Sample records for general project management

  1. Project Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

  2. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  3. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENA creates

  4. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  5. Project Management Plan Resident Management System (RMS)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 Project Management Plan Resident Management System (RMS) And Quality Control System (QCS Resident Management System.........................................................................................................3 Project Management Plan - Purpose

  6. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by FY12. 95% Line Item 85% Cleanup 97% Line Item 85% Cleanup EVM represents Earned Value Management. FY2011 Second Quarter Overall Contract and Project Management Improvement...

  7. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    by FY12. 95% Line Item 85% Cleanup 100% Line Item 88% Cleanup EVM represents Earned Value Management. FY2011 Fourth Quarter Overall Contract and Project Management Improvement...

  8. Contract/Project Management

    Energy Savers [EERE]

    by FY12. 95% Line Item 85% Cleanup 100% Line Item 88% Cleanup EVM represents Earned Value Management. FY2011 First Quarter Overall Contract and Project Management Performance...

  9. Contract/Project Management

    Energy Savers [EERE]

    by FY12. 95% Line Item 85% Cleanup 97% Line Item 89% Cleanup EVM represents Earned Value Management. FY2011 Third Quarter Overall Contract and Project Management Improvement...

  10. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

  11. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  12. IT Project Manager

    Broader source: Energy.gov [DOE]

    This position is located in the IT Project Management Office (JP). A successful candidate in this position will serve as an IT Program Manager and technical expert responsible for directly managing...

  13. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  14. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    EVM Systems: Post CD-3, (greater than 20 million). 95%* 94% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects have certified FPDs no later than CD-1....

  15. Contract/Project Management

    Energy Savers [EERE]

    EVM Systems: Post CD-3, (greater than 20 million). 95%* 98% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects have certified FPDs no later than CD-1....

  16. Contract/Project Management

    Office of Environmental Management (EM)

    EVM Systems: Post CD-3, (greater than 20 million). 95%* 100% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects have certified FPDs no later than CD-1....

  17. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EVM Systems: Post CD-3, (greater than 20 million). 95%* 96% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects have certified FPDs no later than CD-1....

  18. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  19. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  20. Project Management Plan Chinese Food

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management

  1. Office of Inspector General report on audit of proposal to acquire land at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The US Department of Energy (Department) obtained an appraisal and developed a cost estimate to acquire 78 to 100 acres of privately-held land adjoining the Fernald Environmental Management Project (FEMP) as an additional buffer for a waste disposal facility. The objective of this audit was to determine whether the proposed purchase of land was essential to support the site`s mission. The Department obtained an appraisal and developed a cost estimate to acquire the additional land without confirming that av lid need for the land existed. If the land is acquired, the Department could spend between $655,000 and $2.2 million unnecessarily. Additionally, the Department could incur unnecessary maintenance and security costs to maintain the land after acquisition. It was recommended that the Manager, Ohio Field Office, dismiss the proposal to acquire the additional land. Management agreed with the recommendation, stating that the acquisition could not be justified at this time. However, management did not agree with the finding that the Department obtained an appraisal and developed a cost estimate without confirming that a valid need for the land existed. Management stated that the appraisal and cost estimate were principal and necessary to determining whether a need for the land existed. It was concluded that the appraisal and cost estimate should not have been performed because a valid need for the land was never established. Also, it was concluded that it would be inappropriate to reconsider the proposal to acquire the land at a later date if additional funds become available, unless a valid need for the land is first established.

  2. QUALITY MANAGEMENT AGENDA General Agenda

    E-Print Network [OSTI]

    1 QUALITY MANAGEMENT AGENDA General Agenda A week before study commences, the following matters a meeting for the following purposes: 1. Read the report that is related to quality management for the previous term. 2. Conduct a general review of the procedures of quality management and reinforcement

  3. Environmental Management (EM) Cleanup Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

  4. Project Management Plan Project Title: Natural Resources Management

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DEFINITION. The NRM Gateway is a knowledge management resource, designed to serve the needs of the NRMP; · Preserve institutional knowledge; · Develop practical and agency-approved webpages that provide usefulProject Management Plan Project Title: Natural Resources Management (NRM) Gateway Website

  5. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  6. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  7. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  8. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  9. Southern Region Watershed Management Project

    E-Print Network [OSTI]

    Coordinators and the organization, management and activities of the Southern Region Water Quality Planning1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal responding to water quality and conservation issues with educational assistance, technology development

  10. Enforcement Project Management Handbook. Directive

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The handbook has been prepared as a basic reference and training manual to assist RPMs (Remedial Project Managers) and OSCs (On-Scene Coordinators) in planning, negotiating, and managing various enforcement actions.

  11. Risk Management In Major Projects 

    E-Print Network [OSTI]

    Baker, Scott William

    The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...

  12. Project management plan for Contract Management Information System (CONTRACT)

    SciTech Connect (OSTI)

    Severud, K.J.

    1995-01-27T23:59:59.000Z

    The office of the Vice President of A/E Construction for ICF Kaiser has requested that OSHA compliance statistics be made available to management for companies subcontracting to the ICF Kaiser Company. In addition, a need to better manage contract administrative data for the Contracts Administration and the Construction Management Projects organizations has been identified. The Contract Management Information System is being developed to achieve these objectives. This document provides a Project Management Plan for development of the Contract Management Administration System (CONTRACT) by Design Services DAD/CAE Support. The Project Management Plan describes the project work breakdown structure, safety and quality considerations, with associated cost, schedule and project management information. The CONTRACT System is intended to aid the ICF Kaiser divisions with tracking of A/E subcontractor information to include general contract administration information used by the Contracts Administration organization, contract and safety performance data used by the Construction Management Projects and office of the organization and Vice President of A/E Construction.

  13. Project Hanford management contract quality improvement project management plan

    SciTech Connect (OSTI)

    ADAMS, D.E.

    1999-03-25T23:59:59.000Z

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  14. NNSA project receives DOE Secretary's Award for Project Management...

    National Nuclear Security Administration (NNSA)

    project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  15. Project Management Plan Solution Stabilization

    SciTech Connect (OSTI)

    SATO, P.K.

    1999-08-31T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  16. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  17. Project Management Practices

    Office of Environmental Management (EM)

    and applies it as the foundational, best case probability of occurrence. 2. 2. As applied to forecasting, planning, estimating in management: anchoring is a starting point,...

  18. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capital asset line item projects (less than 50 million) are fully funded in one Fiscal Year (one Appropriation). NA NA Policy memorandum drafted and in review 12. Cost...

  19. Exploration and project management Sylvain Lenfle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to manage innovation. We argue that, in line with the work on project classification, a distinction should1 Exploration and project management Sylvain Lenfle University of Cergy-Pontoise Management of Project Management, Vol. 6, n°5, p. 469-478, July. Abstract Project management in academic studies tends

  20. Material Stabilization Project Management Plan

    SciTech Connect (OSTI)

    SPEER, D.R.

    1999-09-01T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides.

  1. Contract/Project Management

    Office of Environmental Management (EM)

    Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and...

  2. Contract/Project Management

    Energy Savers [EERE]

    Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  3. Contract/Project Management

    Energy Savers [EERE]

    in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  4. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07T23:59:59.000Z

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  5. Waste Management Project Contingency Analysis

    SciTech Connect (OSTI)

    Edward L. Parsons, Jr.

    1999-08-31T23:59:59.000Z

    The purpose of this report is to provide the office of Waste Management (WM) with recommended contingency calculation procedures for typical WM projects. Typical projects were defined as conventional construction-type activities that use innovative elements when necessary to meet the project objectives. Projects involve treatment, storage, and disposal of low level, mixed low level, hazardous, transuranic, and high level waste. Cost contingencies are an essential part of Total Cost Management. A contingency is an amount added to a cost estimate to compensate for unexpected expenses resulting from incomplete design, unforeseen and unpredictable conditions, or uncertainties in the project scope (DOE 1994, AACE 1998). Contingency allowances are expressed as percentages of estimated cost and improve cost estimates by accounting for uncertainties. The contingency allowance is large at the beginning of a project because there are more uncertainties, but as a project develops, the allowance shrinks to adjust for costs already incurred. Ideally, the total estimated cost remains the same throughout a project. Project contingency reflects the degree of uncertainty caused by lack of project definition, and process contingency reflects the degree of uncertainty caused by use of new technology. Different cost estimation methods were reviewed and compared with respect to terminology, accuracy, and Cost Guide standards. The Association for the Advancement of Cost Engineering (AACE) methods for cost estimation were selected to represent best industry practice. AACE methodology for contingency analysis can be readily applied to WM Projects, accounts for uncertainties associated with different stages of a project, and considers both project and process contingencies and the stage of technical readiness. As recommended, AACE contingency allowances taper off linearly as a project nears completion.

  6. Project Management Practices

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProject DevelopsDepartmentACQUISITION

  7. Integrated Project Management System description

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Integrated Program Management System (IPMS) Description is a ``working`` document that describes the work processes of the Uranium Mill Tailings Remedial Action Project Office (UMTRA) and IPMS Group. This document has undergone many revisions since the UMTRA Project began; this revision not only updates the work processes but more clearly explains the relationships between the Project Office, contractors, and other participants. The work process flow style has been revised to better describe Project work and the relationships of participants. For each work process, more background and guidance on ``why`` and ``what is expected`` is given. For example, a description of activity data sheets has been added in the work organization and the Project performance and reporting processes, as well as additional detail about the federal budget process and funding management and improved flow charts and explanations of cost and schedule management. A chapter has been added describing the Cost Reduction/Productivity Improvement Program. The Change Control Board (CCB) procedures (Appendix A) have been updated. Project critical issues meeting (PCIM) procedures have been added as Appendix B. Budget risk assessment meeting procedures have been added as Appendix C. These appendices are written to act as stand-alone documentation for each process. As the procedures are improved and updated, the documentation can be updated separately.

  8. POSGRADO EN PROJECT MANAGEMENT AVANZADO

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    intervienen en un proyecto: planifica- ción, calidad, costes y otros aspectos económicos, subcontratación y múltiple objetivo de desarrollar proyectos con la calidad necesaria, ajustándose a las es- pecificaciones (Project Management Institute, EE.UU.), la institución más reconocida que marca los estándares de calidad

  9. EIS-0470: Cape Wind Energy Project, Final General Conformity...

    Broader source: Energy.gov (indexed) [DOE]

    70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

  10. Engineering Project Management Using The Engineering Cockpit

    E-Print Network [OSTI]

    Engineering Project Management Using The Engineering Cockpit A collaboration platform for project managers and engineers Thomas Moser, Richard Mordinyi, Dietmar Winkler and Stefan Biffl Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" Vienna University of Technology

  11. Document management guidelines for distributed project networks

    E-Print Network [OSTI]

    Hameri, A P; Høimyr, Nils-Joar

    1999-01-01T23:59:59.000Z

    This paper provides the project engineer with guidelines or a checklist on tasks that must be considered, defined and documented before the project can successfully implement a document management system in geographically distributed project environment. Topics ranging from configuration management, approval process, document types, user administration and document naming are covered. The underlying cases of the paper are that of CERN (European Laboratory for Particle Physics) and its latest accelerator project, together with the Nordisk Industrifond -funded Connecting Distributed Competencies (NI#: 98082) project, with a focus on distributed shipbuilding processes. Keywords: distributed project management, product data management, networking, document management, virtual workspaces

  12. Office of Acquisition and Project Management ...

    Energy Savers [EERE]

    ; Office of Acquisition and Project Management Certifications Program Updated 102012 Course Provider Date Complete CON 216 LEGAL...

  13. Managing projects utilizing self-managed teams and managerial toolkits

    E-Print Network [OSTI]

    Mathur, Praveen, S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Project Management is an essential function in most software companies today. With increasing complexity and inter connectivity between software projects, it is not surprising that managing such large scale development ...

  14. Update on Service Management project

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    GS and IT Service Management project status meeting -------------------------------------------------------------------------- Distribution: Sigurd Lettow, Frederic Hemmer, Thomas Pettersson, David Foster, Matti Tiirakari, GS⁢ Service Providers When and where: Thursday 2nd September at 10:00-11:30 in IFiltration Plant (222-R-001) Dear All, We would like to inform you about progress made on different topics like the Service Catalogue, the new Service Management Tool and the Service Desk. We would also like to present the plan for when we hope to "go live" and what this will mean for all of you running and providing services today. We will need your active support and help in the coming months to make this happen. GS⁢ Service Management Teams Reinoud Martens, Mats Moller

  15. Project Management Foundation 21 hours, $895

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    ,anddiditmeetthecustomer'srequirements?Participants will become skilled with earned value measures, proficient with performanceindexes.824.6372·800.448.4031 Earn a Professional Certificate In Project Management Certificate awarded after completion ofProject Management Foundation 21 hours, $895 The fundamental project management processes

  16. Annex 2 Risk Management Guidance and Template SPO Project Management

    E-Print Network [OSTI]

    1 Annex 2 ­ Risk Management Guidance and Template SPO Project Management Guidance on Risk Management Introduction Risk is any action or event that affects a project's ability to achieve its on cost, schedule and technical performance. However, with appropriate procedures, risks can be managed

  17. Office of Energy Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 -Energy Project Management 726D000000

  18. The Environmental Management Project Manager`s Handbook for improved project definition

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The United States Department of Energy (DOE) is committed to providing high quality products that satisfy customer needs and are the associated with this goal, DOE personnel must possess the knowledge, skills, and abilities to ensure successful job performance. In addition, there must be recognition that the greatest obstacle to proper project performance is inadequate project definition. Without strong project definition, DOE environmental management efforts are vulnerable to fragmented solutions, duplication of effort, and wastes resources. The primary means of ensuring environmental management projects meet cost and schedule milestones is through a structured and graded approach to project definition, which is the focus of this handbook.

  19. General Purpose Microcomputers in Energy Management

    E-Print Network [OSTI]

    Schmidt, P. S.

    1981-01-01T23:59:59.000Z

    these may be implemented in energy management. A project at the University of Texas at Austin to develop a package of energy conservation software is described, and examples are given of other commercially available software suitable for energy conservation...

  20. Selling Energy Conservation Projects to Top Management

    E-Print Network [OSTI]

    Jonsson, K. A.

    1983-01-01T23:59:59.000Z

    A guide to presenting proposals on Energy Conservation Projects by plant engineers to their top level management, in order to get approval for Energy Conservation Projects. Through the author's past experience he ascertained that many Energy...

  1. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  2. Project Manager | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certification (or equivalent) and 10+ years of experience managing projects within the PMI PMBOK Methodology. Experience with EVM reporting a strong plus. Advanced degree...

  3. Acquisition and Project Management Awards Presentations - Ingrid...

    Energy Savers [EERE]

    - Ingrid Kolb, Director, Office of Management Secretary's Achievement Award Seismic Life-Safety, Modernization & Replacement (Seismic Ph 2)Secretary's Award for Project...

  4. Program & Project Management For The Acquisition Of Capital Assets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program & Project Management For The Acquisition Of Capital Assets Program & Project Management For The Acquisition Of Capital Assets Project Assessment and Reporting...

  5. "Extreme Project Management" One World Trade

    E-Print Network [OSTI]

    Guiltinan, Mark

    "Extreme Project Management" One World Trade Center A special presentation with a discussion of managing multiple large projects at the World Trade Center site with multiple adjacencies, complicated 1984), PE, PMP, is the Program Director for One World Trade Center. Lynda Tollner, is a Program

  6. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  7. Department of Energy Project Management System

    SciTech Connect (OSTI)

    Not Available

    1981-01-08T23:59:59.000Z

    This manual provides guidance to all appropriate personnel for implementation of DOE Project Management Policy. It sets forth the principles and requirements that govern the development, approval, and execution of DOE's outlay programs as embodied within the Project Management System (PMS). Its primary goal is to assure application of sound management principles providing a disciplined, systematic, and coordinated approach resulting in efficient planning, organization, coordination, budgeting, management, review, and control of DOE projects. The provisions of this manual are mandatory for the Department's Major Systems Acquisitions (MSA's) and Major Projects and will be used for other projects to the extent practicable. Department's project-management task is over 250 projects, with a total estimated cost in excess of $24 billion at completion. This diverse array of project activities requires a broad spectrum of scientific, engineering, and management skills to assure that they meet planned technical and other objectives and are accomplished on schedule, within cost and scope, and that they serve the purposes intended. In recognition of these requirements and the Department's ever-increasing magnitude of responsibilities, an interim Project Management System was established and has been in use for over a year. This manual constitutes an update of the system based on the experience gained and lessons learned during this initial period.

  8. IT PROJECT MANAGEMENT PROGRAM A ten-week program covering best practices in IT project management

    E-Print Network [OSTI]

    Schaefer, Marcus

    with managing and working with people such as team composition and leadership, conflict resolution and politics Management Program are expected to do a considerable amount of work outside of class. StudentsIT PROJECT MANAGEMENT PROGRAM A ten-week program covering best practices in IT project management

  9. Automated transportation management system (ATMS) software project management plan (SPMP)

    SciTech Connect (OSTI)

    Weidert, R.S., Westinghouse Hanford

    1996-05-20T23:59:59.000Z

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  10. Project Management and Analysis Project Conception and Execution

    E-Print Network [OSTI]

    Sohoni, Milind

    of asset value pay-as-you-earn, progressive Octroi, Sales Tax pay-as-you- consume, regressive 10-15 wards of asset value pay-as-you-earn, progressive Octroi, Sales Tax pay-as-you- consume, regressive 10-15 wardsTD 608 Project Management and Analysis Part I Project Conception and Execution Milind Sohoni

  11. EERE Project Management Center Database PIA, The Office of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and...

  12. DOE Acquisition and Project Management (APM) Glossary of Terms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Acquisition and Project Management (APM) Glossary of Terms Handbook FINAL VERSION 9-30-2014 DOE Acquisition and Project Management (APM) Glossary of Terms Handbook FINAL...

  13. Office of Acquisition and Project Management (APM) Organization...

    Energy Savers [EERE]

    Project Management (APM) Organization Chart Office of Acquisition and Project Management (APM) Organization Chart test APM Org Chart v15.pdf More Documents & Publications MA-60 Org...

  14. Earned Value Management System (EVMS) and Project Analysis Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earned Value Management System (EVMS) and Project Analysis Standard Operating Procedure (EPASOP)- March 2014 Earned Value Management System (EVMS) and Project Analysis Standard...

  15. Meeting the Challenge: Integrating Acquisition and Project Management...

    Energy Savers [EERE]

    Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash, P.E. Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash,...

  16. Security Analysis and Project Management Systems | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Analysis and Project Management Systems SHARE Security Analysis and Project Management Systems ORNL brings together the subject matter experts with programmers to design,...

  17. Secretary Moniz to Present Project Management Reforms to the...

    Energy Savers [EERE]

    Moniz to Present Project Management Reforms to the National Academy of Public Administration Secretary Moniz to Present Project Management Reforms to the National Academy of Public...

  18. Request Access to the PARSIIe Project Management Lessons Learned...

    Energy Savers [EERE]

    Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository PURPOSE...

  19. Waste management project technical baseline description

    SciTech Connect (OSTI)

    Sederburg, J.P.

    1997-08-13T23:59:59.000Z

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  20. Staffing Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-03T23:59:59.000Z

    This Guide provides an approach to determining the appropriate level and type of federal personnel needed to effectively plan, direct, and oversee project execution. Admin Chg 1, dated 10-12-11, cancels DOE G 413.3-19.

  1. Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsand Project AnalysisID Project

  2. Brussels, 1 April 2006 ITER Project on Track Top Management Team

    E-Print Network [OSTI]

    IP/06/418 Brussels, 1 April 2006 ITER Project on Track ­ Top Management Team Identified Union, India, Japan, Korea, China, Russia and USA), identified the top management team that will manage-General in November 2005, the top management team of the prospective ITER Organization is now complete. The Tokyo

  3. LTS Project Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedure Doc.LTS In TheProject

  4. Enforcement Project Management Handbook. Directive (Final)

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    The publication is a basic reference and training manual to assist EPA Superfund field personnel (Remedial Project Managers and On Scene Coordinators) in planning, negotiating, and managing potentially responsible party (PRP) searches and PRP-lead actions at Superfund sites. It provides an overview of each phase of the Superfund enforcement process and discusses specific roles and responsibilities of the RPM/OSC in the process.

