National Library of Energy BETA

Sample records for general power rate

  1. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  2. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  3. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  4. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  5. 2014-2015 Power Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Power Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue...

  6. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  7. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  8. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  9. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  10. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...

  11. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  12. Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | BPA Contact Information | Note: JavaScript A-to-Z Menu is disabled by user. Power Services (A to Z) - - - - - - - - - - - - - Account Executives Administrator's RODs Aluminum...

  13. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina October 1, 2012 Duke-3-E Wholesale Power Rate Schedule Area: None

  14. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  15. 2007 Wholesale Power Rate Case Initial Proposal : Wholesale Power Rate Development Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2007-11-01

    The Wholesale Power Rate Development Study (WPRDS) calculates BPA proposed rates based on information either developed in the WPRDS or supplied by the other studies that comprise the BPA rate proposal. All of these studies, and accompanying documentation, provide the details of computations and assumptions. In general, information about loads and resources is provided by the Load Resource Study (LRS), WP-07-E-BPA-01, and the LRS Documentation, WP-07-E-BPA-01A. Revenue requirements information, as well as the Planned Net Revenues for Risk (PNNR), is provided in the Revenue Requirement Study, WP-07-E-BPA-02, and its accompanying Revenue Requirement Study Documentation, WP-07-E-BPA-02A and WP-07-E-BPA-02B. The Market Price Forecast Study (MPFS), WP-07-E-BPA-03, and the MPFS Documentation, WP-07-E-BPA-03A, provide the WPRDS with information regarding seasonal and diurnal differentiation of energy rates, as well information regarding monthly market prices for Demand Rates. In addition, this study provides information for the pricing of unbundled power products. The Risk Analysis Study, WP-07-E-BPA-04, and the Risk Analysis Study Documentation, WP-07-E-BPA-04A, provide short-term balancing purchases as well as secondary energy sales and revenue. The Section 7(b)(2) Rate Test Study, WP-07-E-BPA-06, and the Section 7(b)(2) Rate Test Study Documentation, WP-07-E-BPA-06A, implement Section 7(b)(2) of the Northwest Power Act to ensure that BPA preference customers firm power rates applied to their general requirements are no higher than rates calculated using specific assumptions in the Northwest Power Act.

  16. CM-1-H Wholesale Power Rate Schedule

    Broader source: Energy.gov [DOE]

    Availability:This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter...

  17. EIS-0102: Bonneville Power Administration's 1983 Wholesale Power Rate

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this EIS to evaluate the potential environmental impacts associated with an increase in wholesale power rates that would become effective on November 1, 1983, including the effects of rate hikes in that year and the cumulative effects of previous rate hikes.

  18. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power Function Review (PFR) Firstgov BPA Fuel Mix 2012 2013 2014...

  19. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule AP-3-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), PJM ...

  20. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule AP-1-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  1. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule AP-2-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  2. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule AP-4-B Wholesale Power Rate Schedule Area: American ... of American Electric Power Service Corporation (hereinafter called the Company) and ...

  3. NC-1-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    NC-1-B Wholesale Power Rate Schedule NC-1-B Wholesale Power Rate Schedule Area: Virginia PowerCP&L System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  4. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power...

  5. JW-2-F Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-F Wholesale Power Rate Schedule JW-2-F Wholesale Power Rate Schedule Area: Florida Power Corporation System: Jim Woodruff This rate schedule shall be available to the Florida ...

  6. 2016 Power Rate Schedules and General Rate Schedule Provisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If the actual generation exceeds the Exhibit A amount, the Customer will receive a credit. If the actual generation is less than the Exhibit A amount, the Customer will...

  7. MISS-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    MISS-1-N Wholesale Power Rate Schedule MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association System: Georgia-Alabama-South Carolina This rate schedule shall be available to the South Mississippi Electric Power Association (hereinafter called the Customer) to whom power may be wheeled pursuant to contracts between the Government and PowerSouth Energy Cooperative (hereinafter called PowerSouth). This rate schedule shall be applicable to the sale at wholesale of

  8. China Solar Power CSP aka General Solar Power Yantai Co Ltd ...

    Open Energy Info (EERE)

    Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar...

  9. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  10. CTV-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    TVA. Document Available for Download PDF icon CTV-1-H Rate Schedule More Documents & Publications CTVI-1-A Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule CM

  11. CBR-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBR-1-H Wholesale Power Rate Schedule CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers ...

  12. Power Function Review (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PFR Public Comments Firstgov Power Function Review (PFR) Summary: This area of the Power Services web site provides information related to the Power Function Review (PFR). The PFR...

  13. ALA-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALA-1-N Wholesale Power Rate Schedule ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina This rate schedule shall be available to the PowerSouth Energy Cooperative. This rate schedule shall be applicable to power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters, and Richard B. Russell Projects and sold under contract between

  14. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates, please see the transmission rates web site. Inactive Rate Cases Integrated Business Review (IBR) Integrated Program Review (IPR) Quarterly Business Review (QBR) Content...

  15. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  16. April - September 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  17. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...

  18. April - September 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  19. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...

  20. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  1. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  2. April - September 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  3. April - September 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  4. VA-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule VA-1-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection

  5. VA-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule VA-2-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  6. VA-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule VA-3-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC (hereinafter

  7. VA-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule VA-4-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina served through the transmission facilities of Virginia Electric and Power Company (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). This rate schedule shall be applicable to the sale at

  8. CC-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CC-1-I Wholesale Power Rate Schedule CC-1-I Wholesale Power Rate Schedule Area: Carolina Power & Light Company, Western Division System: CU This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J.

  9. SOCO-2-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-E Wholesale Power Rate Schedule SOCO-2-E Wholesale Power Rate Schedule Area: PowerSouth Off-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be transmitted pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. This rate

  10. Santee-2-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-E Wholesale Power Rate Schedule Santee-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  11. Santee-3-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-E Wholesale Power Rate Schedule Santee-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  12. SN-03 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 when the Administrator determined that there was a greater than 50 percent probability of missing BPA's next payment to Treasury or other creditor. Under BPA's General...

  13. Replacement-2-A Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-A Wholesale Power Rate Schedule Replacement-2-A Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the John H. Kerr and Philpott Projects (or Kerr-Philpott System). This rate schedule shall be applicable to the sale of

  14. VANC-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VANC-1 Wholesale Power Rate Schedule VANC-1 Wholesale Power Rate Schedule This rate schedule shall be available to public bodies and cooperatives or their agents (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom transmission is provided from the PJM Interconnection LLC (hereinafter called PJM) or Carolina Power & Light Company (hereinafter called CP&L). This rate schedule shall be applicable to transmission services provided and sold under

  15. CEK-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEK-1-H Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative (hereinafter called the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland

  16. CM-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CM-1-H Wholesale Power Rate Schedule CM-1-H Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such

  17. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power Cooperative (hereinafter the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland

  18. Replacement-1 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Area: Replacement Energy System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at

  19. SOCO-3-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-E Wholesale Power Rate Schedule SOCO-3-E Wholesale Power Rate Schedule Area: MEAG, Dalton System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be scheduled pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. This rate schedule shall be

  20. Santee-1-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-E Wholesale Power Rate Schedule Santee-1-E Wholesale Power Rate Schedule Area: Central, Bamberg, and Georgetown System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable

  1. Santee-4-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-E Wholesale Power Rate Schedule Santee-4-E Wholesale Power Rate Schedule Area: Santee-Cooper System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina served through the transmission facilities of South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy

  2. Pump-1-A Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-A Wholesale Power Rate Schedule Pump-1-A Wholesale Power Rate Schedule Area: Carters & Russell Pumping System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at

  3. Duke-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-E Wholesale Power Rate Schedule Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. This rate schedule shall be applicable

  4. JW-1-J Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    JW-1-J Wholesale Power Rate Schedule JW-1-J Wholesale Power Rate Schedule Area: Woodruff Preference Customer System: Jim Woodruff This rate schedule shall be available to public bodies and cooperatives served by the Progress Energy Florida and having points of delivery within 150 miles of the Jim Woodruff Project (hereinafter called the Project). This rate schedule shall be applicable to firm power and accompanying energy made available by the Government from the Project and sold in wholesale

  5. Duke-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    3-E Wholesale Power Rate Schedule Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be scheduled pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. This rate schedule shall be applicable to the sale at wholesale

  6. Duke-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    4-E Wholesale Power Rate Schedule Duke-4-E Wholesale Power Rate Schedule Area: Duke Self-Schedulers System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina served through the transmission facilities of Duke Energy Company (hereinafter called the Company) and the Customer. This rate schedule shall be applicable to the sale at wholesale of power and

  7. EIS-0093: Bonneville Power Administration's 1982 Rate Proposal

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this statement to evaluate the potential environmental impacts associated with an increase in wholesale power rates for calendar year 1982, including the effects of rate hikes in that year, the cumulative effects of rate hikes from 1979-1985, as well as alternative revenue scenarios.

  8. Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Wholesale Power Rate Schedule Replacement-3 Wholesale Power Rate Schedule Area: Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky, southern Illinois System: CU This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the Government and the

  9. SOCO-1-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-E Wholesale Power Rate Schedule SOCO-1-E Wholesale Power Rate Schedule Area: AMEA, Unaffil AL Munis and Coops, Hampton, East Miss., SMEPA off-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be transmitted and scheduled pursuant to contracts between the Government and Southern Company Services, Incorporated

  10. Duke-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-E Wholesale Power Rate Schedule Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. The Customer is responsible for providing a scheduling

  11. HEADLINE: BPA RAISES RATES TO BOLSTER FEDERAL POWER AND TRANSMISSION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-voltage transmission lines that serve Northwest public utilities." For Bonneville's utility power customers, the wholesale rate increase will be an average of 9 percent...

