) commonly assigned by the PS Directorate for work within PS buildings are

399

Chemical and Materials Science (XSD) | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science (X-ray Science Division) Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for four experiment stations at sector 12 including: three undulator stations (12-ID-B, -C, and -D), and a spectroscopy and scattering bending magnet beamline (12-BM), and USAXS at 15-ID. As part of the APS Strategic Plan, canted undulators have been installed on 12-ID and 12-ID-B has become a full-time dedicated SAXS beamline and 12-ID-C and 12-ID-D are shared between TRSAXS, ASAXS, and surface scattering. Time-resolved and anomalous SAXS experiments on photosystems, biopolymers, polymers, ceramics, and catalytic systems are some of the focus areas for 12-ID-B and -C. At 12-ID-D surface scattering are used to study MOCVD growth, ferroelectrics, liquid solid interfaces and

400

Organization of the Catalog General Campus Colleges  

E-Print Network (OSTI)

(see School of Public Health) Materials Science and Engineering Mechanical, Aerospace, and Nuclear Theater Arts General Campus Professional Schools School of Engineering and Applied Science Chemical Engineering Civil Engineering Computer Science Electrical Engineering Environmental Science and Engineering

Grether, Gregory

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

100-J level amplifier concepts for HiLASE and ELI-Beamlines  

Science Journals Connector (OSTI)

We present comparison of two alternative layouts of a 100 J cryogenically cooled Yb:YAG multi-slab laser system operating at 10 Hz for HiLASE and ELI Beamlines projects. In the first approach the 100 J slab amplifier consists of a preamplifier and power amplifier while in the second approach it uses single power amplifier with two amplifier heads. These two concepts are compared with respect to output power B-integral accumulated B-integral and peak fluence. Results are obtained by simulating beam propagation in MIR code and calculating stored energy in the amplifier by homemade ray-tracing MATLAB code for amplified spontaneous emission evaluation.

2012-01-01T23:59:59.000Z

402

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

SciTech Connect

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

403

The New X-Ray Lithography Beamline BL1 At DELTA  

SciTech Connect

Lithography using synchrotron radiation in the x-ray regime provides a powerful method to produce mechanical components of sub-millimeter size with a very good quality for microtechnological applications. In recent years the demand for x-ray lithography beamtime for industrial production of microparts increased rapidly resulting in the development of new experimental endstations at synchrotron radiation sources dedicated for the production of micromechanical devices. We present in this work the layout of the new x-ray lithography beamline BL1 at the synchrotron radiation source DELTA in Dortmund and discuss first results of exposure tests.

Lietz, D.; Paulus, M.; Sternemann, C.; Berges, U.; Hippert, B.; Tolan, M. [Fakultaet Physik / DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund (Germany)

2010-06-23T23:59:59.000Z

404

X-ray Experiments for Students at the SLS Optics Beamline  

SciTech Connect

We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

Flechsig, U.; Jaggi, A.; Krempasky, J.; Oberta, P.; Spielmann, S.; Veen, J. F. van der [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Als-Nielsen, J. [University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen (Denmark)

2010-06-23T23:59:59.000Z

405

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect

The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2011-09-09T23:59:59.000Z

406

Chemical Sciences Division: Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

INTRODUCTION INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD Directory A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Rebecca Abergel CSD Project Scientist; The Glenn T. Seaborg Center. Musahid Ahmed CSD Staff Scientist, Chemical Physics Program/Chemical Dynamics Beamline Publications Richard A. Andersen Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, The Glenn T. Seaborg Center Publications John Arnold Professor of Chemistry, UC Berkeley; CSD Faculty Scientist, Catalytic Science Program Publications B Ali Belkacem CSD Deputy and Senior Staff Scientist; Atomic, Molecular and Optical Sciences Program Leader

407

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

408

Parallel-beam imaging at the ESRF beamline ID19: current status and plans for the future  

SciTech Connect

The ESRF synchrotron beamline ID19, dedicated to full-field parallel-beam imaging techniques such as phase-contrast and absorption microtomography and X-ray topography, is one of the most versatile instruments of its kind. This paper presents key characteristics of ID19 in its present form, names examples for research and development performed on the beamline, and outlines the plans for an upgrade on the beamline in coming years, to adapt to the growing needs of the user community. The technical goals envisioned include an increase in available beam size and maximum photon energy, and a substantial increase in flux density for applications using beams of small and intermediate size.

Weitkamp, T.; Tafforeau, P.; Boller, E.; Cloetens, P.; Valade, J.-P.; Bernard, P.; Baruchel, J. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Peyrin, F. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Creatis / INSA Lyon (France); Ludwig, W. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); INSA Lyon (France); Helfen, L. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); ISS / ANKA Light Source, Forschungszentrum Karlsruhe / KIT, Karlsruhe (Germany)

2010-06-23T23:59:59.000Z

409

X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source  

Science Journals Connector (OSTI)

Advances in synchrotron beamlines bring opportunities with accompanying challenges for the study of soft condensed (biological) matter. This article describes improvements to the BioCAT beamline that include micro-focus, scanning and cryo-cooling of soft connective tissues yielding X-ray data from whole rat-tail tendons to better than 4 ?.

Barrea, R.A.

