Generalized REGression Package for Nonlinear Parameter Estimation
Energy Science and Technology Software Center (OSTI)
1995-05-15
GREG computes modal (maximum-posterior-density) and interval estimates of the parameters in a user-provided Fortran subroutine MODEL, using a user-provided vector OBS of single-response observations or matrix OBS of multiresponse observations. GREG can also select the optimal next experiment from a menu of simulated candidates, so as to minimize the volume of the parametric inference region based on the resulting augmented data set.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible)...
Dong, S.
2015-02-15
We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.
Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization
Sagi, Eva
2009-08-15
The tensor-vector-scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the Solar System, as embodied in the post-Newtonian formalism, has not yet been fully investigated. We calculate the post-Newtonian parameters for TeVeS with the cosmological value of the scalar field taken into account, and show that in this situation the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We show that generalizing TeVeS to have an Aether-type vector action, as suggested by Skordis, removes the aforesaid link, and this generalized version of TeVes has its {beta}, {gamma}, and {xi} parameterized post-Newtonian parameters identical to those in GR, while solar system constraints on the preferred frame parameters {alpha}{sub 1} and {alpha}{sub 2} can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for cosmological values of the scalar field consistent with evolution within the framework of existing cosmological models.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
There are small sector-to-sector variations in the parameters for a given source angle because of the distortion in the lattice functions of the superbends and the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety
Parameter 4 | Open Energy Information
Parameter 4 Jump to: navigation, search Name: parameter 4 Place: Dortmund, North Rhine-Westphalia, Germany Zip: 44328 Sector: Buildings Product: Start-up consultants with a focus...
Subsurface Geotechnical Parameters Report
D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson
2003-12-17
The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; Stone, James J.
2016-02-03
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other
WIPP Compliance Certification Application calculations parameters. Part 2: Parameter documentation
Howarth, S.M.
1997-11-14
The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program and were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probability models require input parameters that are defined by a statistical distribution. Developing parameters begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. Parameter development may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling laboratory or field data to fit code grid mesh sizes, or other transformations. Documentation of parameter development is designed to answer two questions: What source information was used to develop this parameter? and Why was this particular data set/information used? Therefore, complete documentation requires integrating information from code sponsors, parameter task leaders, performance assessment analysts, and experimental principal investigators. This paper, Part 2 of 2 parts, contains a discussion of the WIPP CCA PA Parameter Tracking System, document traceability and retrievability, and lessons learned from related audits and reviews.
Energy Science and Technology Software Center (OSTI)
2015-05-27
ParFit is a flexible and extendable framework and library of classes for fitting force-field parameters to data from high-level ab-initio calculations on the basis of deterministic and stochastic algorithms. Currently, the code is fitting MM3 and Merck force-field parameters but could easily extend to other force-field types.
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of
Identification of synchronous machine parameters
Shaban, A.O.
1985-01-01
The synchronous machine is an essential component of a power system and determination of its parameters accurately is an important task in securing adequate modes of operation through certain control strategies. An estimation technique based on the Powell algorithm was evaluated for the identification of these parameters on the basis of small-signal input-output data. A fifth order Park domain flux linkage model of a salient pole machine was used for the identification of the parameters. Stator terminal voltages as transformed into the Park domain, field voltage and rotor frequency were used as input signals to the model. The input signals to the actual machine are the stator terminal voltages and the field voltage. The Park domain stator terminal current and field current were used as output signals. Due to the lack of access to real data, digital simulation of an actual machine as used in an effort to establish the machine responses in the time domain to small changes in the input signals. These responses were compared with those obtained from the model with the unknown parameters and utilized in the identification process. The sensitivity of a least-square loss-function with respect to each parameter was tested. The proposed parameter identification method was evaluated with data of two different machines. Careful observation of the results indicates that convergence can only be secured if nonsimultaneous perturbation of the direct - and quadrature - axis components of the terminal voltages is applied.
Resonance parameter analysis with SAMMY
Larson, N.M.; Perey, F.G.
1988-01-01
The multilevel R-matrix computer code SAMMY has evolved over the past decade to become an important analysis tool for neutron data. SAMMY uses the Reich-Moore approximation to the multilevel R-matrix and includes an optional logarithmic parameterization of the external R-function. Doppler broadening is simulated either by numerical integration using the Gaussian approximation to the free gas model or by a more rigorous solution of the partial differential equation equivalent to the exact free gas model. Resolution broadening of cross sections and derivatives also has new options that more accurately represent the experimental situation. SAMMY treats constant normalization and some types of backgrounds directly and treats other normalizations and/or backgrounds with the introduction of user-generated partial derivatives. The code uses Bayes' method as an efficient alternative to least squares for fitting experimental data. SAMMY allows virtually any parameter to be varied and outputs values, uncertainties, and covariance matrix for all varied parameters. Versions of SAMMY exist for VAX, FPS, and IBM computers.
Measuring neutrino oscillation parameters using $\
Backhouse, Christopher James; /Oxford U.
2011-02-01
MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is
System and method for motor parameter estimation
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.
In situ acquisition of cathodic protection parameters
Baptista, W.; Costa, J.C.M. da
1997-01-01
Present, offshore cathodic protection (CP) design in Brazil uses parameters found in the literature and in international norms, such as: initial and average current density, coating efficiency, leaked current at the buried part of the wet Xmas tree, etc. Five data acquisition systems (DAS) were launched at the Campos Basin water in depths of 102, 290, and 975 m. The DASs were recovered after 8, 11, and 14 months, respectively. Adequate methods of data processing guaranteed the acquisition of reliable parameters for use in CP projects in seawater: initial and average current densities, anode current capacity, and polarization curves at several time intervals. The potential of {minus}800 mV{sub Ag/AgCl} is generally accepted as norm for carbon steel protection in seawater. The cathodic current density necessary to obtain this potential is extremely dependent upon environmental conditions, and the geometry and superficial condition of the submerged steel structure.
Sensitivity analysis of Stirling engine design parameters
Naso, V.; Dong, W.; Lucentini, M.; Capata, R.
1998-07-01
In the preliminary Stirling engine design process, the values of some design parameters (temperature ratio, swept volume ratio, phase angle and dead volume ratio) have to be assumed; as a matter of fact it can be difficult to determine the best values of these parameters for a particular engine design. In this paper, a mathematical model is developed to analyze the sensitivity of engine's performance variations corresponding to variations of these parameters.
Adsorption Thermodynamics and Intrinsic Activation Parameters...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n-Alkanes on Bronsted Acid Sites in Zeolites Previous Next List Amber Janda, Bess...
Computational Procedures for Determining Parameters in Ramberg...
Office of Scientific and Technical Information (OSTI)
2 RAMBO: A Computer Code for Determining Parameters in Ramberg-Osgood Elastoplastic Model Based on Modulus and Damping Versus Strain ABSTRACT A computer code, RAMBO, is ...
Computational procedures for determining parameters in Ramberg...
Office of Scientific and Technical Information (OSTI)
A computer code, RAMBO, is developed for obtaining the values of parameters in the ... DAMPING; HYSTERESIS; SHEAR; STRAINS; COMPUTER CODES; MECHANICAL PROPERTIES; TENSILE ...
Optimizing parameters for predicting the geochemical behavior...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of discrete fracture networks in geothermal systems Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal ...
Waist parameter determination from measured spot sizes
Hajek, M. )
1989-12-15
A novel simple method of determination of waist parameters of a Gaussian laser beam as a consequence of geometric treatment of the problem is introduced. The method does not require any least-squares process, ordering of experimental data, or estimates of waist parameters.
Thermophysical parameters of the LBO crystal
Grechin, Sergei G; Zuev, A V; Fokin, A S; Kokh, Aleksandr E; Moiseev, N V; Popov, Petr A; Sidorov, Aleksei A
2010-08-27
The thermophysical parameters (linear thermal expansion coefficients, thermal conductivities, and heat capacity) of the lithium triborate (LBO) crystal are measured and compared with previously published data. (nonlinear-optics phenomena)
Operating Experience Level 3, Atmospheric Dispersion Parameter...
Broader source: Energy.gov (indexed) [DOE]
5 OE-3 2015-02: Atmospheric Dispersion Parameter (xQ) for Calculation of Co-located Worker Dose This Operating Experience Level 3 (OE-3) document informs the complex of the...
Lensed CMB simulation and parameter estimation
Lewis, Antony
2005-04-15
Modelling of the weak lensing of the CMB will be crucial to obtain correct cosmological parameter constraints from forthcoming precision CMB anisotropy observations. The lensing affects the power spectrum as well as inducing non-Gaussianities. We discuss the simulation of full-sky CMB maps in the weak lensing approximation and describe a fast numerical code. The series expansion in the deflection angle cannot be used to simulate accurate CMB maps, so a pixel remapping must be used. For parameter estimation accounting for the change in the power spectrum but assuming Gaussianity is sufficient to obtain accurate results up to Planck sensitivity using current tools. A fuller analysis may be required to obtain accurate error estimates and for more sensitive observations. We demonstrate a simple full-sky simulation and subsequent parameter estimation at Planck-like sensitivity. The lensed CMB simulation and parameter estimation codes are publicly available.