  5. Cesium legacy safety project management work plan

    SciTech Connect (OSTI)

    Durham, J.S.

    1998-04-21T23:59:59.000Z

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  6. General contractor’s project of projects – a meta-project: understanding the new paradigm and its implications through the lens of entropy

    E-Print Network [OSTI]

    Fernandez-Solis, Jose; Rybkowski, Zofia K.; Xiao, Chao; Lü, Xiaoshu; Chae, Lee Seok

    2015-02-08T23:59:59.000Z

    . That is, one plus one is more than two, or in construction, the work, labor, material effort at the end has a value that is greater than the work, once completed and used for its intended purpose. This is the project’s economic utility (Buchen & Kelly... Street, London W1T 3JH, UK Click for updates Architectural Engineering and Design Management Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/taem20 General contractor's project...

  7. A New Tool for Effective and Efficient Project Management

    SciTech Connect (OSTI)

    Willett, Jesse A.

    2011-12-01T23:59:59.000Z

    Organizations routinely handle thousands of projects per year, and it is difficult to manage all these projects concurrently. Too often, projects do not get the attention they need when they need it. Management inattention can lead to late projects or projects with less than desirable content and/or deliverables. This paper discusses the application of Visual Project Management (VPM) as a method to track and manage projects. The VPM approach proved to be a powerful management tool without the overhead and restrictions of traditional management methods.

  8. Web-Based Project Management Tools

    E-Print Network [OSTI]

    Chapman, Clark R.

    Web-Based Project Management Tools Southwest Research Institute® San Antonio, Texas #12;With more any web browser; other client software is not required because the system resides on SwRI's web server using the PIMS include: Cassini (INMS) Deep Impact THEMIS AIM STEREO IMAGE Orbital Express CHIPS

  9. UMTRA Project Office Records Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office maintains two distinct records handling areas. One of the areas is maintained by a Technical Assistance Contractor (TAC), and is referred to as the UMTRA Project Document Control Center (UPDCC). The UPDCC manages all UMTRA records except those dealing with contracts, personnel, budgeting, finance, and any other documents which are of a purely administrative nature. The second area, the UMTRA Project Administrative Files Collection (UPAFC), contains all those records listed above that are not managed by the UPDCC. This Records Management Plan (RMP) for the UPAFC will be the framework for identifying the elements and activities that relate to the management and operational aspects involved in the handling of UPAFC. Guidelines for the program will be obtained from US Department of Energy (DOE) Orders. DOE Orders implement the guidelines issued by the National Archives and Records Administration (NARA), the final authority for records management. The RMP will address the life cycle of records, including their creation, maintenance, use, and disposition.

  10. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  11. OM 337.5: Project Management Spring 2014

    E-Print Network [OSTI]

    Ghosh, Joydeep

    and resources, and management of project execution followed by earned value analysis. Along the way we1 OM 337.5: Project Management Spring 2014 Instructor: G.J. Gutiérrez Office: CBA 3.422 Phone: 1. As a consequence, the management of projects presents a different set of challenges than the management

  12. UNEP-GEF Renewable Energy Project Financial Risk Management in...

    Open Energy Info (EERE)

    Financial Risk Management 1 "This UNEPGEF targeted research project aims to catalyse new thinking in the risk management area, examining existing instruments and approaches and...

  13. """,,,,. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlilINATION RECIPIENT:University of Tennessee PROJECT TITLE : Rooftop Solar Challenge: Inducing PV Market...

  14. Project Management Plan - Small Producers Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject Final Report:Project ManagementRPSEA

  15. The MSc Strategic Project Management prepares graduates to be future leaders in project-based

    E-Print Network [OSTI]

    Painter, Kevin

    About The MSc Strategic Project Management prepares graduates to be future leaders in project employment prior to graduation. Programme Structure The MSc Strategic Project Management has a single intake-based environments by developing knowledge and skills in both business strategy and project management

  16. Safeguards and Security Program and Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18T23:59:59.000Z

    The proposed revision to this Department of Energy Guide focuses on alignment of guidance for implementing key safeguard and security components to the DOE capital asset acquisition process with the revised DOE O 413.3B, Program and Project Management for Acquisition of Capital Assets, the revised DOE O 470.4B, Safeguard and Security Program, and the new series of DOE Orders replacing the DOE M 470.4 series of manuals.

  17. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar [Longenecker and Associates, Las Vegas, NV 89135 (United States)

    2012-07-01T23:59:59.000Z

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  18. Risk Management Plan Electron Beam Ion Source Project

    E-Print Network [OSTI]

    Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002. There are three specific areas of risk that can be controlled and managed by the EBIS Project team and these are and operations. The BNL ISM clearly indicates that risk management is everybody's business and will be factored

  19. Demonstration project in Energy Management Programs

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The Energy Management Plan of the campuses developed under this project showed that there were a number of low-cost Energy Conservation Opportunities (ECO's) with a payback of under one year, (Short term Opportunities, STO). There were also other ECO's identified that had paybacks of more than one year. By combining these ECO's into one contract with the ESCO and paying for the costs of the ECO's by the savings resulting in the reduced energy bills, the University enhanced it's ability to carry out its mission of providing higher educational opportunities without spending money on non-educational activities. The low cost projects subsidize'' or provide leverage for the capital intensive, longer payback projects, to make an overall package that lends itself to innovative financing. JC Smith's contract also guarantees that the annual energy levels will not be increased.

  20. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  1. Leadership behaviors of effective project managers in construction project organizations in Texas

    E-Print Network [OSTI]

    Haney, Harvey Joe

    1989-01-01T23:59:59.000Z

    A study involving twenty-six construction firms, which practice project management in Texas, examined whether thirteen leadership behaviors could be associated with effective project managers. The data indicated that supervisors and subordinates...

  2. IT Project Management Practices Guide Page 1 of 83 ASU, HSC, TTU, TTUS IT Project Management Practices Guide

    E-Print Network [OSTI]

    Rock, Chris

    . Application of Project Management ­ distinguishes what types of work should and should not be categorized of Project Management Types of Work The Guide should be used for the management of Information Technology management methodologies outlined within the Guide. Upcoming/potential work should be analyzed to determine

  3. Roadmap: Business Management Technology General Management, Entrepreneurship and Manufacturing -Associate of Applied Business

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Business Management Technology ­ General Management, Entrepreneurship and Manufacturing to Human Communication 3 Fulfills Kent Core Additional for bachelor's degree ECON 22060 Principles

  4. Project management plan for project W-320, tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Leliefeld, K.W.

    1996-02-02T23:59:59.000Z

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987). The sluicing is for retrieving high-heat waste from single shell tank 241-C-106.

  5. Project Management Tool | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProject Management Development Company

  6. Project Management | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProject Management Development

  7. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug management strategy, which determines how energy flows in a hybrid powertrain should be managed in response for PHEVs using connected vehicle technology. Different energy management strategies will be developed

  8. extension.uci.edu/apm AdvancedProjectManagement

    E-Print Network [OSTI]

    Rose, Michael R.

    exams offered through the Project Management Institute, Inc. Program Management Professional (PgMP)® PMI Scheduling Professional (PMI-SP)® PMI Agile Certified Practitioner (PMI-ACP)® Visit the Project Management Institute at pmi.org for more details. Certificate Requirements Individuals must complete courses totaling

  9. ASBESTOS PROJECT MANAGEMENT University of California, San Diego

    E-Print Network [OSTI]

    Aluwihare, Lihini

    in advance if the renovation and demolition project with friable asbestos-containing materials is over 1601 ASBESTOS PROJECT MANAGEMENT University of California, San Diego UC San Diego project managers to maintenance, repair, and construction of UC-owned and leased buildings where asbestos-containing materials

  10. Management and operating contractor plan for transition to the project Hanford Management Contractor

    SciTech Connect (OSTI)

    Waite, J.L., Westinghouse Hanford

    1996-06-27T23:59:59.000Z

    This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

  11. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01T23:59:59.000Z

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  12. Course Profile: Project Management Course Number: LIS 7415

    E-Print Network [OSTI]

    Berdichevsky, Victor

    development life cycle 5. project management 6. operating and managing systems 7. modeling of system of information systems and their functions 2. components of information systems 3. system architecture 4. system

  13. Distributed Cognition Learning in Collaborative Civil Engineering Projects Management

    E-Print Network [OSTI]

    Grimaldo, Francisco

    Engineer- ing domain has historically encompassed very heterogeneous disciplines. From the beginning, anyDistributed Cognition Learning in Collaborative Civil Engineering Projects Management Jaume Dom to manage these design conflicts by detecting them, by assisting the engineers in the negotiation

  14. Fermilab | Director's Policy Manual | No. 12.000 Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.000 Rev. 0 Project Management 2.0 Effective Date 1199 3.0 Scope This policy covers all projects undertaken at Fermilab. 4.0 Applicability This policy applies to all employees...

  15. Balancing Generality and Specificity in Document Management Systems

    E-Print Network [OSTI]

    Edwards, Keith

    Balancing Generality and Specificity in Document Management Systems W. Keith Edwards and Anthony La-purpose applications that operate on that document. KEYWORDS: document management, user interfaces, extensible. Our desktop tools are specialized to match our document management tasks and have increased

  16. Annex 2 Risk Guidance Science Programme Office Project Management

    E-Print Network [OSTI]

    1 Annex 2 ­ Risk Guidance Science Programme Office Project Management Guidance on Risk Management and technical performance. However, with appropriate procedures, risks can be managed and in so doing, present as bad things happening. The objective of risk management is to identify, assess, reduce, accept

  17. Colorado River Storage Project Management Center Customer Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Storage Project Management Center Customer Meeting May 21, 2015 TABLE OF CONTENTS RATES 1 RATES PRESENTATION HANDOUTS 2 REPAYMENT MILESTONE AND STATUS OF REPAYMENT 3 CURRENT...

  18. Business Manangement System(BMS), RL-2008/Project Hanford Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Manangement System(BMS), RL-2008Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008...

  19. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM

    Broader source: Energy.gov (indexed) [DOE]

    s, DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM INATION RECIPIENT:University of Central Florida PROJECf TITLE : Florida Hydrogen Initiative 3 letter of...

  20. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17T23:59:59.000Z

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  1. Environmental Management Construction Project Review of the Savannah...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July...

  2. A New Project Execution Methodology; Integrating Project Management Principles with Quality Project Execution Methodologies

    E-Print Network [OSTI]

    Schriner, Jesse J.

    2008-07-25T23:59:59.000Z

    Approach ........................................................................................3 The ITIL Approach ..................................................................................................5 Quality Project Methodologies Summary.... 2006. Six Sigma for IT Management. Van Haren Publishing. The main purpose of this book is to both introduce Six Sigma and Information Technology Infrastructure Library (ITIL) and then integrate the two methodologies for application...

  3. La Jolla Children's Pool Beach Management and Water Quality Improvement Project

    E-Print Network [OSTI]

    Elwany, Hany; Flick, Reinhard; Nichols, Jean; Lindquist, Anne-Lise

    1998-01-01T23:59:59.000Z

    POOL BEACH MANAGEMENT AND WATER QUALITY IMPROVEMENT PROJECTPool Beach Management and Water Quality Improvements ProjectPool Beach Management and Water Quality Improvements Project

  4. Generalized Information Architecture for Managing Requirements in IBM?s Rational DOORS(r) Application.

    SciTech Connect (OSTI)

    Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie T.; Shannon, Sharon A.

    2014-12-01T23:59:59.000Z

    When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rational DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201

  5. Project Management Plan (PMP) for International Atomic Energy Agency (IAEA) Safeguards Project

    SciTech Connect (OSTI)

    BARTLETT, W.D.

    1999-09-14T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the PFP IAEA project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP) HNF-3617 Rev 0.

  6. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  7. Public participation in UMTRA Project program management

    SciTech Connect (OSTI)

    Majors, M.J.; Ulland, L.M. [Weston (Roy F.), Inc., Albuquerque, NM (United States)

    1993-12-31T23:59:59.000Z

    Innovative techniques for overcoming barriers to public participation on the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project have led to improved communications with stakeholders at project sites and improved communications within the project. On the UMTRA Project, it`s been shown that an effective public participation program is an essential element to successful project implementation.

  8. Mapping The Best Practices of XP and Project Management: Well defined approach for Project Manager

    E-Print Network [OSTI]

    Javed, Muhammad; Hussain, Shahid; Ahmad, Shakeel

    2010-01-01T23:59:59.000Z

    Software engineering is one of the most recent additions in various disciplines of system engineering. It has emerged as a key obedience of system engineering in a quick succession of time. Various Software Engineering approaches are followed in order to produce comprehensive software solutions of affordable cost with reasonable delivery timeframe with less uncertainty. All these objectives are only satisfied when project's status is properly monitored and controlled; eXtreme Programming (XP) uses the best practices of AGILE methodology and helps in development of small size software very sharply. In this paper, authors proposed that via XP, high quality software with less uncertainty and under estimated cost can be developed due to proper monitoring and controlling of project. Moreover, authors give guidelines that how activities of project management can be embedded into development life cycle of XP to enhance the quality of software products and reduce the uncertainty.

  9. Recommendations for improvements to program and project management

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) has operated with a balanced matrix organization for over sixteen years. Much of the work at the Laboratory is accomplished with good customer satisfaction through programs, projects, and matrix management. During the past several years concerns about program and project management at ORNL have been expressed by both the Department of Energy and ORNL staff. In May 1993 the ORNL Division/Program/Office Directors Caucus chartered a ``fox team`` to identity and to recommend improvements to matrix management that would lead to resolution of these concerns. Nine experienced ORNL staff members served on this Matrix Management Upgrade Solutions Team (MMUST). The MMUST adopted a four-phase approach in which they first gathered information and then developed and proposed recommended actions. In the fourth phase the team was available to support implementation of the recommendations. They began work in June 1993, gathering and evaluating information in biweekly meetings for six months. Recommendations developed in October and November 1993 were presented to ORNL management in December. The MMUST issued three principal recommendations based on their evaluation of the information gathered. They are: Renew and enhance the ORNL management commitment to matrix management, program managers, and project managers; Implement actions to ensure career path parity between the program/project manager family of positions and the technical line manager family of positions across all directorates and divisions; and Clarify and document program/project manager roles, responsibilities, and authorities.

  10. Total Energy Management in General Motors 

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    these and any other conditions. PLANNING FOR THE FUTURE GM is also deeply involved in trying to develop effective energy planning guidelines to meet the long term planning needs of our plants. One approach has been to review the energy outlook projections... by a number of organizations and agencies and apply these pro jections to GM operations. Table IV contains the energy outlook projections to 1990 by Exxon, Shell and the U.S. Department of Energy. Also shown is the actual energy consumed by form...

  11. Control Account Manager (CAM) Responsibilities Control Account Manager (CAM) responsibilities are listed in the PPPL Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    and define assumptions, risk, and uncertainty in the project · Assign an Earned Value Technique to resourceControl Account Manager (CAM) Responsibilities Control Account Manager (CAM) responsibilities are listed in the PPPL Project Management System Description (PMSD) and PMSD Appendix E Supporting

  12. Establishment of Management Decisions on Office of Inspector General Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-04-19T23:59:59.000Z

    The order establishes the responsibilities and requirements for Department of Energy elements to make management decisions on Office of Inspector General audits and public inspection reports. Cancels DOE O 221.3.

  13. Establishment of Management Decisions on Office of Inspector General Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17T23:59:59.000Z

    To establish the responsibilities and requirements for Department of Energy (DOE) action required to make management decisions on Office of Inspector General (OIG) audit and public inspection reports. Cancels DOE 2320.2B

  14. USB KEY PROFILE MANAGER FOR MOZILLA A Project Report

    E-Print Network [OSTI]

    Pollett, Chris

    USB KEY PROFILE MANAGER FOR MOZILLA A Project Report Presented to The Faculty of the Department FOR THE UNIVERSITY _____________________________________________________ 3 #12;ABSTRACT USB KEY PROFILE MANAGER FOR MOZILLA By Yun Zhou Mozilla's profile manager allows users to save their private information

  15. AUTOMATED TEAM PROJECT MANAGEMENT AND EVALUATION THROUGH INTERACTIVE WEB MODULES

    E-Print Network [OSTI]

    Lockwood, John W.

    AUTOMATED TEAM PROJECT MANAGEMENT AND EVALUATION THROUGH INTERACTIVE WEB MODULES John W. Lockwood lockwood@ipoint.vlsi.uiuc.edu ABSTRACT Team projects represent an important aspect of the micro- electronic in team projects. Evalu- ation of an individual's performance requires a fair compar- ison of the team

  16. Clear Creek, Texas Flood Risk Management Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix ­ Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

  17. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    SciTech Connect (OSTI)

    MCLELLAN, G.W.

    2007-02-07T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

  18. Office of Acquisition and Project Management

    Office of Environmental Management (EM)

    services to HQ managers. Office of Corporate Information Technology Mission The Office of Corporate Information Technology (EM-72) serves as the principal advisor for the EM...

  19. West Valley Demonstration Project Transportation Emergency Management...

    Office of Environmental Management (EM)

    WVDP emergency management programs in dealing with transportation events involving hazardous materials (not related to nuclear weapons components), since the site is...

  20. Project Based Energy Conservation vs. Management Based Energy Conservation 

    E-Print Network [OSTI]

    Judy, K.; O'Brien, S.

    2009-01-01T23:59:59.000Z

    Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF...

  1. Managing Tipping Point Dynamics in Complex Construction Projects

    E-Print Network [OSTI]

    Ford, David N.

    -9364 2008 134:6 421 CE Database subject headings: Project management; Dynamic models; Simulation models from the Nuclear Regulatory Commission NRC 1982 and the Energy In- formation Administration EIA 1988

  2. Leading change management projects in international cross-cultural settings

    E-Print Network [OSTI]

    Repoux, Charles

    2014-01-01T23:59:59.000Z

    In an increasingly complex world for Multinational Companies, it is difficult for managers to keep a firm grasp over the global projects they are tasked to implement. Many of them lead teams operating across country borders, ...

  3. Project Based Energy Conservation vs. Management Based Energy Conservation

    E-Print Network [OSTI]

    Judy, K.; O'Brien, S.

    Basic American Foods (BAF) is the largest potato dehydrator worldwide. This paper will trace the shift from a Project Based to Management Based energy conservation program. Second only to raw material, energy is one of the highest expenses at BAF...

  4. The Issues and Management of Historic Preservation Projects

    E-Print Network [OSTI]

    Sengelmann, Heather

    2012-04-20T23:59:59.000Z

    . This confusion has led to the research of issues and management of historic preservation projects and renovations. One must study all of the rules and regulations to truly understand the meaning of “historic preservation”. How does a building become important...

  5. Safeguards and Security for Program and Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-11-15T23:59:59.000Z

    This Guide provides approaches for implementing security provisions within the functional areas contained in DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets. Canceled by DOE G 413.3-3A.

  6. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Systems Engineering Experience LASP is a full-cycle space institute, combining all aspects of space exploration through our expertise in science, engineering, mission operations, data analysis, and education

  7. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Systems Engineering Experience LASP is a full-cycle space research institute, combining all aspects of space exploration through our expertise in science, engineering, mission operations, data analysis

  8. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26T23:59:59.000Z

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  9. Waste management aspects of decontamination and decommissioning (D&D) projects

    SciTech Connect (OSTI)

    Becker, B.D.

    1993-07-01T23:59:59.000Z

    History shows that waste management concepts have generally been overlooked during the planning stages of most projects and experiments. This is resulting,in the generation of vast amounts of waste during the clean up or D&D of these facilities. Managers are not only being frustrated in their waste minimization efforts (a relatively new concept) but are also facing the prospect of not being able to dispose of the waste materials at all. At the least, managers are having to budget extraordinary amounts of time, money, and effort in defending their positions that the waste materials are not only humanly and environmentally safe, but that the waste materials are in fact what management says they are. The following discussion will attempt to provide some guidance to D&D managers to help them avoid many of the common pitfalls associated with the ultimate disposal of the materials generated during these projects.