2014-08-08T23:59:59.000Z

410

Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source  

Science Journals Connector (OSTI)

The design of an undulator beamline at the Advanced Photon Source optimized for performing coherent small-angle X-ray scattering is described. The beamline has been characterized by measuring and analysing static speckle patterns from isotropically disordered samples. The measured speckle widths and amplitudes are compared with a theory described herein and found to be in good agreement with its predictions.

Sandy, A.R.

1999-11-01T23:59:59.000Z

411

HARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE  

E-Print Network (OSTI)

-electron laser (FEL) beamlines which use the har- monic cascade approach to produce coherent XUV & soft X-ray for an integrated system of ultrafast x-ray techniques and lasers, using laser-seeded harmonic cascade FEL's, rfHARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE J. Corlett, W. Fawley

Wurtele, Jonathan

412

Application of Goubau Surface Wave Transmission Line for Improved Bench Testing of Diagnostic Beamline Elements  

SciTech Connect

In-air test fixtures for beamline elements typically utilize an X-Y positioning stage, and a wire antenna excited by an RF source. In most cases, the antenna contains a standing wave, and is useful only for coarse alignment measurements in CW mode. A surface-wave (SW) based transmission line permits RF energy to be launched on the wire, travel through the beamline component, and then be absorbed in a load. Since SW transmission lines employ travelling waves, the RF energy can be made to resemble the electron beam, limited only by ohmic losses and dispersion. Although lossy coaxial systems are also a consideration, the diameter of the coax introduces large uncertainties in centroid location. A SW wire is easily constructed out of 200 micron magnet wire, which more accurately approximates the physical profile of the electron beam. Benefits of this test fixture include accurate field mapping, absolute calibration for given beam currents, Z-axis independence, and temporal response measurements of sub-nanosecond pulse structures. Descriptions of the surface wave launching technique, transmission line, and instrumentation are presented, along with measurement data.

John Musson, Keith Cole, Sheldon Rubin

2009-05-01T23:59:59.000Z

413

XRLM Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

steel ring Substrate: standard 4" wafer and any dimension not larger than 4.75" Photon BPM A photon BPM is installed in the front end section and provides actual information of...

414

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy  

E-Print Network (OSTI)

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

Temple, Blake

415

general_atomics.cdr  

Office of Legacy Management (LM)

300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial park. No ground water wells are at or near the Hot Cell...

416

College of Health Sciences Health Sciences Connection  

E-Print Network (OSTI)

today. In politics, in education, in health care, in society in general we are so turned inwardCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection April/May 2010 Volume VIII (8) WOW! Spring semester of 2010 is almost

Barrash, Warren

417

A New Tomography Beamline at a Wiggler Port at the Center for Advanced Microstructures and Devices (CAMD) Storage Ring  

Science Journals Connector (OSTI)

A new tomography beamline has been built and commissioned at the 7 T wiggler of the CAMD storage ring. This beamline is equipped with two monochromators that can be used interchangeably for X?ray absorption spectroscopy or high resolution X?ray tomography at best 23 ?m pixel size. The high?flux double multilayer?mirror monochromator (W?B4C multilayers) can be used in the energy range from 6 to 35 keV with a resolution (?E/E ) between 0.010.03. The second is a channel?cut Si(311)?crystal monochromator with a range of 15 to 36 keV and resolution of ca. 10?4 this is not yet tested. Tomography has the potential for high?throughput materials analysis; however there are some significant obstacles to be overcome in the areas of data acquisition reconstruction visualization and analysis. Data acquisition is facilitated by the multilayer monochromator as this provides high photon flux thus reducing measurement time. At the beamline Matlab routines provide simple x y z fly?throughs of the sample. Off?beamline processing with Amira can yield more sophisticated inspection of the sample. Standard data acquisition based on fixed angle increments is not optimal however new patterns based on Greek golden ratio angle increments offer faster convergence to a high signal?to?noise?ratio image. The image reconstruction has traditionally been done by back?projection reconstruction. In this presentation we will show first results from samples studied at the new beamline.

Kyungmin Ham; Heath A. Barnett; Leslie G. Butler; Clinton S. Willson; Kevin J. Morris; Roland C. Tittsworth; John D. Scott

2007-01-01T23:59:59.000Z

418

Workshop on Time Domain Science Using X-ray Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Resolved Beamlines Time-Resolved Beamlines Advisory Committee Workshop Home Workshop Chairs: Lin Chen (Argonne National Laboratory) Steve Milton (Advanced Photon Source) David Reis (University of Michigan) Linda Young (Argonne National Laboratory) Workshop on Time Domain Science Using X-ray Techniques August 29 September 1, 2004, The Abbey, Fontana, Lake Geneva Area, Wisconsin A workshop on "Time Domain Science Using X-ray Techniques" was held from August 29 September 1, 2004 , welcoming both experts and beginners in the field. This is one of the concurrently held workshops in the series on "Future Scientific Directions for the Advanced Photon Source." The goal of the workshop was to identify future directions in scientific research using time resolved x-ray techniques and to address possiblities to produce ps

419

ANL/APS/TB-5 Functional Description of APS Beamline Front Ends  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Description of APS Beamline Front Ends by Tuncer Kuzay February 1993 Advanced Photon Source & Argonne National Laboratory, Argonne, Illinois 60439 o operated by The University of Chicago for the United States Department of Energy under Contract W-31-1 09-Eng-38 Argonne National Laboratory, with facilties in the states of Ilinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Deparment of Energy. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any waranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