  12. CBR-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBR-1-H Wholesale Power Rate Schedule CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called

  13. CK-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CK-1-H Wholesale Power Rate Schedule CK-1-H Wholesale Power Rate Schedule Area: Kentucky Utilities System: CU This rate schedule shall be available to public bodies served through the facilities of Kentucky Utilities Company, (hereinafter called the Customers.) This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being

  14. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Regulation-1 Wholesale Power Rate Schedule Regulation-1 Wholesale Power Rate Schedule Area: Regulation Services System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom service is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale of

  15. SOCO-4-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-E Wholesale Power Rate Schedule SOCO-4-E Wholesale Power Rate Schedule Area: OPC System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida served through the transmission facilities of Southern Company Services, Inc. (hereinafter called the Company) or the Georgia Integrated Transmission System. This rate schedule shall be applicable to the

  16. WP-96/TR-96 & TC-96 Power and Transmission Rate Case (rates/ratecases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Decision (WP-96 ROD) Final Studies And Documentation (WP-96-FS) Loads and Resources Revenue Requirement Segmentation Marginal Cost Analysis Wholesale Power Rate Development...

  17. Pump-2 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2 Wholesale Power Rate Schedule Pump-2 Wholesale Power Rate Schedule Area: Carters & Russell Pumping-Self Schedulers System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives who provide their own scheduling arrangement and elect to allow Southeastern to use a portion of their allocation for pumping (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom

  18. Development of a General Purpose Power System Control Board

    SciTech Connect (OSTI)

    Nam, S.H.; Jeong, S.H.; Kim, S.H.; Kim, S.C.; Park, S.S.; Suh, J.H.; Bellomo, P.; Cassel, R.; Larsen, R.; Nguyen, M.N.; /SLAC

    2007-07-23

    In an effort to control modern solid state power modules, a general purpose, multi function power system control board (PSCB) has been under development as a collaboration project between Pohang Accelerator Laboratory (PAL), Korea, and Stanford Linear Accelerator Center (SLAC), USA. The PSCB is an embedded, interlock supervisory, diagnostic, timing, and set-point control board. It is designed to use in various power systems such as sequenced kicker pulsers, solid state RF modulators, simple DC magnet power supplies, etc. The PSCB has the Ethernet communication with the TCP/IP Modbus protocol.

  19. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  20. EIS-0031: Bonneville Power Administration 1979 Wholesale Rate Increase

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) developed this statement to explain the reasons for BPA's proposed power rate schedule, to conduct an analysis of the impacts which the proposal or alternatives thereto could have on both physical and socioeconomic characteristics of the human environment and to identify methods for mitigating the effects of the proposal.

  1. 2007 Wholesale Power Rate Adjustment Proceeding (WP-07) : Administrator's Final Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This Record of Decision (ROD) contains the decisions of the Bonneville Power Administration (BPA), based on the record compiled in this rate proceeding, with respect to the adoption of power rates for the three-year rate period commencing October 1, 2006, through September 30, 2009. This ''2007 Wholesale Power Rate Adjustment Proceeding'' is designed to establish replacement rate schedules and General Rate Schedule Provisions (GRSPs) for those that expire on September 30, 2006. This power rate case also establishes the General Transfer Agreement (GTA) Delivery Charge for the period of October 1, 2007, through September 30, 2009. BPA's Power Subscription Strategy and Record of Decision (Subscription Strategy), as well as other Agency processes, provide much of the policy context for this rate case and are described in Section 2. This ROD follows a full evidentiary hearing and briefing, including an Oral Argument before the BPA Administrator. Sections 3 through 18, including any appendices or attachments, present the issues raised by parties in this proceeding, the parties positions, BPA staff positions on the issues, BPA's evaluations of the positions, and the Administrator's decisions. Parties had the opportunity to file briefs on exceptions to the Draft ROD, before issuance of this Final Record of Decision.

  2. Standby Rates for Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Sedano, Richard; Selecky, James; Iverson, Kathryn; Al-Jabir, Ali

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  3. Diagnosis system to improve heat rate in fossil power plants

    SciTech Connect (OSTI)

    Arroyo-Figueroa, G.; Villavicencio R., A.

    1996-05-01

    Today fossil fuel power plants is showing a trend toward full automation. This increases the difficulty for human operators to follow in detail the progress of power plants, and also limit the contribution of human operators to diagnostic task. Therefore, automated and intelligent fault diagnostic systems have been intensively investigated. Despite several successful examples of diagnostic systems, often called expert systems, the development task of a diagnostic system still remains empiric and is unique for each system. This paper discusses the design of a Diagnostic System to improve Heat Rate for fossil fuel power plant. The approach is characterized as an fault tree diagnostic system. The prototype of this system has showed the benefits and the feasibility of using this system to diagnose equipment in power plants.

  4. Inflation in the generalized inverse power law scenario

    SciTech Connect (OSTI)

    Lu, Zhun

    2013-11-01

    We propose a single field inflationary model by generalizing the inverse power law potential from the intermediate model. We study the implication of our model on the primordial anisotropy of cosmological microwave background radiation. Specifically, we apply the slow-roll approximation to calculate the scalar spectral tilt n{sub s} and the tensor-to-scalar ratio r. The results are compared with the recent data measured by the Planck satellite. We find that by choosing proper values for the parameters, our model can well describe the Planck data.

  5. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational and non-operational risks will be described in Section 2.0 of this study. Given these risks, if rates are designed using BPA's traditional approach of only adding Planned Net Revenues for Risk (PNRR), power rates would need to recover a much larger ''risk premium'' to meet BPA's TPP standard. As an alternative to high fixed risk premiums, BPA is proposing a risk mitigation package that combines PNRR with a variable rate mechanism similar to the cost recovery adjustment mechanisms used in the FY 2002-2006 rate period. The proposed risk mitigation package is less expensive on a forecasted basis because the rates can be adjusted on an annual basis to respond to uncertain financial outcomes. BPA is also proposing a Dividend Distribution Clause (DDC) to refund reserves in excess of $800M to customers in the event net revenues in the next rate period exceed current financial forecasts.

  6. NMAC 19.14.1 Geothermal Power General Provisions | Open Energy...

    Open Energy Info (EERE)

    Geothermal Power General ProvisionsLegal Abstract These regulations outline the procedures for dealing with geothermal power issues in New Mexico. These rules are designed to...

  7. PowerChoice Residential Customer Response to TOU Rates

    SciTech Connect (OSTI)

    Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick

    2009-10-01

    Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.

  8. CP&L-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule CP&L-2-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Carolina Power & Light Company (hereinafter called the Company) and the Customer. This rate schedule

  9. CP&L-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule CP&L-3-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be scheduled pursuant to contracts between the Government and Carolina Power & Light Company (hereinafter called the Company) and the Customer. This rate schedule

  10. CP&L-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule CP&L-4-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina served through the transmission facilities of Carolina Power & Light Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power

  11. KP-AP-3-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-C Wholesale Power Rate Schedule KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), PJM Interconnection LLC (hereinafter called PJM), and the Customer. This rate

  12. KP-NC-1-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    NC-1-C Wholesale Power Rate Schedule KP-NC-1-C Wholesale Power Rate Schedule Area: Virginia Power/Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to a contract between the Government and Virginia Electric and Power Company (hereinafter called the Virginia Power) and PJM Interconnection LLC (hereinafter

  13. WAPA General Power Contract Provisions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon WAPAGeneralPowerContractProvisions.pdf More Documents & Publications WAPA Purchase of Energy Contractor Template SPR Pro Forma Contract Audit Report: IG-0409

  14. KP-VA-1-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-C Wholesale Power Rate Schedule KP-VA-1-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM

  15. KP-VA-2-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-C Wholesale Power Rate Schedule KP-VA-2-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  16. KP-VA-3-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-C Wholesale Power Rate Schedule KP-VA-3-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  17. CP&L-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule CP&L-1-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government and Carolina Power & Light Company (hereinafter called the Company) and the Customer. This

  18. KP-AP-1-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-C Wholesale Power Rate Schedule KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted and scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection

  19. KP-AP-2-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-C Wholesale Power Rate Schedule KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  20. KP-AP-4-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    AP-4-C Wholesale Power Rate Schedule KP-AP-4-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia served through the facilities of American Electric Power Service Corporation (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). This rate schedule shall be applicable to the sale at wholesale of

  1. KP-VA-4-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-C Wholesale Power Rate Schedule KP-VA-4-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina served through the transmission facilities of Virginia Electric and Power Company (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). This rate schedule shall be applicable to the sale at

  2. SCE&G-2-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-E Wholesale Power Rate Schedule SCE&G-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power

  3. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  4. KP-DEP-1-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-C Wholesale Power Rate Schedule KP-DEP-1-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government and Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company) and the

  5. KP-DEP-2-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2-C Wholesale Power Rate Schedule KP-DEP-2-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company) and the Customer.

  6. KP-DEP-3-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-C Wholesale Power Rate Schedule KP-DEP-3-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company) and the Customer.

  7. KP-DEP-4-C Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-C Wholesale Power Rate Schedule KP-DEP-4-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina served through the transmission facilities of Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company). This rate schedule shall be applicable to the sale at

  8. KP-Replacement-2-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-2-B Wholesale Power Rate Schedule KP-Replacement-2-B Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the John H. Kerr and Philpott Projects (or Kerr-Philpott System). This rate schedule shall be applicable to

  9. SCE&G-1-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    1-E Wholesale Power Rate Schedule SCE&G-1-E Wholesale Power Rate Schedule Area: South Carolina Electric & Gas Area System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall

  10. SCE&G-3-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-E Wholesale Power Rate Schedule SCE&G-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of

  11. SCE&G-4-E Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-E Wholesale Power Rate Schedule SCE&G-4-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina served through the transmission facilities of South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at

  12. CU-CC-1-J Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CC-1-J Wholesale Power Rate Schedule CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western Division System: CU This rate schedule shall be available to public bodies and cooperatives served through the facilities of Duke Energy Progress (formerly known as Carolina Power & Light Company), Western Division (hereinafter called the Customers). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek,

  13. CU-CEK-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CEK-1-I Wholesale Power Rate Schedule CU-CEK-1-I Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative (hereinafter called the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  14. CU-CM-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CM-1-I Wholesale Power Rate Schedule CU-CM-1-I Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such

  15. CU-CSI-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CSI-1-I Wholesale Power Rate Schedule CU-CSI-1-I Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power Cooperative (hereinafter the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  16. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments [OSTI]

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  17. Improved test method to verify the power rating of a photovoltaic (PV)

    Office of Scientific and Technical Information (OSTI)

    project. (Conference) | SciTech Connect SciTech Connect Search Results Conference: Improved test method to verify the power rating of a photovoltaic (PV) project. Citation Details In-Document Search Title: Improved test method to verify the power rating of a photovoltaic (PV) project. This paper reviews the PVUSA power rating method and presents two additional methods that seek to improve this method in terms of model precision and increased seasonal applicability. It presents the results of

  18. CU-Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-3 Wholesale Power Rate Schedule CU-Replacement-3 Wholesale Power Rate Schedule Area: Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky, southern Illinois System: CU This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the

  19. Alaska - AS 42.05.431 - Power of Commission to Fix Rates | Open...

    Open Energy Info (EERE)

    - AS 42.05.431 - Power of Commission to Fix RatesLegal Abstract This section sets forth the authority of the Regulatory Commission to fix rates for service by utilities....