  10. CRAD, Management- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  11. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  12. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  13. EM Contributes Expertise to Comprehensive Resource on Managing Nuclear Projects

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM officials wrote a chapter of a recently published book, Managing Nuclear Projects – A Comprehensive Management Resource, which covers a range of areas with emphasis on process, requirements and lessons learned. Authors from France, Germany, Argentina, Belgium, Finland, Austria, and the U.S. contributed to the book.

  14. Position Description Project Manager, Office of Community and Economic Development

    E-Print Network [OSTI]

    Position Description Project Manager, Office of Community and Economic Development Full will support all aspects of the success of CSU's Office of Community and Economic Development projects from to the Director and Assistant Director of the Community and Economic Development Office of Colorado State

  15. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27T23:59:59.000Z

    This Guide provides acceptable approaches for implementing the Quality Assurance requirements and criteria of DOE O 413.3A related to the development and implementation of a Quality Assurance Program for the project. No cancellations.

  16. Federal Staffing Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-03T23:59:59.000Z

    This Guide provides an approach to determining the appropriate level and type of federal personnel needed to effectively plan, direct, and oversee project execution. Superseded by DOE G 413.3-19 Admin Chg 1.

  17. Information Technology Program/Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-20T23:59:59.000Z

    To close this policy gap the Office of the CIO (OCIO) proposes to develop a new order with departmental guidance on essential processes, documentation, and critical decision-points for IT projects.

  18. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

  19. Management of Selected Advanced Research Projects Agency-Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University ofOverviewManagement

  20. A project management focused framework for assuring quality work processes

    SciTech Connect (OSTI)

    Gamsby, S.O.; Mize, J.D. [Allied Signal, Inc., Albuquerque, NM (United States). Federal Mfg. and Technologies; Reid, R.A. [New Mexico Univ., Albuquerque, NM (United States)

    1996-10-01T23:59:59.000Z

    Federal Manufacturing & Technologies/New Mexico (FM&T/NM) of AlliedSignal is an organization of approximately 300 associates providing operations support, engineering, and other technical services for DOE, New Mexico`s National Laboratories, etc. Work performed is primarily project-oriented and ranges from executing a major long-term contract for retrofitting and maintaining a large fleet of escort vehicles to creating a single, small, prototype electronic device for measuring radiation in a unique environment. FM&T/NM is functionally organized and operates in a classic matrix format with functional departments providing personnel with technical expertise, necessary physical resources, and administrative support to several project-based groups. Like most matrix-based organizations that provide support to diverse customers, FM&T/NM has encountered problems that occur when a group of project managers is expected to work together in using and scheduling a shared set of limited resources for the good of the organization as a whole. The framework for managing projects that we present focuses on developing, understanding, and managing the relationships between the functional organization structure, the system of work processes, and the management of projects. FM&T/NM retains its functional structure which primarily assigns personnel to work processes. The evolving role of the process leader focuses primarily on designing, managing, and improving the process, and the interactions among the subprocesses. The project manager is responsible for (1) translating customer requirements into product specifications, (2) determining the sequence of activities needed to meet project goals, (3) scheduling the required work processes, (4) monitoring project progress, (5) providing liaison between the customer and process leaders, and (6) having the desired product and/or service delivered to a satisfied customer in a timely manner.

  1. UA Museum Expansion Project Project Manager: Carol Adamczak, 474-7362

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    . Life/Safety Renovation. Complete by February 07. Patty Ice Rink Improvements Project Manager: Marc of the Patty Ice Arena. Install new dehumidification and water treatment system inside the rink. Replace

  2. Project Management Resources | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsand Project AnalysisID Project Name

  3. GUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM

    E-Print Network [OSTI]

    Energy Inc., a U.S. based publicly-traded, green energy technology company. Bartels is a frequent speakerGUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM Chairman, Global Smart Grid Federation Board Member and Former Chairman, GridWise Alliance Guido Bartels heads up IBM's energy

  4. Management of water extracted from carbon sequestration projects

    SciTech Connect (OSTI)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11T23:59:59.000Z

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  5. Demonstration project in Energy Management programs

    SciTech Connect (OSTI)

    Not Available

    1989-10-01T23:59:59.000Z

    This part of the final report is provided to summarize with more definitive data, the savings realized by the implementation of the Energy Conservation Opportunities (ECOs) identified in the Energy Management Plan (EMP), and for those measures implemented by the Energy Service Company (ESCO).

  6. ETI 4448 Applied Project Management Spring 2010

    E-Print Network [OSTI]

    VanHilst, Michael

    4. EPM Ch. 4: Building the Work Breakdown Structure 5. EPM Ch. 4: Estimating Duration, Resource Structure 4. Work Breakdown Structure 5. Gantt Chart Dependency Graph 6. Gantt Chart & CPM Schedule 7, in the following 2 weeks. 1. Conditions of Satisfaction 2. Project Overview Statement 3. Requirements Breakdown

  7. CSE 4322: Software Project Management 1 Instructor

    E-Print Network [OSTI]

    Csallner, Christoph

    Software: What Really Works, and Why We Believe It. O'Reilly. 2010. 3. Frederick P. Brooks: The Mythical: Effective Java. 2nd edition. Prentice Hall, 2008. 7. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha (written) · 20% project presentations (oral) 10.1 Grade Distribution A from 85%, B from 70%, C from 60%, D

  8. Data Management System of the DIRAC Project

    E-Print Network [OSTI]

    Haen, Christophe; Tsaregorodtsev, Andrei

    2015-01-01T23:59:59.000Z

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...

  9. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    SciTech Connect (OSTI)

    IT Corporation, Las Vegas

    2002-04-24T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

  10. Increase Productivity - Implement Energy Management Systems with Project Management Techniques

    E-Print Network [OSTI]

    Spinner, M. P.

    1984-01-01T23:59:59.000Z

    Engineering Manager of this small but active division, I devote a big part of my time on justifying energy expenditures and the means to reduce these costs. Ten years ago energy costs were one tenth of today's costs and just about three percent of the division...

  11. Twelve Steps to Successful Energy Project Management

    E-Print Network [OSTI]

    Smith, W. P.

    COORDINATOR PRODUCTION EMPLOYEES MANUFACTURING SUPERVISOR 'HAS( I I.,.... ..Ion llIfjtct ,_{tionl INITIAlJOH 2.Prajol ROll 4. p,project ideas. First, everyone must know the energy program is a plant-wide effort and an important part...

  12. Project Management Methodology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle ReductionOffices Offices All OfficesInformationProject

  13. The three-dimensional matrix -- An evolution in project management

    SciTech Connect (OSTI)

    Glidewell, D.

    1996-09-01T23:59:59.000Z

    In the Functional Department Dimension, functional departments such as project management, design, and construction would be maintained to maximize consistency among project teams, evenly allocate training opportunities, and facilitate the crossfeeding of lessons learned and innovative ideas. Functional departments were also determined to be the surest way of complying uniformly with all project control systems required by the Department of Energy (Sandia`s primary external customer). The Technical Discipline dimension was maintained to enhance communication within the technical disciplines, such as electrical engineering, mechanical engineering, civil engineering, etc., and to evenly allocate technical training opportunities, reduce technical obsolescence, and enhance design standards. The third dimension, the Project Dimension, represents the next step in the project management evolution at Sandia, and together with Functional Department and Technical Discipline Dimensions constitutes the three-dimensional matrix. It is this Project Dimension that will be explored thoroughly in this paper, including a discussion of the specific roles and responsibilities of both management and the project team.

  14. Ashtabula Environmental Management Project Main Extrusion Plant Demolition Project. Demolition of the Ashtabula Environmental Management Project's Main Extrusion Plant

    SciTech Connect (OSTI)

    Colborn, Kurt; Johnson, Kathryn K.

    2003-02-27T23:59:59.000Z

    Significant progress was made this year toward closure of the Department of Energy's Ashtabula Environmental Management Project (AEMP) with the demolition of the 9-building Main Extrusion Plant Complex. The 44,000 square foot building complex formerly housed uranium extrusion facilities and equipment. At the start of the project in October of 2001, the buildings still contained a RCRA Part B storage area, operating mixed waste treatment facilities, active waste shredding and compacting process areas, and a state EPA permitted HEPA ventilation system. This paper presents a discussion of the multidisciplinary effort to bring the building to a safe shutdown condition in just six months, including relocation of existing process areas, utility isolation, and preliminary decontamination. Also discussed is the demolition strategy in which portions of the facility remained active while demolition was proceeding in other areas. Other details of the technical approach to the demolition are also discussed, including innovative techniques for demolition, galbestos removal, contamination control, and waste minimization. These techniques contributed to the early completion of demolition in July of 2002, fully two months ahead of schedule and $1.5 million under budget.

  15. Implementation of a Project Management System for Improvement to City, State's Design and Construction Capital Project Delivery

    E-Print Network [OSTI]

    Thompson, Chad C.

    2007-05-18T23:59:59.000Z

    than 400 projects with budgets of over a half billion dollars. It has shifted the capital improvement project delivery from a “multi-departmental” style of delivery to a “project management” style of delivery through the infusion of private consultants...

  16. Architecture for a Generalized Emergency Management Software System

    SciTech Connect (OSTI)

    Hoza, Mark; Bower, John C.; Stoops, LaMar R.; Downing, Timothy R.; Carter, Richard J.; Millard, W. David

    2002-12-19T23:59:59.000Z

    The Federal Emergency Management Information System (FEMIS) was originally developed for the Chemical Stockpile Emergency Preparedness Program (CSEPP). It has evolved from a CSEPP-specific emergency management software system to a general-purpose system that supports multiple types of hazards. The latest step in the evolution is the adoption of a hazard analysis architecture that enables the incorporation of hazard models for each of the hazards such that the model is seamlessly incorporated into the FEMIS hazard analysis subsystem. This paper describes that new architecture.

  17. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-13T23:59:59.000Z

    To provide Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and fully capable of meeting mission performance and environmental, safety and health standards. Cancels DOE O 430.1A, paragraphs 6e(7); 7a(3); 7b(11); 7b(14); 7c(4), (6), (7), (11) and (16); 7d(4) and (8); 7e(3), (10), and (17); Attachment 1, Definitions (items 30 - Line Item Project; item 42 - Project, item 48 - Strategic System; and Attachment 2, Contractor Requirements Document paragraph 1d regarding a project management system. Cancels DOE N 430.1 and DOE O 430.1A (in part). Canceled by DOE O 413.3A.

  18. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-13T23:59:59.000Z

    To provide Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and fully capable of meeting mission performance and environmental, safety and health standards. (Cancels DOE O 430.1A, paragraphs 6e(7); 7a(3); 7b(11); 7b(14); 7c(4), (6), (7), (11) and (16); 7d(4) and (8); 7e(3), (10), and (17); Attachment 1, Definitions (items 30 - Line Item Project; item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). Cancels DOE N 430.1 and DOE O 430.1A (in part). Canceled by DOE O 413.3 Chg 1.

  19. Acquisition and Project Management | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA AccountManagement | National

  20. Career Map: Project Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirst Report toFrequentlyProfessor CareerManager

  1. DOE Financial Assistance Awards: Active Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|Statement |3250.1DOE Federal

  2. Improving Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012|| DepartmentImproving Project

  3. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energy’s proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  4. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-18T23:59:59.000Z

    To provide the Department of Energy (DOE), including the National Nuclear Security Administration, with project management direction for the acquisition of capital assets with the goal of delivering projects on schedule, within budget, and fully capable of meeting mission performance, safeguards and security, and environmental, safety, and health standards. Cancels DOE O 413.3. Canceled by DOE O 413.3A Chg 1.

  5. Office of River Protection: Simplifying Project management tools

    SciTech Connect (OSTI)

    TAYLOR, D.G.

    2000-09-24T23:59:59.000Z

    The primary approach to the effort was to form a multi-organizational team comprised of federal and contractor staff to develop and implement the necessary tools and systems to manage the project. In late 1999 the DOE Manager of the Office of River Protection formed the Project Integration Office to achieve the objective of managing the efforts as a single project. The first major task, and the foundation upon which to base the development of all other tools, was the establishment of a single baseline of activities. However, defining a single scope schedule and cost was a difficult matter indeed. Work scopes were available throughout the project, but the level of detail and the integration of the activities existed primarily between working groups and individuals and not on a project-wide basis. This creates a situation where technical needs, logic flaws, resource balancing, and other similar integration needs are not elevated for management attention and resolution. It should be noted that probably 90% of the interface issues were known and being addressed. The key is simplifying the process and providing tangible assurance that the other 10% does not contain issues that can delay the project. Fortunately all of the contractors employed a common scheduling tool, which served as the basis for first communicating and then integrating baseline activities. Utilizing a powerful computer-based scheduling tool, it was soon possible to integrate the various schedules after the following was accomplished: Establishment of a scheduling specification (standardized input, coding, and approach to logic); and Clearly defined project assumptions.

  6. Title of Project: Asset Management and Metropolitan Planning Organizations

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    use of Soft Systems Methodology (SSM). SSM is a qualitative approach to intervene in complex problem literature review regarding asset management tools and the use of Soft Systems Methodology (SSM) 2) Review the hurdles presented by the human activity system. It is in this context that this project will contribute

  7. A project management approach to the integrated reservoir characterization process

    SciTech Connect (OSTI)

    Tsingas, C.; Tyraskis, P.A.

    1995-12-31T23:59:59.000Z

    The ultimate goal of an Exploration and Production (E&P) organization is to increase reserves and optimize production in a cost effective manner. Efficient reservoir management requires in depth knowledge of reservoir properties and their distribution within the field. Saudi Aramco`s Exploration organization formed a multi-disciplinary team in order to develop an Integrated Reservoir Characterization Process Model (IRCPM). The IRCPM team produced a quantitative multi-disciplinary model of existing work, data and technology in order to optimize resources and minimize costs during reservoir characterization projects. The activities describing this generic, relational and dynamic model were input into project management software. An extensive analysis from the perspective of organizations, work flow and deliverables was performed, employing various project management concepts and tools. A thorough understanding of the interactions among various disciplines was identified, as well. The ability to incorporate the necessary software/hardware data acquisition, processing, interpretation, integration and management during the reservoir characterization process, resulted in serving to highlight both bridges and barriers in the flow of information and resources. The application of the IRCPM to a specific reservoir characterization process, showed that it can have a direct, positive impact on Saudi Aramco`s core mission - the more efficient production of hydrocarbons - through increasing efficiency of the reservoir projects to which it is applied.

  8. Seawater Air Conditioning for Downtown Engineering Project Manager

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Seawater Air Conditioning for Downtown Honolulu Scott Higa Engineering Project Manager Honolulu Seawater Air Conditioning, LLC Abstract As a tropical island state, Hawaii has a year-round demand for air conditioning. Conventional air conditioning systems are energy intensive and represent close to 50 percent

  9. PROJECT GOALS Use electricity accounts and Building Management System

    E-Print Network [OSTI]

    PROJECT GOALS · Use electricity accounts and Building Management System (BMS) data to describe and annual rates of consumption. DESCRIPTION Approximately 82 per cent of the NGA electricity consumption can. Fluctuations in heat or humidity are therefore likely to have a significant influence on electricity

  10. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01T23:59:59.000Z

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  11. Project Management - The People Make the Difference

    SciTech Connect (OSTI)

    DELOZIER, M.P.

    2001-01-15T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. manages the high level nuclear waste tanks for the Department of Energy's Office of River Protection, at the Hanford site in southeastern Washington State. The Hanford tanks contain more than 53 million gallons of waste, 200 million curies (three times that released by Chernobyl), and 67 of the 177 tanks have leaked at some time in the past. The current company has been responsible for the tanks since fall 1996. Previous to 1996, there is a long history of the Hanford tank farms being the bane of DOE Environmental Management. One tank would periodically and spontaneously release large quantities of flammable gas. Another tank, which does not have double containment as now required by law, self-boiled and required the addition of more than 5,000 gallons of water per month to maintain temperatures within the design parameters of the tank. Only a single-wall steel pipe with limited leak detection was available to transfer waste the 7-mile route from the western-most tank farms to a waste evaporator. The regulators, public, and congress had little confidence that DOE or its contractors knew the chemical, physical, or nuclear characteristics of the tanks contents. The nuclear safety controls were so complex and varied for different tanks and different operations, that very few employees understood the hazards and the control requirements. In fact, in 1993, congress found it necessary to pass a law restricting the operations of 54 of the 177 tanks due to safety concerns--these tanks are known as ''watch list'' tanks. This was a bleak picture--DOE's most hazardous nuclear waste storage site--and no one really knew what was in the tanks and control measures were akin to bandaids and bailing wire. This is not the condition today. No tanks spontaneously belch gas above the flammability limit of hydrogen. All tanks have consistent flammable gas controls that are understood by the tank farm workers. A new doubly contained transfer line, with redundant leak detection systems, routinely transports waste across the 7 miles from the west to east tanks. The high-heat tank has been emptied. A new ventilation system services the doubly contained tanks with the highest heat content. The Defense Nuclear Facilities Safety Board, a presidential appointed group that oversees DOE nuclear safety, has declared that the tank contents are sufficiently characterized. The systems and a plan are in place to remove residual pumpable liquids from the non-compliant single-shell tanks by 2004. More than half of the tanks have been removed from the ''watch list'' and the rest will be removed within the next year. And, a comprehensive plan exists to retrieve the waste, send it to a treatment plant, and close the tank farms.

  12. 2006-2605: DETERMINING HOW TO TEACH PROJECT MANAGEMENT CONCEPTS TO ENGINEERS

    E-Print Network [OSTI]

    Conrad, James M.

    either as a manager or as a member of the team. A recent survey included more than 100 senior-level PM2006-2605: DETERMINING HOW TO TEACH PROJECT MANAGEMENT CONCEPTS TO ENGINEERS James Conrad and a Certified Project Management Professional (PMP). He is also a member of Eta Kappa Nu, the Project Management

  13. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03T23:59:59.000Z

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  14. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  15. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    SciTech Connect (OSTI)

    SINCLAIR, J.C.

    1999-05-03T23:59:59.000Z

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

  16. MEM Project Guidelines revised 6/25/09 Master of Environmental Management

    E-Print Network [OSTI]

    (including an estimate of hours of work and materials for each task) Project Because the MEM projectMEM Project Guidelines revised 6/25/09 Master of Environmental Management Project Guidelines Project Overview: The culminating experience of students seeking a Master of Environmental Management

  17. U.S. DEPARThfENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETElUrINATION RECIPIENT: Marquette University PROJECT TITLE : Anaerobic Biotechnology for Renewable Energy Page 1 of2 STATE;...

  18. U.S. DEP.ARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION RECIPIENT:Auburn University STATE:AL PROJECT Biomass to Liquid Fuels and Electric Power Research TITLE:...

  19. Potl,,]) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT: North Carolina State University- North Carolina Solar Center PROJECT TITLE: Southem Mid-Atlantic Provider of...

  20. U.S. DEPARTIVEENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE 'URA TTNATION RECIPIENT:Texas Tech University STATE: TX PROJECT TITLE : Great Plains Wind Power Test Facility Funding...

  1. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ." ,., U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:TRAVIS COUNTY TEXAS PROJECT TITLE: County of Travis, Texas 700 Lavaca Street...

  2. Various Project Management Reports | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Independent Research Assessment of Project Management Factors Affecting Department of Energy Project Success .pdf file (394KB), July 2004 DOE National Laboratories Improvement...

  3. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1Rl...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1RlIINATION RECIPIENT:New Mexico Energy, Minerals & Natural Resources Department PROJECT TITLE: SEP ARRA City of...

  4. Using critical chain project management methodologies to build a production schedule

    E-Print Network [OSTI]

    Poppe, Clayton D. (Clayton Douglas)

    2009-01-01T23:59:59.000Z

    Critical Chain project management methodologies have been used for the last ten years to manage a wide range of projects. These methods, which apply Eli Goldratt's Theory of Constraints, have demonstrated the ability to ...