420

Characterizations and Applications of the Insertion Device of the SPring-8 Diagnostics Beamline II  

SciTech Connect

An insertion device (ID05) of the SPring-8 diagnostics beamline II (BL05SS) was characterized from the aspects of both the magnetic field performance and the spectral performance as a high K wiggler, which was confirmed to have the field performance with the rms phase error less than 2 degree. Meanwhile, the spectral performance of ID05 as an undulator with small K was also investigated by the energy spectrum measurements. The rms phase error less than 2degree leads us to apply the wiggler radiation on the higher harmonics to the beam diagnostics. We successfully demonstrated an application to the energy-spread diagnostics of electron beam using the 19th harmonics.

Masaki, Mitsuhiro; Takano, Shiro; Tamura, Kazuhiro; Mochihashi, Akira; Oishi, Masaya; Shoji, Masazumi; Fujita, Takahiro; Takashima, Takeo; Ohkuma, Haruo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo (Japan); Yamamoto, Shigeru [High Energy Accelerator Research Organization (KEK)/Institute of Materials Structure Science, 1-1 Oho, Tsukuba, Ibaraki (Japan)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect

The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

2010-08-30T23:59:59.000Z

422

Annular Vortex Generation for Inertial Fusion Energy Beam-Line Protection  

SciTech Connect

The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.

Pemberton, Steven J.; Abbott, Ryan P.; Peterson, Per F. [University of California (United States)

2003-05-15T23:59:59.000Z

423

X-ray multilayer characterization using reflectivity beamline at Indus-1  

SciTech Connect

Poor knowledge of optical constants of various materials in the soft x-ray region requires to test the soft x-ray optical devices at actual wavelengths. For such purposes a soft x-ray/vacuum ultraviolet reflectivity beamline has been setup on Indus-1 synchrotron.X-ray multilayer structures are also being developed at RRCAT. Silicon based different multilayer optics fabricated in house for 100-200A ring wavelength region show a very high reflectivity performance. A new multilayer combination comprised of NbC/Si is proposed for achieving good thermal stability high reflectivity in the Si L-edge region. A high reflectivity of 63% in near normal incidence region is obtained with a sputter deposited Mo/Si combination. Results prospects of growing NbC/Si multilayer are presented.

Modi, Mohammed H.; Prasad, T. T.; Nayak, M.; Pothana, N.; Jaiswal, A.; Rai, S. K.; Lodha, G. S. [X-ray Optics Section Raja Ramanna Centre for Advanced Technology (RRCAT) Indore 452013 (India)

2010-06-23T23:59:59.000Z

424

The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron  

SciTech Connect

The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

Cowie, B. C. C.; Tadich, A.; Thomsen, L. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria (Australia)

2010-06-23T23:59:59.000Z

425

Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator  

SciTech Connect

The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

426

Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary  

SciTech Connect

The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

Kuzay, T.M. [Argonne National Lab., IL (United States); Warwick, T. [Lawrence Berkeley Lab., CA (United States)

1995-12-31T23:59:59.000Z

427

HFIR Instrument Systems | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Click for more information about the HFIR beamline Experiment Hall Click for more information about the HFIR beamline Experiment Hall HFIR instrument layout. Click for details. Instruments at the High Flux Isotope Reactor The instrument suite at HFIR is supported by a variety of sample environments and on-site laboratories for user convenience. If you're unsure which instrument(s) would most benefit your research, or if you would like to request capabilities that you don't see here, please contact our user office. All HFIR Instrument fact sheets are also available in this single PDF document. Available to Users Beam Line Fact Sheet Instrument Name Contact CG-1 Development Beam Line Lee Robertson CG-1D PDF IMAGING - Neutron Imaging Prototype Facility Hassina Bilheux CG-2 PDF GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer Ken Littrell

428

An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot  

Science Journals Connector (OSTI)

A system, implemented at SSRL, for automatically mounting and dismounting pre-frozen crystals at a synchrotron beamline is described. The system is based on a small industrial robot and compact cylindrical sample cassettes.

Cohen, A.E.

2002-11-13T23:59:59.000Z

429

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A  

E-Print Network (OSTI)

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially, this was the first designed specifically for neutron scattering and the first to include resistive suitable for neutron scattering, diffraction and spectroscopy experiments with the neutron beam passing

Weston, Ken

430

The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS  

SciTech Connect

The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B. (IIT); (Georgia)

2008-07-02T23:59:59.000Z

431

General Education GENERAL EDUCATION  

E-Print Network (OSTI)

, the pursuit of truth, the intellectual and ethical development of students, and the general well the consequences of human actions. E. Cross-Cultural Awareness Demonstrate the ability to critically compare

Stuart, Steven J.

432

The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA  

SciTech Connect

The experimental station of the BEAR (Bending magnet for Emission, Absorption and Reflectivity) beamline at ELETTRA (Trieste, Italy) is an UHV chamber conceived to fully exploit the spectroscopic possibilities offered by the light spot produced by the beamline. Spectroscopies include reflectivity ({theta}-2{theta} and diffuse), optical absorption, fluorescence and angle resolved photoemission. The chamber can be rotated around the beam axis to select the s (TE) or p (TM) incidence conditions and/or the position of the ellipse of polarization with respect to the sample. Photon detectors (e.g. photodiodes) and electron detector (hemispherical analyzer - 1 deg. angular resolution, 20 meV energy resolution) cover about completely the full 2{pi} solid angle above the sample surface in any light incidence condition.