Reionization history and CMB parameter estimation
Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.edu
2013-05-01
We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.
Photon Source Parameters | Stanford Synchrotron Radiation Lightsource
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Photon Source Parameters Beam Lines by Techniques | Beam Lines by Number Beam Energy 3 GeV Injection Energy 3 GeV Current 300-500 mA Fill Pattern 270 bunches distributed in six...
Integral data analysis for resonance parameters determination
Larson, N.M.; Leal, L.C.; Derrien, H.
1997-09-01
Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity A New Universal Parameter for Superconductivity Print Thursday, 14 April 2016 00:00 Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless
Supersymmetry Parameter Analysis: SPA Convention and Project
Hinchliffe, I.; et al.
2005-05-05
High-precision analyses of supersymmetry parameters aim atreconstructing the fundamental supersymmetric theory and its breakingmechanism. A well defined theoretical framework is needed whenhigher-order corrections are included. We propose such a scheme,Supersymmetry Parameter Analysis SPA, based on a consistent set ofconventions and input parameters. A repository for computer programs isprovided which connect parameters in different schemes and relate theLagrangian parameters to physical observables at LHC and high energy e+e-linear collider experiments, i.e., masses, mixings, decay widths andproduction cross sections for supersymmetric particles. In addition,programs for calculating high-precision low energy observables, thedensity of cold dark matter (CDM) in the universe as well as the crosssections for CDM search experiments are included. The SPA scheme stillrequires extended efforts on both the theoretical and experimental sidebefore data can be evaluated in the future at the level of the desiredprecision. We take here an initial step of testing the SPA scheme byapplying the techniques involved to a specific supersymmetry referencepoint.
Simulating performance sensitivity of supercomputer job parameters.
Clearwater, Scott Harvey; Kleban, Stephen David
2003-03-01
We report on the use of a supercomputer simulation to study the performance sensitivity to systematic changes in the job parameters of run time, number of CPUs, and interarrival time. We also examine the effect of changes in share allocation and service ratio for job prioritization under a Fair Share queuing Algorithm to see the effect on facility figures of merit. We used log data from the ASCI supercomputer Blue Mountain and the ASCI simulator BIRMinator to perform this study. The key finding is that the performance of the supercomputer is quite sensitive to all the job parameters with the interarrival rate of the jobs being most sensitive at the highest rates and increasing run times the least sensitive job parameter with respect to utilization and rapid turnaround. We also find that this facility is running near its maximum practical utilization. Finally, we show the importance of the use of simulation in understanding the performance sensitivity of a supercomputer.
Proline puckering parameters for collagen structure simulations
Wu, Di
2015-03-15
Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.
LCLS CDR Appendix A - Parameter Tables
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A Parameter Tables A.1 FEL-Physics A.1.1 Performance A.1.1.1 Electron Beam Parameter Name Low Energy High Energy All Energies Unit Electron energy 4.54 14.35 GeV Electron Lorentz factor 8880 28082 Normalized slice emittance 1.2 1.2 µm rad Charge at undulator entrance 1 1 nC Peak current 3400 3400 A Longitudinal pulse form Flat-Top Transverse pulse form Gaussian RMS bunch length 23 23 µm RMS bunch duration 77 77 fs FWHM bunch length 69 69 µm FWHM bunch duration 230 230 fs Slice rms gamma
Parameters of cosmological models and recent astronomical observations
Sharov, G.S.; Vorontsova, E.G., E-mail: german.sharov@mail.ru, E-mail: elenavor@inbox.ru [Tver state university, 170002, Sadovyj per. 35, Tver (Russian Federation)
2014-10-01
For different gravitational models we consider limitations on their parameters coming from recent observational data for type Ia supernovae, baryon acoustic oscillations, and from 34 data points for the Hubble parameter H(z) depending on redshift. We calculate parameters of 3 models describing accelerated expansion of the universe: the ?CDM model, the model with generalized Chaplygin gas (GCG) and the multidimensional model of I. Pahwa, D. Choudhury and T.R. Seshadri. In particular, for the ?CDM model 1? estimates of parameters are: H{sub 0}=70.2620.319 km {sup -1}Mp {sup -1}, ?{sub m}=0.276{sub -0.008}{sup +0.009}, ?{sub ?}=0.7690.029, ?{sub k}=-0.0450.032. The GCG model under restriction 0?? is reduced to the ?CDM model. Predictions of the multidimensional model essentially depend on 3 data points for H(z) with z?2.3.
Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir
2015-01-29
A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.
CosmoSIS: Modular cosmological parameter estimation
Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.
2015-06-09
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis
CosmoSIS: Modular cosmological parameter estimation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.
2015-06-09
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less
Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir
A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.
CASIM input parameters for various materials
Malensek, A.J.; Elwyn, A.J.
1994-07-14
During the past year, the computer program CASIM has been placed in a common area from which copies can be obtained by a wide array of users. The impetus for this arrangement was the need to have a standard code that could be maintained and transported to other platforms. In addition, an historical record would be kept of each version as the program evolved. CASIM requires a series of parameters (input by the user) that describe the medium in which the cascade develops. Presently a total of 9 materials can be defined. Occasions arise when one needs to know the properties of materials (elements, compounds, and mixtures) that have not been defined. Because it is desirable to have a uniform set of values for all CASIM users, this note presents a methodology for obtaining the input parameters for an arbitrary material. They are read in by the Subroutine CASIM{underscore}PROG from the user supplied file CASIM.DAT.
Analysis of Modeling Parameters on Threaded Screws.
Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
Surveillance of industrial processes with correlated parameters
White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.
1996-01-01
A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.
Surveillance of industrial processes with correlated parameters
White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.
1996-12-17
A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
A New Universal Parameter for Superconductivity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought
LCLS Parameters Update | Linac Coherent Light Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LCLS Parameters Update The Linac Coherent Light Source (LCLS) has demonstrated FEL operations over the energy range 280 eV to 11.2 keV using the fundamental with pulse energies of at least 1-3 mJ depending on the pulse duration and photon energy (please note that operation above 10 keV requires special accelerator conditions that may not be available at all times). Third harmonic radiation is available up to 25 keV at about 1% of the fundamental pulse energy. The pulse length can be varied from
Study of Engine Operating Parameter Effects on GDI Engine Particle...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...
Key Parameters Affecting DPF Performance Degradation and Impact...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy ...
V-162: Apache Struts "ParameterInterceptor" Security Bypass Vulnerabil...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
2: Apache Struts "ParameterInterceptor" Security Bypass Vulnerability V-162: Apache Struts "ParameterInterceptor" Security Bypass Vulnerability May 23, 2013 - 6:00am Addthis...
Analysis of thomsen parameters for finely layered VTI media ...
Office of Scientific and Technical Information (OSTI)
Conference: Analysis of thomsen parameters for finely layered VTI media Citation Details In-Document Search Title: Analysis of thomsen parameters for finely layered VTI media ...
Determining Supersymmetric Parameters With Dark Matter Experiments
Hooper, Dan; Taylor, Andrew M.; /Oxford U.
2006-07-01
In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of {mu} (and the composition of the lightest neutralino), m{sub A} and tan {beta}. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, {mu} can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m{sub A} to roughly {+-}100 GeV, even when heavy neutral MSSM Higgs bosons (A, H{sub 1}) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.
Parameter monitoring compensation system and method
Barkman, William E.; Babelay, Edwin F.; DeMint, Paul D.; Hebble, Thomas L.; Igou, Richard E.; Williams, Richard R.; Klages, Edward J.; Rasnick, William H.
1995-01-01
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along preprogrammed path during a machining operation utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer.
Parameter monitoring compensation system and method
Barkman, W.E.; Babelay, E.F.; DeMint, P.D.; Hebble, T.L.; Igou, R.E.; Williams, R.R.; Klages, E.J.; Rasnick, W.H.
1995-02-07
A compensation system is described for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation. It utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer. 7 figs.
Parameter estimation with Sandage-Loeb test
Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn
2014-12-01
The Sandage-Loeb (SL) test directly measures the expansion rate of the universe in the redshift range of 2 ∼< z ∼< 5 by detecting redshift drift in the spectra of Lyman-α forest of distant quasars. We discuss the impact of the future SL test data on parameter estimation for the ΛCDM, the wCDM, and the w{sub 0}w{sub a}CDM models. To avoid the potential inconsistency with other observational data, we take the best-fitting dark energy model constrained by the current observations as the fiducial model to produce 30 mock SL test data. The SL test data provide an important supplement to the other dark energy probes, since they are extremely helpful in breaking the existing parameter degeneracies. We show that the strong degeneracy between Ω{sub m} and H{sub 0} in all the three dark energy models is well broken by the SL test. Compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraints on Ω{sub m} and H{sub 0} by more than 60% for all the three models. But the SL test can only moderately improve the constraint on the equation of state of dark energy. We show that a 30-yr observation of SL test could help improve the constraint on constant w by about 25%, and improve the constraints on w{sub 0} and w{sub a} by about 20% and 15%, respectively. We also quantify the constraining power of the SL test in the future high-precision joint geometric constraints on dark energy. The mock future supernova and baryon acoustic oscillation data are simulated based on the space-based project JDEM. We find that the 30-yr observation of SL test would help improve the measurement precision of Ω{sub m}, H{sub 0}, and w{sub a} by more than 70%, 20%, and 60%, respectively, for the w{sub 0}w{sub a}CDM model.
PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS
Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.
2013-10-10
The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adopt spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.
Understanding transport through dimensionless parameter scaling experiments
Petty, C.C.; Luce, T.C.
1997-07-01
The related methods of dimensional analysis, similarity, and scale invariance provide a powerful technique for analyzing physical systems. For example, the complex plasma dynamics governed by the Vlasov-Maxwell system of equations can be characterized by sets of dimensionless quantities through the application of these techniques. Significant progress has been made recently towards predicting and understanding radial heat transport using dimensionless parameter scaling techniques. Previous experiments on the DIII-D tokamak have measured the variation of heat transport with the relative gyroradius ({rho}*); in this paper, the scaling of heat transport with plasma beta ({beta}) and normalized collisionality ({nu}) for L-mode and H-mode plasmas on the DIII-D tokamak is reported. Following the scale invariance approach to confinement scaling, the thermal diffusivity ({chi}) is assumed to depend only on local dimensionless quantities. Understanding the beta and collisionality scaling of transport helps to differentiate between various proposed mechanisms of turbulent transport and allows the origin of power degradation and density scaling of confinement to be determined.
FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS
Ramirez, I. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Allende Prieto, C., E-mail: ivan@obs.carnegiescience.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain)
2011-12-20
We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T{sub eff} = 4286 {+-} 30 K, log g = 1.66 {+-} 0.05, and [Fe/H] = -0.52 {+-} 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 {mu}m). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 {+-} 0.06 M{sub Sun }, R = 25.4 {+-} 0.2 R{sub Sun }, and {tau} = 7.1{sup +1.5}{sub -1.2} Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.
Transparency parameters from relativistically expanding outflows
Bgu, D. [University of Roma "Sapienza," I-00185, p.le A. Moro 5, Rome (Italy); Iyyani, S. [Department of Physics, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)
2014-09-01
In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.
Parameter Study of the LIFE Engine Nuclear Design (Journal Article...
Office of Scientific and Technical Information (OSTI)
Parameter Study of the LIFE Engine Nuclear Design Citation Details In-Document Search Title: Parameter Study of the LIFE Engine Nuclear Design LLNL is developing the nuclear fusion ...
Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
(April 1984) | Department of Energy Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) (3.25 MB) More Documents & Publications Grade Assignments for Models Used for Calibration of Gross-Count
Parameter extraction from I-V characteristics of PV devices
Macabebe, Erees Queen B.; Sheppard, Charles J.; Dyk, E. Ernest van
2011-01-15
Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
ARM - Evaluation Product - Radiatively Important Parameters Best Estimate
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(RIPBE) ProductsRadiatively Important Parameters Best Estimate (RIPBE) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal
Parameters Covariance in Neutron Time of Flight Analysis Explicit Formulae
Odyniec, M.; Blair, J.
2014-12-01
We present here a method that estimates the parameters variance in a parametric model for neutron time of flight (NToF). The analytical formulae for parameter variances, obtained independently of calculation of parameter values from measured data, express the variances in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.
LCLS CDR Chapter 5 - FEL Parameters and Performance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
5 FEL Parameters and Performance TECHNICAL SYNOPSIS The FEL parameter optimization and performance characterizations that are described in Chapter 5 are based on three-dimensional theory and computer models. The investigation led to a selection of the best parameters and to a study of the sensitivity to changes in values of accelerator components and beam characteristics and to unavoidable imperfections in the settings of the beam characteristics, magnetic and mechanical components and electron
Optimizing chirped laser pulse parameters for electron acceleration in vacuum
Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza
2015-11-14
Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.
Interferometric Method of Measuring Parameters of Medium Oscillations. |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab Interferometric Method of Measuring Parameters of Medium Oscillations. A new interferometric method of measuring parameters of an oscillating medium by measuring the phase shift of scattered waves. The new method allows extracting information about parameters of oscillation. This invention may require further development. The invention could be used for designing a new type of interferometric equipment for plasma physics experiments. No.: M-877 Inventor(s):
Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fuel Economy | Department of Energy Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Summarizes latest findings on impact of specific parameters affecting ash-related diesel particulate filter performance degradation and information useful to enhance performance and extend service life deer11_sappok.pdf (3.32 MB) More Documents & Publications Characteristics and
ON THE EXPERIMENTAL VERIFICATION AND DETERMINATION OF PARAMETERS...
Office of Scientific and Technical Information (OSTI)
Title: ON THE EXPERIMENTAL VERIFICATION AND DETERMINATION OF PARAMETERS OF STOPPING-POWER THEORY Authors: Turner, J. E. Publication Date: 1964-01-01 OSTI Identifier: 4887408 Report ...
Critical Performance and Durability Parameters of an Integrated...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
used to Meet Tier II Emission Standards Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet Tier II Emission Standards Poster ...
The Efficacy of Galaxy Shape Parameters in Photometric Redshift...
Office of Scientific and Technical Information (OSTI)
Journal Article: The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach Citation Details In-Document Search Title: The Efficacy of ...
Inverse Modeling of Hydrologic Parameters Using Surface Flux...
Office of Scientific and Technical Information (OSTI)
and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain...
Sensitivity Analysis and Parameter Optimization Using 1-D MHD...
Office of Scientific and Technical Information (OSTI)
Title: Sensitivity Analysis and Parameter Optimization Using 1-D MHD Simulations of Magnetic Drive Experiments. Abstract not provided. Authors: Robbins, Joshua Publication Date: ...
Spectral, mechanical, thermal, optical and solid state parameters...
Office of Scientific and Technical Information (OSTI)
Solid state parameters such as plasma energy, Penn gap, Fermi energy and electronic ... is thermally stable up to 91 C. * Plasma energy, Fermi energy and electronic ...
Key Parameters Governing the Energy Density of Rechargeable Li...
Office of Scientific and Technical Information (OSTI)
of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Authors: Gao, Jie ; ...
Reliable estimation of biochemical parameters from C3 leafphotosynthe...
Office of Scientific and Technical Information (OSTI)
The new approach implemented theoretical parameter resolvability with numerical procedures that maximally use the information content of the data. It was tested with model ...
Derivative-free optimization for parameter estimation in computational...
Office of Scientific and Technical Information (OSTI)
nuclear physics Citation Details In-Document Search Title: Derivative-free optimization for parameter estimation in computational nuclear physics Authors: Wild, S ; ...
Optimization of Operating Parameters for Minimum Mechanical Specific...
Office of Scientific and Technical Information (OSTI)
in maximum Rate of Penetration. Current methods for computing MSE make it possible to ... Mathematical relationships between the parameters were established, and the conventional ...
Hydrochemistry of selected parameters at the Raft River KGRA...
Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Hydrochemistry of...
Derivative-free optimization for parameter estimation in computational...
Office of Scientific and Technical Information (OSTI)
Journal Article: Derivative-free optimization for parameter estimation in computational nuclear physics Citation Details ... RADIATION PHYSICS; 97 MATHEMATICS, COMPUTING, AND ...
Determination of parameters of a nuclear reactor through noise measurements
Cohn, C.E.
1975-07-15
A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)
Exploring the interdependencies between parameters in a material model.
Silling, Stewart Andrew; Fermen-Coker, Muge
2014-01-01
A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.
Technical bases for precipitate hydrolysis process operating parameters
Bannochie, C.J.
1992-10-05
This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).
Parameter study of a vehicle-scale hydrogen storage system.
Johnson, Terry Alan; Kanouff, Michael P.
2010-04-01
Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.
Zhang, Z. F.; Ward, Andy L.; Gee, Glendon W.
2002-12-10
As the Hanford Site transitions into remediation of contaminated soil waste sites and tank farm closure, more information is needed about the transport of contaminants as they move through the vadose zone to the underlying water table. The hydraulic properties must be characterized for accurate simulation of flow and transport. This characterization includes the determination of soil texture types, their three-dimensional distribution, and the parameterization of each soil texture. This document describes a method to estimate the soil hydraulic parameter using the parameter scaling concept (Zhang et al. 2002) and inverse techniques. To this end, the Groundwater Protection Program Science and Technology Project funded vadose zone transport field studies, including analysis of the results to estimate field-scale hydraulic parameters for modeling. Parameter scaling is a new method to scale hydraulic parameters. The method relates the hydraulic-parameter values measured at different spatial scales for different soil textures. Parameter scaling factors relevant to a reference texture are determined using these local-scale parameter values, e.g., those measured in the lab using small soil cores. After parameter scaling is applied, the total number of unknown variables in hydraulic parameters is reduced by a factor equal to the number of soil textures. The field-scale values of the unknown variables can then be estimated using inverse techniques and a well-designed field experiment. Finally, parameters for individual textures are obtained through inverse scaling of the reference values using an a priori relationship between reference parameter values and the specific values for each texture. Inverse methods have the benefits of 1) calculating parameter values that produce the best-fit between observed and simulated values, 2) quantifying the confidence limits in parameter estimates and the predictions, 3) providing diagnostic statistics that quantify the quality of
Sundararaman, P. ); Moldowan, J.M. )
1993-03-01
Correlations are demonstrated between steriod maturity parameters and the porphyrin maturity parameter (PMP) which is based on the ratio of specific vanadyl porphyrins C[sub 28]E/(C[sub 28]E + C[sub 32]D) measured by HPLC. Measurements from a global selection of >100 rock extracts and oils show that PMP parallels changes in the C[sub 29]-sterane 20S/(20S + 20R) and tri/(tri + mono) aromatic steroid ratios, and that all three parameters appear to attain their maximum values at similar maturity levels. The triaromatic steroid side chain cracking parameter, TA I/(I + II), reaches approximately 20% of its maximum value when PMP has reached 100%. These results suggest that PMP is effective in the early to peak portion of the oil window. A new parameter, PMP-2, based on changes in the relative concentrations of two peaks in the HPLC fingerprint (vanadyl [open quotes]etio[close quotes] porphyrins), appears effective in assessing the maturity of source rocks beyond peak oil generation. In combination with PMP this parameter extends the effective range of vanadyl porphyrins parameters to higher maturities as demonstrated by a suite of oils from the Oriente Basin, Ecuador, South America. 22 refs., 6 figs., 1 tab.