  5. Program and Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-07-28T23:59:59.000Z

    The Order provides project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and capable of meeting mission performance and environmental safety and health standards. The page change incorporates requirements of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 413.3. Canceled by DOE O 413.3B dated 11-29-10.

  6. Idea-Nation: A Unique Framework for Managing Crowd-Sourced Projects

    E-Print Network [OSTI]

    Palmer, Joseph

    2014-12-19T23:59:59.000Z

    through a management frame work for inter-organizational crowd-sourced projects called Idea-Nation....

  7. Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study

    E-Print Network [OSTI]

    Bilbo, David; Bigelow, Ben F.; Escamilla, Edelmiro; Lockwood, Christa

    2014-04-03T23:59:59.000Z

    This study provides information and a basic overview on Construction Manager at Risk (CMR) and Integrated Project Delivery (IPD) as project delivery methods while contrasting their performance in the design and construction of two healthcare...

  8. Fluid management plan for the Project Shoal Area Offsites Subproject

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject`s Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria.

  9. MANAGEMENT REPORTING REQUIREMENTS (8-83) (a) General. This document prescribes management reports required if the offeror requests

    E-Print Network [OSTI]

    Pennycook, Steve

    MANAGEMENT REPORTING REQUIREMENTS (8-83) (a) General. This document prescribes management reports with data furnished under those requirements. Preferred formats for the Billing Plan/Management Report be submitted to the Company's subcontract administrator. (b) Description of Reports. (1) BILLING PLAN/MANAGEMENT

  10. Template for NSF Data Management Plan In general, the data management plan should answer these two questions

    E-Print Network [OSTI]

    He, Chuan

    Template for NSF Data Management Plan In general, the data management plan should answer these two. Expected Data Describe the types of data, samples, physical collections, survey responses, interviews

  11. Trust-Building in the Construction Project Delivery Process: A Relational Lookahead Tool for Managing Trust

    E-Print Network [OSTI]

    Smith, James Packer

    2013-08-01T23:59:59.000Z

    framework, this project uses a mixed methods approach to develop and test a tool designed to assist in the management of trust levels between construction project participants. This project lays the groundwork for additional research into trust...

  12. Building the London Cycle Network Plus (LCN+) Steve Cardno LCN+ Project Manager

    E-Print Network [OSTI]

    Bertini, Robert L.

    Building the London Cycle Network Plus (LCN+) Steve Cardno ­ LCN+ Project Manager The Story So Far #12;Background to LCN+ London Cycling Design Standards (key principles) Project Management of the LCN+ Network Assessment Project Examples Lessons Learned Other Cycling Infrastructure Projects in London Ideas

  13. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  14. Project Management Support and Services for the Environmental Restoration and Waste Management. Final report

    SciTech Connect (OSTI)

    NONE

    1995-04-10T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) Environmental Restoration Technical Support Office (ERTSO) contracted Project Time & Cost, Inc. (PT&C) on 16 November 1992 to provide support services to the US Department of Energy (DOE). ERTSO had traditionally supported the DOE Albuquerque office in the Environmental Restoration and Waste Management Programs and had also supported the Office of Waste Management (EM-30) at DOE Headquarters in Germantown, Maryland. PT&C was requested to provide project management and support services for the DOE as well as liaison and coordination of responses and efforts between various agencies. The primary objective of this work was to continue LANL`s technical support role to EM-30 and assist in the development of the COE Cost and Schedule Estimating (CASE) Guide for EM-30. PT&C`s objectives, as specified in Section B of the contract, were well met during the duration of the project through the review and comment of various draft documents, trips to DOE sites providing program management support and participating in the training for the EM-30 Cost and Schedule Estimating Guide, drafting memos and scheduling future projects, attending numerous meetings with LANL, DOE and other subcontractors, and providing written observations and recommendations.he results obtained were determined to be satisfactory by both the LANL ERTSO and DOE EM-30 organizations. The objective to further the support from LANL and their associated subcontractor (PT&C) was met. The contract concluded with no outstanding issues.

  15. Information flow in the DAMA Project beyond database managers: Information flow managers

    SciTech Connect (OSTI)

    Russell, L. [Argonne National Lab., IL (United States); Wolfson, O.; Yu, C. [Illinois Univ., Chicago, IL (United States)

    1996-03-01T23:59:59.000Z

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point-of-sale information, is being considered in the Demand Activated Manufacturing Project of the American Textile Partnership project. A scenario is examined in which 100,000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26,000 suppliers through the use of bill-of-materials explosions at four levels of detail. A new paradign the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced to keep estimates of demand as current as possible.

  16. 2014 DOE Project Management Workshop Meeting the Challenge-Integrated Acquisition and Project Management

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice14 DOE Project

  17. UMTRA Surface Project management action process document: Final. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  18. Dynamic Power Management of Complex Systems Using Generalized Stochastic Petri Nets *

    E-Print Network [OSTI]

    Qiu, Qinru

    Dynamic Power Management of Complex Systems Using Generalized Stochastic Petri Nets * Qinru Qiu introduce a new technique for modeling and solving the dynamic power management (DPM) problem for systems model a power-managed distributed computing system as a controllable Generalized Stochastic Petri Net

  19. Dynamic Power Management of Complex Systems Using Generalized Stochastic Petri Nets*

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Power Management of Complex Systems Using Generalized Stochastic Petri Nets* Qinru Qiu introduce a new technique for modeling and solving the dynamic power management (DPM) problem for systems model a power-managed distributed computing system as a controllable Generalized Stochastic Petri Net

  20. Project management plan for Project W-178, 219-S secondary containment

    SciTech Connect (OSTI)

    Buckles, D.I.

    1995-01-26T23:59:59.000Z

    This Project Management Plan (PMP) establishes the organizational responsibilities, control systems, and procedures for managing the execution of project activities for Project W-178, the 219-S Secondary Containment Upgrade. The scope of this project will provide the 219-S Facility with secondary containment for all tanks and piping systems. Tank 103 will be replaced with a new tank which will be designated as Tank 104. Corrosion protection shall be installed as required. The cells shall be cleaned and the surface repaired as required. The 219-S Waste Handling Facility (219-S Facility), located in the 200 West Area, was constructed in 1951 to support the 222-S Laboratory Facility. The 219-S Facility has three tanks, TK-101, TK-102, and TK-103, which receive and neutralize low level radioactive wastes from the 222-S Laboratory. For purposes of the laboratory, the different low level waste streams have been designated as high activity and intermediate activity. The 219-S Facility accumulates and treats the liquid waste prior to transferring it to SY Tank Farm in the 200-W Area. Transfers are normally made by pipeline from the 219-S Facility to the 241-SY Tank Farm. Presently transfers are being made by tanker truck to the 200-E Area Tank Farms due to the diversion box catch tank which has been removed from service.

  1. Top Management Involvement in the Adoption of Energy Efficiency Projects

    E-Print Network [OSTI]

    Blass, Vered; Corbett, Charles J.; Delmas, Magali A; Muthulingam, Suresh

    2011-01-01T23:59:59.000Z

    S. J. 1993. Selling Issues to Top Management. Academy ofD. 1992. Diversification Posture and Top Management Teamas A Reflection of Its Top Managers. Academy of Management

  2. Project Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement Project Assessment

  3. Project Management Development Company PMD | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProject Management Development Company PMD

  4. Optional 2012 Project Management Workshop Course | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 *Optional 2012 Project Management

  5. Fermilab | Directorate | Office of Project Management Oversight (OPMO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOEFigureTip of theManagementProject

  6. 2015 DOE Acquisition and Project Management (APM) Workshop Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Project Assessments, Science SC Projects Perspective 1300 Scott Cannon, MOX Federal Project Director Mixed Oxide (MOX) Fuel Fabrication Facility Project Lessons...

  7. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21T23:59:59.000Z

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  8. Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  9. General contractor’s project of projects – a meta-project: understanding the new paradigm and its implications through the lens of entropy 

    E-Print Network [OSTI]

    Fernandez-Solis, Jose; Rybkowski, Zofia K.; Xiao, Chao; Lü , Xiaoshu; Chae, Lee Seok

    2015-02-08T23:59:59.000Z

    level. Stakeholders, including the owner (along with due diligence, and O&M teams), architect (and the design team), general contractor (and its subcontractor team) create, transmit, process, manage and use information. The boundary between information...

  10. MINOR PROJECTS STATUS REPORT FAU Minor Projects Management Database Sorted By P-NUMBER Florida Atlantic University -Facilities Planning

    E-Print Network [OSTI]

    Fernandez, Eduardo

    -9-2103) Replace generator fuel tank. PendingP- Required Yes Yes 80,000 6125 MC-12 S Baruch Eliah Watlington ScottMINOR PROJECTS STATUS REPORT FAU Minor Projects Management Database Sorted By P- NUMBER Florida,000 5858 MC-05 S Baruch Eliah Watlington Scott Baruch Pending TBD TBDTBD Morganti Quote received. Project

  11. Presentation of FP7 matter project: general overview

    SciTech Connect (OSTI)

    Lebarbe, T.; Marie, S. [CEA Saclay, DEN-DANS-DM2S, Gif-sur-Yvette, (France); Agostini, Pietro [ENEA, Camiugnano, (Italy); Fazio, Concetta [KIT, Eggenstein Leopoldshafen, (Germany); Gavrilov, Serguei [SCK-CEN, Mol, (Belgium)

    2012-07-01T23:59:59.000Z

    The 2010-2012 implementation plan of the European Sustainable Nuclear Industrial Initiative (ESNII), prepared in the frame of the Sustainable Nuclear Energy Technology Platform (SNETP), establishes a very tight time schedule for the start of construction of the European Gen IV prototypes; namely the construction of the LFR ETPP (European Technology Pilot Plant) MYRRHA will start in 2014 and that of the SFR Prototype ASTRID will start in 2017. The GEN IV reactors pose new challenges to the designers and scientists in terms of higher operating temperature, higher fuel burn-up, and in some cases more corrosive environment with respect to the present technologies and which impacts the materials performance. In this frame, the MATTER (Materials Testing and Rules) Project starts well targeted R and D activities to perform careful materials studies in GEN IV operational conditions and to find out criteria for the correct use of these materials in relevant reactor applications. Aim of the MATTER Project (that involved 27 partners and will end in 2015) is to complement the materials researches, in the frame of the European Energy Research Alliance (EERA) guidelines, with the implementation of pre-normative rules. The MATTER Project is divided in 3 technical Domains (called DM): DM1 - Development of test and evaluation guidelines for structural materials: to develop/establish best practice guidelines for testing and evaluation procedures, which are aimed to screen and characterize nuclear materials for innovative nuclear systems. DM2 - Pre-normative R and D for Codes and Standards: Pre-normative activities are performed, comprehensive of experiments, to revise and update the design rules (with an EU level consensus) in order to answer to some short term needs of the two projects ASTRID and MYRRHA with respect to the design and the construction of structural components. DM3 - Joint Program Scheme, implementation and Priorities: to optimise the effectiveness and efficiency of the EERA Joint Program on nuclear materials for innovative reactors and to support specific research activities related to fundamental understanding of ODS steels fabrication. ODS steels are considered candidate materials, in the medium-long term, for high fuel burn-up cladding application. After a brief presentation of DM1 and DM3, this paper mainly focuses on description of Pre-normative R and D activities for Codes and Standards (DM2). (authors)

  12. Implementations of a Flexible Framework for Managing Geologic Sequestration Modeling Projects

    SciTech Connect (OSTI)

    White, Signe K.; Gosink, Luke J.; Sivaramakrishnan, Chandrika; Black, Gary D.; Purohit, Sumit; Bacon, Diana H.; Hou, Zhangshuan; Lin, Guang; Gorton, Ian; Bonneville, Alain

    2013-08-06T23:59:59.000Z

    Numerical simulation is a standard practice used to support designing, operating, and monitoring CO2 injection projects. Although a variety of computational tools have been developed that support the numerical simulation process, many are single-purpose or platform specific and have a prescribed workflow that may or may not be suitable for a particular project. We are developing an open-source, flexible framework named Velo that provides a knowledge management infrastructure and tools to support modeling and simulation for various types of projects in a number of scientific domains. The Geologic Sequestration Software Suite (GS3) is a version of this framework with features and tools specifically tailored for geologic sequestration studies. Because of its general nature, GS3 is being employed in a variety of ways on projects with differing goals. GS3 is being used to support the Sim-SEQ international model comparison study, by providing a collaborative framework for the modeling teams and providing tools for model comparison. Another customized deployment of GS3 has been made to support the permit application process. In this case, GS3 is being used to manage data in support of conceptual model development and provide documentation and provenance for numerical simulations. An additional customized deployment of GS3 is being created for use by the United States Environmental Protection Agency (US-EPA) to aid in the CO2 injection permit application review process in one of its regions. These use cases demonstrate GS3’s flexibility, utility, and broad applicability

  13. Draft West Valley Demonstration Project Waste Management Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-05-16T23:59:59.000Z

    As part of its ongoing West Valley Demonstration Project (WVDP), and in accordance with the West Valley Demonstration Project Act and previous U.S. Department of Energy (DOE or the Department) decisions, DOE proposes to: (1) Continue onsite management of high-level radioactive waste (HLW) until it can be shipped for disposal to a geologic repository (assumed for the purposes of analysis to be the proposed Yucca Mountain Repository near Las Vegas, Nevada), (2) Ship low-level radioactive waste (LLW) and mixed (radioactive and hazardous) LLW offsite for disposal at DOE or other disposal sites, (3) Ship transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP), and (4) Actively manage the waste storage tanks. The waste volumes that are the subject of evaluation in this EIS include only those wastes that are either currently in storage or that would be generated over the next 10 years from ongoing operations and decontamination activities. This EIS analyzes activities that would occur during a 10-year period.

  14. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29T23:59:59.000Z

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  15. Top Management Involvement in the Adoption of Energy Efficiency Projects

    E-Print Network [OSTI]

    Blass, Vered; Corbett, Charles J.; Delmas, Magali A; Muthulingam, Suresh

    2011-01-01T23:59:59.000Z

    of Recommendations Top Management * Energy Costs/Sales TopTop Management Top Management * Energy Costs/Sales TopTop Management Top Management * Energy Costs/Sales Top

  16. Using Critical Chain Project Management Methodologies to Build a Production Schedule

    E-Print Network [OSTI]

    de Weck, Olivier L.

    . It is the proper management of the essential project details across functions: materials, labor activities the proper management of materials and labor activities. Costs and activity durations were estimated usingUsing Critical Chain Project Management Methodologies to Build a Production Schedule By Clayton D

  17. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-07-01T23:59:59.000Z

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  18. Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the restoration of approximately 500 feet of streambank along the Yakima River at river mile 8, upstream of the Van Giesen Bridge on SR 224, in and between Richland and West Richland, Washington. This project will also result in the acquisition of Fox Island, a 12-acre island directly across the river from the restoration area. There is no development planned for the island. The proposed project includes: The installation of a bio-engineered streambank that incorporates barbs to capture silt and deflect flow, roughened rock or log toes, a riparian buffer, soil reinforcement, and bank grading. Long-term photo-point and plot sampling will also be implemented to evaluate the effectiveness and success of the restoration project. The NEPA compliance checklist for this project was completed by Darrel Sunday, a contractor with Sunday and Associates, Inc. (April 4, 2004), and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are the pygmy rabbit, bald eagle, bull trout, Ute ladies'-tresses, and mid-Columbia Steelhead. The pygmy rabbit, bald eagle, and Ute ladies'Tresses are not known to occur in the immediate project vicinity, and it was determined that the proposed restoration project would have no effect on these species. It is difficult to determine if bull trout occur within the Tapteal project area and Dave Carl of the Washington Department of Fish & Wildlife was contacted and concurred with this assumption. It was determined that the project may affect, but is not likely to adversely affect bull trout, and the U.S. Fish & Wildlife Service has concurred with that determination (July 28, 2004). For the mid-Columbia Steelhead, an anadromous fish species, BPA has determined that if conducted in accordance with the applicable terms and conditions identified in the ESA Consultation Biological Opinion (BO) and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation, for BPA's Habitat Improvement Program (HIP), the Tapteal Bend Restoration Project meets the requirements of consistency and no further consultation is required. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. In complying with the requirements of Section 106 of the National Historic Preservation Act, BPA contracted with the Cultural Resources Protection Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) for cultural resource survey work. Shawn Steinmetz prepared a report (December 15, 2002) concluding that there were only two isolated finds in the project area. BPA and the Washington Office of Archaeology and Historic Preservation have concurred with the conclusions and recommendations set out in the report and the determination that no historic properties will be affected by the current project as proposed (January 31, 2003). It was recommended that a cultural resource monitor be present during ground disturbing activities. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Tapteal Bend Restoration project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals.

  19. ESD.36J / 1.432J System and Project Management, Fall 2003

    E-Print Network [OSTI]

    Lyneis, James

    The course is designed for students in the System Design and Management (SDM) program and therefore assumes that you already have a basic knowledge of project management. The objective is to introduce advanced methods and ...

  20. A system dynamics view of project management firefighting at a startup company

    E-Print Network [OSTI]

    Chiang, Melvin H. (Melvin Hsiang)

    2008-01-01T23:59:59.000Z

    Fire fighting in project management is the unplanned allocation of resources to either fix problems or speed completion of a project. In a startup company environment, fire fighting oftentimes becomes the norm rather than ...

  1. u.s. Dl!PAR1'M:ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    PAR1'M:ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIIINATION RECIPIENT :University of California San Diego PROJECT TITL.E: San Diego Center for Algae Biotechnology Page...

  2. New techniques in project portfolio management don't stifle innovation with excessive phasing and gates

    E-Print Network [OSTI]

    Fisher, Cameron (Cameron Ardell Mayhew)

    2014-01-01T23:59:59.000Z

    Managing multiple ideas, candidate initiatives and in-flight projects across diverse business units is a large challenge for major organizations. Overseeing global demand for projects as well as resource needs, risks, ...

  3. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    lAIA1) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPINT:Arizona Geological Survey PROJECT TITLE: Siale Geological Survey Contributions to the...

  4. DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DI...

    Broader source: Energy.gov (indexed) [DOE]

    DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DIrnu.nNATION RECIPIENT:Kansas Corporation Commission - Renewable Energy Subgrant PROJECT T ITLE : City of Chanute GSHP...

  5. 1995 annual epidemiologic surveillance report for Fernald Environmental Management Project

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The US Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. During the past several years, a number of DOE sites have participated in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Fernald Environmental Management Project (FEMP) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at FEMP and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  6. Management of a large distributed control system development project

    SciTech Connect (OSTI)

    Gurd, D. P. (David P.)

    2002-01-01T23:59:59.000Z

    Building an accelerator at six geographically dispersed sites is quite mad, but politically expedient. The Spallation Neutron Source (SNS), currently under construction in Oak Ridge, Tennessee, combines a pulsed 1 Gev H{sup -} superconducting linac with a compressor ring to deliver 2 MW of beam power to a liquid mercury target for neutron production [1]. Accelerator components, target and experimental (neutron-scattering) instruments are being developed collaboratively by Lawrence Berkeley (Ion Source and Front End), Los Alamos (Linac), Thomas Jefferson (Cryosystems), Brookhaven (Compressor Ring), Oak Ridge (Target and Conventional Facilities) and Argonne (Neutron Scattering Instruments) National Laboratories. Similarly, a team distributed among all of the participating laboratories is developing the EPICS-based control system. this paper discusses the management model and strategies being used to address the unusual issues of organization, communication, standardization, integration and hand-off inherent in this widely-distributed project.

  7. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

  8. Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf School and managed. In this paper we survey a number of software risk management approaches and identify weaknesses approach to measure and control web and distributed development risks. Keywords-software risk management

  9. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01T23:59:59.000Z

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  10. u.s. DEPARTl'vIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT: Pennsylvania State University PROJECI TITLE : Northem MidAtlantic Provider of Solar Instructor Training...

  11. U.S. DEP_·UUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DEPUUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:University of Central Florida PROJECf TITLE: PV Manufacturing Consortium Page 1 of2 STATE: Fl...