Pasquali, L.; Nannarone, S. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); De Luisa, A. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy)

2004-05-12T23:59:59.000Z

433

Redesign and Reconstruction of the Equipment Protection Systems for the Upgrading Front Ends and Beamlines at BSRF  

SciTech Connect

The BEPC(Beijing Electron-Positron Collider) is upgraded to be BEPCII, a two-ring Electron-Positron collider. Due to the construction of the BEPCII and upgrade of the existing front ends and beamlines, all the existing EPSs(Equipment Protection Systems) have to be redesigned and reconstructed at BSRF. All the redesigned EPSs for the upgrading front ends and beamlines are a PLC- and SCADA-based equipment protection and control and monitoring system. The EPSs are used to protect BEPCII two storage rings vacuum against vacuum failures in a beamline, as well as to protect the front-end and beamline components from being damaged by synchrotron radiation. For the high-power wiggler beam lines, a fast movable mask is used to protect the blade of a fast-closing valve from damage when the fast-closing valve is triggered to close, which does not need to dump the electron beam running in BEPCII outer ring. In addition, all redesigned PLC- based EPSs are used to communicate with the same centralized monitoring computer to monitor a variety of parameters from all PLC- based EPS systems. The monitoring computer runs the SCADA (Supervisory Control And Data Acquisition) software with its own web server. Graphical HMI interfaces are used to display a few overall views of all front-end equipment operation status and the further detailed information for each EPS in a different pop-up window. On the web services, the SCADA-based centralized monitoring system provides a web browse function, etc. The design of the reconstructed systems is described in this paper.

Xiong Shenshou; Tan Yinglei; Wu Xuehui [Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, P. O. Box 918, Branch 2-7, Beijing 100049 (China)

2007-01-19T23:59:59.000Z

434

Faculty of Science Interim Dean  

E-Print Network (OSTI)

Faculty of Science Interim Dean: Prof DE Rawlings BScHons, PhD (Rhodes) CALENDAR 2013 PART 5 #12;Science 1 Table of Contents General Information........................................................................................................... 3 The Faculty of Science

Geldenhuys, Jaco

435

Long-Working-Distance Kirkpatrick-Baez Mirrors for Hard X-ray Beamlines at SPring-8  

SciTech Connect

We designed and installed two types of long-working-distance Kirkpatrick-Baez (KB) mirrors and mirror manipulators, which were customized into each experiment for hard x-ray undulator beamlines at SPring-8. For the BL32XU RIKEN Targeted Proteins beamline, 400-mm-long KB focusing mirrors for a beam size of 1 {mu}m with a 730-mm-long working distance were designed for carrying out the structural analysis of protein microcrystals. We realized a focusing beam size of 0.9x0.9 {mu}m{sup 2}(FWHM) and a focusing intensity of 6x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV. For the BL19LXU RIKEN SR Physics beamline, we developed KB mirrors for 100-nm focusing with a 100-mm-working distance for the purpose of nano-focus x-ray diffraction. A focusing beam size of 100x100 nm{sup 2}(FWHM) and a high focusing intensity of 3.7x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV were realized.

Yumoto, H.; Koyama, T. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hirata, K.; Kawano, Y.; Ueno, G.; Nisawa, A.; Hikima, T.; Takeshita, S.; Ito, K.; Tanaka, Y.; Arima, T.; Yamamoto, M. [RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohsumi, H.; Ohashi, H.; Goto, S. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2011-09-09T23:59:59.000Z

436

Integration of an Atomic Force Microscope in a Beamline Sample Environment  

SciTech Connect

We developed and optimised an optics-free Atomic Force Microscope (AFM) that can be directly installed on most of the synchrotron radiation end-stations. The combination of Scanning Probe Microscopies with X-ray microbeams adds new possibilities to the variety of synchrotron radiation techniques. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharpness of the tip that gives the opportunity to measure the photons flux impinging on it giving beam position monitor features, or allows to locally measure the absorption coefficient or the shape of the diffraction pattern. As an example of the possibilities opened by the instrument we will show diffraction measurements performed on a Ge/Si island while being indented with the AFM tip providing local measure of the Young coefficient. Three ESRF beamlines are going to be equipped with this new instrument.

Rodrigues, M. S.; Hrouzek, M.; Dhez, O.; Comin, F. [ESRF, 6 rue Horowitz 38042 Grenoble Cedex (France); Chevrier, J. [Institut Neel-CNRS and Universite Joseph Fourier, 38042 Grenoble (France)

2010-06-23T23:59:59.000Z

437

West Virginia University 1 Computer Science  

E-Print Network (OSTI)

West Virginia University 1 Computer Science Degrees Offered · Master of Science in Computer Science · Doctor of Philosophy in Computer Science Program Description The Masters of Science in Computer Science science. The following sections describe the general procedures to be followed in completing the M

Mohaghegh, Shahab

438

Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline  

Science Journals Connector (OSTI)

A prototype was developed to perform online purification and automatic loading of protein solutions at a small-angle X-ray scattering beamline.