Bayesian methods for characterizing unknown parameters of material models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.
2016-02-04
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less
Models for extracting N* parameters of meson-baryon reactions
T.-S. H. Lee
2006-06-01
Models for extracting the nucleon resonance parameters from the data of meson-baryon reactions are reviewed. The development of a dynamical coupled-channel model with nnN unitarity is briefly reported.
Iterative methods for distributed parameter estimation in parabolic PDE
Vogel, C.R.; Wade, J.G.
1994-12-31
The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.
Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants
Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.
2011-01-01
The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants
Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.
2011-01-01
The head disk interface in a hard disk drive can be considered to be one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models. In this paper, we investigate beyond molecular level and perform ab initio calculations to obtain the force field parameters. Intramolecular force field parameters for Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.
Measurement of the Michel rho parameter in direct muon decay
Piilonen, Leo; Haim, D.; Lee, F. S.; Zhang, Y.; Amann, J. F.; Bolton, R. D.; Cooper, M. D.; Foreman, W.; Harrison, R.; Hart, G.; Hogan, G. E.; Kozlowski, T.; Kroupa, M. A.; Mischke, R. E.; Pillai, C.; Schilling, S.; Whitehouse, D.; Chen, Y.; Dzemidzic, M.; Hungerford, E. V. III
1997-05-20
We report on the status of LAMPF experiment E-1240 to measure the Michel {rho} parameter in direct muon decay. This experiment ran in 1993, and the data are currently being analyzed. The expected precision on the {rho} parameter is {+-}0.0008. This result will provide better constraints on new physics, particularly on the charged vector bosons' mixing angle {zeta} in the manifestly left-right symmetric extension of the Standard Model.
Extraction of Equilibrium Energy and Kinetic Parameters from Single
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Molecule Force Spectroscopy Data Alex Noy is the Principal Investigator for the Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data. LLNL BES Programs Highlight Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data Dynamic strength data for 10 different biological bonds fitted by the model R.W. Friddle, A. Noy, J.J. De Yoreo, Interpreting the widespread nonlinear force spectra of intermolecular
A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Catalyst Performance | Department of Energy A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance 2002 DEER Conference Presentation: Dephi Corporation 2002_deer_dou.pdf (121.2 KB) More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems
Spectral, mechanical, thermal, optical and solid state parameters, of
Office of Scientific and Technical Information (OSTI)
metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal (Journal Article) | SciTech Connect Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal Citation Details In-Document Search Title: Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal Metal-organic bis(hydrogenmaleate)-Co(II) tetrahydrate single crystals have been grown
Critical Performance and Durability Parameters of an Integrated
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Aftertreatment System used to Meet Tier II Emission Standards | Department of Energy Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet Tier II Emission Standards Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet Tier II Emission Standards Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by
Noninterceptive method to measure longitudinal Twiss parameters of a beam
Office of Scientific and Technical Information (OSTI)
in a hadron linear accelerator using beam position monitors (Journal Article) | SciTech Connect Journal Article: Noninterceptive method to measure longitudinal Twiss parameters of a beam in a hadron linear accelerator using beam position monitors Citation Details In-Document Search Title: Noninterceptive method to measure longitudinal Twiss parameters of a beam in a hadron linear accelerator using beam position monitors Authors: Shishlo, A. ; Aleksandrov, A. Publication Date: 2013-06-11 OSTI
Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters
Hope, Andrew J.; Lindsay, Patricia E.; El Naqa, Issam; Alaly, James R.; Vicic, Milos; Bradley, Jeffrey D.; Deasy, Joseph O. . E-mail: jdeasy@radonc.wustl.edu
2006-05-01
Purpose: To determine the clinical, dosimetric, and spatial parameters that correlate with radiation pneumonitis. Methods and Materials: Patients treated with high-dose radiation for non-small-cell lung cancer with three-dimensional treatment planning were reviewed for clinical information and radiation pneumonitis (Rp) events. Three-dimensional treatment plans for 219 eligible patients were recovered. Treatment plan information, including parameters defining tumor position and dose-volume parameters, was extracted from non-heterogeneity-corrected dose distributions. Correlation to RP events was assessed by Spearman's rank correlation coefficient (R). Mathematical models were generated that correlate with RP. Results: Of 219 patients, 52 required treatment for RP (median interval, 142 days). Tumor location was the most highly correlated parameter on univariate analysis (R = 0.24). Multiple dose-volume parameters were correlated with RP. Models most frequently selected by bootstrap resampling included tumor position, maximum dose, and D{sub 35} (minimum dose to the 35% volume receiving the highest doses) (R 0.28). The most frequently selected two- or three-parameter models outperformed commonly used metrics, including V{sub 2} (fractional volume of normal lung receiving >20 Gy) and mean lung dose (R = 0.18). Conclusions: Inferior tumor position was highly correlated with pneumonitis events within our population. Models that account for inferior tumor position and dosimetric information, including both high- and low-dose regions (D{sub 35}, International Commission on Radiation Units and Measurements maximum dose), risk-stratify patients more accurately than any single dosimetric or clinical parameter.
Performance parameters for managment of AAR-affected structures
Charlwood, R.G.
1995-12-31
The objective of the paper is to present a framework for the application of {open_quotes}Performance Parameters{close_quotes} for the long-term management of existing AAR-affected dams and hydroelectric plants as a basis for discussion in the workshop on dam safety issues. In this paper, references are made to various cases and the reader is referred to the companion paper for supporting information. The concept of {open_quotes}Performance Parameters{close_quotes} is being introduced by USBR as part of their dam safety program development. The focus is on dam safety related issues and parameter development starts with identification of failure modes of a dam, key performance parameters, and then progresses into definition of instrumentation and monitoring systems and potential action plans. Dam safety deficiencies and powerplant operational problems have been identified in several dams around the world and structural modifications either implemented or planned. In others, where slow (ASSR) or indefinitely continuing reactions (with {open_quotes}auto-generation{close_quotes} of alkalis) are occurring, it is necessary to plan a suitable monitoring and long management program which addresses the apparently {open_quotes}mild{close_quotes} degree of the problem but addresses the future potential in a realistic but not overly pessimistic manner. {open_quotes}Generic{close_quotes} performance parameters to address AAR effects based on a review of cases are proposed here as a possible guide to site specific development in actual cases. These are extended from the USBR scope in two respects: firstly, to include dam, spillway and plant operational issues, and secondly, into two levels of detail and effort. This discussion will be primarily a review of failure modes and key parameters. Techniques for forecasting and monitoring these parameters in an AAR environment are briefly reviewed.
Supersymmetry Parameter Analysis: SPA Convention andProject
Aguilar-Saavedra, J.A.; Ali, A.; Allanach, B.C.; Arnowitt, R.; Baer, H.A.; Bagger, J.A.; Balazs, C.; Barger, V.; Barnett, M.; Bartl, A.; Battaglia, M.; Bechtle, P.; Belanger, G.; Belyaev, A.; Berger, E.L.; Blair, G.; Boos, E.; Carena, M.; Choi, S.Y.; Deppisch, F.; De Roeck, A.; /Lisbon, IST /DESY /Cambridge U., DAMTP /Texas A-M /Florida State U. /Johns Hopkins U. /Argonne /Wisconsin U., Madison /LBL, Berkeley /Vienna U. /SLAC /Annecy, LAPTH /Michigan State U. /Royal Holloway, U. of London /SINP, Moscow /Fermilab /Chonbuk Natl. U. /CERN /Freiburg U. /Chile U., Catolica /Orsay, LAL
2005-12-02
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e{sup +}e{sup -} linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.
Parameter Estimation for Single Diode Models of Photovoltaic Modules
Hansen, Clifford
2015-03-01
Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.
The Impact of Uncertain Physical Parameters on HVAC Demand Response
Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.
2014-03-01
HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.
Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters
Kravitz, Benjamin S.
2013-02-12
Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.