  20. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  1. CU-CBR-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CBR-1-I Wholesale Power Rate Schedule CU-CBR-1-I Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called

  2. CU-CK-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CK-1-I Wholesale Power Rate Schedule CU-CK-1-I Wholesale Power Rate Schedule Area: Kentucky Utilities System: CU This rate schedule shall be available to public bodies served through the facilities of Kentucky Utilities Company, (hereinafter called the Customers.) This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being

  3. CU-CTV-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CTV-1-I Wholesale Power Rate Schedule CU-CTV-1-I Wholesale Power Rate Schedule Area: Tennessee Valley Authority System: CU This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland

  4. CU-CTVI-1-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CTVI-1-B Wholesale Power Rate Schedule CU-CTVI-1-B Wholesale Power Rate Schedule Area: Former customers of TVA System: Cumberland This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell

  5. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    BPA's operating environment is filled with numerous uncertainties, and thus the rate-setting process must take into account a wide spectrum of risks. The objective of the Risk Analysis is to identify, model, and analyze the impacts that key risks have on BPA's net revenue (total revenues less total expenses). This is carried out in two distinct steps: a risk analysis step, in which the distributions, or profiles, of operating and non operating risks are defined, and a risk mitigation step, in which different rate tools are tested to assess their ability to recover BPA's costs in the face of this uncertainty. Two statistical models are used in the risk analysis step for this rate proposal, the Risk Analysis Model (RiskMod), and the Non-Operating Risk Model (NORM), while a third model, the ToolKit, is used to test the effectiveness of rate tools options in the risk mitigation step. RiskMod is discussed in Sections 2.1 through 2.4, the NORM is discussed in Section 2.5, and the ToolKit is discussed in Section 3. The models function together so that BPA can develop rates that cover all of its costs and provide a high probability of making its Treasury payments on time and in full during the rate period. By law, BPA's payments to Treasury are the lowest priority for revenue application, meaning that payments to Treasury are the first to be missed if financial reserves are insufficient to pay all bills on time. For this reason, BPA measures its potential for recovering costs in terms of probability of being able to make Treasury payments on time (also known as Treasury Payment Probability or TPP).

  6. PVUSA procurement, acceptance, and rating practices for photovoltaic power plants

    SciTech Connect (OSTI)

    Dows, R.N.; Gough, E.J.

    1995-09-01

    This report is one in a series of PVUSA reports on PVUSA experiences and lessons learned at the demonstration sites in Davis and Kerman, California, and from participating utility host sites. During the course of approximately 7 years (1988--1994), 10 PV systems have been installed ranging from 20 kW to 500 kW. Six 20-kW emerging module technology arrays, five on universal project-provided structures and one turnkey concentrator, and four turnkey utility-scale systems (200 to 500 kW) were installed. PVUSA took a very proactive approach in the procurement of these systems. In the absence of established procurement documents, the project team developed a comprehensive set of technical and commercial documents. These have been updated with each successive procurement. Working closely with vendors after the award in a two-way exchange provided designs better suited for utility applications. This report discusses the PVUSA procurement process through testing and acceptance, and rating of PV turnkey systems. Special emphasis is placed on the acceptance testing and rating methodology which completes the procurement process by verifying that PV systems meet contract requirements. Lessons learned and recommendations are provided based on PVUSA experience.

  7. PPPL lends General Electric a hand in developing an advanced power switch |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab lends General Electric a hand in developing an advanced power switch By John Greenwald August 28, 2014 Tweet Widget Google Plus One Share on Facebook Laboratory test of a liquid-metal cathode. (Photo by General Electric Co. ) Laboratory test of a liquid-metal cathode. Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in developing an electrical switch that could help lower utility

  8. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  9. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

  10. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  11. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    SciTech Connect (OSTI)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d.

  12. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  13. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect (OSTI)

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  14. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    SciTech Connect (OSTI)

    Schroeder, John A.; Bower, Gordon R.

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plants low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRCs Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  15. Improved test method to verify the power rating of a photovoltaic (PV) project.

    SciTech Connect (OSTI)

    Panchula, A.; Pligavko, A.; King, D.; Marion, B.; Townsend, T.; Mitchell, L.; Dierauf, T.; Kimber, A.; Osterwald, C. R.; Newmiller, Jeff; Emery, K.; Talmud, F.; Whitaker, Chuck; Myers, D.; Forbess, J.; Granata, Jennifer E.; Levitsky, T.

    2010-03-01

    This paper reviews the PVUSA power rating method and presents two additional methods that seek to improve this method in terms of model precision and increased seasonal applicability. It presents the results of an evaluation of each method based upon regression analysis of over 12 MW of operating photovoltaic (PV) systems located in a wide variety of climates. These systems include a variety of PV technologies, mounting configurations, and array sizes to ensure the conclusions are applicable to a wide range of PV designs and technologies. The work presented in this paper will be submitted to ASTM for use in the development of a standard test method for certifying the power rating of PV projects.

  16. AC Resonant charger with charge rate unrelated to primary power frequency

    DOE Patents [OSTI]

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  17. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-E-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-E-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-E-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-E-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-E-BPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard. The processes and interaction between each of the models and studies are depicted in Graph 1.

  18. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-FS-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-FS-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-FS-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-FS-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-FSBPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard. The processes and interaction between each of the models and studies are depicted in Graph 1.

  19. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  1. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect (OSTI)

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  2. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  3. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  4. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  5. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  6. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  7. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  8. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  9. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  10. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  11. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  12. Power Rates Study Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.87 49.85 2,617 Franklin 0 0 0.00 0 0 0 - - 0.00 0.00 - Snohomish County PUD No 1 1 49.59 47.98 3,784 3,848 3,816 6,142 3,870 1.01 48.99 2,272 Total 798,913 ...

  13. 2012 Wholesale Power Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - September 2015 RDS 11 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 B C D E F G H I J K L M N O...

  14. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information JLF Contacts Request a Tour

  15. FPS-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...

  16. LB CRAC Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Load-Based (LB) CRAC Power Rate Adjustment Workshop Materials Related Links: Power Rate Adjustments > Load-Based (LB) CRAC December 13, 2006 LB CRAC Workshop Materials (updated...

  17. Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Rate Schedules One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are updated annually. They demonstrate the adequacy of the rates for each system. Rates are considered to be adequate when revenues are sufficient to repay all costs associated with power

  18. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sam Rayburn Dam Project Hydroelectric Power Rate Increase (Part B4.3) Robert Douglas Willis Hydropower Project Hydroelectric Power Rate Increase (Part B4.3) Springfield-Nixa-Tabler...

  19. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  20. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    to recover expenses and meet debt obligations .... regardless of regulatory environment * Credit rating agencies generally view autonomy of rate making by electric cooperatives...

  1. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  2. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  3. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  4. SN-03 Rate Case Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Related Link: SN-03 Power Rate Case May 1 & 13, 2003 - Debt and Liquidity Strategies workshops (on BPA Corporate web site) March 27, 2003 - SN CRAC Prescheduling...

  5. General Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  6. BPA proposes rate increase to bolster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed a 9.6 percent average wholesale power rate increase to compensate for reduced revenue expectations from surplus power sales and to continue funding needed investments in...

  7. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  8. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  9. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  10. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  11. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  12. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  13. Southeastern Power Administration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeastern Power Administration Southeastern Power Administration Power Operations Click to view a map of SEPA power operations. Latest Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South

  14. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Tables The General Tables for the most recent TUNL evaluation of "Energy Levels of Light Nuclei, A = 8, 9, 10" published in Nuclear Physics A745 (2004) p.155 and "Energy Levels of Light Nuclei, A = 5, 6, 7" published in Nuclear Physics A708 (2002) p.3 are available below. Beginning with the A = 5, 6, 7 nuclei, the General Tables will no longer be included in the publications of "Energy Levels of Light Nuclei" in Nuclear Physics A. The tables will be placed

  15. BPA Power Products (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Menus | Site Map | Regional Dialogue | Power Function Review | WP-07 Rate Case | Hydro Power | BPA Home | BPA Finance & Rates | BPA Jobs | BPA Public Involvement | BPA...

  16. General Recommendations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    find the best IO rates on Hopper and Edison with the local scratch file system. If your jobs are reading or writing a lot of data, you should use the local scratch file systems....

  17. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information General Information As a premier national research and development laboratory, LANL seeks to do business with qualified companies that offer value and high quality products and services. Contact Small Business Office (505) 667-4419 Email Are you a good fit for LANL? Need to find out more? LANL and its Small Business Program is only a phone call or email away. (See contact information, at left.) We want to be sure you can find a good fit with our procurement opportunities and

  18. October 2001 - September 2006 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002 - September 2002 (CRAC 2 period) October 2001 - March 2002 (CRAC 1 period) Final LB CRAC True-Ups for FY 2006 True-Up for CRAC 9 Period: June 14, 2006 Workshop True-Up for...

  19. Historical Average Priority Firm Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (A to Z) - - - - - - - - - - - - - Account Executives Administrator's RODs Aluminum Industry Study (2000-01) Billing Procedures Customer Service Centers Daily Notice Document...