  12. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    requirements (such as local land use and zoning requirements) In the proposed project area and would incorporate appropriate control technologies and best management practices...

  13. Directors Advance EM Mission with Help from Rigorous Project Management Program

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Nearly 160 EM employees maintain certifications from a project management program that helps them achieve successful outcomes in the Cold War cleanup.

  14. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  15. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  16. Rotational Programs General Electric Operations Management Leadership Program, Edison Engineering

    E-Print Network [OSTI]

    ://nestlepurinacareers.com/CollegeStudents/ManagementTraineeOpportunities.aspx Praxair Commercial Leadership Development Program http://www.praxair.com/praxair.nsf/0/0AC4813647AD

  17. UK contractors' experience of management of tritium during decommissioning projects

    SciTech Connect (OSTI)

    Green, Tommy; Stevens, Keith; Heaney, John [NUKEM Ltd., Kelburn Court, Daten Park, Birchwood, Warrington, WA3 6TW (United Kingdom); Murray, Alan [Tetronics Limited, 1 Ram Court. Wicklesham Farm, Faringdon. Oxfordshire SN7 7PN (United Kingdom); Warwick, Phil; Croudace, Ian [GAU-Radioalytical, National Oceanography Centre (United Kingdom)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: This paper provides an account of the tritium management experience of a UK decommissioning and remediation contracting organisation (NUKEM Limited), supported by a specialist radio-analysis organisation (GAU-Radioanalytical). This experience was gained during the execution of projects which involved the characterisation and remediation of facilities which had previously been used for tritium work and were contaminated with tritium. The emphasis of the paper is on the characterisation (sampling and analysis) of tritium. An account is given of the development of a methodology to improve the accuracy of tritium characterisation. The improved methodology evolved from recognition of the need to minimise tritium losses during sampling, storage, transport and preparation for analysis. These improvements were achieved in a variety of ways, including use of cold and dry sampling techniques in preference to hot or wet ones and freezing relevant samples during storage and transport. The major benefit was an improvement in the accuracy and reliability of the analyses results, essential for proper categorisation, sentencing and future management of tritiated waste. (authors)

  18. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect (OSTI)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01T23:59:59.000Z

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  19. to appear in Proc. of Project Management Institute research conference, July 2004, London (www.pmi.org) 1 Project Portfolio Earned Value Management Using Treemaps

    E-Print Network [OSTI]

    Golbeck, Jennifer

    to appear in Proc. of Project Management Institute research conference, July 2004, London (www.pmi research conference, July 2004, London (www.pmi.org) 2 devour the data, synthesize it, and draw conclusions

  20. MINOR PROJECTS STATUS REPORT FAU Minor Projects Management Database Sorted By P-NUMBER Florida Atlantic University -Facilities Planning

    E-Print Network [OSTI]

    Fernandez, Eduardo

    . 305, BOT Board Room NoP- Required Yes Yes 600,000 6196 JUPTR S Baruch Eliah Watlington Scott BaruchMINOR PROJECTS STATUS REPORT FAU Minor Projects Management Database Sorted By P- NUMBER Florida review of wooden loft NAP- N/A No No 400 5407 CO-69 B Thompson" Russell Sawyer B.Thompson NA 6/17/13 3

  1. Sustainable waste management in Africa through CDM projects

    SciTech Connect (OSTI)

    Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  2. Project management plan, Hazardous Materials Management and Emergency Response Training Center

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-12-12T23:59:59.000Z

    For the next 30 years, the main activities at the Hanford Site will involve the handling and cleanup of toxic substances. Thousands of workers involved in these new activities will need systematic training appropriate to their tasks and associated risks. This project is an important part of the Hanford Site mission and will enable the US Department of Energy (DOE) to meet high standards for safety. The Hazardous Materials Management and Emergency Response Training Center (HAMMER) project will construct a centralized regional training center dedicated to training hazardous materials workers and emergency responders in classrooms and with hands-on, realistic training aids representing actual field conditions. The HAMMER Training Center will provide a cost-effective, high-quality way to meet the Hanford Site training needs. The training center creates a partnership among DOE; government contractors; labor; local, state, and tribal governments; and selected institutions of higher education.

  3. Supplement Analysis for the Watershed Management Program EIS --Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing

    SciTech Connect (OSTI)

    N /A

    2004-08-11T23:59:59.000Z

    The Bonneville Power Administration is proposing to fund the installation of a fenced stream crossing over the Pahsimeroi River to enhance a livestock riparian enclosure. This structure would include up to four wood fence posts and two deadman anchors buried in the ground. The goal of this project is to enhance salmon and steelhead rearing and migration habitat by preventing livestock from entering the riparian area via the river. The NEPA compliance checklist for this project was completed by Carl Rudeen with the Custer Soil and Water Conservation District (August 4, 2004) and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are gray wolf, Canada lynx, bald eagle, Ute ladies'Tresses, Snake River chinook salmon, Snake River steelhead trout, and Columbia River Basin bull trout. It was determined that the proposed fence crossing construction project would have no effect on these species. Bald eagle, gray wolf and Canada lynx are not known to occur in the immediate project vicinity. Since the site is used primarily as livestock pasture it does not lend itself to the presence of Ute ladies'Tresses. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. Soil disturbance will be limited to the livestock pasture and to two holes that will be used to bury anchors for the suspended portion of the fence. Required river crossings will be made on foot. Requirements associated with Section 106 of the National Historic Preservation Act were handled by the Natural Resource Conservation Service (NRCS), in cooperation with staff from the U.S. Forest Service (Boise National Forest), under their existing Programmatic Agreement with the Idaho State Historic Preservation Office (SHPO). A description of the Pahsimeroi Fence Crossing project and site information was reviewed by a qualified archaeologist and it was determined that an archaeological survey was needed. Bruce Blackmere with NRCS conducted an intensive-complete survey of the project site and cultural resources were not identified (July 30, 2004). Based on these findings, it was recommended that the project proceed as planned. All survey findings were provided to the Idaho SHPO. In the unlikely event that archaeological material is discovered during project implementation, an archaeologist should be notified immediately and work halted in the vicinity of the finds until they can be inspected and assessed. Standard water quality protection procedures and Best Management Practices should be followed during the implementation of the Pahsimeroi Fence Crossing project. No construction is authorized to begin until the proponent has obtained all applicable local, state, and federal permits and approvals. Public involvement has occurred as part of the Pahsimeroi Fence Crossing project. This project was coordinated through the Upper Salmon Basin Technical Team and Advisory Committee composed of representatives from U.S. Fish and Wildlife Service, NOAA Fisheries, Shoshone Bannock Tribe, and Idaho Department of Fish and Game. In addition, the Custer Soil and Water Conservation District holds monthly meetings that are open to the public in which this project was discussed.

  4. Spent Nuclear Fuel Project document control and Records Management Program Description

    SciTech Connect (OSTI)

    MARTIN, B.M.

    2000-05-18T23:59:59.000Z

    The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

  5. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    SciTech Connect (OSTI)

    MITCHELL, R.L.

    2000-01-10T23:59:59.000Z

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

  6. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  7. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect (OSTI)

    Washenfelder, D.J.

    1993-12-01T23:59:59.000Z

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  8. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01T23:59:59.000Z

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  9. EH&S GUIDELINES FOR PROJECT MANAGERS: Minimizing Impacts on Local Building Occupants

    E-Print Network [OSTI]

    EH&S GUIDELINES FOR PROJECT MANAGERS: Minimizing Impacts on Local Building Occupants I. BACKGROUND; · shutting off the ventilation to the affected areas; · conducting the project after hours or on weekends: · increasing the building ventilation; · installing temporary fans; · conducting the project after hours

  10. Superfund state-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Winter, B.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to State-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project-management techniques and the resources available to the RPM for accomplishing his mission.

  11. Superfund federal-lead remedial project-management handbook. Final report

    SciTech Connect (OSTI)

    Hooper, S.

    1986-12-01T23:59:59.000Z

    The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to Federal-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project management techniques and the resources available to the RPM for accomplishing his mission.

  12. DIVISION 1 GENERAL REQUIREMENTS 01524 CONSTRUCTION WASTE MANAGEMENT

    E-Print Network [OSTI]

    by recycling companies. 5. Solid Waste: All other waste must be captured in covered (dog house style) waste _____________________________________________________________ 01524 CONSTRUCTION WASTE MANAGEMENT A. Design Considerations 1. The University, by requiring the recycling of non-hazardous demolition and construction materials and other waste generated

  13. Comparison of management, overhead, and direct costs of six projects managed by the Department of Energy and Government-Owned, Contractor-Operated Laboratories

    SciTech Connect (OSTI)

    Not Available

    1981-09-30T23:59:59.000Z

    The report covers management, overhead, and direct cost data on six DOE projects - three managed directly by DOE, and three managed for DOE by government-owned, contractor-operated (GOCO) laboratories. These data provide comparison for decisions on contracting out for project management services. (GHT)

  14. Mangla Dam Raising Project (Pakistan): General Review and Socio-Spatial Impact Assessment

    E-Print Network [OSTI]

    Boyer, Edmond

    Mangla Dam Raising Project (Pakistan): General Review and Socio-Spatial Impact Assessment Saheeb, National University of Sciences and Technology, Islamabad-44000, Pakistan saheebk@ceme.nust.edu.pk Abstract. INTRODUCTION Pakistan has recently successfully completed the raising of Mangla dam, a major water works system

  15. The Department of Energy, Office of Environmental Restoration and Waste Management: Project performance study

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Office of Environmental Restoration and Waste Management (EM) of the US Department of Energy commissioned Independent Project Analysis, Inc. (IPA) to perform this Project Performance Study to provide a quantitative analysis determining how well EM develops and executes environmental remediation and waste management projects. The approach consisted of collecting detailed data on a sample of 65 completed and ongoing EM projects conducted since 1984. These data were then compared with key project characteristics and outcomes from 233 environmental remediation projects (excluding EM) in IPA`s Environmental Remediation Database and 951 projects In IPA`s Capital Projects Database. The study establishes the standing of the EM system relative to other organizations, and suggests areas and opportunities for improvement.

  16. Managing variability to improve quality, capacity and cost in the perioperative process at Massachusetts General Hospital

    E-Print Network [OSTI]

    Price, Devon J. (Devon Jameson)

    2011-01-01T23:59:59.000Z

    The widely held assumption is that to improve access and quality of health care, we need to spend more. In fact, that is not necessarily true. The results of this project, performed at Massachusetts General Hospital (MGH), ...

  17. FY95 software project management plan: TMACS, CASS computer systems

    SciTech Connect (OSTI)

    Spurling, D.G.

    1994-11-11T23:59:59.000Z

    The FY95 Work Plan for TMACS and CASS Software Projects describes the activities planned for the current fiscal year. This plan replaces WHC-SD-WM-SDP-008. The TMACS project schedule is included in the TWRS Integrated Schedule.

  18. Commercialization and Project Management PIA, Golden Field Office...

    Energy Savers [EERE]

    Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting PIA,...

  19. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-Print Network [OSTI]

    Standards Officer, EMC Corporation, Office of the CTO Steve Diamond has 30 years of management, marketing was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC Corporation, and Global Standards Officer in the Office of the CTO. Before EMC, he was responsible for cloud

  20. GENERAL TECHNICAL REPORT PSW-GTR-245 Management Adaptation to Fires in the

    E-Print Network [OSTI]

    Standiford, Richard B.

    GENERAL TECHNICAL REPORT PSW-GTR-245 357 Management Adaptation to Fires in the Wildland-Urban Risk result in major socio-economic losses and in the worst cases loss of human life. Specifically Institute). #12;GENERAL TECHNICAL REPORT PSW-GTR-245 358 Its configuration has occurred coincidently

  1. General Recommendations for a Federal Data Center Energy Management

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting. |OctoberNiketaGeneral Information

  2. Richland Environmental Restoration Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

  3. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  4. NA APM - Associate Administrator for Acquisition & Project Management...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA APM - Associate Administrator for Acquisition ... NA APM - Associate...

  5. Policy 3508 Information Technology Project Management 1 OLD DOMINION UNIVERSITY

    E-Print Network [OSTI]

    for Standardization (ISO) ­ Quality Management Principals (ISO 9000:2000) ­ ISO 9001:2000 specifies and Validation, International Standards Organization (ISO) 90002000 series, and Software Engineering

  6. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINAT...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Security SEP ARRA EE000164 PROJECT TITLE: SEP Residential Ground Source Heat Pump Installations (6 ) Page I of2 STATE: MN Funding Opportunity Announcement Number...

  7. Project Manager Ned Sauthoff Talks About US ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject Final Report:ProjectProjectITER Project

  8. Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager

    E-Print Network [OSTI]

    Janssen, Michel

    Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager The team is currently busy with training for our next race, Formula Sun Grand Prix, which is com- ing up May 2nd-7th

  9. PMe'TF::& U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETFRMlNATION RECIPIENT:University of Tennessee Page I of2 STAn:: TN PROJECf TITLE: Demonstration of On-Fann...

  10. The development of a methodology to quantify the impacts of information management strategies on EPC projects 

    E-Print Network [OSTI]

    Moreau, Karen Anne

    1997-01-01T23:59:59.000Z

    This research develops and demonstrates a methodology to quantify time and cost impacts on Engineering, Procurement, and Construction (EPC) projects resulting from information management driven process changes in design related activities. Many...

  11. The development of a methodology to quantify the impacts of information management strategies on EPC projects

    E-Print Network [OSTI]

    Moreau, Karen Anne

    1997-01-01T23:59:59.000Z

    This research develops and demonstrates a methodology to quantify time and cost impacts on Engineering, Procurement, and Construction (EPC) projects resulting from information management driven process changes in design related activities. Many...

  12. ISSIGreviewProject Management Institute--Information Systems Specific Interest Group Fourth Quarter 2000

    E-Print Network [OSTI]

    2000 Volume 10, Number 4 Supporting Project Management in an Information Systems Environment PMI & SIG News:PMI & SIG News:PMI & SIG News:PMI & SIG News:PMI & SIG News: ISSIG Communications Update

  13. Identifying the Predictors of Female Project Managers' Salaries in the United States

    E-Print Network [OSTI]

    Kamranzadeh, Amineh

    2012-11-30T23:59:59.000Z

    This study seeks to explore the predictors of female project managers’ salary in the construction industry, and to analyze their impacts on determining the salary. Experience, age, marital status, motherhood, having children at home, and the number...

  14. Project Management Registration Form *This information requested to maintain a permanent record of your non-credit activity in Mason's student information system.

    E-Print Network [OSTI]

    Earned Value Management - $1195 PMP 0501 Nov 6 - 7, 2014 C15 (HRN) Managing Project Risk - $1095 PMP6/6/14 Project Management Registration Form *This information requested to maintain a permanent Project Management Certificate Program Essentials of Project Management - $1395 PMP 0400 Aug 12 - 14

  15. ICTSD Project on Trade and Sustainable Land Management International Centre for Trade

    E-Print Network [OSTI]

    ICTSD Project on Trade and Sustainable Land Management ICTSD International Centre for Trade and Sustainable Development Selected Issue Briefs ICTSD Programme on Agricultural Trade and Sustainable Development Trade and Sustainable Land Management in Drylands August 2007 #12;#12;August 2007 ICTSD Programme

  16. draft 3/13/14 Session 6: Integrated Product Development and Project Management

    E-Print Network [OSTI]

    Martin, Gail

    D, Senior Vice President, Project Management, Endo 8:35 am 60 Decision Analysis Tools and Techniques Patricia Evans, PhD, Independent Consultant 9:35 am 50 Product Development Decision Making John Celona, JD:50 pm 45 Case Study 12: Balancing Risk and Return in Portfolio Management Patricia Evans, Ph

  17. Minutes of Southern Region Animal Waste Team: Southern Regional Water Quality Project Animal Waste Management Topic

    E-Print Network [OSTI]

    : Southern Animal and Waste Management Quarterly 2. Format & length: Electronic, pdf and MSWord (by requestMinutes of Southern Region Animal Waste Team: Southern Regional Water Quality Project Animal Waste with the Symposium on the State of the Science: Animal Manure and Waste Management Attended by: M. Risse (UGA), T

  18. GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing and Development Intern

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing of Management in proposal presentation and donor relation/cultivation activities; prepare proposals and develop & Student Records, SW-119, by 4:00 pm Friday, July 15, 2011. NAME UNIVERSITY B# Best Phone # to contact you

  19. SYLLABUS -aps1001h PROJECT MANAGEMENT January 2014 saved 2013-12-16

    E-Print Network [OSTI]

    (PMI) and recipient of an Outstanding Contribution award. He designed and presented the first course in Canada aligned with PMI's Project Management Body of Knowledge. Keith has been a member of the Project Professional by PMI, and as a Professional Engineer. Marking Scheme: 3% active participation in full class

  20. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03T23:59:59.000Z

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  1. Web-enabled project management and collaboration using Microsoft Groove system

    E-Print Network [OSTI]

    Yuksel, Kamer

    2008-10-10T23:59:59.000Z

    to commonly used project management and collaboration systems in the construction industry. A sample Groove workspace is developed and demonstrated with customized modules and templates for a typical construction project. iv ACKNOWLEDGEMENTS I... completion of the project with an acceptable quality and within budget. Without a purpose there is no reason for collaboration. Shared paradigm, on the other hand, represents the values, methods, and practices commonly accepted by all the team members...

  2. Study on the Use of Situational Leadership on Project Management

    E-Print Network [OSTI]

    Aljaloud, Hammad

    2014-05-16T23:59:59.000Z

    must possess extraordinary leadership and management qualities to help companies grow, profit, and compete in today’s market. No one trait or set of traits determines a good leader; instead, effective leaders require basic people skills in addition...

  3. US DEPARTMENT OF ENERGY EE RE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    refueling equipment (compression and fueling station) and the incremental cost of a eNG medium duty truck. The proposed project site is located at 17440 Highway 167, Dry Prong ,...

  4. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-03-01T23:59:59.000Z

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  5. A knowledge-based manager for software projects

    SciTech Connect (OSTI)

    Agarwal, A.; Jairam, B.N.; Emrich, M.L.; Murthy, N.

    1988-01-01T23:59:59.000Z

    Management aspects of software development have received little research interest. The SOFTMAN system addresses the automation of this feature of the SDLC. It is a knowledge-based system which tracks the health of a software development effort. By comparing user metrics to past environment standards, anomalies in the coding stage are detected and suggestions for solving them are offered. In addition, SOFTMAN can be used to tutor new personnel, perform what-if anaylsis, and build a corporate memory regarding managment decisions. 15 refs., 2 figs.

  6. COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material

    E-Print Network [OSTI]

    Simaan, Nabil

    COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material resources throughout the life of a project by using modern management. Today's construction engineers and managers are faced with unprecedented challenges in planning

  7. Page | 1 Managed Print Project Outline Pull Printing

    E-Print Network [OSTI]

    Glasgow, University of

    by extending specialist printing facilities to all users. The principal drivers for the project are carbon. Estimates are: 40% reduction in CO2 (from 477,676kg to 286,857kg; 60% reduction in electricity usage from the completion of these initiatives. The UK government's introduction of the Carbon Reduction Commitments (CRC

  8. CEDAR RIVER, CEDAR RAPIDS, IOWA, FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    developed as standard designs in order to minimize estimated construction cost. The estimated total cost: The purpose of the Project is to provide cost effective, environmentally-sensitive, and technically feasible lies within the 100-year floodplain. Historically, major floods have resulted from a combination

  9. The Human Genome Project: Information access, management, and regulation. Final report

    SciTech Connect (OSTI)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31T23:59:59.000Z

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  10. Renewable Energy Demonstration Project by the National Renewable Energy Laboratory and the General Services Administration

    SciTech Connect (OSTI)

    Carlisle, N; Hoo, E; Westby, R [National Renewable Energy Lab., Golden, CO (United States); Hancock, E [Ed Hancock and Associates, Boulder, CO (United States); Lu, J [General Services Administration, Washington, DC (United States)

    1994-11-01T23:59:59.000Z

    The Energy Policy Act of 1992 (EPACT) requires the General Services Administration (GSA) to implement a solar energy program to demonstrate and evaluate the performance of available technologies expected to have widespread commercial application. The GSA decided to carry out the project at the Denver Federal Center because of its proximity to the National Renewable Energy Laboratory (NREL). The location was thought to be of mutual benefit to NREL and the GSA: it provides NREL an opportunity to deploy technology and it provides the GSA an opportunity to gain a hands-on learning experience with renewables. The GSA plans to document their experience and use it as a case study in part of a larger training effort on renewable energy. This paper describes the technology selection process and provides an update on the status of the project.