COSMOLOGICAL PARAMETERS FROM SUPERNOVAE ASSOCIATED WITH GAMMA-RAY BURSTS
Li, Xue; Hjorth, Jens; Wojtak, Rados?aw, E-mail: lixue@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)
2014-11-20
We report estimates of the cosmological parameters ? {sub m} and ?{sub ?} obtained using supernovae (SNe) associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe with well-sampled light curves across the peak are used. We correct their peak magnitudes for a luminosity-decline rate relation to turn them into accurate standard candles with dispersion ? = 0.18mag. We also estimate the peculiar velocity of the low-redshift host galaxy of SN 1998bw using constrained cosmological simulations. In a flat universe, the resulting Hubble diagram leads to best-fit cosmological parameters of (?{sub m},?{sub ?})=(0.58{sub ?0.25}{sup +0.22},0.42{sub ?0.22}{sup +0.25}). This exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to high redshifts to measure distances in the universe and constrain cosmological parameters.
Kalman filter data assimilation: Targeting observations and parameter estimation
Bellsky, Thomas Kostelich, Eric J.; Mahalov, Alex
2014-06-15
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC
Gardner, C. J.
2014-07-30
The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.
Measurement of the Michel rho parameter in direct muon decay
Piilonen, Leo; Haim, D.; Zhang, Y.; Bolton, R.D.; Cooper, M.D.; Foreman, W.; Harrison, R.; Hart, G.; Hogan, G.E.; Kozlowski, T.; Kroupa, M.A.; Mischke, R.E.; Pillai, C.; Schilling, S.; Whitehouse, D.; Dzemidzic, M.; Hungerford, E.V.; Lan, K.; Mayes, B.W.; Pinsky, L.; von Witsch, W. Cooper, P.S.; Liu, F.; Tribble, R.E.; Tu, X.L.; Van Ausdeln, L.A.; Van Ausdeln, L.A. Jui, C.C.H.; Stantz, K.M.; Szymanski, J.J.; Manweiler, R.; Stanislaus, T.D.; Ziock, K.O.H. Wright, S.C.
1997-05-01
We report on the status of LAMPF experiment E-1240 to measure the Michel {rho} parameter in direct muon decay. This experiment ran in 1993, and the data are currently being analyzed. The expected precision on the {rho} parameter is {plus_minus}0.0008. This result will provide better constraints on new physics, particularly on the charged vector bosons{close_quote} mixing angle {zeta} in the manifestly left-right symmetric extension of the Standard Model. {copyright} {ital 1997 American Institute of Physics.}
Parity Doubling and the S Parameter Below the Conformal Window
Appelquist, T; Babich, R; Brower, R C; Cheng, M; Clark, M A; Cohen, S D; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Vranas, P M
2011-10-21
We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with N{sub f} = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when N{sub f} is increased from 2 to 6, motivating study of these trends as N{sub f} is increased further, toward the critical value for transition from confinement to infrared conformality.
The role of structural parameters in DNA cyclization
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; Alexandrov, Boian S.
2016-02-04
The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.
Microscopic analysis of order parameters in nuclear quantum phase transitions
Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.
2009-12-15
Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.
On-fiber plasmonic interferometer for multi-parameter sensing
Zhang, Zhijian [Univ. of Maryland, College Park, MD (United States); Chen, Yongyao [Univ. of Maryland, College Park, MD (United States); Liu, Haijun [Univ. of Maryland, College Park, MD (United States); National Inst. of Standards and Technology, Gaithersburg, MD (United States); Bae, Hyungdae [Univ. of Maryland, College Park, MD (United States); Olson, Douglas A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Gupta, Ashwani K. [Univ. of Maryland, College Park, MD (United States); Yu, Miao [Univ. of Maryland, College Park, MD (United States)
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of 60 pm/ C is achieved with our device.
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
Neutron Resonance Parameters and Covariance Matrix of 239Pu
Derrien, Herve; Leal, Luiz C; Larson, Nancy M
2008-08-01
In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.
{gamma} parameter and Solar System constraint in chameleon-Brans-Dicke theory
Saaidi, Kh.; Mohammadi, A.; Sheikhahmadi, H.
2011-05-15
The post Newtonian parameter is considered in the chameleon-Brans-Dicke model. In the first step, the general form of this parameter and also effective gravitational constant is obtained. An arbitrary function for f({Phi}), which indicates the coupling between matter and scalar field, is introduced to investigate validity of solar system constraint. It is shown that the chameleon-Brans-Dicke model can satisfy the solar system constraint and gives us an {omega} parameter of order 10{sup 4}, which is in comparable to the constraint which has been indicated in [19].
Post-Newtonian parameters and constraints on Einstein-aether theory
Foster, Brendan Z.; Jacobson, Ted
2006-03-15
We analyze the observational and theoretical constraints on ''Einstein-aether theory,'' a generally covariant theory of gravity coupled to a dynamical, unit, timelike vector field that breaks local Lorentz symmetry. The results of a computation of the remaining post-Newtonian parameters are reported. These are combined with other results to determine the joint post-Newtonian, vacuum-Cerenkov, nucleosynthesis, stability, and positive-energy constraints. All of these constraints are satisfied by parameters in a large two-dimensional region in the four-dimensional parameter space defining the theory.
Optimization of some parameters of atomic steam-gas powerplant
Ratnikov, Y.F.
1985-10-21
Determination of optimum parameters of binary-type atomic steam-gas powerplant is a difficult analytical problem in view of the complicated interdependence of parameters, which characterize the reactor, gas-turbine, and steam-turbine parts of the installation. Conclusions include: 1) Determination of optimum parameters of atomic steam-gas installation is recommended to produce with gas consumption = const and heat output of the reactor = var. since best technical-economic indices of installation correspond to this case. 2) With increase in power of atomic steam-gas installation, together with improvement in economic indices, the optimum pressure ratio descends and optimum temperature of feed water increases. 3) Increase in the fuel component leads to a decrease of optimum pressure ratio and to increase in temperature of feed water. 4) Change of cost of reactor plant over wide limits virtually does not have effect on numerical values of optimum parameters being investigated. 5) In all cases optimum pressure ratio is more, and temperature of feed water is less than outer limits, obtained by thermodynamic calculations.
Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters
Berryman, James G.
2007-06-27
The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.
Accuracy of cosmological parameters using the baryon acoustic scale
Thepsuriya, Kiattisak; Lewis, Antony E-mail: antony@cosmologist.info
2015-01-01
Percent-level measurements of the comoving baryon acoustic scale standard ruler can be used to break degeneracies in parameter constraints from the CMB alone. The sound horizon at the epoch of baryon drag is often used as a proxy for the scale of the peak in the matter density correlation function, and can conveniently be calculated quickly for different cosmological models. However, the measurements are not directly constraining this scale, but rather a measurement of the full correlation function, which depends on the detailed evolution through decoupling. We assess the level of reliability of parameter constraints based on a simple approximation of the acoustic scale compared to a more direct determination from the full numerical two-point correlation function. Using a five-parameter fitting technique similar to recent BAO data analyses, we find that for standard ΛCDM models and extensions with massive neutrinos and additional relativistic degrees of freedom, the approximation is at better than 0.15% for most parameter combinations varying over reasonable ranges.
CosmoSIS: A system for MC parameter estimation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bridle, S.; Dodelson, S.; Jennings, E.; Kowalkowski, J.; Manzotti, A.; Paterno, M.; Rudd, D.; Sehrish, S.; Zuntz, J.
2015-01-01
CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could bemore » used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.« less
Range of Neutronic Parameters for Repository Criticality Analyses
W.J. Anderson
1999-09-28
The ''Range of Neutronic Parameters for Repository Criticality Analyses'' technical report contains a summary of the benchmark criticality analyses (including the laboratory critical experiment [LCEs] and the commercial reactor criticals [CRCs]) used to support the validation of the criticality evaluation methods. This report also documents the development of the Critical Limits (CLs) for the repository criticality analyses.
Prediction of interest rate using CKLS model with stochastic parameters
Ying, Khor Chia; Hin, Pooi Ah
2014-06-19
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.
Online Support Vector Regression with Varying Parameters for Time-Dependent Data
Omitaomu, Olufemi A; Jeong, Myong K; Badiru, Adedeji B
2011-01-01
Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.
Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty
Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.
2004-03-01
The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four
Giant dipole resonance parameters with uncertainties from photonuclear cross sections
Plujko, V.A.; Capote, R.; Gorbachenko, O.M.
2011-09-15
Updated values and corresponding uncertainties of isovector giant dipole resonance (IVGDR or GDR) model parameters are presented that are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data. The theoretical photoabsorption cross section is taken as a sum of the components corresponding to excitation of the GDR and quasideuteron contribution to the experimental photoabsorption cross section. The present compilation covers experimental data as of January 2010. - Highlights: {yields} Experimental {sigma} ({gamma}, abs) or a sum of partial cross sections are taken as input to the fitting. {yields} Data include contributions from photoproton reactions. {yields} Standard (SLO) or modified (SMLO) Lorentzian approaches are used for formulating GDR models. {yields} Spherical or axially deformed nuclear shapes are used in GDR least-squares fit. {yields} Values and uncertainties of the SLO and SMLO GDR model parameters are tabulated.