  20. GENERAL ASSIGNMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL ASSIGNMENT KNOW ALL MEN BY THESE PRESENTS, that ___________________________________, a corporation organized and existing under the laws of the State of ________________________, with its principal place of business at ___________________________________, ___________________________________ has been engaged in performing work under Award Number DE-__________________________with the UNITED STATES OF AMERICA (hereinafter called the "Government"), represented by the UNITED STATES

  1. SOUTHWESTERN POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/01 SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Hydroelectric Power Rate Increase for the Integrated System of Hydropower Projects. PROPOSED BY: Southwestern Power Administration. NUMBER AND TITLE OF THE CATEGORICAL EXCLUSION BEING APPLIED: ( 10 CFR 1021, Appendix B to Subpart D, 1-1-03 Edition, Part B4.3 - Electric power marketing rate changes. REGULATORY REQUIREMENTS IN 10 CFR 1021.410(B): (1) The proposed action fits within

  2. Inspector General

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspector General Office of the Secretary Dr. Ernest J. Moniz Secretary Dr. Elizabeth Sherwood-Randall Deputy Secretary Chief of Staff Office of the Under Secretary for Nuclear Security and National Nuclear Security Administration Frank G. Klotz Under Secretary for Nuclear Security Administrator, NNSA Madelyn Creedon Principal Deputy Administrator NNSA DEPARTMENT OF ENERGY Office of the Under Secretary for Management & Performance Vacant Under Secretary for Management and Performance Office

  3. Office of Inspector General

    Energy Savers [EERE]

    Office of Inspector General Office of Audits and Inspections Work Plan for FY 2013 Audits Central Audits Division  Ecotality  Funding Overlap  Follow-up on Smart Grid Investment Grant  DOE's Loan Program Office's Portfolio Management  Office of Fossil Energy's Regional Carbon Sequestration Partnerships  Advanced Manufacturing Office's Combined Heat and Power Systems  DOE's Management of Contaminated Non-EM Facilities  Unneeded Real Estate  Review of For-Profit Grantees

  4. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  5. General Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Publications Print ALS Strategic Plan 2015-19 cover image An updated version of the ALS Strategic Plan, covering the five-year period from 2015 to 2019. As in the 2014-18 version, Section I gives a brief synopsis on beamline and endstation projects. The science drivers behind these projects are explained in greater detail in Section II, and a very brief description of emerging plans for a ALS-U are in Section III. Soft X-ray Science Opportunities Using Diffraction-Limited Storage Rings A

  6. 2012 Wholesale Power and Transmission Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PF-02 Customer Percentages and Customer-Specific PF-02 Refunds Exhibit C - Renewable Energy Certificates and Carbon Attributes to IOUs Exhibit D - Illustrative Table for...

  7. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    reports Coal Transportation Rates to the Electric Power Sector With Data through 2014 | Release Date: February 23, 2016 | Next Release Date: January 2017 | Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data in the tables are based on primary data collected by EIA from plant owners and operators on the Form EIA-923, "Power Plant Operations Report" (EIA-923 Data) and supplement data and analysis of coal transportation costs released by EIA in June

  8. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hachijojima Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hachijojima Geothermal Energy Power Plant General Information Name...

  9. Generalized galilean genesis

    SciTech Connect (OSTI)

    Nishi, Sakine; Kobayashi, Tsutomu

    2015-03-31

    The galilean genesis scenario is an alternative to inflation in which the universe starts expanding from Minkowski in the asymptotic past by violating the null energy condition stably. Several concrete models of galilean genesis have been constructed so far within the context of galileon-type scalar-field theories. We give a generic, unified description of the galilean genesis scenario in terms of the Horndeski theory, i.e., the most general scalar-tensor theory with second-order field equations. In doing so we generalize the previous models to have a new parameter (denoted by α) which results in controlling the evolution of the Hubble rate. The background dynamics is investigated to show that the generalized galilean genesis solution is an attractor, similarly to the original model. We also study the nature of primordial perturbations in the generalized galilean genesis scenario. In all the models described by our generalized genesis Lagrangian, amplification of tensor perturbations does not occur as opposed to what happens in quasi-de Sitter inflation. We show that the spectral index of curvature perturbations is determined solely from the parameter α and does not depend on the other details of the model. In contrast to the original model, a nearly scale-invariant spectrum of curvature perturbations is obtained for a specific choice of α.

  10. Lihir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  11. Fang Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  12. Poihipi Power Station | Open Energy Information

    Open Energy Info (EERE)

    Poihipi Power Station General Information Name Poihipi Power Station Sector Geothermal energy Location Information Location Poihipi Road, Near Taupo, Waikato, New Zealand...

  13. Rotokawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Power Plant General Information Name Rotokawa Geothermal Power Plant Sector Geothermal energy Location Information Location 14km NE of Taupo, Waikato, New Zealand Coordinates...

  14. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/)

  15. Public Utilities Specialist (Rates) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Utilities Specialist (Rates) Public Utilities Specialist (Rates) Submitted by admin on Fri, 2016-01-08 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Western Area Power Administration Locations Phoenix, Arizona Announcement Number WAPA-16-DE-70 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Desert Southwest Region, Power Marketing, Rates and Alternative Financing, Phoenix, AZ

  16. Southwestern Power Administration One West Third Street

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Administration (Southwestern) has completed its 2014 review of the continuing adequacy of the existing hydroelectric power rates for the Sam Rayburn Dam Hydropower Project. ...

  17. Southwestern Power Administration One West Third Street

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that Southwestern Power Administration (Southwestern) has completed its 2015 review of the continuing adequacy of the existing hydroelectric power rates for the Integrated System. ...

  18. PEMP General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-A - 01/01/13 to 06/30/13 WTP Contract No. DE-AC27-01RV14136 Page 1 WTP PERFORMANCE EVALUATION & MEASUREMENT PLAN - PERIOD 2013-A TABLE OF CONTENTS Num ber PEMP General Information A Introduction 2 B Roles and Responsibilities 3 C Process and Schedule 5 D Contractor Self-Assessment 5 E PEMP Numbering System and Definitions 6 F Performance Periods 7 G Incentive Ratings and Definitions 7 Attachment A - Incentive B.1 - Award Fee - Project Management Incentive 7 B.1 Aw ard Fee - Project Managem

  19. PEMP General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-B - 07/01/12 to 12/31/12 WTP Contract No. DE-AC27-01RV14136 Page 1 WTP PERFORMANCE EVALUATION & MEASUREMENT PLAN - PERIOD 2012-B TABLE OF CONTENTS Num ber PEMP General Information A Introduction 2 B Roles and Responsibilities 3 C Process and Schedule 5 D Contractor Self-Assessment 5 E PEMP Numbering System and Definitions 6 F Performance Periods 7 G Incentive Ratings and Definitions 7 Attachment A - Incentive B.1 - Award Fee - Project Management Incentive 8 B.1 Aw ard Fee - Project Managem

  20. BPA, Power Services, Letter announcing Port Townsend Paper Company...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Administration (BPA) is proposing to offer a Firm Power Sales Agreement to Port Townsend Paper Corporation at the Industrial Firm Power (IP) rate. BPA currently has a...

  1. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  2. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  5. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  6. Quadrupole transitions near an interface: General theory and application to an atom inside a planar cavity

    SciTech Connect (OSTI)

    Klimov, V.V.; Ducloy, M.

    2005-10-15

    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of the Green's function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case where the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.

  7. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.

  8. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  9. A = 5 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 General Tables The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions The General Table for...

  10. gtp_flow_power_estimator.xlsx

    Broader source: Energy.gov [DOE]

    This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

  11. Power-law connections: From Zipf to Heaps and beyond

    SciTech Connect (OSTI)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2013-05-15

    In this paper we explore the asymptotic statistics of a general model of rank distributions in the large-ensemble limit; the construction of the general model is motivated by recent empirical studies of rank distributions. Applying Lorenzian, oligarchic, and Heapsian asymptotic analyses we establish a comprehensive set of closed-form results linking together rank distributions, probability distributions, oligarchy sizes, and innovation rates. In particular, the general results reveal the fundamental underlying connections between Zipfs law, Paretos law, and Heaps lawthree elemental empirical power-laws that are ubiquitously observed in the sciences. -- Highlights: ? The large-ensemble asymptotic statistics of rank distributions are explored. ? Lorenzian, oligarchic, and Heapsian asymptotic analyses are applied. ? Associated oligarchy sizes and induced innovation rates are analyzed. ? General elemental statistical connections are established. ? The underlying connections between Zipfs, Paretos and Heaps laws are unveiled.

  12. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  13. 8C General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C General Tables The General Table for 8C is subdivided into the following categories: Reviews Other Theoretical Work

  14. 6Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6Be General Table The General Table for 6Be is subdivided into the following categories: Cluster Model Model Calculations...

  15. EA-97-B Portland General Electric Company | Department of Energy

    Energy Savers [EERE]

    B Portland General Electric Company EA-97-B Portland General Electric Company Order authorizing Portland General Electric Company to export electric energy to Canada PDF icon EA-97-B Portland General Electric Company More Documents & Publications EA-380 Freeport Commodities EA-97-D Portland General Electric Company EA-196-A Minnesota Power, Sales

  16. GENERAL@ELECTtiIC COMPINY

    Office of Legacy Management (LM)

    GENERAL@ELECTtiIC COMPINY ~9013 ~APPROVAL NO. 143 Article II, Section 8(b) PICHLAND, WASHINGTON .~. "ANFORD ATOMlC PlOD"CTS O*Ert*,ION ,. u/S; Atomic Energy Comisaion Hailfbrd operations Office Richland, Washington Attention: Mr. J. E. Travis, Manager Gentlemen: EXTRUSION OF URANIUM DIOXIDE FOR GENERAL ~ED&'RIC - APED The Atoinic Power Equipment Depart!++ of ~the The uranium dioxide necess :Material License No. C-3351. for establishing the value'of the.material will be developed

  17. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  18. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Our work in stationary power includes the deployment of clean electricity, which ...