  11. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01T23:59:59.000Z

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  12. A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials

    SciTech Connect (OSTI)

    Myers, Glenn R. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Thomas, C. David L.; Clement, John G. [Melbourne Dental School, University of Melbourne, Melbourne 3010 (Australia); Paganin, David M. [School of Physics, Monash University, Clayton 3800 (Australia); CSIRO Materials Science and Engineering, PB 33, Clayton South, 3169 (Australia); Gureyev, Timur E. [CSIRO Materials Science and Engineering, PB 33, Clayton South, 3169 (Australia)

    2010-01-11T23:59:59.000Z

    We present a method for tomographic reconstruction of objects containing several distinct materials, which is capable of accurately reconstructing a sample from vastly fewer angular projections than required by conventional algorithms. The algorithm is more general than many previous discrete tomography methods, as: (i) a priori knowledge of the exact number of materials is not required; (ii) the linear attenuation coefficient of each constituent material may assume a small range of a priori unknown values. We present reconstructions from an experimental x-ray computed tomography scan of cortical bone acquired at the SPring-8 synchrotron.

  13. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    S. L. Reno

    2006-10-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  14. ANG coal gasification project management control system report. [Great Plains project

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

  15. Federal Energy Management Program Recovery Act Project Stories | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergy Management Program Technicalof

  16. Commercialization and Project Management PIA, Golden Field Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy EfficiencyPast Projects » Commercial

  17. Designation of Environmental Management Federal Project Director for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalToDepthand Immobilization Plant Project,

  18. Environmental management requirements/defensible costs project. Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Lockheed Idaho Technologies Company (LITCO) used a systems engineering approach to develop the first formal requirements baseline for Idaho National Engineering Laboratory (INEL) Environmental Management (EM) Programs. The recently signed Settlement Agreement with the State of Idaho (Batt Agreement), along with dramatically reduced EM funding targets from Department of Energy (DOE) headquarters, drove the immediacy of this effort. Programs have linked top-level requirements to work scope to cost estimates. All EM work, grouped by decision units, was scrubbed by INEL EM programs and by an independent {open_quotes}Murder Board.{close_quotes} Direct participation of upper level management from LITCO and the DOE-Idaho Operations Office ensured best information and decisions. The result is a scrubbed down, defensible budget tied to top-level requirements for use in the upcoming DOE-Headquarters` budget workout, the Internal Review Board, the FY98 Activity Data Sheets submittal, and preparation of the FY97 control accounts and out-year plans. In addition to the remarkable accomplishments during the past eight weeks, major issues were identified and documented and follow-on tasks are underway which will lead to further improvements in INEL EM program management.

  19. STATE OF CALIFORNIA -GENERAL SERVICES -RISK AND INSURANCE MANAGEMENT STATE DRIVER ACCIDENT REVIEW

    E-Print Network [OSTI]

    Ponce, V. Miguel

    STATE OF CALIFORNIA - GENERAL SERVICES - RISK AND INSURANCE MANAGEMENT STATE DRIVER ACCIDENT REVIEW STD. 274 (REV. 1/2003) PLEASE PRINT OR TYPE SUPERVISOR'S REVIEW - FOR DEPARTMENTAL ACCIDENT PREVENTION PURPOSE: To have supervisor investigate each driver accident, report facts and circumstances, confirm

  20. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  1. EERE PROJECT MA.NAGEMENT CENTER NEPA DFTFIU.1INATION PROJECT

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DFTFIU.1INATION PROJECT TITLE: EECBG DE-EEOOOO727 Atchison Library Ground Source Heat Pump Page 1 of2 STATE : KS Funding Opportunity Announcement Number Procurement Instrument...

  2. Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-12T23:59:59.000Z

    Recommendations from the DOE Field Management Council (FMC), NEPA Improvement Team, and the Council on Environmental Quality (CEQ) for improving NEPA compliance through the integration of Program ad Project Management

  3. Investigation of Project Management Planning Practices for Renovation of Historical Buildings in Urban Contexts Located in Texas 

    E-Print Network [OSTI]

    Escamilla, Edelmiro

    2012-07-16T23:59:59.000Z

    of these questions, the study incorporated three major bodies of knowledge. The first body of literature focused on project management practices associated with project success. The second concentrated on historic preservation with a focus on historic significance...

  4. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  5. Program & Project Management For The Acquisition Of Capital Assets

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department of Energy ThisManagement Office of

  6. Contacts for IT Project Management | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010Conferencing and SpecialUsGeospatialProject

  7. Project Management Coordination Office Organization Chart | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProject DevelopsDepartment

  8. Improving Project Management at the Department of Energy | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartment of linkofImportantProjects

  9. Project Management and Systems Support | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENA createsDevelopment

  10. Fermilab | Directorate | Office of Project Management Oversight (OPMO) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothyOPMO Projects Office

  11. Fermilab | Directorate | Office of Project Management Oversight (OPMO) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothyOPMO Projects

  12. Fermilab | Directorate | Office of Project Management Oversight (OPMO) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothyOPMO ProjectsPolicies

  13. Miamisburg Environmental Management Project Archived Soil & Groundwater

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects38,R&D Methane

  14. Program and Project Management Policy for the Planning, Programming, Budgeting, and Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-10T23:59:59.000Z

    To establish Department of Energy (DOE) program and project management policy for the planning, programming, budgeting, and acquisition of capital assets consistent with the following Office of Management and Budget (OMB) circulars: OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, and the supplement to Part 3, Capital Programming Guide; OMB Circular A-123; OMB Circular A-127; and OMB Circular A-130. Does not cancel other directives. Canceled by DOE N 251.99

  15. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  16. Unit 1: Project Planning and Scheduling To provide a brief introduction to project planning

    E-Print Network [OSTI]

    Finkelstein, Anthony

    is not the project manager it is essential that he or she has a good understanding of project management task #12 be considered under the general title Critical Path Scheduling (CPS) ¥ CPS is a management control tool machine #12;5 Activity List ¥ The initial step in applying CPS is to break the project down into its

  17. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect (OSTI)

    Starkey, J.G.

    1993-05-01T23:59:59.000Z

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  18. Pacific Northwest Demand Response Project Lee Hall, BPA Smart Grid Program Manager

    E-Print Network [OSTI]

    Pacific Northwest Demand Response Project Lee Hall, BPA Smart Grid Program Manager February 14 utilities to invest in DR Regional situational analysis ­ issues to address #12;Nationally ­ Demand ResponseSource: FERC Demand Response & Advanced Metering Report, February 2011 Peak DR 65,000 MW 1,062 MW Peak DR

  19. Crossing innovation & product projects management: A comparative analysis in automotive industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Crossing innovation & product projects management: A comparative analysis in automotive industry in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation in the automotive industry. This sector provides an interesting empirical opportunity to study this question, since

  20. ISO launches a project committee to develop an International Standard for energy management

    Broader source: Energy.gov [DOE]

    American National Standards Institute (ANSI) approved the formation of a U.S. Technical Advisory Group (US TAG) to the ISO Project Committee 242. The TAG is a mechanism for identifying issues and developing national consensus regarding energy management. Read this announcement for more details about the group's charge and how to participate.

  1. Developing Data Management Policy and Guidance Documents for your NARSTO Program or Project

    E-Print Network [OSTI]

    by the NARSTO Quality Systems Science Center (QSSC) http://cdiac.ornl.gov/programs/NARSTO/ Les A. Hook and Sigurd W. Christensen, NARSTO Quality Systems Science Center Environmental Sciences Division Oak RidgeDeveloping Data Management Policy and Guidance Documents for your NARSTO Program or Project

  2. Approved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code: EM4003

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : EM4003 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. Links to Research: The module will link to the work of the Project and Supply Chain Management ResearchApproved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code

  3. Control of Major-Accident Hazards Involving Land Transmission Charlotte BOUISSOU, Project Manager for Pipelines Risk Assessment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    aims to help authorities to balance the requirement of the new pipeline regulation with regardsControl of Major-Accident Hazards Involving Land Transmission Pipelines Charlotte BOUISSOU, Project Manager for Pipelines Risk Assessment Sandrine DESCOURRIERE, Project Manager for Plants Risk Assessment

  4. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15T23:59:59.000Z

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  5. Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix

    SciTech Connect (OSTI)

    NONE

    1995-07-15T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report.

  6. Documenting cost and performance for environmental remediation projects: Department of Energy Office of Environmental Management

    SciTech Connect (OSTI)

    NONE

    1996-08-08T23:59:59.000Z

    The purpose of this DOE guide is to facilitate the use of consistent procedures to document cost and performance information for projects involving the remediation of media contaminated with hazardous and radioactive wastes. It provides remedial action project managers with a standardized set of data to document completed remediation projects. Standardized reporting of data will broaden the utility of the information, increase confidence in the effectiveness of future remedial technologies, and enhance the organization, storage and retrieval of relevant information for future cleanup projects. The foundation for this guide was laid down by the Federal Remediation Technologies Roundtable (FRTR) in their publication, Guide to Documenting Cost and Performance for Remediation Projects, EPA-542-B- 95-002. Member agencies of the FRTR include the US EPA, the US DOD, the US DOE, and the US DOI. All the member agencies are involved in site remediation projects and anticipate following the guidance provided in the above reference. Therefore, there is much to be gained for DOE to be consistent with the other member agencies as it will be easier to compare projects across different agencies and also to learn from the experiences of a wider spectrum of prior completed projects.

  7. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    SciTech Connect (OSTI)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Shibahara, Yuji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); University of Fukui, Fukui-shi, Fukui, 910-8507 (Japan); Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake [Japan Atomic Energy Agency, Kagamino-cho, Tomata-gun, Okayama, 708-0698 (Japan)

    2012-07-01T23:59:59.000Z

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered. Establishment of the calculation formula for dismantling of each kind of equipment makes it possible to evaluate manpower for dismantling the whole facility. However, it is not easy to prepare calculation formula for all kinds of equipment that exist in the facility. Therefore, a simpler evaluation method was considered to calculate manpower based on facility characteristics. The results showed promise for evaluating dismantling manpower with respect to each chemical process. For dismantling of contaminated equipment, a GH has been used for protection of the spread of contamination. The use of a GH increases manpower for installation and removal of GH etc. Moreover, structural materials of the GH such as plastic sheets, adhesive tape become a burnable secondary waste. To create an effective dismantling plan, it is necessary to carefully consider use of a GH preliminarily. Thus, an evaluation method of project management data such as manpower and secondary waste generation was considered. The results showed promise for evaluating project management data of GH by using established calculation formula. (authors)

  8. Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2

    SciTech Connect (OSTI)

    Weidert, R.S.

    1995-05-26T23:59:59.000Z

    As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE`s Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department`s safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities.

  9. Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2009-11-01T23:59:59.000Z

    This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  10. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-02-27T23:59:59.000Z

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes descriptions of strategic planning, personnel reorganization, process reengineering, software development, data repository development, and web development.

  11. Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

  12. Environmental project management using fast track methods to save time and money

    SciTech Connect (OSTI)

    Kulick, E.J. [Eaton Corp., Cleveland, OH (United States); Havener, M.C. [Hydro Group, Inc., Bridgewater, NJ (United States)

    1994-12-31T23:59:59.000Z

    In 1992, Eaton Corporation (a major manufacturer of automotive, electronic controls and truck components) expedited installation of a groundwater recovery and treatment system to contain and remove a chlorinated solvent plume. The contamination (caused by a previous owner) was present in groundwater at significant concentrations in the unconsolidated material and fractured rock beneath the site. Standard groundwater project procedures typically involve completion of plume delineation prior to remediation. However, substantial delays were anticipated due to agency review of investigation reports and non-technical off site issues. Therefore, Eaton partnered with the state agency and initiated a ``fast track`` project approach. This paper presents a case history describing both project management methods and the technical approach used to expedite installation of the remediation system, and identify the resulting benefits. The approach allowed Eaton to bypass regulatory delays and install a barrier well system to contain and treat contaminated groundwater within eight months. It demonstrates how well established project management practices can be applied to site remediation to avoid costly delays, expedite project completion and protect the environment.

  13. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    SciTech Connect (OSTI)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using sophisticated scientific modeling optimized the 100-HX's approximately 0.7 square mile (181 hecto-meters) extraction and injection well field to support continuous operation of a maximum of 800 gallons (3,028 liters) per minute, 24 hours per day, and 7 days per week. The use of traditional resin technology for the plant's ion exchange system required a change out of the resin every 12 weeks and shipment to an offsite facility 1,500 miles (2,414 kilometers) away for regeneration. Instead, the project leadership pursued newer technology with a disposable resin that could be disposed of on-site and would require less frequent change outs, reducing the project's life cycle costs by more than $16 million. Constructing the facility had its own challenges. The well field location overlapped ecologically sensitive lands where bald eagles and native wildlife use the land for their mating habitat for nearly half of the year. Building locations had to be planned around historically and culturally sensitive areas, and around another contractor's remediation work zones. Also, the size of the well field required a transfer (pumping) facility and installation of more than 60 miles (97 kilometers) of high-density polypropylene pipe, 23 miles (38 kilometers) of power cable, and 28 miles (46 kilometers) of control cable. Along with schedule and budget constraints typical of any fast-track project, the project team dealt with severe resource constraints due to competing projects across the Hanford Site caused by the influx of American Recovery and Reinvestment Act stimulus funding. In addition, the project team itself was stretched between completing another $25 million dollar construction project while designing and constructing this project. In order to save money, the project schedule was compressed by three months from the original baseline schedule. This was made possible by the strong use of project management principles throughout the design, construction, and testing phases, as well as implementation of many lessons learned from a similar construction project. In summary, the 100-HX

  14. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  15. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  16. project management

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A0/%2A en

  17. 2003 Fernald Environmental Management Project Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for the Fernald Environmental Management Project. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  18. Air Quality: Construction Project Air Permit Requirements

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

  19. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  20. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  1. Effects of Family-Related Facotrs on Female Project Managers' Salaries in the Construction Industry in the United States

    E-Print Network [OSTI]

    Bilbo, David; Bigelow, Ben F.; Rybkowski, Zofia; Kamranzadeh, Amineh

    2014-07-31T23:59:59.000Z

    This study explores predictors of female project managers’ salary in the construction industry and analyzes the relationship between salaries and specific variables. Although prior research indicates a relationship does exist between certain...

  2. Texas A&M IT Project Management Office System Development Life Cycle Template Guide V1.0

    E-Print Network [OSTI]

    &M Information Technology Page 1 Revised 10/7/2013 Project Management Office SDLC Template Guide.docx pmo@tamu.edu Contents 1 - Introduction to the SDLC Guide...............................................................................................................2 2 - SDLC Introduction

  3. Effects of Family-Related Facotrs on Female Project Managers' Salaries in the Construction Industry in the United States 

    E-Print Network [OSTI]

    Bilbo, David; Bigelow, Ben F.; Rybkowski, Zofia; Kamranzadeh, Amineh

    2014-07-31T23:59:59.000Z

    This study explores predictors of female project managers’ salary in the construction industry and analyzes the relationship between salaries and specific variables. Although prior research indicates a relationship does ...

  4. UMTRA Surface Project management action process document. Final report: Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project.

  5. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect (OSTI)

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01T23:59:59.000Z

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  6. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    SciTech Connect (OSTI)

    NONE

    1995-07-15T23:59:59.000Z

    The Yucca Mountain Project is one part of the Department of Energy`s Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program`s goal is to site the nation`s first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it.

  7. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-02-01T23:59:59.000Z

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public access. During the past two years, non-Indian public concern over big game hunting issues has at times overwhelmed other issues related to the wildlife area. In 2001, the CTUIR Fish and Wildlife Committee closed the wildlife area to tribal branch antlered bull elk harvest in response to harvest data that indicated harvest rates were greater than expected. In addition, illegal harvest of mature bull elk in southeastern Washington during the 2001 season exceeded the legal tribal and nontribal harvest combined which has created a potential significant regression in the bull;cow ratio in the Blue Mountain Elk herd. CTUIR Fish and Wildlife Committee and staff and Washington Department of Fish and Wildlife Regional Director and staff have been coordinating regularly to develop strategies to address harvest rates and ensure protection of viable big game herds in southeastern Washington. The CTUIR Fish and Wildlife Committee and WDFW has jointly agreed to continue close coordination on this and other issues and continue working together to ensure the long-term vigor of the elk herd on the Rainwater Wildlife Area. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources.

  8. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    SciTech Connect (OSTI)

    RIECK, C.A.

    1999-02-23T23:59:59.000Z

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.

  9. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  10. Session 6: Integrated Product Development and Project Management University of California, Washington Center Washington, DC May 6-9, 2013

    E-Print Network [OSTI]

    Martin, Gail

    D, Senior Vice President, Project Management, Endo 8:35 am 60 Decision Analysis Tools and Techniques Patricia Evans, PhD, Independent Consultant 9:35 am 50 Product Development Decision Making Jack M. Kloeber Risk and Return in Portfolio Management Patricia Evans, PhD, Independent Consultant 2:35 pm 60 Role

  11. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect (OSTI)

    Joyner, William Scott [Washington River Protection Systems, Richland, WA (United States); Knight, Mark A. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-14T23:59:59.000Z

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  12. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect (OSTI)

    Elmer, John; Butherus, Michael [S.M. Stoller Corporation (United States)] [S.M. Stoller Corporation (United States); Barr, Deborah L. [U.S. Department of Energy Office of Legacy Management (United States)] [U.S. Department of Energy Office of Legacy Management (United States)

    2013-07-01T23:59:59.000Z

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)

  13. The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age

    E-Print Network [OSTI]

    Adams, Sam; de Castro, Pablo; Echenique, Pablo; Estrada, Jorge; Hanwell, Marcus D; Murray-Rust, Peter; Sherwood, Paul; Thomas, Jens; Townsend, Joseph A

    2011-07-04T23:59:59.000Z

    The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age Sam Adams1 , Pablo de Castro2 , Pablo Echenique3,4,5 , Jorge Estrada3,4,6 , Marcus D. Hanwell7 , Peter Murray-Rust1 ? , Paul Sherwood8 , Jens Thomas8... and publication have been eliminated. This requirement for deposition of data as part of the publication process is increasingly common in bioscience, like genetics or proteomics, where the NCBI GenBank3 or the Protein Data Bank (PDB) 4 constitute very successful...

  14. DepSec_Memo_Improving_Project_Management_10Aug2005.pdf | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergy Improving_Project_Management_10Aug2005.pdf

  15. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect (OSTI)

    Streit, R.D.; Throop, A.L.

    1995-04-01T23:59:59.000Z

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  16. Vaidya Solution in General Covariant Ho?ava-Lifshitz Gravity with the Minimum Coupling and without Projectability: Infrared Limit

    E-Print Network [OSTI]

    O. Goldoni; M. F. A. da Silva; R. Chan; G. Pinheiro

    2014-12-16T23:59:59.000Z

    In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory ($U(1)$ extension) of {the} Ho\\v{r}ava-Lifshitz gravity with the minimum coupling, in the post-newtonian approximation (PPN), without the projectability condition and in the infrared limit. The Newtonian prepotential $\\varphi$ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Ho\\v{r}ava-Lifshitz Theory (HLT) with the minimum coupling, as we know in the General Relativity Theory (GRT).