Performance and safety parameters for the high flux isotope reactor
Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)
2012-07-01
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)
Performance and Safety Parameters for the High Flux Isotope Reactor
Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC
2012-01-01
A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.
The effect of welding parameters on penetration in GTA welds
Shirali, A.A. ); Mills, K.C. )
1993-07-01
The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.
Merchant, Bion J.
2015-08-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This document describes the parameters that are used to configure the NetMOD tool and the input and output parameters that make up the simulation definitions.
CosmoSIS: A System for MC Parameter Estimation
Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James
2015-01-01
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.
Parameter Scaling and Practical Design of TME Lattice
Jiao, Yi; Cai, Yunhai; Chao, Alex; /SLAC /Beijing, Inst. High Energy Phys. /SLAC
2011-11-08
It is a challenge to produce a practical design of an electron storage ring with a theorectical minimum emittance (TME) lattice of ultra low emittance, e.g. several pico-meters, due to the very strong focusing and extremely large natural chromaticity associated to these lattice designs. To help dealing with this challenge, it is requisite to scale the parameters and look for a best solution. In this paper, the parameter scaling is summarized, and it is argued that, with the lattice configuration with defocusing quadrupole closer to the dipole or just defocusing dipole, one can reach a good balance of the low emittance and relative small natural chromaticity, with phase advance per half cell below {pi}/2. The 10 pm TME lattice for PEP-X is shown at last as demonstration of the design procedure.
On-fiber plasmonic interferometer for multi-parameter sensing
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Olson, Douglas A.; Gupta, Ashwani K.; Yu, Miao
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of 60morepm/ C is achieved with our device.less
Power Saving Optimization for Linear Collider Interaction Region Parameters
Seryi, Andrei; /SLAC
2009-10-30
Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.
Agricultural and Environmental Input Parameters for the Biosphere Model
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Parameter Estimation for Single Diode Models of Photovoltaic Modules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2065 Unlimited Release Printed March 2015 Parameter Estimation for Single Diode Models of Photovoltaic Modules Clifford W. Hansen Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract
Parameter Optimization for Laser Polishing of Niobium for SRF Applications
Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.
2013-06-01
Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-15
We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less
Machine learning of parameters for accurate semiempirical quantum chemical calculations
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter
2015-04-14
We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less
Effect of Yttria Content on the Zirconia Unit Cell Parameters
Krogstad, Jessica A.; Lepple, Maren; Gao, Yan; Lipkin, Don M.; Levi, Carlos G.
2012-02-06
The relationship between yttria concentration and the unit cell parameters in partially and fully stabilized zirconia has been reassessed, motivated by the need to improve the accuracy of phase analysis upon decomposition of t{prime}-based thermal barrier coatings. Compositions ranging from 6 to 18 mol% YO{sub 1.5} were synthesized and examined by means of high-resolution X-ray diffraction. Lattice parameters were determined using the Rietveld refinement method, a whole-pattern fitting procedure. The revised empirical relationships fall within the range of those published previously. However, efforts to achieve superior homogeneity of the materials, as well as accuracy of the composition and lattice parameters, provide increased confidence in the reliability of these correlations for use in future studies. Additional insight into the potential sources for scatter previously reported for the transition region ({approx}12-14 mol% YO{sub 1.5}), where tetragonal and cubic phases have been observed to coexist, is also provided. Implications on the current understanding of stabilization mechanisms in zirconia are discussed.
Dirac fields, torsion and Barbero-Immirzi parameter in cosmology
Berredo-Peixoto, G. de; Shapiro, I.L.; Souza, C.A. de; Freidel, L. E-mail: lfreidel@perimeterinstitute.ca E-mail: abrahaocleber@gmail.com
2012-06-01
We consider cosmological solution for Einstein gravity with massive fermions with a four-fermion coupling, which emerges from the Holst action and is related to the Barbero-Immirzi (BI) parameter. This gravitational action is an important object of investigation in a non-perturbative formalism of quantum gravity. We study the equation of motion for the Dirac field within the standard Friedman-Robertson-Walker (FRW) metric. Finally, we show the theory with BI parameter and minimally coupling Dirac field, in the zero mass limit, is equivalent to an additional term which looks like a perfect fluid with the equation of state p = wρ, with w = 1 which is independent of the BI parameter. The existence of mass imposes a variable w, which creates either an inflationary phase with w = −1, or assumes an ultra hard equation of states w = 1 for very early universe. Both phases relax to a pressure less fluid w = 0 for late universe (corresponding to the limit m → ∞)
Anisotropic parameter estimation using velocity variation with offset analysis
Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A.
2013-09-09
Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ? and ?, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter ?. The second method is inversion method using linear approach where vertical velocity, ?, and ? is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that ? value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ? value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.
FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC
Gardner, C. J.
2014-08-15
The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Day-Lewis, Frederick David; Singha, Kamini; Johnson, Timothy C.; Haggerty, Roy; Binley, Andrew; Lane, John W.
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Redlich, Matthias [Universitt Heidelberg, Zentrum fr Astronomie, Institut fr Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom, E-mail: adizitrin@gmail.com [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)
2014-07-01
We discuss how Type Ia supernovae (SNe) strongly magnified by foreground galaxy clusters should be self-consistently treated when used in samples fitted for the cosmological parameters. While the cluster lens magnification of a SN can be well constrained from sets of multiple images of various background galaxies with measured redshifts, its value is typically dependent on the fiducial set of cosmological parameters used to construct the mass model. In such cases, one should not naively demagnify the observed SN luminosity by the model magnification into the expected Hubble diagram, which would create a bias, but instead take into account the cosmological parameters a priori chosen to construct the mass model. We quantify the effect and find that a systematic error of typically a few percent, up to a few dozen percent per magnified SN may be propagated onto a cosmological parameter fit unless the cosmology assumed for the mass model is taken into account (the bias can be even larger if the SN is lying very near the critical curves). We also simulate how such a bias propagates onto the cosmological parameter fit using the Union2.1 sample supplemented with strongly magnified SNe. The resulting bias on the deduced cosmological parameters is generally at the few percent level, if only few biased SNe are included, and increases with the number of lensed SNe and their redshift. Samples containing magnified Type Ia SNe, e.g., from ongoing cluster surveys, should readily account for this possible bias.
Santos, Mario G.; Cooray, Asantha
2006-10-15
We study the prospects for extracting cosmological and astrophysical parameters from the low radio frequency 21-cm background due to the spin-flip transition of neutral hydrogen during and prior to the reionization of the Universe. We make use of the angular power spectrum of 21-cm anisotropies, which exists due to inhomogeneities in the neutral hydrogen density field, the gas temperature field, the gas velocity field, and the spatial distribution of the Lyman-{alpha} intensity field associated with first luminous sources that emit UV photons. We extract parameters that describe both the underlying mass power spectrum and the global cosmology, as well as a set of simplified astrophysical parameters that connect fluctuations in the dark matter to those that govern 21-cm fluctuations. We also marginalize over a model for the foregrounds at low radio frequencies. In this general description, we find large degeneracies between cosmological parameters and the astrophysical parameters, though such degeneracies are reduced when strong assumptions are made with respect to the spin temperature relative to the cosmic microwave background (CMB) temperature or when complicated sources of anisotropy in the brightness temperature are ignored. Some of the degeneracies between cosmological and astrophysical parameters are broken when 21-cm anisotropy measurements are combined with information from the CMB, such as the temperature and the polarization measurements with Planck. While the overall improvement on the cosmological parameter estimates is not significant when measurements from first-generation interferometers are combined with Planck, such a combination can measure astrophysical parameters such as the ionization fraction in several redshift bins with reasonable accuracy.
Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics
Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie; Frerichs, Joshua T; Jagadamma, Sindhu
2012-01-01
While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.
Hou, Zhangshuan; Huang, Maoyi; Leung, Lai-Yung R.; Lin, Guang; Ricciuto, Daniel M.
2012-08-10
Uncertainties in hydrologic parameters could have significant impacts on the simulated water and energy fluxes and land surface states, which will in turn affect atmospheric processes and the carbon cycle. Quantifying such uncertainties is an important step toward better understanding and quantification of uncertainty of integrated earth system models. In this paper, we introduce an uncertainty quantification (UQ) framework to analyze sensitivity of simulated surface fluxes to selected hydrologic parameters in the Community Land Model (CLM4) through forward modeling. Thirteen flux tower footprints spanning a wide range of climate and site conditions were selected to perform sensitivity analyses by perturbing the parameters identified. In the UQ framework, prior information about the parameters was used to quantify the input uncertainty using the Minimum-Relative-Entropy approach. The quasi-Monte Carlo approach was applied to generate samples of parameters on the basis of the prior pdfs. Simulations corresponding to sampled parameter sets were used to generate response curves and response surfaces and statistical tests were used to rank the significance of the parameters for output responses including latent (LH) and sensible heat (SH) fluxes. Overall, the CLM4 simulated LH and SH show the largest sensitivity to subsurface runoff generation parameters. However, study sites with deep root vegetation are also affected by surface runoff parameters, while sites with shallow root zones are also sensitive to the vadose zone soil water parameters. Generally, sites with finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the parameters. Our results suggest the necessity of and possible ways for parameter inversion/calibration using available measurements of latent/sensible heat fluxes to obtain the optimal parameter set for CLM4. This study also provided guidance on reduction of parameter set dimensionality and parameter
Calculated critical parameters for uranium-beryllium-water mixtures
Wetzel, L.L.