  19. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  20. General Services Administration Photovoltaics Project in Sacramento,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a request for proposal issued for the General Services Administration photovoltaic (PV) project. PDF icon gsa_sacramento_pv_rfp.pdf More Documents & Publications NASA Enhanced Use Lease DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request for Proposal POLICY

  1. 7He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions

  2. 9He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 9He is subdivided into the following categories: Shell Model Other Model Calculations Theoretical

  3. 5He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 5He is subdivided into the following categories: Ground State Properties Theoretical Special States Model Discussions Shell Model Cluster...

  4. 6He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 6He is subdivided into the following categories: Ground State Properties Theoretical Special States Shell Model Cluster and alpha-particle...

  5. General | Open Energy Information

    Open Energy Info (EERE)

    General Jump to: navigation, search Informacin y Documentos Herramientas y Modelos <> Estadsticas de Energas Renovables Volver Pgina principal General banner.jpg Retrieved...

  6. 5H General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H General Table The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions...

  7. 10He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Table The General Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions...

  8. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power - Water PowerTara Camacho-Lopez2016-02-16T18:27:48+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  9. Oserian 202 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Oserian 202 Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oserian 202 Geothermal Power Plant General Information Name Oserian 202 Geothermal...

  10. Aluto-Langano Geotermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Aluto-Langano Geotermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aluto-Langano Geotermal Power Plant General Information Name Aluto-Langano...

  11. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Dora-1 Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dora-1 Geothermal Energy Power Plant General Information Name Dora-1 Geothermal...

  12. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  13. An Introduction to Electric Power Transmission | Open Energy...

    Open Energy Info (EERE)

    An Introduction to Electric Power Transmission Jump to: navigation, search OpenEI Reference LibraryAdd to library General: An Introduction to Electric Power Transmission Abstract...

  14. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  15. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monday Tuesday Wednesday Thursday Friday Saturday Sunday Generation Schedules Southwestern provides a current day schedule - online using the links to the left and by telephone at 866-494-1993 - to keep the public informed about estimated generation at the projects from which we schedule power. Note that the number of megawatts to be generated, and consequently, the rate at which water is released at each project, is subject to change as demand for power increases or decreases. In addition, the

  16. Student Trainee (General Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in Power Services (P) of the Bonneville Power Administration (BPA). The position involves periods of pertinent formal education and periods of employment in an engineering...

  17. Measuring Standby Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies » Energy-Efficient Products » Measuring Standby Power Measuring Standby Power Some devices consume electricity when they appear to be turned off. This power consumption is known as standby power and can be a significant contributor to product energy use. The International Electrotechnical Commission (IEC) 62301 test procedure describes a method for measuring standby power use in appliances. This summary introduces the general approach to measuring standby power.

  18. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Backup Power Overview Fuel cells convert the chemical energy in hydrogen to electricity with only water and heat as byproducts and are commercially available today for certain applications. One of these is emergency backup power. Today's commercially available fuel cell backup power (BUP) systems are particularly appropriate for low-power applications (generally up to 10 kW) requiring intermittent backup power when electricity is unavailable from a primary source, such as an electric grid power

  19. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  20. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWhsq meter power production potential As the accompanying map of ...

  1. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

  2. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  3. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  4. Powered protrusion cutter

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2010-03-09

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  5. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  6. 8Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be General Tables The General Table for 8Be is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodisintegration Fission and Fusion Astrophysical b-decay Hypernuclei

  7. 9B General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B General Table The General Table for 9B is subdivided into the following categories: Shell Model Cluster Model Theoretical Other Model Calculations Complex Reactions Beta-Decay Pions Light-ion and Neutron Induced Reactions Hypernuclei

  8. 9C General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C General Table The General Table for 9C is subdivided into the following categories: Shell Model Cluster Model Other Models Theoretical Beta-Decay Light-ion and Neutron Induced Reactions Astrophysical

  9. 6Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 6Li is subdivided into the following categories: Ground State Properties of 6Li Special States Theoretical Shell Model Cluster Models Complex...

  10. WATER POWER SOLAR POWER WIND POWER

    Broader source: Energy.gov (indexed) [DOE]

    get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation! YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use energy from the earth to heat and cool our homes. Check out these cool websites to learn more about clean energy! Energy Information Administration

  11. OFFICE OF INSPECTOR GENERAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APP-005 Planning for and Measuring Office of Inspector General Results FY 2002 Annual Performance Report and FY 2003 Annual Performance Plan Office of Inspector General U.S. Department of Energy Inspector General's Message We are pleased to present the Office of Inspector General's (OIG) consolidated Fiscal Year 2002 Annual Performance Report and Fiscal Year 2003 Annual Performance Plan. This document evaluates our actual Fiscal Year (FY) 2002 performance and establishes the performance goals

  12. February 10, 2010- Public Power Open Session

    Broader source: Energy.gov [DOE]

    this webinar presentation is the first in a six part series and covers general infromation for public power utilities to provide assistance to industrial customers

  13. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  14. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  15. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  16. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  17. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  18. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  19. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  20. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  1. Bjarnaflag Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bjarnaflag Geothermal Power Plant Sector Geothermal energy Location Information Location Lake Myvatn, Iceland Coordinates 65.640833,...

  2. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  3. A = 7 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 General Tables The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure

  4. General Resources - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beryllium Program General Resources About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources General Resources Email Email Page | Print Print Page

  5. Reliability Estimates for Power Supplies

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Peter I. Petersen

    2005-09-01

    Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values.

  6. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  9. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  13. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  16. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  17. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  18. Appalachian Power (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    On June 24, 2015 the Virginia State Corporation Commission approved various rate-payer funding energy efficiency programs for residential Appalachian Power customers in Virginia. Appalachian Power...

  19. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  20. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  1. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew (Shoreham, NY); Falkowski, Paul (Stony Brook, NY)

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  2. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  3. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  4. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  5. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power - NearyFig1 Permalink Gallery University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Energy, Modeling & Analysis, News, Partnership, Renewable Energy, Water Power University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Sandia Labs Water Power Technologies Department promotes open-source marine hydrokinetic research by disseminating information on MHK technology designs

  6. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  7. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  8. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  9. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the industrial development of ocean-energy power-generation knowledge and ... Sandia is developing a fast-running current energy converter (CEC) wake-interaction model. ...

  10. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Douglas Willis Hydropower Project Hydroelectric Power Rate Increase Program or Field Office: 3100 Division of Resources and Rates Location(s) (CityCountyState): Tulsa, ...

  11. 10Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =

  12. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  13. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  14. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  15. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  16. BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to maintain reliable transmission service at low rates and meet growing demands for electricity. Over the past several years, numerous power generation projects, including large...

  17. Georgia Power- Small Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Georgia Power offers Small Commercial rebates to customers on qualifying rates. See program web site for additional details including eligibility information.

  18. General Service LED Lamps

    SciTech Connect (OSTI)

    2012-04-01

    Solid-state lighting program technology fact sheet that compares general service incandescent lamps—i.e., light bulbs—to LED and CFL alternatives.

  19. A = 10 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions The General Table for...

  20. A = 9 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations...

  1. 10N General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subdivided into the following categories: Reviews Ground-State Properties Shell Model Cluster Model Other Theoretical Work These General Tables correspond to "Energy Levels of...

  2. GE PowerPoint Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power of Networks in an Age of Gas Peter Evans, PhD Director Global Strategy & Analytics General Electric 2013 EIA Energy Conference June 17-18, 2013 Washington, DC 2 2013 EIA Energy Conference General Electric © 2013 - All Rights Reserved Sources of competitive advantage Thomas Edison - GE Founder Natural endowments Creative endowments The U.S. is rich in both 3 2013 EIA Energy Conference General Electric © 2013 - All Rights Reserved Physical and digital infrastructure Advantage of

  3. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  4. 7Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be General Table The General Table for 7Be is subdivided into the following categories: Reviews Experimental Work Shell Model Cluster Model Other Theoretical Work Model Calculations Projectile Fragmentation and Multifragmentation Astrophysical b Decay Astrophysical Neutrinos Hypernuclei, Mesons and Other Exotic Particles Applications

  5. General Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  6. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  7. Power plant emissions reduction

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  8. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (Public Law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of Management

  9. WP-07-A-05A, Appendix A to the 2007 Supplemental Wholesale Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (rate) FY Fiscal Year (Oct-Sep) GAAP Generally Accepted Accounting Principles GEP Green Energy Premium GRSPs General Rate Schedule Provisions GSP Generation System Peak GTA...

  10. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  11. Power combiner

    SciTech Connect (OSTI)

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  12. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  13. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  14. 2011 IAEA General Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 IAEA General Conference Remarks as Prepared for Delivery Secretary Steven Chu Monday, September 19, 2011 Thank you, Ambassador Feruta. Congratulations on your election as President of this Conference. I also want to thank Director General Amano for his outstanding leadership. I am honored to represent the United States today, and I want to share a message from President Barack Obama: "On behalf of the United States, please accept my best wishes for a successful International Atomic Energy

  15. General User Proposals (GUPs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General User Proposals (GUPs) Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the Participating Research Team (PRT) that operates the beamline. Before Submitting a Proposal Review the ALS Beamlines Directory to learn about the research capabilities of individual beamlines at the ALS. Contact the beamline scientist or the local contact listed in the tables, for additional information about the

  16. PowerPoint Presentation

    Energy Savers [EERE]

    Corps Capital Costs  Corps O&M Expense  Joint Costs  Spilling of Water  Drought/Wet Years  Completion delays  M&I Water Use 2 Flood Control Act  ". . . lowest possible rates to consumers consistent with sound business principles, . . ."  ". . . recovery . . . of the cost of producing and transmitting such electric energy, including the amortization of the capital investment allocated to power over a reasonable period of years." 3  Pay

  17. The Department of Energy's Water Power Program

    Energy Savers [EERE]

    Department of Energy's Water Power Program OAS-M-14-07 June 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 June 26, 2014 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Water Power Program" BACKGROUND The

  18. Feasibility report for the installation and operation of an electrical power generating plant on the Islands of Zanzibar and Pemba, Tanzania. Export trade information

    SciTech Connect (OSTI)

    Patel, M.C.