David, G.

2009-09-08T23:59:59.000Z

439

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

440

Teacher and General Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Teacher and General Resources section provides you with online aids for learning about science, such as a tutorial of science equipment, as well as guides for the metric system. Please select any item below that interests you. Also, if you have an idea for a great teacher resource that we could share, please click our Ideas page. We would love to hear from you! Science Equipment Resources: Online Basic Laboratory Equipment Information An Introduction to Basic Laboratory Equipment All students need to know and understand the function of the equipment that they will be using in the science classroom. This exercise is to help students know a beaker from a bunsen burner! TSwift MB 3200 Microscope Online Tutorial Online Microscope Tutorial

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

APS Science 2009.  

SciTech Connect

It is my pleasure to introduce the 2009 annual report of the Advanced Photon Source. This was a very good year for us. We operated with high reliability and availability, despite growing problems with obsolete systems, and our users produced a record output of publications. The number of user experiments increased by 14% from 2008 to more than 3600. We congratulate the recipients of the 2009 Nobel Prize in Chemistry-Venkatraman Ramakrishnan (Cambridge Institute for Medical Research), Thomas Steitz (Yale University), and Ada Yonath (Weizmann Institute) - who did a substantial amount of this work at APS beamlines. Thanks to the efforts of our users and staff, and the ongoing counsel of the APS Scientific Advisory Committee, we made major progress in advancing our planning for the upgrade of the APS (APS-U), producing a proposal that was positively reviewed. We hope to get formal approval in 2010 to begin the upgrade. With advocacy from our users and the support of our sponsor, the Office of Basic Energy Sciences in the Department of Energy (DOE) Office of Science, our operating budgets have grown to the level needed to more adequately staff our beamlines. We were also extremely fortunate to have received $7.9 M in American Recovery and Reinvestment Act ('stimulus') funding to acquire new detectors and improve several of our beamlines. The success of the new Linac Coherent Light Source at Stanford, the world's first x-ray free-electron laser, made us particularly proud since the undulators were designed and built by the APS. Among other highlights, we note that more than one-quarter of the 46 Energy Frontier Research Centers, funded competitively across the U.S. in 2009 by the DOE, included the Advanced Photon Source in their proposed work, which shows that synchrotron radiation, and the APS in particular, are central to energy research. While APS research covers everything from fundamental to applied science (reflected by the highlights in this report), the challenge of sustainable energy provides an opportunity for expanded involvement with industrial research. We were privileged to recruit several outstanding new leaders at the APS. Linda Young, from Argonne's Chemical Sciences Division, became the new Director of the X-ray Science Division (XSD). Chris Jacobsen (from Stony Brook University) has been added to Linda's team as an XSD Associate Division Director, joining George Srajer. Alexander (Sasha) Zholents (formerly of Berkeley Lab) became Director of the Accelerator Systems Division. Sasha is the inventor of the short-pulse x-ray scheme that we plan to implement in the APS-U to obtain very high average brightness, broadband, 1-ps x-ray pulses. Walter Lowe (formerly of Howard University) has taken a new position as senior advisor for outreach and development of the user community. Walter's role is to increase the diversity of the user community (with diversity read broadly to include users, institutions, and technical disciplines that are underrepresented at APS). Walter is also leading an effort to increase access for industrial users. I am confident that we have in place a great team to help our users and the APS take fullest advantage of the APS-U opportunity. In planning with users for the proposed APS-U, we focused on the need to study 'real materials under real conditions in real time' on spatial and temporal scales unavailable today. Only by studying materials as they are made-or as they perform-in difficult environments can we solve the grand challenge of higher-performance, sustainable materials for energy and health. The proposed APS-U will improve the brightness of penetrating x-rays produced by the APS over 100 times, and support our efforts in developing state-of-the-art instruments to address these challenges.

Gibson, J. M; Mills, D. M.; Gerig, R.

2010-05-01T23:59:59.000Z

442

Basic Energy Sciences Jobs  

Office of Science (SC) Website

General EngineerPhysical Scientist
15 DE SC HQ 011
Office: Basic Energy Sciences
URL:

443

Photon Sciences | eNews | Issue Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences eNews Sciences eNews eNews Home eNews Archives Photon Sciences Home Issue Archives Tuesday, December 24, 2013 NSLS User Stats for 2013 Stony Brook Course on Applications of Synchrotron Light Offered at Brookhaven Lab CO2 Study Adds to Picture of Global Carbon Cycle William Floyd High School Student Conducts Geologic Research of North Shore Beaches Pressure Transforms a Semiconductor into a New State of Matter Brookhaven scientists visit Argonne National Lab for research on Lou Gehrig's Disease Designing a Better Catalyst for Solar-Powered Hydrogen Production Wednesday, November 27, 2013 Local Riverhead Company Awarded Contract for Satellite Building at New Light Source Making High-resolution Movies With an Infrared Microscope High-Speed X-Ray 'Camera' Beamline Taking Shape at NSLS-II

444

E-Print Network 3.0 - als diagnostic beamline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohta, Shigemi - Theory Group, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) Collection: Environmental Sciences and Ecology ;...