1996-12-31
Babcock & Wilcox recovers uranium from Sapphire material through chemical processing. Sapphire material consists of highly enriched uranium that contains various amounts of beryllium. Prior to the processing of Sapphire material, criticality safety analyses conservatively used uranium and water mixtures to model the solutions in the chemical processing operations. In the processing of Sapphire material, the presence of beryllium could change the safety limits. To determine the impact of the beryllium in the solution, critical parameters (mass or radius) for mixtures of uranium, beryllium, and water were calculated.
Parameter Studies of Boussinesq Flows | Argonne Leadership Computing
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Facility Visualization of the scalar field in a single frame of the 4096^3 simulation (performed on Titan at OLCF in the first year of this INCITE award). The axis of rotation and stratification (z-axis) points out of the right front face. A combination of layers oriented along x - y as well as more columnar structures oriented along z are observed. Additionally, regions of turbulent overturning may also be seen. Credit: Joseph Insley, Argonne National Laboratory Parameter Studies of
Note: Characteristic beam parameter for the line electron gun
Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.
2013-11-15
We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.
Finite Bandwidth Related Errors in Noise Parameter Determination of PHEMTs
Wiatr, Wojciech
2005-08-25
We analyze errors in the determination of the four noise parameters due to finite measurement bandwidth and the delay time in the source circuit. The errors are especially large when characterizing low-noise microwave transistors at low microwave frequencies. They result from the spectral noise density variation across the measuring receiver band, due to resonant interaction of the highly mismatched transistor input with the source termination. We show also effects of virtual de-correlation of transistor's noise waves due to finite delay time at the input.
DEVELOPMENT OF VADOSE-ZONE HYDRAULIC PARAMETER VALUES
ROGERS PM
2008-01-21
Several approaches have been developed to establish a relation between the soil-moisture retention curve and readily available soil properties. Those relationships are referred to as pedotransfer functions. Described in this paper are the rationale, approach, and corroboration for use of a nonparametric pedotransfer function for the estimation of soil hydraulic-parameter values at the yucca Mountain area in Nevada for simulations of net infiltration. This approach, shown to be applicable for use at Yucca Mountain, is also applicable for use at the Hanford Site where the underlying data were collected.
Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint
Smith, R. M.; Jordan, D. C.; Kurtz, S. R.
2012-04-01
Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.
Parylene coated microspheres: Operational parameters and round robin results
Williams, J.M.; Foreman, L.R.
1987-01-01
Achieving less than 0.1 micrometer defect and close thickness tolerances with parylene coatings has proven a challenge. Los Alamos has investigated how some parameters of coater design and operation affect coating quality. Numerous coater configurations (home-built and commercial) are being used at our Laboratory and elsewhere. In an effort to evaluate the ability of these various types of units to meet desired tolerances, we ran a round robin evaluation involving six coating operations (US and UK). Each participant received an identical and precharacterized set of targets. Results of both the round robin and coater design/operation evaluation are presented.
Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Zhao, Chun; Lin, Guang; Zhou, Tianjun
2014-09-01
In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.
Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.; Ke, Yinghai; Liu, Ying; Fang, Zhufeng; Sun, Yu
2013-12-01
With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning a wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.
Evaluation of In-Situ Tritium Transport Parameters for Type 316...
Office of Environmental Management (EM)
In-Situ Tritium Transport Parameters for Type 316 Stainless Steel during Irradiation Evaluation of In-Situ Tritium Transport Parameters for Type 316 Stainless Steel during ...
Deconvolution of mixed gamma emitters using peak parameters
Gadd, Milan S; Garcia, Francisco; Magadalena, Vigil M
2011-01-14
When evaluating samples containing mixtures of nuclides using gamma spectroscopy the situation sometimes arises where the nuclides present have photon emissions that cannot be resolved by the detector. An example of this is mixtures of {sup 241}Am and plutonium that have L x-ray emissions with slightly different energies which cannot be resolved using a high-purity germanium detector. It is possible to deconvolute the americium L x-rays from those plutonium based on the {sup 241}Am 59.54 keV photon. However, this requires accurate knowledge of the relative emission yields. Also, it often results in high uncertainties in the plutonium activity estimate due to the americium yields being approximately an order of magnitude greater than those for plutonium. In this work, an alternative method of determining the relative fraction of plutonium in mixtures of {sup 241}Am and {sup 239}Pu based on L x-ray peak location and shape parameters is investigated. The sensitivity and accuracy of the peak parameter method is compared to that for conventional peak decovolution.
ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1
Mosher, Scott W.; Johnson, Seth R.; Bevill, Aaron M.; Ibrahim, Ahmad M.; Daily, Charles R.; Evans, Thomas M.; Wagner, John C.; Johnson, Jeffrey O.; Grove, Robert E.
2015-08-01
The primary objective of ADVANTG is to reduce both the user effort and the computational time required to obtain accurate and precise tally estimates across a broad range of challenging transport applications. ADVANTG has been applied to simulations of real-world radiation shielding, detection, and neutron activation problems. Examples of shielding applications include material damage and dose rate analyses of the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source and High Flux Isotope Reactor (Risner and Blakeman 2013) and the ITER Tokamak (Ibrahim et al. 2011). ADVANTG has been applied to a suite of radiation detection, safeguards, and special nuclear material movement detection test problems (Shaver et al. 2011). ADVANTG has also been used in the prediction of activation rates within light water reactor facilities (Pantelias and Mosher 2013). In these projects, ADVANTG was demonstrated to significantly increase the tally figure of merit (FOM) relative to an analog MCNP simulation. The ADVANTG-generated parameters were also shown to be more effective than manually generated geometry splitting parameters.
Entropy considerations in constraining the mSUGRA parameter space
Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas; Cabral-Rosetti, Luis G.; Mondragon, Myriam
2006-09-25
We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ''abundance'' criterion which is used to calculate the relic density after the ''freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ''freeze-out'' era and present day virialized structures (i.e systems in virial equilibrium). An ''entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2{sigma} bounds according to WMAP for the relic density: 0.0945 < {omega}CDMh2 < 0.1287. As a first result, we found that for A0 = 0, sgn{mu} +, small values of tan{beta} are not favored; only for tan{beta} {approx_equal} 50 are both criteria significantly consistent.
Schulze-Halberg, Axel E-mail: xbataxel@gmail.com; Wang, Jie
2015-07-15
We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.
THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY
Courteau, Stephane; Widrow, Lawrence M.; McDonald, Michael; Guhathakurta, Puragra; Zhu Yucong
2011-09-20
We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n {approx_equal} 2.2 {+-} .3 and effective radius R{sub e} = 1.0 {+-} 0.2 kpc, and a dust-free exponential disk of scale length R{sub d} = 5.3 {+-} .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ({epsilon} = 1 - b/a) of the bulge and the disk from the IRAC image are 0.37 {+-} 0.03 and 0.73 {+-} 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index {approx_equal} - 2.5 {+-} 0.2 (or -3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R{sub min} {approx}< 1.2 kpc. The disk takes over in the range 1.2 kpc {approx}< R{sub min} {approx}< 9 kpc, whereas the halo dominates at R{sub min} {approx}> 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the
Synthesis, characterization, and thermodynamic parameters of vanadium dioxide
Qi Ji [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Department of Chemical Engineering, Dalian Life Science College, Dalian Nationalities University, 18 Laohe West Road, Dalian 116600 (China); Ning Guiling [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Lin Yuan [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)
2008-08-04
A novel process was developed for synthesizing pure thermochromic vanadium dioxide (VO{sub 2}) by thermal reduction of vanadium pentoxide (V{sub 2}O{sub 5}) in ammonia gas. The process of thermal reduction of V{sub 2}O{sub 5} was optimized by both experiments and modeling of thermodynamic parameters. The product VO{sub 2} was characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The experimental results indicated that pure thermochromic VO{sub 2} crystal particles were successfully synthesized. The phase transition temperature of the VO{sub 2} is approximately 342.6 K and the enthalpy of phase transition is 44.90 J/g.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N. (Knoxville, TN); McKnight, Timothy E. (Greenback, TN); Smith, Stephen F. (London, TN); Hylton, James O. (Clinton, TN)
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Parameter space region in the collisional magnetized electronegative plasma
Yasserian, Kiomars; Aslaninejad, Morteza
2010-02-15
The influence of the elastic collisions on the structure of a magnetized electronegative discharge is investigated. For a constant magnetic field, the profiles of the velocities of positive ions, the density of species, and electric potential are obtained. Furthermore, the positive ion flux is obtained as a function of magnetic field strength for different values of the collision frequency. The results show that in the absence of collision in a constant magnetic field, the discharge structure is uniform while by taking the collision into account, the structure becomes multilayer stratified. By increasing the collision frequency the discharge leaves the multilayer structure, and related oscillations in the plasma potential and space charge vanish. The parameter space region is obtained for collisionless and collisional cases. In this paper it is shown that a combined effect of collision and magnetic field determines the presheath-sheath structure.