  17. Management of Pediatric Skin Abscesses in Pediatric, General Academic and Community Emergency Departments

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Staphylococcus aureus (CA-MRSA) in skin abscesses presentingmeeting on management of MRSA in Conflicts of Interest: Byfor clinical management of MRSA in the community: Summary of

  18. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Stovall, Stacey H.

    1994-08-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  19. Implementation of manufacturing data management application in the scientific research project. Case: CERN, the European Organization for Nuclear Research

    E-Print Network [OSTI]

    Saifoulina, Margarita

    2010-01-01T23:59:59.000Z

    This Bachelor’s thesis examined the implementation process of an MTF (Manufacturing and Test Folder) application in the CLIC (Compact Linear Collider) Radio Frequency Structure Development project for manufacturing data management purposes. The primary goal of the study was to investigate how MTF implementation and its integration with CERN EDMS (Engineering and Equipment Data Management System) system could facilitate product life cycle through the supply chain, and could affect on manufacturing operations performance in internaland external levels. The aim of the study was also to find out implementation differences within CERN (European Organization for Nuclear Research) projects. The study is divided into two parts: a qualitative theory section and an empirical section. In the theory section differences of features between PDM (Product Data Management), EDM (Engineering Data Management) and PLM (Product Life Cycle Management) systems were studied. The thesis examined the benefits and managerial challeng...

  20. Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York

    SciTech Connect (OSTI)

    N /A

    2004-01-16T23:59:59.000Z

    The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

  1. Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report

    SciTech Connect (OSTI)

    Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

    2001-07-01T23:59:59.000Z

    This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

  2. Eligibility Conditions for Project Associates - Amendments to the Management's proposals concerning project associates approved by the Finance Committee and the Council in June 1994 - Amendment to Document CERN/2048 (Annex)

    E-Print Network [OSTI]

    1996-01-01T23:59:59.000Z

    Eligibility Conditions for Project Associates - Amendments to the Management's proposals concerning project associates approved by the Finance Committee and the Council in June 1994 - Amendment to Document CERN/2048 (Annex)

  3. The Chinese Chang'e Lunar Exploration Project and Its Management Structure

    E-Print Network [OSTI]

    LU, Hanlu

    2012-01-01T23:59:59.000Z

    2010): 46. 14. “Project Apollo: A Retrospective Analysis,”Project Chang’e Megaproject Apollo Country China UnitedData sources: 1. “Project Apollo: A Retrospective Analysis,”

  4. Teaching Quality Assurance and Project Management to Undergraduate Computing Students in Pakistan

    E-Print Network [OSTI]

    Mehmood, Zaigham

    2009-01-01T23:59:59.000Z

    Software Project Management (SPM) and Software Quality Assurance (SQA) are key components of undergraduate Computing programmes at educational establishments in Pakistan. Because of the nature of these subjects, there are a number of issues that need to be discussed and resolved so that the teaching becomes more effective, students learning experience is more enjoyable and their ability to be actively involved in SPM and SQA, after the completion of their studies, becomes further improved. In this paper, we discuss experience of teaching SPM and SQA at one particular institution in Islamabad Pakistan. Using this as a case study, we underline the students perspective, highlight the inherent issues and suggest ways to improve the delivery of these subjects. Since, the issues are mainly generic, the aim is to provide discussion and recommendations to benefit a wider computing community in academia.

  5. Developing document management for a large-scale engineering project at CERN. The case of ALICE-EDMS with TuoviWDM interface

    E-Print Network [OSTI]

    Saloranta-Rönkä, H

    1999-01-01T23:59:59.000Z

    Developing document management for a large-scale engineering project at CERN. The case of ALICE-EDMS with TuoviWDM interface

  6. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

    2011-09-15T23:59:59.000Z

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  7. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    SciTech Connect (OSTI)

    Hunt, C S; Beck, A E; Akhtar, M S

    1982-01-01T23:59:59.000Z

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program.

  8. MHK Projects/General Sullivan and Little Bay BRI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdamsGastineauBRI

  9. FEMP Best Practices and Lessons Learned for Federal Agency ESPC Projects: General Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative Geologic MediaTreatmentPROJECT-SPECIFIC PLAN CameronFEMP4.

  10. How the Lean Management System is Working on a Closure Project - 13242

    SciTech Connect (OSTI)

    Mowery, Carol [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01T23:59:59.000Z

    Washington Closure Hanford, LLC (WCH) manages the River Corridor Closure Project (RCCP), a 10-year contract, in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. Strategic planning sessions in 2009 identified key performance areas that were essential to closure and in which focused change could result in dramatic performance improvement. Lean Management Systems (Lean) was selected as the methodology to achieve the desired results. The Lean Process is built upon the fundamentals of the power of respect for people and the practice of continuous process improvement. Lean uses week-long, focused sessions that teach a selected team the techniques to recognize waste within their own work processes, propose potential solutions, and then conduct experiments during the week to test their solutions. In 2011, the Lean process was implemented in the Waste Operations organization. From there it was expanded to closure documents, field remediation, and decommissioning and demolition. WCH identified the following Lean focus areas: 1) closure document processes that required extensive internal preparation, and lengthy external review and approval cycles; 2) allocation of limited transportation and waste disposal resources to meet aggressive remediation schedules; 3) effective start-of-the-day routines in field operations; 4) improved excavation and load-out processes; and 5) approaches to strengthen safety culture and support disciplined operations. Since the introduction of Lean, RCCP has realized many successes and also gained some unexpected benefits. (authors)

  11. Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials

    SciTech Connect (OSTI)

    NONE

    1995-11-30T23:59:59.000Z

    In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

  12. Benchmarking Current Perceptions of General Contractors of Return on Investment on Affordable Rehabilitation Housing Projects: A Case Study in the State of Texas

    E-Print Network [OSTI]

    Diaz-Puentes, Pedro Augusto

    2014-05-05T23:59:59.000Z

    This exploratory case study investigates the perception of general contractors of affordable rehabilitation housing projects in the state of Texas. This study was carried out in collaboration with a corporation that is working on affordable...

  13. General Engineer

    Broader source: Energy.gov [DOE]

    The Office of Management is seeking a motivated and highly-qualified candidate for an exciting full-time permanent position located in the Office of Acquisition and Project Management (APM), in...

  14. Evaluating the learning effectiveness of using simulations in software project management education: results from a twice replicated experiment

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    Evaluating the learning effectiveness of using simulations in software project management education replicated experiment that evaluates the learning effectiveness of using a process simulation model a System Dynamics simulation model, the control group used the well-known COCOMO model as a predictive tool

  15. General Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project/program manager responsible for monitoring and reporting on technical, programmatic, regulatory, environment, safety and health, and...

  16. Interdisciplinary (Nuclear Safety Oversight Program Manager) (General/Nuclear Engineer/Physical Scientist)

    Broader source: Energy.gov [DOE]

    The Office of Science manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science. In addition, the Office of Science is the...

  17. A Project Management and Systems Engineering Structure for a Generation IV Very High Temperature Reactor

    SciTech Connect (OSTI)

    Ed Gorski; Dennis Harrell; Finis Southworth

    2004-09-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) will be an advanced, very high temperature (approximately 1000o C. coolant outlet temperature), gas cooled nuclear reactor and is the nearest term of six Generation IV reactor technologies for nuclear assisted hydrogen production. In 2001, the Generation IV International Forum (GIF), a ten nation international forum working together with the Department of Energy’s (DOE) Nuclear Energy Research Advisory Committee (NERAC), agreed to proceed with the development of a technology roadmap and identified the next generation of nuclear reactor systems for producing new sources of power. Since a new reactor has not been licensed in the United States since the 1970s, the risks are too large for a single utility to assume in the development of an unprecedented Generation IV reactor. The government must sponsor and invest in the research to resolve major first of a kind (FOAK) issues through a full-scale demonstration prior to industry implementation. DOE’s primary mission for the VHTR is to demonstrate nuclear reactor assisted cogeneration of electricity and hydrogen while meeting the Generation IV goals for safety, sustainability, proliferation resistance and physical security and economics. The successful deployment of the VHTR as a demonstration project will aid in restarting the now atrophied U.S. nuclear power industry infrastructure. It is envisioned that VHTR project participants will include DOE Laboratories, industry partners such as designers, constructors, manufacturers, utilities, and Generation IV international countries. To effectively mange R&D, engineering, procurement, construction, and operation for this multi-organizational and technologically complex project, systems engineering will be used extensively to ensure delivery of the final product. Although the VHTR is an unprecedented FOAK system, the R&D, when assessed using the Office of Science and Technology Gate Model, falls primarily in the 3rd - Exploratory Development, 4th – Advanced Development, and 5th- Engineering Development stages of maturity rather than in the basic and viability stages. Therefore the R&D must be controlled and project driven from the top down to address specific issues of feasibility, proof of design or support of engineering. The design evolution must be through the systems approach including an iterative process of high-level requirements definition, engineering to focus R&D to verify feasibility, requirements development and conceptual design, R&D to verify design and refine detailed requirements for final detailed design. This paper will define a framework for project management and application of systems engineering at the Idaho National Engineering and Environmental Laboratory (INEEL). The VHTR Project includes an overall reactor design and construction activity and four major supporting activities: fuel development and qualification, materials selection and qualification, NRC licensing and regulatory support, and the hydrogen production plant.

  18. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

  19. Post-Project Assessment of the 2003 Cerrito Creek Restoration and Recommendations for Additional Stormwater Management

    E-Print Network [OSTI]

    Adlong, Michelle; Cook, Michael; Kennedy, Matthew

    2011-01-01T23:59:59.000Z

    that in the future, stream restoration projects installrecommend that future stream restoration projects considerrestoration, while in the six years since the entire stream

  20. R[ CIPIENT:NREL U.S. DEPARThLFNT OF ENERGY EER E PROJECT MANAGEMENT...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETlRMINATION Page 1 00 STATE: CO PROJECT TITLE: Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC); NREL Tracking No. 12- 007 Funding...

  1. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAG EMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERMINATION RECIPIENT:City of Virginia Beach PROJECT TITLE: Virginia Beach Wind Turbine Demonstration Project Page I of2 STATE: VA Funding Opportunity Announcement Number...

  2. u.s. DEPARThIl!NT OF ENERGY EERE PROJECT MANAG EMENT CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DETERMINATION RECIPIENT: Northwest Energy Innovations Page 1 of3 STATE: OR PROJECT TITLE: WAVE ENERGY TECHNOLOGY-NEW ZEALAND MULTI-MODE WAVE ENERGY CONVERTER ADVANCEMENT PROJECT...

  3. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho National Laboratory, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  4. Pilot study risk assessment for selected problems at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Hamilton, L.D.; Meinhold, A.F.; Baxter, S.L.; Holtzman, S.; Morris, S.C.; Pardi, R.; Rowe, M.D.; Sun, C. [Brookhaven National Lab., Upton, NY (United States); Anspaugh, L.; Layton, D. [Lawrence Livermore National Lab., CA (United States)

    1993-03-01T23:59:59.000Z

    Two important environmental problems at the USDOE Fernald Environmental Management Project (FEMP) facility in Fernald, Ohio were studied in this human health risk assessment. The problems studied were radon emissions from the K-65 waste silos, and offsite contamination of ground water with uranium. Waste from the processing of pitchblende ore is stored in the K-65 silos at the FEMP. Radium-226 in the waste decays to radon gas which escapes to the outside atmosphere. The concern is for an increase in lung cancer risk for nearby residents associated with radon exposure. Monitoring data and a gaussian plume transport model were used to develop a source term and predict exposure and risk to fenceline residents, residents within 1 and 5 miles of the silos, and residents of Hamilton and Cincinnati, Ohio. Two release scenarios were studied: the routine release of radon from the silos and an accidental loss of one silo dome integrity. Exposure parameters and risk factors were described as distributions. Risks associated with natural background radon concentrations were also estimated.

  5. Online Project Management Certification Syllabus Project management has evolved into a business practice that is closely aligned with the organizational and strategic goals of today's

    E-Print Network [OSTI]

    Reisslein, Martin

    a project as well as helping with less tangible but vital areas like establishing good communication into a business practice that is closely aligned with the organizational and strategic goals of today's companies and proven methods which offer a more complete and systematic framework for defining and controlling

  6. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect (OSTI)

    Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada)] [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

  7. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  8. Strategic management for large engineering projects : the stakeholder value network approach

    E-Print Network [OSTI]

    Feng, Wen, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    A critical element of the challenges and opportunities for today's large engineering projects are associated with the multi-type and networked relationships between these projects and their various stakeholders. This ...

  9. Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)

    SciTech Connect (OSTI)

    Waite, J.L.

    1996-04-12T23:59:59.000Z

    This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

  10. U.S. DEPARTJ\\ofENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    VALLEY COMMUNITY COLLEGE STATE: NY PROJECT TITLE: Northeast Provider of Solar Photovoltaic Instructor Training Funding Opportunity Announcement Number Procurement Instrument...

  11. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    SciTech Connect (OSTI)

    CARTER, R.P.

    1999-11-19T23:59:59.000Z

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

  12. General Engineer / Physical Scientist / Environmental Scientist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Project Manager in the OREM Project Management Division supporting Environmental Restoration Projects and the Reindustrialization Program and...

  13. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    SciTech Connect (OSTI)

    Gerald Sehlke

    2005-03-01T23:59:59.000Z

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  14. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08T23:59:59.000Z

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.

  15. Creating an urban deer-vehicle accident management plan using information from a town's GIS project

    E-Print Network [OSTI]

    Premo, Dean B.; Rogers, Elizabeth I.

    2001-01-01T23:59:59.000Z

    AN URBAN DEER-VEHICLE ACCIDENT MANAGEMENT PLAN USINGincrease in deer vehicle accidents. Given the Town'sof increased deer vehicle accidents which, in the past 10

  16. U.S. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    for the implementation of manufacturing management systems, construction of production tooling, and purchase and installation of equipment, including arc welding robots and...

  17. The Modern Grid Initiative is a DOE-funded project managed by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at grid modernization. One of my past bosses used to share humorous theories of organizational change management from a college professor, McAdams, worthy of the great...

  18. U.S. DEPAR TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the protocols in place for laboratory safety, risk management, chemical handling and waste disposal. SolarBridge is located at 9229 Waterford Centre Boulevard 110, Austin....

  19. U.S. DI!P.~ThIENT OF ENERGY EERE PROJECT MANAGEMENT...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Policy and Management PROJEcr TITLE: EECBG- Sherman - Geothermal Heat Pump Installation Page J of2 STATE : CT Funding Opportunity Announcement Number...

  20. U.S. DEPARTI\\1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    of Michigan page I or L STATE: MI PROJECT TITLE: Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the...

  1. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl...

    Broader source: Energy.gov (indexed) [DOE]

    Page I of2 STATE: CA PROJECT TITLE: The Diablo Regional Distributed Solar Energy Generation Expedited Permit Process Funding Opportunity Announcement Number Procurement...

  2. U.S. DEPARTIVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETERlVIINATION RECIPIENT:County of Fairfax STATE: VA PROJECT Electric and hybrid vehicle incremental cost recovery TITLE: Funding Opportunity Announcement Number...

  3. U.S. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DETER.lVIINATION Page I of2 RECIPIENT:Pennsylvania State University STATE: PA PROJECT TITLE : Scattering Solar Thermal Concentrators Funding Opportunity Announcement Number...

  4. us. DEP.-\\RThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy, Labor & Economic Growth PROJECT TITLE: SEP ARRA - Michigan Slate University. BioEnergy Page 1 of2 STATE: MI Funding Opportunity Announcement Number...

  5. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA...

    Broader source: Energy.gov (indexed) [DOE]

    PA PROJECT TITLE: Design and Implementation of Geothermal Energy Systems at West Chester University Funding Opportunity Announcement Number 70.10 Procurement Instrument Number...

  6. U.S. DEPARThlllNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Institute of Technology Page 1 of3 STAn:: lL PROJECT TITLE: A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce...

  7. U.S. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing or industrial practices, and small-scale conservation and renewable energy research and development and pilot projects. The actions could involve building...

  8. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    proposes to use federal funds to design, fabricate, and bring online a biofuel micrf>refinery within existing infrastructure. This project will consist of laboratory research...

  9. u.s. DEPARTI\\IIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    NEPADETERlVIINATION RECIPIENT:Texas Stale Energy Office PROJECT TITLf. : Seadrift Woo Turbine Page 1 of3 STATE: TX Funding Opportunity Announcement Number Procurement Instrument...

  10. U.S. DEPARTI\\IIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    Virginia would support annual student team projects in Mechanical Engineering and Chemical Engineering programs at West Virginia Institute of Technology and West Virginia...

  11. U.S. DEPARTMENT OF I!NI!RGY EERE PROJECT MANAGEMENT CENTER NFPA...

    Broader source: Energy.gov (indexed) [DOE]

    the Iowa Office of Energy STATE: IA Independence) PROJECf TITLE: Magellan Des Moines Biodiesel Terminal Project Page 10f3 Funding Opportunity Announcement Number Procurement...

  12. U.S. DEPARTIlIENT OF ENER GY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    RECIPIENT: Hi-Q Geophysical Inc Page I of2 STATE: NV PROJECT TITLE: Phase 3 - Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems .' unding...

  13. u.s. DEPARTI\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    RECIPIENT:University of Texas at Austin Page 1 of2 STATE: TX PROJECT TITLE : Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below...

  14. u.s. D11PARTIlIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    In a parallel project. funded by the USDA-Natural Resources Conservation Service (NRCS) Environmental Quality Incentive Program (EQIP), 5,000 feet of irrigation pipe would be...

  15. Scott M. Kaufman US Project Manager The Carbon Trust Brooklyn, NY January 2009 -present

    E-Print Network [OSTI]

    Lenfest Center for Sustainable Energy, The Earth Institute at Columbia University New York, NY Dec 2007 and direction for research. Crafted strategy for data collection and analysis from waste management partners waste managers to determine efficient collections routing and outreach strategies. Searched for new

  16. he project focusses upon the changing role of physical intervention and manage-

    E-Print Network [OSTI]

    Davies, Christopher

    ­ the hardware and soft- ware of security planning ­ in combating new forms of terrorism against public places. The move is a departure from present arrange- ments where the management of security in public places and management of public places and transport systems. In doing so, it will address key questions about

  17. Development of a Pavement Maintenance and Rehabilitation Project Formation and Prioritization Methodology that Reflects Agency Priorities and Improves Network Condition

    E-Print Network [OSTI]

    Narciso, Paul John Ross

    2013-07-22T23:59:59.000Z

    crucial step in pavement management is the formation and prioritization of maintenance and rehabilitation (M&R) projects that compete for limited funding for inclusion in the agency’s multiyear pavement management plan (PMPs). In general, many highway...

  18. Office of Inspector General audit report on aircraft and air service management programs

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The Department of Energy`s (DOE) Albuquerque Operations Office (Albuquerque) owns seven aircraft that support defense programs, research and development efforts, emergency response programs, and official travel of Government and contractor employees. An Office of Inspector General (OIG) report, issued in 1994, identified concerns with Albuquerque`s cost for air service. Since that report, there have been reductions in cost and personnel indicating changes in air service requirements. This audit was conducted to determine (1) whether costs to operate Albuquerque`s aircraft were excessive and (2) if individual aircraft in the fleet were justified.

  19. General Recommendations for a Federal Data Center Energy Management Dashboard Display

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not Measurement SensitiveGeneral

  20. DOE - Office of Legacy Management -- General Electric Co - San Jose - CA 13

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk RiverFrederick Flader IncGeneral

  1. Continuous Controls: Lighting Energy Management for Retrofit and New Construction Projects

    E-Print Network [OSTI]

    Schuett, R.

    1985-01-01T23:59:59.000Z

    The rising interest of specifiers and end-users in Lighting Energy Management (LEM) control equipment has led to an increased need for further education in the selection, capabilities and applications of such equipment. This paper addresses...

  2. Relative Investment Risks and Returns of Energy Management and Production Projects

    E-Print Network [OSTI]

    Gaffney, B. J.; Inyard, F. H.

    1983-01-01T23:59:59.000Z

    Engineering managers must routinely make decisions on how to allocate limited resources to achieve the most benefit. Energy conservation and increased or new productivity are two areas which compete for operating and capital budgets. This paper...