445

Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II  

SciTech Connect

The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

2011-08-21T23:59:59.000Z

446

Photon Sciences Directorate | 2010 Annual Report | Detector R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Detector R&D Detector R&D ionization chamber A miniature four-channel ionization chamber that was developed at NSLS Detectors sit at the very end of the intricate systems that constitute light sources like NSLS and NSLS-II. Because detectors are where the science gets done, detector research and development can enable new science. For the user community, NSLS-II will offer a significantly higher degree of coherence in its beams than most other synchrotrons, so imaging techniques that take advantage of that superiority are at the forefront of detector R&D. The CHX beamline, one of six project beamlines being built for NSLS-II, uses photon correlation spectroscopy. The goal is to detect the arrival time of photons with the highest possible resolution over the largest

447

A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source  

E-Print Network (OSTI)

bases is controlled with a Peltier module. The heat flowsthe flexural assembly to the Peltier thus stabilizing thecrystal is cooled through a Peltier element, which in turn

Kunz, Martin; Advanced Light Source

2009-01-01T23:59:59.000Z

448

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

449

Set-up of an XAFS beamline for measurements between 2.4-8 keV at DORIS III  

SciTech Connect

In this paper results from the commissioning phase and from first user experiments of a new EXAFS beamline at the DORIS III storage ring are presented. The bending magnet EXAFS beamline A1 underwent a complete rebuild and now covers the energy range 2.4-8 keV. A Ni-coated toroidal mirror, placed in a 2:1 focusing position and a plane mirror with one Ni coated stripe and one uncoated (SiO{sub 2}) stripe are used for effective higher harmonics suppression and focusing. The UHV-compatible fixed-exit Double Crystal Monochromator (DCM) is equipped with two Si(111) crystal pairs. The second crystal of one of the two crystal pairs is tilted by 90 deg. around the surface normal to shift the position of glitches. It allows Bragg angles between 5 deg. and 55.5 deg. and continuous scans in quick-EXAFS mode. Test measurements during the commissioning phase proved the excellent performance of the monochromator and a high quality of the XAFS spectra over the entire working range.

Welter, Edmund [Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association, Notkestrasse 85, D-22607 Hamburg (Germany)

2010-06-23T23:59:59.000Z

450

Experimental results with cryogenically cooled, thin, silicon crystal x-ray monochromators on high-heat-flux beamlines  

SciTech Connect

A novel, silicon crystal monochromator has been designed and tested for use on undulator and focused wiggler beamlines at third-generation synchrotron sources. The crystal utilizes a thin, partially transmitting diffracting element fabricated within a liquid-nitrogen cooled, monolithic block of silicon. This report summarizes the results from performance tests conducted at the European Synchrotron Radiation Facility (ESRF) using a focused wiggler beam and at the Advanced Photon Source (APS) on an undulator beamline. These experiments indicate that a cryogenic crystal can handle the very high power and power density x-ray beams of modem synchrotrons with sub-arcsec thermal broadening of the rocking curve. The peak power density absorbed on the surface of the crystal at the ESRF exceeded go W/mm{sup 2} with an absorbed power of 166 W, this takes into account the spreading of the beam due to the Bragg angle of 11.4{degrees}. At the APS, the peak heat flux incident on the crystal was 1.5 W/mA/mm{sup 2} with a power of 6.1 W/mA for a 2.0 H x 2.5 V mm{sup 2} beam at an undulator gap of 11.1 mm and stored current up to 96 mA.

Rogers, C.S.; Mills, D.M.; Lee, W.K.; Fernandez, P.B.; Graber, T.

1996-08-01T23:59:59.000Z

451

Optimization Online - Variational principles with generalized ...  

E-Print Network (OSTI)

Dec 23, 2014 ... Variational principles with generalized distances and applications to behavioral sciences. T. Q. Bao(btruong ***at*** nmu.edu)

T. Q. Bao

2014-12-23T23:59:59.000Z

452

General Academic Information UNH Academic Advising Handbook  

E-Print Network (OSTI)

General Academic Information 1 2011-2012 UNH Academic Advising Handbook TABLE OF CONTENTS FERPA...................................................................................6 COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES.......................................6 COLLEGE

Pohl, Karsten

453

Foundation Science Undergraduate study 2014  

E-Print Network (OSTI)

Foundation Science Undergraduate study 2014 www.nottingham.ac.uk/foundationscience For general.nottingham.ac.uk/faqs #12;Foundation science at The University of Nottingham Contents 2 Foundation science at The University to various degrees and have found the one year course hard work but an advantage! Foundation science offers

Brown, Andrew Leigh

454

SCIENCE CHINA Technological Sciences  

E-Print Network (OSTI)

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

Wang, Zhong L.