    1994-04-04

    The study, conducted by S & Davis International, was funded by the U.S. Trade and Development Agency on behalf of Tanzania`s Ministry of Water, Construction, Energy, Land, and Environment. The report reviews and evaluates the existing power source and support stations for the current and future reliability of providing power to the islands of Zanzibar and Pemba as well as the feasibility of obtaining an independent power source. The study also covers the cost of power generation and rate structures, including the execution schedule and budgetary costs. The report contains the Introduction and Executive Summary and is divided into the following chapters: (1) General Information; (2) Power Supply Assessment; (3) Estimate of Power Usage; (4) Recommended Power Plant Configuration; (5) Technical Data on Generators; (6) The Economics.

  19. General Groves takes charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groves had fixed all the major problems holding up progress. He had obtained the highest credit rating possible, purchased Site X and secured the needed uranium ore. Next he began...

  20. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Environmental Management (EM)

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer January 11, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  1. Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative, IG-0409

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 25, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative" BACKGROUND: At the request of the Western Area Power Administration (Western), we conducted an audit of charges to Western made by Basin Electric Power Cooperative (Basin), under Contract No. DE- MP65-82WP-19001. The contract for Westernms purchase of electric power from Basin

  2. Inspection of Power Purchase Contracts at the Western Area Power Administration, IG-0372

    Office of Environmental Management (EM)

    IG-1 INFORMATION: Report on the "Inspection of Power Purchase Contracts at the Western Area Power Administration" TO:The Secretary BACKGROUND: The subject final report is provided for your information. The Office of Inspector General received an allegation regarding possible irregularities in certain power purchase contracts awarded by the Western Area Power Administration. Based on our survey of Western's power purchase procedures, we expanded our allegation based inquiry to include

  3. Power inverters

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  4. 2012 Wholesale Power and Transmission Rate Adjustment Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals for a balancing reserve capacity product that could be used to manage wind-related tail events but that would not necessarily be available at all hours of all days....

  5. DOE/BP-3391, 2002 Supplemental Power Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 4-21 4.4 Implementation of Fish and Wildlife Funding Principles and Other Fish and Wildlife Issues......

  6. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  7. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  8. CTVI-1-A Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland...

  9. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point, Robert F. Henry, Carters, and Richard B. Russell Projects (hereinafter called the Projects) and sold under appropriate contracts between the Government and the Customer. ...

  10. GENERAL PRINCIPLES OF AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL PRINCIPLES OF AGREEMENT HWB-14-20 and HWB-14-21 These General Principles of Agreement ("Principles of Agreement") are agreed upon by the New Mexico Environment Department ("NMED"), and the United States Department of Energy ("DOE"), Los Alamos National Security, LLC ("LANS"), and Nuclear Waste Partnership, LLC ("NWP") (collectively, with DOE and LANS, the "DOE Permittees") for the purpose of resolving Compliance Order Nos.

  11. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  12. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |

    Energy Savers [EERE]

    Department of Energy Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost,

  13. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  14. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  15. Constrained Generalized Supersymmetries

    SciTech Connect (OSTI)

    Toppan, Francesco; Kuznetsova, Zhanna

    2005-10-17

    We present a classification of admissible types of constraint (hermitian, holomorphic, with reality condition on the bosonic sectors, etc.) for generalized supersymmetries in the presence of complex spinors. A generalized supersymmetry algebra involving n-component real spinors Qa is given by the anticommutators {l_brace}Q{sub a},Q{sub b}{r_brace} = Z{sub ab} where the matrix Z appearing in the r.h.s. is the most general symmetric matrix. A complex generalized supersymmetry algebra is expressed in terms of complex spinors Qa and their complex conjugate Q* a. The most general (with a saturated r.h.s.) algebra is in this case given by {l_brace}Q{sub a},Q{sub b}{r_brace} P{sub ab}{l_brace}Q*{sub a}, Q*{sub b}{r_brace} = P*{sub ab}{l_brace}Q{sub a},Q*{sub b}{r_brace} = R{sub ab} where the matrix Pab is symmetric, while Rab is hermitian. The bosonic right hand side can be expressed in terms of the rank-k totally antisymmetric tensors P{sub ab} {sigma}k(C{gamma}{sub [{mu}}{sub 1...{mu}}{sub k]}){sub ab}P{sup [{mu}{sup 1...{mu}{sup k}]}.The decomposition in terms of anti-symmetric tensors for any space-time up to dimension D = 13 is presented. Real type, complex type, and quaternionic type space-times are classified. Any restriction on the saturated bosonic generators that allows all possible combinations of these tensors is in principle admissible by a Lorenz-covariant requirement. We investigate division algebra constraints and their influence on physical models. High spin theory models are presented as examples of the applications of such models.

  16. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  17. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  18. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  19. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  20. Categorical Exclusion Determinations: Southeastern Power Administration |

    Office of Environmental Management (EM)

    Department of Energy Southeastern Power Administration Categorical Exclusion Determinations: Southeastern Power Administration Categorical Exclusion Determinations issued by Southeastern Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD August 3, 2009 CX-000478: Categorical Exclusion Determination Proposed rate adjustment for the Jim Woodruff System CX(s) Applied: B4.3 Date: 08/03/2009 Location(s): Panhandle, Florida Office(s): Southeastern Power Administration

  1. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  2. Generalized constructive tree weights

    SciTech Connect (OSTI)

    Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org

    2014-04-15

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

  3. General User Proposals (GUPs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals (GUPs) Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the Participating Research Team (PRT) that operates the beamline. Before Submitting a Proposal Review the ALS Beamlines Directory to learn about the research capabilities of individual beamlines at the ALS. Contact the beamline scientist or the local contact listed in the tables, for additional information about the beamline. You can

  4. General Employee Radiological Training

    Office of Environmental Management (EM)

    _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a

  5. General Employee Radiological Training

    Office of Environmental Management (EM)

    Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The

  6. General Employee Radiological Training

    Office of Environmental Management (EM)

    DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14,

  7. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  8. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  9. General Technical Base Qualification Equivalencies Based On Previous Experience, 12/12/95

    Broader source: Energy.gov [DOE]

    "The header lists the general field of experience, Commercial Nuclear Power or Navy Nuclear PowerProgram, with all other categories under these two areas. The subheader lists the position title of...

  10. A brief overview of Chinese Design Code on Fossil-Fueled Power Plants

    SciTech Connect (OSTI)

    Xu Zhongqing; He Yehong

    1996-10-01

    The Chinese Design Code on Fossil Fueled Power Plants (DL 5000-94) was issued in April 1994 by the Ministry of Electric Power Industry, P.R. China, and the English version has been drafted and will be formally published in the near future. Based on the 1984 version and the nation`s current policies, the 1994 version was formed to meet the challenges of the nation`s speedy development of electric power construction. In general, the code is primarily a directive document guiding the planning and engineering of China`s large- and medium-sized fossil-fueled power plants. The preparation of the 1984 version and the revision of it to the 1994 version were all carried out by the East China Electric Power Design Institute under the direction of Electric Power Planning and Engineering Institute. For small-sized power plants with unit rating of 25 MW and below, there is another national design code titled Code for Design of Small Sized Power Plants (GB 50049-94) issued in November 1994 jointly by the China`s National Technology Supervision Administration and the Ministry of Construction.

  11. Workplace Charging Challenge Partner: General Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Motors Workplace Charging Challenge Partner: General Motors Workplace Charging Challenge Partner: General Motors GM has installed 269 workplace charging stations (including 74 powered by solar PV) for employees to use at 15 GM U.S. campuses, as well as an additional 400 "private" charging stations for executives and fleet development efforts. The majority of GM's workplace charge spots are located at 5 major sites in southeast Michigan including Detroit (33), Warren (113),

  12. Attorney General's signed concurrence letter approved October 9, 2009 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Attorney General's signed concurrence letter approved October 9, 2009 Attorney General's signed concurrence letter approved October 9, 2009 Attorney General Consulation on binding Arbitration Guidance PDF icon AG Concurrence for BPA More Documents & Publications Letter from DOJ regarding Boneeville Power Administration's Guidance on the Use of Binding Arbitration for BPA Contracts Oct 2009 final concurrence letter for BPA BPA FINAL Binding Arbitration policy

  13. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  14. Deming's General Least Square Fitting

    Energy Science and Technology Software Center (OSTI)

    1992-02-18

    DEM4-26 is a generalized least square fitting program based on Deming''s method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard''s, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested,moreand with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option of copying the plot to the printer. If the plot is to be copied to a printer, GRAPHICS should be called from the operating system disk before the BASIC interpreter is loaded.less

  15. General Motors | Open Energy Information

    Open Energy Info (EERE)

    Motors Jump to: navigation, search Name: General Motors Place: Detroit, MI Website: www.generalmotors.com References: General Motors1 Information About Partnership with NREL...

  16. PowerPoint Presentation

    Energy Savers [EERE]

    Corps Capital Costs  Corps O&M Expense  Joint Costs  Spilling of Water  Drought/Wet Years  Completion delays  M&I Water Use 2 Flood Control Act  ". . . lowest possible rates to consumers consistent with sound business principles, . . ."  ". . . recovery . . . of the cost of producing and transmitting such electric energy, including the amortization of the capital investment allocated to power over a reasonable period of years." 3  Pay annual

  17. American Power: Proposed Penalty (2010-CE-0911)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that American Power Solutions, Inc. failed to certify a general service fluorescent lamp as compliant with the applicable energy conservation standards.

  18. Power supply subsystem for MHD generator superconducting magnet, baseline power supply designs and costs

    SciTech Connect (OSTI)

    Kusko, A.; Peeran, S.M.