  3. Using a town’s GIS project to create a deer-vehicle accident management plan

    E-Print Network [OSTI]

    Rogers, Elizabeth I.

    2003-01-01T23:59:59.000Z

    TO CREATE A DEER-VEHICLE ACCIDENT MANAGEMENT PLAN Elizabethhigh numbers of deer-vehicle accidents (DVAs) on a landscapeto provide an assessment of accident risk in time and space.

  4. Bridging the Gap between Network and Project Selection Levels in Pavement Management

    E-Print Network [OSTI]

    Gurganus, Charles Felder

    2011-08-08T23:59:59.000Z

    Pavement management is one of the primary responsibilities for departments of transportation and other municipalities across the country. Efficient and proper use of taxpayer dollars to preserve and improve the existing transportation system has...

  5. Project Risk Management Using Event Calculus Andreas Gregoriades, Vicky Papadopoulou Lesta, Petros

    E-Print Network [OSTI]

    Mavronicolas, Marios

    . These include, role management and requirements change during a typical system development life cycle (SDLC to requirements or roles during the SDLC are not free from conflicts. If these are not resolved they could lead

  6. 1.040 / 1.401J / ESD.018J Project Management, Spring 2007

    E-Print Network [OSTI]

    Moavenzadeh, Fred, 1935-

    As technological integration and construction complexity increase, so does construction lead times. To stay competitive companies have sought to shorten the construction times of new infrastructure by managing construction ...

  7. Risk management and governance for PFI Project : technology policy lessons from the case of Japan

    E-Print Network [OSTI]

    Matsumoto, Takuji, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Japan has a long history of Public-Private Partnerships (PPPs); however, it has experienced many failures but learned various lessons from them. The representative example is a management failure of the third sector, which ...

  8. (MIT Sloan Management Review, Forthcoming 2011) The Common Story of Great Projects

    E-Print Network [OSTI]

    Lin, Xiaodong

    computer and iPod/iTunes music player and online store, the Mall of America in Minnesota, or BMW's Z3 organizations deliberately focus on creating the environment and the management systems that would ensure

  9. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA...

    Broader source: Energy.gov (indexed) [DOE]

    an automatic informalion system (AIS) receiver to log ship traffic in the area and an infrared camera to attempt to detect marine mammals in the project area. All equipment will be...

  10. u.s. DEPARTI\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETElUIINATION RECIPIENT:State of Wisconsin SEP ARRA EE0000163-McCain Foods USA PROJECT TITLE: Waste Digester Biogas Recovery System Page 1 of2 STATE: WI Funding...

  11. u.s. DEPARn-IENT OF ENERGY EERE PROJECT MANAG EM EN T CEN T

    Broader source: Energy.gov (indexed) [DOE]

    DETERlIINATION RECIPIENT:TEXAS COMPTROLLER OF PUBLIC ACCOUNTS PROJECT TITLE: ARRA SEP UNIVERSITY OF NORTH TEXAS - DENTON Page 1 of2 STATE; TX Funding Opportunity AUDouDCl'ment...

  12. U.S. DEPARTl\\1EN T OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETERlIiJTNATION Page 1 of 3 RECIPIENT:Board of Regents , NSHE, obo University of Nevada, Reno STATE: NV PROJECT TITLE : Development of a Low Cost Method to...

  13. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Page 1 of2 RECIPIENT:University of Arizona STATE : 4Z. PROJECT TITLE: Halide and Oxy-Halide Eutectic Systems for Hig h Perfonnance High Temperature Heat Transfer Fluids Funding...

  14. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPADETFllllN...

    Broader source: Energy.gov (indexed) [DOE]

    Corpus Christie to receive 955,000 in SEP funding (Iotal project cost - 1,220,000). The University would use federal funding to partially fund the purchase and installation of...

  15. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    The two boreholes in the solar house system would be spaced 20 feet apart and be located north northeast of the NYIT solar house. The closest wetlands to the project are the...

  16. Validation of Energy Efficiency Projects: Can You Run Effective Energy Management Programs Without It?

    E-Print Network [OSTI]

    Martin, V.; Falk, M. A.

    would have been". Since competition exists within organizations for limited capital resources, project approval is based on the principle that the short or long term benefits of a specific upgrade exceed the investment potential of other proposed...

  17. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Herd's existing propane boiler. The proposed project will gasify 30 tons-per-day of manure to power an adjacent 14,000 Iblhr boiler. The farm manure is currently used as...

  18. DEPARTh1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETER1vITNAT...

    Broader source: Energy.gov (indexed) [DOE]

    Chicago STATE: IL PROJECT TITL.E: How Grain Boundaries Afeet the Effciency of Poly-CdTe Solar-Cells: A Fundamental Atomic-Scale Study of Grain Boundary Dislocation Cores Using...

  19. General Engineer

    Broader source: Energy.gov [DOE]

    The Tank Farms mission is to provide Office of River Protection (ORP) direction and oversight for River Protection Project operations and program management activities to safely store 53 million...

  20. A computerized methodology for selecting projects in multi-period bridge management systems

    E-Print Network [OSTI]

    Rebolledo Valenzuela, Carlos Esteban

    1990-01-01T23:59:59.000Z

    -effective decisions in a short or in a long range scenario. The purpose of this research is to develop and computerize a multi- period optimization procedure that will select the best set of replacement/rehabilitation projects for a given system of bridges.... 1. 1 Project Significance According to a Report to Congress by the Federal Highway Administration (FHWA, 1987), it is estimated that more than $50 billion would be needed to replace or rehabilitate today's deficient bridges in the United States...

  1. National Ignition Facility project execution plan

    SciTech Connect (OSTI)

    Paisner, J., LLNL

    1997-08-01T23:59:59.000Z

    This project execution plan covers: Justification of Mission Need; Project Description; Management Roles and Responsibilities; Project Execution; Method of Accomplishment.

  2. EP&R Standards Project Report: Technical Review of National Incident Management Standards

    SciTech Connect (OSTI)

    Stenner, Robert D.

    2007-04-24T23:59:59.000Z

    The importance and necessity for a fully developed and implemented National Incident Management System (NIMS) has been demonstrated in recent years by the impact of national events such as Hurricane Katrina in 2005. Throughout the history of emergency response to major disasters, especially when multiple response organizations are involved, there have been systemic problems in the consistency and uniformity of response operations. Identifying national standards that support the development and implementation of NIMS is key to helping solve these systemic problems. The NIMS seeks to provide uniformity and consistency for incident management by using common terminology and protocols that will enable responders to coordinate their efforts to ensure an efficient response.

  3. Project Manager, U.S. ITER INSIDE: ITER Site Progress Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENAManagement ProjectITER

  4. 08/17/2006 12:09 PMOak Ridge National Laboratory -U.S. ITER Project Completes Management Team Page 1 of 2http://www.ornl.gov/ornlhome/print/press_release_print.cfm?ReleaseNumber=mr20060817-00

    E-Print Network [OSTI]

    1 of 2http://www.ornl.gov/ornlhome/print/press_release_print.cfm?ReleaseNumber=mr20060817 that began October 1, 2005, the 12-member contractor team will manage the U.S. contribution to ITER. ITER-USA. · Mr. Carl Strawbridge, Deputy Project Manager, of ORNL, who served as Deputy Project Manager

  5. Infrastructure and Operations Improvement Project Director |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project risks. -Ensure that required and effective project management and control systems are developed, deployed and implemented to successfully manage and assess the project...

  6. Project management system for structural and functional proteomics: Zsolt Zolnai1,*

    E-Print Network [OSTI]

    Rayment, Ivan

    608-262-3759) Received 16 July 2002; Accepted in final form 29 October 2002 Key words: data bank as to accommodate a wide variety of computer platforms. The database tier employs a commercial database management collaborations. Because users interact with the system using Java Web Start or through a web browser, access

  7. PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES Programme name Project Management, Finance and Risk

    E-Print Network [OSTI]

    Weyde, Tillman

    understanding of the use of software and other tools to support risk and decision analysis. -You will be able the uncertainties and risk inherent in the project and designing appropriate financial instruments and tools to optimize the performance throughout the life cycle. This course provides a basis in risk and decision

  8. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  9. Mn/DOT's Project Peer Review

    E-Print Network [OSTI]

    Minnesota, University of

    and sustain this culture #12;Project Management #12;Recent National Work in Transportation Project ManagementMn/DOT's Project Management Peer Review Creating a Project Management Culture 2010 CTS Research a Peer Review? Why Project Management? ·Improve project delivery performance ­ on time, on budget (an

  10. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Damsky, B.L.

    1984-01-01T23:59:59.000Z

    General Electrics's thyristor valve project incorporates the most advanced technologies available. With joint funding from the Electric Power Research Institute, commercial application of the separate light-triggered thyristor is now underway. The cesium vapor lamp source to trigger the light sensitive thyristors will reduce component complexity and cost. A unique thermal management feature relies on forced vaporization cooling with Freon-113, which equals the thermal performance of water without posing insulation reliability problems. 7 figures.

  11. Air Quality: Asbestos Notification Procedure Department: Chemical and General Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Asbestos Notification Procedure Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The Bay Area Air Quality) and air quality program manager Determine if the project is classified as a demolition or renovation

  12. TRANSFORMING THE SRS ENVIRONMENTAL BUSINESS: COMMUNICATION AND APPLIED PROJECT MANAGEMENT PRINCIPLES

    SciTech Connect (OSTI)

    Saldivar, E.

    2010-01-20T23:59:59.000Z

    A process for communicating information relating to core business functions that also encourages improving internal communications has been established at SRS. This process continues to grow and strengthen as the multiple Contractors, Regulators and DOE-SR relationships mature. A number of management communication tools have been initiated, retooled, rebooted or continued with enhancements to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. The types of information that are the focus of this improved process are feedback from the customer and from informational exchange forums (i.e., Challenge Opportunity and Resolution (COR), SRS Regulatory Integration Team (SRIT), Environmental Quality Management Division (EQMD), Senior Environmental Managers Council (SEMC), etc.). These forums, SRS environmental functions centralization, and the creation of a Regulatory Integration process allows for cross-functional decision making, problem solving and information sharing that involves the field organizations, Environmental Compliance Authorities (ECA), Subject Matter Experts (SME), DOE and the Regulators. Numerous examples of effective decision-making and problem solving will be shared. Lessons Learned involving inadequate communications and the resulting impacts on the environment, customer satisfaction, and relationships will also be discussed. Additionally, the focus on improved communications also includes maintaining awareness of business activities. The tools being utilized to facilitate the continuing improvement of internal communications include weekly staff meetings for all individuals within the organization, quarterly ECA and SME meeting, quarterly Regulatory Integration & Environmental Services (RI&ES) All-Hands meetings hosted by the Director, bi-weekly EQMD and EQMD Lite meetings with the customer, bi-annual SRIT meetings, and COR meetings on an as need basis. In addition, an existing Required Reading Program is being formally utilized in RI&ES to ensure all individuals get formal notification of new/revised business documents. In all cases, the development of environmental communication topics that occur at SRS have a cost-scope-schedule basis that can be linked to delivery of environmental services.

  13. Follow-Up on the Management of the Plutonium Finishing Plant Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingon The Management of

  14. Microsoft PowerPoint - 05 Okonski final Project Management Workshop Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid Workshop Report AugustPROJECT SUCCESS

  15. Management of XML Documents in an Integrated Digital Library

    E-Print Network [OSTI]

    Smith, David A.

    Management of XML Documents in an Integrated Digital Library David A. Smith Anne Mahoney Jeffrey A,amahoney,jrydberg}@perseus.tufts.edu Abstract We describe a generalized toolset developed by the Perseus Project to manage XML documents, heteroge- neous DL (digital library) is the necessity of managing documents with widely varying encodings

  16. Landlord project multi-year work plan fiscal year 1998

    SciTech Connect (OSTI)

    Knollmeyer, P. M.

    1997-09-19T23:59:59.000Z

    The mission of Landlord Project is to preserve, upgrade, maintain, and forecast cost effective general infrastructure activities to facilitate the Hanford Site cleanup mission. Specific functions and services provided by Landlord Project include utilities (i.e. steam, water, sanitary sewer, solid waste disposal, electrical and telecommunication distribution), transportation, general purpose facilities (includes general support shops and laboratories), services, and energy and land use management. All Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Hanford Site Landlord Project will be competitive with commercially provided services to offer the best price, quality, and service available.

  17. Perspectives on Project Finance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives on Project Finance Perspectives on Project Finance Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern...

  18. Hungry Horse Dam Wildlife Habitat Enhancement Project: Long-Term Habitat Management Plan, Elk and Mule Deer Winter Range Enhancement, Firefighter Mountain and Spotted Bear Winter Ranges.

    SciTech Connect (OSTI)

    Casey, Daniel; Malta, Patrick

    1990-06-01T23:59:59.000Z

    Project goals are to rehabilitate 1120 acres of big game (elk and mule deer, Odocoileus hemionus) winter range on the Hungry Horse and Spotted Bear Districts of Flathead National Forest lands adjacent to Hungry Horse Reservoir. This project represents the initial phase of implementation toward the mitigation goal. A minimum of 547 acres Trust-funded enhancements are called for in this plan. The remainder are part of the typical Forest Service management activities for the project area. Monitor and evaluate the effects of project implementation on the big game forage base and elk and mule deer populations in the project area. Monitor enhancement success to determine effective acreage to be credited against mitigation goal. Additional enhancement acreage will be selected elsewhere in the Flathead Forest or other lands adjacent'' to the reservoir based on progress toward the mitigation goal as determined through monitoring. The Wildlife Mitigation Trust Fund Advisory Committee will serve to guide decisions regarding future enhancement efforts. 7 refs.

  19. MASTER OF SCIENCE Enterprise Project

    E-Print Network [OSTI]

    Yang, Eui-Hyeok

    the traditional tools, tactics, and PMI certification preparation taught in most project management programs MASTER OF SCIENCE According to PMI, the median salary of a project manager with 10 years of project management experience is $105K. According to the Project Management Institute (PMI), "Between 2006 and 2016

  20. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance US General Serices Administration - Project 193, John W. Bricker Federal Building, Columbus, OH

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-05-31T23:59:59.000Z

    This report documents the findings from an onsite audit of the John W. Bricker Federal building located in Columbus, Ohio. The Federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy efficiency opportunities that, once implemented, would either reduce electrical and gas consumption or increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  1. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-05-31T23:59:59.000Z

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  2. Communicating in a multi-project environment with a single-sheet project plan

    SciTech Connect (OSTI)

    Furaus, J.P.; Figueroa-McInteer, C.; Glidewell, D.D.; McKeever, P.S.; Hendrick, W.E.; Wisler, D.B.; Zavadil, J.T.

    1995-07-01T23:59:59.000Z

    In June 1992, the Corporate Construction Program Office was formed to provide single-point accountability for managing all corporate-sponsored construction projects at Sandia, answering to upper Sandia management as well as Sandia`s primary external customer, the U.S. DOE. CCPO had 3 major areas of responsibility: Congressional line-item projects (>$2 million), general plant projects (<$2 million), and corporate-funded major rearrangements (renovations). A single-sheet project plan (``summary sheet``), with monthly updates, was developed for every project. Each month, the sheets are duplicated and placed in a ``project summary book`` that is distributed through various communication channels at Sandia. Despite many modifications, the summary sheet has remained simple and useful to a broad range of project stakeholders. This paper describes how the sheet`s design and implementation enhances communication across Sandia`s complex, multi-program environment.

  3. Secretary's annual report to Congress. Volume III. Project summaries

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    Progress and status of representative projects in each program within DOE are summarized. Subjects covered and the number of projects reported on are: conservation (2); fossil energy (11); nuclear energy (5); renewable energy resources (16); energy production and power marketing (3); general science (11); defense programs (7); contingency planning (3); and management and oversight (1). (MCW)

  4. American Recovery and Reinvestment Act, Federal Energy Management Program, Technical Assistance Project 228 - US Army Installation Management Command - Pacific Region, Honolulu, Hawaii

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30T23:59:59.000Z

    This report documents the activities of a resource efficiency manager that served the US Army Installation Management Command - Pacific Region during the period November 23, 2009 and August 31, 2010.

  5. On self-help in a site and services project in Kenya

    E-Print Network [OSTI]

    Soni, Praful Naran

    1980-01-01T23:59:59.000Z

    The concept of self-help in a site and services project is based on the assumption that given the security of land tenureship_, an owner-builder can manage the whole process of house implementation. Generally, in any ...

  6. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21T23:59:59.000Z

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  7. Federal Energy Management Program technical assistance case study: The Forrestal Building relighting project saves $400K annually

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Department of Energy (DOE) believes energy efficiency begins at home -- in this case the James A. Forrestal Building in Washington, D.C. Since 1969, the 1.7 million-square-foot Forrestal Building has served as DOE Headquarters. In 1989, a team of in-house energy specialists began searching for opportunities to make the Forrestal Building more energy efficient. The team, on which personnel from the Federal Energy Management Program (FEMP) served, identified lighting as an area in which energy use could be reduced substantially. A monitoring program showed that the building`s more than 34,000 1-foot by 4-foot fluorescent lighting fixtures were responsible for 33% of the building`s total annual electric energy use, which represents more than 9 million kilowatt-hours (kWh) per year. In initiating the relighting program, DOE hoped to achieve these broad goals: Reduce energy use and utility bills, and improve lighting quality by distributing the light more uniformly. Funding was also an important consideration. DOE sought financing alternatives through which the lighting retrofit is paid for without using government-appropriated capital funds. DOE cut lighting costs more than 50% and paid for the project with the money saved on energy bills.

  8. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan.

  9. This module aims to provide students with an understanding of the underlying principles of Software Project Management, and of established techniques for the management of software projects. By introducing students to key concepts and techniques

    E-Print Network [OSTI]

    Oxford, University of

    and management systems; quality models and metrics Content Formal lectures: 24 hours (2 hours/week) Tutorial, and to requirements, risk and quality management, the module lays the foundation for their future contribution, assessment, control, resolution Quality management: characterisation of quality; quality control, assurance

  10. EM Projects Perspective - Jack Surash, Deputy Assistant Secretary...

    Office of Environmental Management (EM)

    and Project Management, Environmental Management Presentation Topics EM Funding Evolution of EM Contracts EM Portfolio Project Success Workshop 2015 -Jack SurashEM Projects...

  11. Huntington Veterans Affairs Medical Center - Faucet and Showerhead Replacement Project: Best Management Practice Case Study #7: Faucets and Showerheads, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    Case study overview of the Huntington Veterans Affairs Medical Center water efficiency program as part of FEMP's water efficiency best management practice series.

  12. Managing risks in energy capital projects -- the value of contractual risk-sharing in CCS-EOR

    E-Print Network [OSTI]

    Agarwal, Anna

    2014-01-01T23:59:59.000Z

    This thesis addresses the question of how to maximize the value of energy capital projects in light of the various risks faced by these projects. The risks can be categorized as exogenous risks (not in control of involved ...

  13. Office of Inspector General report on audit of Department of Energy management and operating contractor available fees

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Office of Procurement and Assistance Management has proposed changes to the method used to annually calculate and negotiate ``for profit`` management and operating contractor available fees. This proposal will increase contractor fees in exchange for the contractor`s purported assumption of additional risk. In 1991, the Department, through the Accountability Rule, increased contractor fees as an incentive to improve contractor performance and accountability. Despite the lack of measurable benefits of this effort, the Department is crafting a new fee policy which will, depending upon how it is executed, increase fees above the amount provided through the Accountability Rule as an incentive to the Department`s management and operating contractors. The objective of the audit was to determine whether the Department`s proposed change to the fee structure for determining management and operating contractor fees will be cost effective. This report describes the study`s approach, its findings and recommendations, management and auditor comments, and includes appendices with further data.

  14. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First Quarter

  15. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First

  16. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First3 Third

  17. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First3

  18. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First38 4 th

  19. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First38 4 th1

  20. Contract/Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact UsEnergy Awarded to3 First38 4