455

Science and technology news Nanotechnology  

E-Print Network (OSTI)

Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology Chemistry Biology Medicine & Health Other Sciences General Physics Condensed Matter Optics & Photonics, nanotechnology and medical diagnostics. Magnetism observed in gas for the first time http

456

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

457

Earth and Sustainability 1. General Information  

E-Print Network (OSTI)

Earth and Sustainability 1. General Information Deans: Prof. dr. G.J. van der Zwaan (Faculty of Geosciences) Prof. dr. ir. A. Bliek (Faculty of Science) Constituting faculty focus areas: Solid Earth (Dept. Earth Sciences), Earth Surface Analysis (Depts. Earth Sciences, Physical Geography), Climate and Global

Utrecht, Universiteit

458

header for SPIE use The First Infrared Beamlines at the ALS  

E-Print Network (OSTI)

Rapid- and Step-Scan vacuum FTIR bench. The modulated light is then coupled into a UHV surface science, an ellipsoidal mirror M2, and a flat mirror M3 all in ultra high vacuum (UHV). The UHV ends with a wedged diamond

459

A study of generalized inverses  

E-Print Network (OSTI)

A STUDY OF GENERALIZED INVERSES A Thesis by NANCY LEE MCKINNEY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Mathematics A... STUDY OF GENERALIZED INVERSES A Thesis by NANCY LEE MCKINNEY Approved as to style and content by: airman o ittee Hea o epartment e er Me er August 1973 ABSTRACT A Study of Generalized Inverses. (August 1973) Nancy Lee NcKinney, B. A...

McKinney, Nancy Lee

1973-01-01T23:59:59.000Z

460

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

462

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

463

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

General Plasma Science Magnetic Fusion Energy Magneticfor Fusion Energy Sciences Magnetic Fusion Plasma from the crosscutting science of magnetic reconnection and

Gerber, Richard

2012-01-01T23:59:59.000Z

464

General Thermodynamics  

Science Journals Connector (OSTI)

... principally in the Journal of the Franklin Institute. These ideas relate to a study of thermodynamics from what the author calls a generalized point of view, which concerns itself with ... from what the author calls a generalized point of view, which concerns itself with the thermodynamics of metastable states and irreversible processes as wall as with the stable states and reversible ...

R. W. HAYWOOD

1956-06-02T23:59:59.000Z

465

Science in Education  

Science Journals Connector (OSTI)

... one of its most striking features will be presented by the rise and growth of science in the general educational arrangements of every civilised country. At the beginning of the ... the time of the Middle Ages. But the extraordinary development of the physical and natural sciences, which has done so much to alter the ordinary conditions of life, has powerfully ...

1898-12-01T23:59:59.000Z

466

Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines  

SciTech Connect

We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

Yoon, P.S.; Siddons, D. P.

2009-05-25T23:59:59.000Z

467

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

SciTech Connect

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

468

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

ASD General Information ASD General Information APS Resources & Information A list of useful links for APS staff and users. APS Technical Publications Links to APS technical publications. APS Publications Database The official and comprehensive source of references for APS-related journal articles, conference papers, book chapters, dissertations, abstracts, awards, invited talks, etc. Image Library A collection of APS images. Responsibilities & Interfaces for APS Technical Systems Descriptions of the responsibilities of APS technical groups and how they interface with one another. APS Procedures Operational procedures for the APS. APS Specifications Specifications and approvals for upgrades or changes to existing APS hardware and software. APS Radiation Safety Policy & Procedures Committee Minutes

469

General Earth and Space Sciences I Astrophysics  

E-Print Network (OSTI)

and the speed of light · Kepler's laws (all three) · Newton's law of universal gravitation · The expressions familiarise yourself with the following concepts and formulae: · Wien's law · Inverse square law (brightness that appear in these formulae, such as the speed of light or the gravitational constant, need

Brüggen, Marcus

470

Photon Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues...

471

Science Engagement  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Engagement Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1...

472

Science Briefs  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Briefs newsroomassetsimagesnewsroom-icon.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing....

473

Detection Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a...

474

New Science on the Open Science Grid  

E-Print Network (OSTI)

The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: (http://www.opensciencegrid.org).

Board, The Open Science Grid Executive; Pordes, Ruth; Altunay, Mine; Avery, Paul; Bejan, Alina; Blackburn, Kent; Blatecky, Alan; Gardner, Rob; Kramer, Bill; Livny, Miron; McGee, John; Potekhin, Maxim; Quick, Rob; Olson, Doug; Roy, Alain; Sehgal, Chander; Wenaus, Torre; Wilde, Mike; Wuerthwein, Frank

2012-01-01T23:59:59.000Z

475

Office of Inspector General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspector General Inspector General Office of Audits and Inspections Work Plan for FY 2013 Audits Central Audits Division  Ecotality  Funding Overlap  Follow-up on Smart Grid Investment Grant  DOE's Loan Program Office's Portfolio Management  Office of Fossil Energy's Regional Carbon Sequestration Partnerships  Advanced Manufacturing Office's Combined Heat and Power Systems  DOE's Management of Contaminated Non-EM Facilities  Unneeded Real Estate  Review of For-Profit Grantees for selected DOE programs  Commercialization Efforts at National Laboratories  Research Misconduct at Office of Science  Public Dissemination of Research Results  BPA's Management of Borrowing Authority Construction  Controls Over PMA's Use of Hedging Instruments

476

National Science Bowl FAQ's | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

National Science Bowl FAQ's National Science Bowl FAQ's National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov About National Science Bowl FAQ's Print Text Size: A A A RSS Feeds FeedbackShare Page National Science Bowl Frequently Asked Questions General Frequently Asked Questions Why does U.S. Dept. of Energy sponsor the Science Bowl?