    1981-04-10

    An analysis of the dc power supply requirements for superconducting magnets used in MHD generators of ratings 250 MW/sub e//sup -/ 1000 MW/sub e/ is presented. The power supplies considered are rated for a peak power of 10 MW and for currents of 20 kA to 100 kA. The various aspects discussed include: rectifier configurations and specifications, control requirements, dumping the magnet energy, and rectifier size, arrangement and cost. (WHK)

  19. Digitally Controlled High Availability Power Supply

    SciTech Connect (OSTI)

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  20. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Cornia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  3. Carboli 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Bagnore 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  5. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  6. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  8. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  10. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  11. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Cerro Prieto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  13. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  15. Nuova Lago Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  16. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  17. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  18. Atomic power in space: A history

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  19. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  20. Northwest, the Bonneville Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    voltage power lines that move large amounts of power from hydroelectric projects and power plants to urban centers hundreds of miles away. To keep the electricity flowing safely...

  1. Powering | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization and Reliability Protect the Power Grid Using the power of software, machine learning, power systems, and other advanced analytics as well as next-generation design......

  2. CONCEPTUAL DESIGN STUDY OF HORN POWER SUPPLY.

    SciTech Connect (OSTI)

    ZHANG,W.; SANDBERG,J.; WENG,W.T.

    2003-06-16

    A 250 kA pulsed power supply is required for the focusing horn of the proposed Brookhaven AGS Super Neutrino Beam Facility for long baseline neutrino oscillation experiment. It is expected to pulse at 2.5 Hz repetition rate. A preliminary study is being conducted to explore the key issues associated with the power supply system design. Advanced technologies used in similar systems as well as new ideas are being examined, simulated and evaluated. This power supply will be a very high stored energy, high average power, and high peak power system.

  3. DWPF Macrobatch 2 Melt Rate Tests

    SciTech Connect (OSTI)

    Stone, M.E.

    2001-01-03

    The Defense Waste Processing Facility (DWPF) canister production rate must be increased to meet canister production goals. Although a number of factors exist that could potentially increase melt rate, this study focused on two: (1) changes in frit composition and (2) changes to the feed preparation process to alter the redox of the melter feed. These two factors were investigated for Macrobatch 2 (sludge batch 1B) utilizing crucible studies and a specially designed ''melt rate'' furnace. Other potential factors that could increase melt rate include: mechanical mixing via stirring or the use of bubblers, changing the power skewing to redistribute the power input to the melter, and elimination of heat loss (e.g. air in leakage). The melt rate testing in FY00 demonstrated that melt rate can be improved by adding a different frit or producing a much more reducing glass by the addition of sugar as a reductant. The frit that melted the fastest in the melt rate testing was Frit 165. A paper stud y was performed using the Product Composition Control System (PCCS) to determine the impact on predicted glass viscosity, liquidus, durability, and operating window if the frit was changed from Frit 200 to Frit 165. PCCS indicated that the window was very similar for both frits. In addition, the predicted viscosity of the frit 165 glass was 46 poise versus 84 poise for the Frit 200 glass. As a result, a change from Frit 200 to Frit 165 is expected to increase the melt rate in DWPF without decreasing waste loading.

  4. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  5. [FIXED RATE GUARANTEED OBLIGATIONS]

    Broader source: Energy.gov (indexed) [DOE]

    FIXED RATE GUARANTEED OBLIGATIONS] Draft Date: May 09, 2011 AMR-306688-v5 81-40475664 DATED AS OF [______], 20[__] AMONG THE HOLDERS IDENTIFIED HEREIN, THEIR SUCCESSORS AND PERMITTED ASSIGNS, AND THE UNITED STATES DEPARTMENT OF ENERGY, AS GUARANTOR, AND [_____________________________], AS ADMINISTRATIVE AGENT LOAN GUARANTEE AGREEMENT _____________________________ DOE FIPP Guarantee No. [______] ______________________________ AMR-306688-v5 - i - 81-40475664 CONTENTS Clause Page Section 1.

  6. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

  7. Office of the Assistant General Counsel for General Law

    Broader source: Energy.gov [DOE]

    The Office of the Assistant General Counsel for General Law (GC-56) provides legal support for non-programmatic issues other than those involving procurement and intellectual property.  The office...

  8. Title 1 General Provisions Chapter 5 Common Law; General Rights...

    Open Energy Info (EERE)

    General Provisions Chapter 5 Common Law; General Rights 3 V.S.A. Section 2809 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  9. Research Laboratories General Motors Corporation General Motors Technical Center

    Office of Legacy Management (LM)

    MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare

  10. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  11. WINDExchange: Buying Wind Power

    Wind Powering America (EERE)

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  12. Mandatory Utility Green Power Option | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow customers to make voluntary...

  13. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  14. [FLOATING RATE GUARANTEED OBLIGATIONS]

    Broader source: Energy.gov (indexed) [DOE]

    FLOATING RATE GUARANTEED OBLIGATIONS] Draft Date: May 09, 2011 AMR-306979-v3A 81-40475664 DATED AS OF [______], 20[__] AMONG THE HOLDERS IDENTIFIED HEREIN, THEIR SUCCESSORS AND PERMITTED ASSIGNS, AND THE UNITED STATES DEPARTMENT OF ENERGY, AS GUARANTOR, AND [_____________________________] AS ADMINISTRATIVE AGENT LOAN GUARANTEE AGREEMENT _____________________________ DOE FIPP Guarantee No. [______] ______________________________ AMR-306979-v3A - i - 81-40475664 CONTENTS Clause Page Section 1.

  15. Finite driving rate and anisotropy effects in landslide modeling

    SciTech Connect (OSTI)

    Piegari, E.; Cataudella, V.; Di Maio, R.; Milano, L.; Nicodemi, M.

    2006-02-15

    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non-power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.

  16. U.S. Department of Energy Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWPAF450.4 (Rev. 0514) Proposed Action Title: Sam Rayburn Dam Project Hydroelectric Power Rate Increase Program or Field Office: 3100 Division of Resources and Rates Location(s) ...

  17. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  18. Power Services (pbl/about)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Power Services > About Power Services Power Services Home Page Other Related Web Sites Power Services Organization Power Services Financial Information Tribal Affairs Office...

  19. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Broader source: Energy.gov (indexed) [DOE]

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  20. Electric power 2007

    SciTech Connect (OSTI)

    2007-07-01

    Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

  1. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  2. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  3. PROJECT PROFILE: General Electric - GE Global Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PROJECT PROFILE: General Electric - GE Global Research PROJECT PROFILE: General Electric - GE Global Research Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Niskayuna, NY Amount Awarded: $3,800,000 Awardee Cost Share: $1,841,054 GE Global Research Logo.png GE Global Research and Southwest Research Institute will develop an optimal compression system for a modular supercritical carbon dioxide (sCO2) power block operation in highly transient CSP tower applications.

  4. Southwestern Federal Power System's Fiscal Year 2012 Financial Statement Audit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwestern Federal Power System's Fiscal Year 2012 Financial Statement Audit OAS-FS-13-13 August 2013 Department of Energy Washington, DC 20585 August 12, 2013 MEMORANDUM FOR THE ADMINISTRATOR, SOUTHWESTERN POWER ADMINISTRATION FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Southwestern Federal Power System's Fiscal Year 2012 Financial Statement Audit The attached report presents the results of the independent

  5. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  6. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  7. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  10. Singularities of Generalized Parton Distributions

    SciTech Connect (OSTI)

    Anatoly Radyushkin

    2012-05-14

    The basic ideas of the theory of Generalized Parton Distributions (GPDs) are reviewed. Recent developments in the study of singularities of GPDs are discussed.

  11. General Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Jump to: navigation, search Name: General Biodiesel Address: 4034 West Marginal Way Place: Seattle, Washington Zip: 98106 Region: Pacific Northwest Area Sector: Biofuels...

  12. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    Product: General Atomics offers research, development and consulting services to the nuclear industry, including nuclear energy production, manufacturing, defense and related...

  13. 2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... rated power * 4.6 MNm maximum torque * 5 DOF non-torque loads - 7.2 MNm bending - 3.5 MN ... rated power * 1.1 MNm maximum torque * 3 DOF non-torque loads - 1 MNm bending - .9 MN ...

  14. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  15. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect (OSTI)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  16. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  17. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  18. Supervisory Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, J4800 Transmission Scheduling &...

  19. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIAPrivacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power ...

  20. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exit signs, kitchen equipment, network power management, power strips, showerheads, clothes washers, water heaters and ag stock tanks. Check IM for detailed requirements. c....

  1. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement (Agreement) between the BC Hydro and Power uthority (BCH) and the Bonneville Power Administration (BP A), jointly the Parties, which BA for accounting purposes is...

  2. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 (Revised 060914) United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue Portland, OR 97232 Bonneville Power Administration's 2014...

  3. Clean Fuels/Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Twitter Google + Vimeo GovDelivery SlideShare Clean FuelsPower Home...

  4. Biomass: Potato Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time:...

  5. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  6. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  7. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Scheduling and Security...

  8. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. Portable Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  10. SFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  11. SFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 16 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  12. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 33 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  13. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  14. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  15. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  16. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 6 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  17. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 3/6/15) Exhibit A General Conditions Page 1 of 21 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  18. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 12/15/14) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  19. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 3/6/15) Exhibit A General Conditions Page 1 of 8 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  20. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 39 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  1. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 26 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  2. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 12/15/14) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  3. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  4. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  5. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 22 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  6. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 9/26/14) Exhibit A General Conditions Page 1 of 22 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  7. Solar energy education. Renewable energy activities for general science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  8. NNSA Awards Mo-99 Cooperative Agreement to General Atomics | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Mo-99 Cooperative Agreement to General Atomics | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  9. Kansas City Site Office General Workforce Restructuring (2007) | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Site Office General Workforce Restructuring (2007) | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  10. Background radiation measurements at high power research reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  11. Background radiation measurements at high power research reactors

    SciTech Connect (OSTI)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  12. Delmarva Power Light Company Delmarva Power | Open Energy Information

    Open Energy Info (EERE)

    Delmarva Power Light Company Delmarva Power Jump to: navigation, search Name: Delmarva Power & Light Company (Delmarva Power) Place: Wilmington, Delaware Zip: 19886 Product:...

  13. Indiabulls Power Ltd formerly Sophia Power Company | Open Energy...

    Open Energy Info (EERE)

    Indiabulls Power Ltd formerly Sophia Power Company Jump to: navigation, search Name: Indiabulls Power Ltd. (formerly Sophia Power Company) Place: New Delhi, Delhi (NCT), India Zip:...

  14. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    Open Energy Info (EERE)

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  15. ENER G Combined Power formerly Combined Power Ltd | Open Energy...

    Open Energy Info (EERE)

    ENER G Combined Power formerly Combined Power Ltd Jump to: navigation, search Name: ENER.G Combined Power (formerly Combined Power Ltd) Place: United Kingdom Product: Specialises...

  16. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  17. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  18. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of...

  19. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV...

  20. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  1. Louisiana Title V General Permits

    SciTech Connect (OSTI)

    Boyer, B.E.; Neal, T.L.

    1995-12-31

    Title V of the Federal Clean Air Act Amendments of 1990 requires federal operating permits for all major sources of air pollution. In 1992, Title 40, Part 70 of the Code of Federal Regulations (40 CFR Part 70) codified the law s requirements. These federal regulations, entitled Operating Permit Program, define the minimum requirements for state administered operating permit programs. The intent of Title V is to put into one document all requirements of an operating permit. General Permits for oil and gas facilities may be preferred if the facility can comply with all permit requirements. If greater flexibility than allowed by the General Permit is required, then the facility should apply for an individual Title V permit. General Permits are designed to streamline the permitting process, shorten the time it takes to obtain approval for initial and modified permits. The advantages of the General Permit include reduced paperwork and greater consistency because the permits are standardized. There should be less uncertainty because permit requirements will be known at the time of application. Approval times for Initial and modified General Permits should be reduced. Lengthy public notice procedures (and possible hearings) will be required for only the initial approval of the General Permit and not for each applicant to the permit. A disadvantage of General Permits is reduced flexibility since the facility must comply with the requirements of a standardized permit.

  2. WINDExchange: Motivations for Buying Wind Power

    Wind Powering America (EERE)

    Photo of a wind turbine taken looking through a field of grains. Motivations for Buying Wind Power Electricity consumers may have a variety of motivations for buying wind power, including helping the environment, capturing long-term price stability, securing lower-cost energy, improving public relations, and reducing the need for imported fuels in remote communities. In general, however, the decision is usually based on the following three motivations. Voluntary Purchases Voluntary renewable

  3. Atomic Power in Space: A History

    DOE R&D Accomplishments [OSTI]

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  4. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  5. Life extension system for fossil power plants

    SciTech Connect (OSTI)

    Isreb, M.

    1996-11-01

    A general, multi-disciplinary life extension system for new and existing power plants has been absent in the literature. The present paper presents a general, multi-disciplinary life extension system for new and existing fossil power plants. The paper formulates the optimization problem framework for plants` components. The paper discusses the framework of the iterative process, objective functions, plant components, life extension constraints, new life or remnant life parameters and optimization techniques. Other system attributes discussed in the paper include: design invariant parameters, relationships between plant components and objective functions and a strategy for system sizing and simulation.

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedules Skip Navigation Links Excess Energy Hydro Peaking Power Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative (Rayburn) Hydro Power and Energy Sold to Sam Rayburn Municipal Power Agency (Willis) Non-Federal Transmission/Interconnection Facilities Service Contact swparates@swpa.gov Last Updated: January 05, 2016

  8. Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

  9. Consumers face $5. 9 million rate increase

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Testimony at hearings before the Garrison Diversion Compromise Commission claimed that rural consumers in the Upper Midwest could face $5.9 million in electric rate increases if the commission deauthorizes the project and hydroelectric rates go up to pay the costs of the 1944 Pick-Sloan project originally assigned to irrigation. If there is no irrigation development, the revenue that irrigation must raise to repay the $67 million debt assigned to irrigation must be reassigned to hydroelectric power. The commission represents a compromise between supporters and opponents of the Garrison Diversion project. Spokesmen for regional utilities spoke in support of the project as an investment whose costs have escalated because of delays at the expense of economic development in North Dakota.

  10. THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES

    SciTech Connect (OSTI)

    Dai, Lixin; Escala, Andres; Coppi, Paolo

    2013-09-20

    We have carried out general relativistic particle simulations of stars tidally disrupted by massive black holes. When a star is disrupted in a bound orbit with moderate eccentricity instead of a parabolic orbit, the temporal behavior of the resulting stellar debris changes qualitatively. The debris is initially all bound, returning to pericenter in a short time about the original stellar orbital timescale. The resulting fallback rate can thus be much higher than the Eddington rate. Furthermore, if the star is disrupted close to the hole, in a regime where general relativity is important, the stellar and debris orbits display general relativistic precession. Apsidal precession can make the debris stream cross itself after several orbits, likely leading to fast debris energy dissipation. If the star is disrupted in an inclined orbit around a spinning hole, nodal precession reduces the probability of self-intersection, and circularization may take many dynamical timescales, delaying the onset of flare activity. An examination of the particle dynamics suggests that quasi-periodic flares with short durations, produced when the center of the tidal stream passes pericenter, may occur in the early-time light curve. The late-time light curve may still show power-law behavior which is generic to disk accretion processes. The detection triggers for future surveys should be extended to capture such 'non-standard' short-term flaring activity before the event enters the asymptotic decay phase, as this activity is likely to be more sensitive to physical parameters such as the black hole spin.

  11. General Electric | Open Energy Information

    Open Energy Info (EERE)

    General Electric Place: Fairfield, Connecticut Zip: 06828 Region: Northeast - NY NJ CT PA Area Year Founded: 1892 Website: www.ge.com Coordinates: 41.1758333, -73.2719444...

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Reliability: Automotive Power Module Perspective Zhenxian Liang R&D Staff Power Electronics and Electric Machinery Group OAK RIDGE NATIONAL LABORATORY 2360 Cherahala Boulevard Knoxville, Tennessee 37932 TEL: (865) 946-1467 FAX: (865) 946-1262 EMAIL: liangz@ornl.gov http://peemrc.ornl.gov 2013 PV System Symposium April 30, 2013, Santa Clara, CA 2 Outline * Introduction Power Electronics in Electric Drive Vehicles Automotive Power Electronics Module Operation Automotive Power

  13. Orcas Power & Light- MORE Green Power Program

    Broader source: Energy.gov [DOE]

    Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is interconnected. In 2014, incentive rates were adjusted to accommodate f...

  14. Bonneville Power Ampere Annex Z-995 Building

    High Performance Buildings Database

    Vancouver, WA The Bonneville Power Administration (BPA), a federal agency headquartered in Portland, Oregon, provides about half of the electricity used in the Pacific Northwest and operates more than three-fourths of the region's high-voltage transmission. Because BPA markets power at cost from 31 federal dams, its rates are among the least expensive electricity in the country. The Ampere Annex project is a renovation of an exisiting 60-year-old standard warehouse building located within the Ross Complex.

  15. Electric power annual 1997. Volume 2

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  16. General Renewable Energy Technology Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Renewable Energy Technology Resources General Renewable Energy Technology Resources Below are general resources for Tribes on renewable energy technologies. Developing ...

  17. Electric power annual 1995. Volume I

    SciTech Connect (OSTI)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  18. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  19. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect (OSTI)

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  20. Microsoft PowerPoint - Hentschel_Stockton Rehab-Contract Closeout_SWPA Hydr Meeting_Jun 2015.ppt [Read-Only] [Compatibility Mod

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hentschel Chief, Maintenance Engineering Section Operations Division Kansas City District 17 June 2015 Stockton Power Plant Major Rehabilitation Closeout Southwestern Federal Hydropower Meeting Branson, MO BUILDING STRONG ® General Plant Information  Before rehab ► Rate at 45 MW and operated at 50 MW ► Single vertical axis Kaplan with 6 blades ► Rough zone operation between 25 MW - 40 MW ► 90% Efficiency  After rehab: ► Rated and operated at 52 MW ► Single vertical axis Kaplan

  1. Austin Energy's Residential Solar Rate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austin Energy's Residential Solar Rate Austin Energy's Residential Solar Rate This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects. PDF icon libby_austinenergy.pdf More Documents & Publications Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) QER - Comment of Solar Electric Power Association Residential Solar

  2. Standby Rates for Customer-Sited Resources - Issues, Considerations, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Elements of Model Tariffs, 2009 | Department of Energy Standby Rates for Customer-Sited Resources - Issues, Considerations, and the Elements of Model Tariffs, 2009 Standby Rates for Customer-Sited Resources - Issues, Considerations, and the Elements of Model Tariffs, 2009 The economic viability of clean, distributed generation (DG) and, in particular, combined heat and power (CHP) facilities, heavily depends on the regulatory policies that determine how they are treated by the

  3. UAI-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjustment was to correct the level of the UAI to reflect the development of a robust wholesale power market and its associated price volatility. After final approval by the...

  4. Electric power monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-29

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  5. Electric power monthly, June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  6. Electric power monthly, August 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  7. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  8. Writing Effective Initial Summary Ratings Initial Summary Rating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Writing an Effective ISR (max 8000 characters including spaces) Before writing: * Read definitions of rating levels and critical element targets carefully * Review Strategic Plan ...

  9. General single phase wellbore flow model

    SciTech Connect (OSTI)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  10. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive...

  11. Hadlock, R.K.; Abbey, O.B. 22 GENERAL STUDIES OF NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    on ultimate heat sinks--cooling ponds Hadlock, R.K.; Abbey, O.B. 22 GENERAL STUDIES OF NUCLEAR REACTORS; 20 FOSSIL-FUELED POWER PLANTS; COOLING PONDS; PERFORMANCE TESTING; NUCLEAR...

  12. POWER SALES AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be deemed unreasonable for BPA to require credit security from an assignee with a Moody's credit rating below "A", or the equivalent if rated by another credit rating agency. No...

  13. Vampire Power and Gaming

    Broader source: Energy.gov [DOE]

    There's something out there known as vampire power. Basically, many appliances that continue using power (and thus continue add to your energy bill in some way, shape or form) even when they are turned off.

  14. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  15. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Power Systems Operation N4000 114 Parkshore Drive Folsom, CA...

  16. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  17. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  18. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author...

  19. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Atmospheric State, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  20. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.