477

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

478

UNIVERSITY OF CALIFORNIA, SANTA CRUZ SCIENCE COMMUNICATION  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SANTA CRUZ SCIENCE COMMUNICATION The internationally recognized Science should be practicing professional science reporter- writers who are able to teach graduate level courses in science writing for general audiences. Applicants must be prepared to teach one or both of the following

California at Santa Cruz, University of

479

Science Vocabulary Hangman Game  

NLE Websites -- All DOE Office Websites (Extended Search)

Vocabulary Hangman Vocabulary Hangman Welcome to Science Vocabulary Hangman! The computer will randomly pick a term used in science. Discover the word the computer has picked by guessing which letters are in it. Each incorrect guess you make causes the atom man to decay. Solve the puzzle before the atom man completely decays! Attention Teachers!! Add your own vocabulary words for your class to use! If you are reading this, your browser is NOT running JavaScript. JavaScript MUST be enabled for this section of our site to work. Once you have turned JavaScript on, reload this page and this warning will go away. Please select the question sets you wish to use: General Sets BEAMS Vocabulary Words (94) 5th Grade Science (150)* 5th Grade Science #2 (175)* 6th Grade Science (256) More 6th Grade Science (282)

480

Science Mathematics Engineering  

E-Print Network (OSTI)

Science Mathematics Engineering . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', Mathematics, . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', Mathematics, and Software Development

Hamlet, Richard

Note: This page contains sample records for the topic "general sciences beamlines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BachelorofArts GeneralMajorintheHumanities  

E-Print Network (OSTI)

in the Humanities, the Social Sciences and the Sciences.The main emphasis of the General Major is to provide a broad, if French 1500 is required in your program, you could not use French (1000 level) to fulfill English - all courses One of French, German or Spanish (Linguistics 2300 may be substituted for one

Seldin, Jonathan P.

482

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network (OSTI)

beamline in an underground facility that includes severaltesting in an underground facility, an 8 km long underground

DePaolo, Donald

2008-01-01T23:59:59.000Z

483

Capabilities Strategy: Science Pillars  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Capabilities Strategy: Science Pillars science-innovationassetsimagesicon-science.jpg Capabilities Strategy: Science Pillars The Lab's four Science Pillars...

484

Science Fairs for Science Literacy  

E-Print Network (OSTI)

is supported by a National Science Foundation PostdoctoralT. Culbertson is a middle school science and math teacher.for the Advancement of Science (AAAS) (1990), Science for

Mackey, Katherine; Culbertson, Timothy

2014-01-01T23:59:59.000Z

485

BIOLOGICAL SCIENCES Contemporary biological science  

E-Print Network (OSTI)

BIOLOGICAL SCIENCES Contemporary biological science covers a range of diverse and overlapping in cellular and molecular biology. Wichita State University's Department of Biological Sciences offers courses in most aspects of contemporary biological science. Our required core courses will expose you

486

Three Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin  

E-Print Network (OSTI)

was collected at the Brookhaven National Laboratory (BNL) National Synchrotron Light Source (NSLS) X6A beamline, funded by the National Institute of General Medical Sciences, under agreement GM-0080. The NSLS

Wood, Thomas K.

487

The Science of Science Foundation  

Science Journals Connector (OSTI)

... THE 'science of ... of science' is an awkward name but, as it describes accurately what is meant, it ...

MAURICE GOLDSMITH

1965-01-02T23:59:59.000Z

489

Science in science fiction  

Science Journals Connector (OSTI)

Science fiction, from Star Trek to Star Wars, is hugely popular and pupils will surely have encountered good and bad physics there, but do they really notice? Discussing the science implied in books and movies, such as in the use of transporters, can be a good way of getting students interested in physics.

Jonathan Allday

2003-01-01T23:59:59.000Z

490

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Kite Lessons Kite Lessons Name: Brian Status: educator Grade: 9-12 Location: TX Country: USA Date: Spring 2012 Question: I am teaching a high school Earth and Space Science class to a group of graduating students. I was curious if you know of some approach or way I could include kite flying into a lesson? This way they could get outside and soak up some fresh air and relax a little in the last couple weeks of school. I am just stumped on a way to include it. Replies: Hi Brian- Just a some quick ideas that popped into my head when I read your question: 1. Weather phenomena such as wind speed 2. Compass use, triangulation, etc to measure height, distances, direction 3. Mass of kite vs Height (tricky as you are unlikely to have constant wind speed 4. Size of kite vs. Height 5. Shape of kite vs. Height 6. If you cannot count on wind, try paper airplanes. You can do speed, distance, height, etc according to airplane type. 7. Let the students come up with experiments, variables, measurements, etc. for either one. Have fun and enjoy the weather.

491

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonons versus Photons Phonons versus Photons Name: Naveen Status: other Grade: 9-12 Country: India Date: Spring 2012 Question: In crystals we talk of phonons. How do phonons differ from photons? Are the phonon particles like photons having definite spin etc? Replies: Hi Naveen, A photon is a particle or wave, a quantum of the electromagnetic field having both vibratory and particle properties. Photons have transverse waves that are perpendicular to its travel. A phonon is a quantum of the vibrational degrees of freedom in a condensed crystal lattice. Phonons are collective vibrations, compressional energies contained within the particles of the lattice. This is a helpful reference: 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 http://dspace.mit.edu/bitstream/handle/1721.1/46331/6-720JFall-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-720JIntegrated-Microelectronic-DevicesFall2002/583B7E11-AA3D-408F-91E9-7527E94F1983/0/lecture1.pdf

492