XRD acquisition parameters for detection of weak peaks
Seabaugh, P.W.; Sullenger, D.B.; Hudgens, C.R.; Nichols, M.C.; Boehme, D.R.; Sandia National Labs., Albuquerque, NM )
1989-01-01
The use of high intensity x-ray sources provides opportunities as well as special problems in the detection of minor XRD peaks. Scattering contributions from slits along with other factors can become important and may interfere with the analysis. This further complexity can best be resolved by using nonconventional data collection and analysis strategies. To study these factors, an experimental design plan was formulated and implemented which was used to determine operating parameters for a high intensity x-ray diffraction unit. Major issues studied included the extraction of a weak signal from a noisy background, the reduction of background noise, the volume of data to be collected, the time allocated for background characterization, the control sample, and the impact of the quality'' of the sample. 4 figs.
Extracting Cu Diffusion Parameters in Polycrystalline CdTe
Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian
2014-06-13
It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.
Neutron multiplicity counting: Confidence intervals for reconstruction parameters
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Verbeke, Jerome M.
2016-03-09
From nuclear materials accountability to homeland security, the need for improved nuclear material detection, assay, and authentication has grown over the past decades. Starting in the 1940s, neutron multiplicity counting techniques have enabled quantitative evaluation of masses and multiplications of fissile materials. In this paper, we propose a new method to compute uncertainties on these parameters using a model-based sequential Bayesian processor, resulting in credible regions in the fissile material mass and multiplication space. These uncertainties will enable us to evaluate quantitatively proposed improvements to the theoretical fission chain model. Additionally, because the processor can calculate uncertainties in real time,more » it is a useful tool in applications such as portal monitoring: monitoring can stop as soon as a preset confidence of non-threat is reached.« less
A brief note on the magnecule order parameter upgrade hypothesis
Schmidt, Nathan O.
2015-03-10
In this short remark, we report on recent hypothetical work that aims to equip Santillis magnecule model with topological deformation order parameters (OP) of fractional statistics to define a preliminary set of wavepacket wavefunctions for the electron toroidal polarizations. The primary objective is to increase the representational precision and predictive accuracy of the magnecule model by exemplifying the fluidic characteristics for direct industrial application. In particular, the OPs are deployed to encode the spontaneous superfluidic gauge symmetry breaking (which may be restored at the iso-topic level) and correlated with Leggetts superfluid B phases to establish a long range constraint for the wavefunctions. These new, developing, theoretical results may be significant because the OP configuration arms us with an extra degree of freedom for encoding a magnecules states and transitions, which may reveal further insight into the underlying physical mechanisms and features associated with these state-of-the-art magnecular bonds.
Optimization of the main parameters of miniature split Stirling cooler
Tsesarsky, J.
1995-12-01
Unlike other modern industrial products Stirling refrigerators development is based mainly on experimental methods. Newly developed high accuracy numerical model for Stirling refrigerators analysis provides good approximation of gas stream process assured by large number of nodes placed in regenerator (300) and large number of time steps (240 per one machine turn). Confidence in accuracy of equations solution makes possible Stirling coolers optimization. In addition to information about refrigerator temperature field the model provides information about driving force of split cooler displacer for computer aided design of displacer driver. In this paper, four parameters of split Stirling refrigerator are optimized: compressor-expander swept volume ratio; phase angle; regenerator length; and regenerator diameter. In each program run power delivered to gas was kept constant by continuous correction of compressor and expander strokes without changing their ratio. Collection of the results produce the optimum cooler structure. Driving displacer force-theta function is also available.
Evaluating System Parameters on a Dragonfly using Simulation and Visualization
Bhatele, Abhinav; Jain, Nikhil; Livnat, Yarden; Pascucci, Valerio; Bremer, Peer-Timo
2015-04-24
The dragon y topology is becoming a popular choice for build- ing high-radix, low-diameter networks with high-bandwidth links. Even with a powerful network, preliminary experi- ments on Edison at NERSC have shown that for communica- tion heavy applications, job interference and thus presumably job placement remains an important factor. In this paper, we explore the e ects of job placement, job sizes, parallel workloads and network con gurations on network through- put to better understand inter-job interference. We use a simulation tool called Damsel y to model the network be- havior of Edison and study the impact of various system parameters on network throughput. Parallel workloads based on ve representative communication patters are used and the simulation studies on up to 131,072 cores are aided by a new visualization of the dragon y network.
An apparatus for concurrent measurement of thermoelectric material parameters
Kallaher, R. L.; Latham, C. A.; Sharifi, F.
2013-01-15
We describe an apparatus which concurrently and independently measures the parameters determining thermoelectric material conversion efficiency: the Seebeck coefficient, thermal conductivity, and electrical resistivity. The apparatus is designed to characterize thermoelectric materials which are technologically relevant for waste heat energy conversion, and may operate from room temperature to 400 Degree-Sign C. It is configured so the heat flux is axially confined along two boron nitride rods of known thermal conductance. The Seebeck coefficient and thermal conductivity are obtained in steady-state using a differential technique, while the electrical resistivity is obtained using a four-point lock-in amplification method. Measurements on the newly developed NIST Seebeck standard reference material are presented in the temperature range from 50 Degree-Sign C to 250 Degree-Sign C.
The physical parameters of the retired a star HD 185351
Johnson, John Asher; Huber, Daniel; Barclay, Thomas; Boyajian, Tabetha; Brewer, John M.; White, Timothy R.; Von Braun, Kaspar; Maestro, Vicente; Stello, Dennis
2014-10-10
We report here an analysis of the physical stellar parameters of the giant star HD 185351 using Kepler short-cadence photometry, optical and near infrared interferometry from CHARA, and high-resolution spectroscopy. Asteroseismic oscillations detected in the Kepler short-cadence photometry combined with an effective temperature calculated from the interferometric angular diameter and bolometric flux yield a mean density ρ{sub *} = 0.0130 ± 0.0003 ρ{sub ☉} and surface gravity log g = 3.280 ± 0.011. Combining the gravity and density we find R {sub *} = 5.35 ± 0.20 R {sub ☉} and M {sub *} = 1.99 ± 0.23 M {sub ☉}. The trigonometric parallax and CHARA angular diameter give a radius R {sub *} = 4.97 ± 0.07 R {sub ☉}. This smaller radius, when combined with the mean stellar density, corresponds to a stellar mass 1.60 ± 0.08 M {sub ☉}, which is smaller than the asteroseismic mass by 1.6σ. We find that a larger mass is supported by the observation of mixed modes in our high-precision photometry, the spacing of which is consistent only for M {sub *} ≳ 1.8 M {sub ☉}. Our various and independent mass measurements can be compared to the mass measured from interpolating the spectroscopic parameters onto stellar evolution models, which yields a model-based mass M {sub *,} {sub model} = 1.87 ± 0.07 M {sub ☉}. This mass agrees well with the asteroseismic value, but is 2.6σ higher than the mass from the combination of asteroseismology and interferometry. The discrepancy motivates future studies with a larger sample of giant stars. However, all of our mass measurements are consistent with HD 185351 having a mass in excess of 1.5 M {sub ☉}.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Covey, Curt; Lucas, Donald D.; Tannahill, John; Garaizar, Xabier; Klein, Richard
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Neutron coincidence measurements when nuclear parameters vary during the multiplication process
Lu, Ming-Shih; Teichmann, T.
1995-07-01
In a recent paper, a physical/mathematical model was developed for neutron coincidence counting, taking explicit account of neutron absorption and leakage, and using dual probability generating function to derive explicit formulae for the single and multiple count-rates in terms of the physical parameters of the system. The results of this modeling proved very successful in a number of cases in which the system parameters (neutron reaction cross-sections, detection probabilities, etc.) remained the same at the various stages of the process (i.e. from collision to collision). However, there are practical circumstances in which such system parameters change from collision to collision, and it is necessary to accommodate these, too, in a general theory, applicable to such situations. For instance, in the case of the neutron coincidence collar (NCC), the parameters for the initial, spontaneous fission neutrons, are not the same as those for the succeeding induced fission neutrons, and similar situations can be envisaged for certain other experimental configurations. This present document shows how the previous considerations can be elaborated to embrace these more general requirements.
Precision Measurement of Neutrino Oscillation Parameters with KamLAND
KamLAND,; O'Donnell, Thomas
2011-12-12
This dissertation describes a measurement of the neutrino oscillation parameters #1;{Delta}m{sup 2}{sub 21}, θ{sub 12} and constraints on θ{sub 13} based on a study of reactor antineutrinos at a baseline of ∼ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ? 0.07 ? 10{sup 32} proton-years. For this exposure we expect 2140 ? 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350?88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (N{sub Obs} − N{sub Bkg})/N{sub Exp} = 0.59 ? 0.02(stat) ? 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.19}?10{sup −5}eV{sup 2}, θ{sub 12} = 32.5 ? 2.9 degrees and sin{sup 2} θ{sub 13} = 0.025{sup +0.035}{sub −0.035}, the 95% confidence-level upper limit on sin{sup 2} θ{sub 13} is sin{sup 2} θ{sub 13} < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.20} ? 10{sup −5}eV{sup 2}, θ{sub 12} = 33.5{sup +1.0}{sub −1.1} degrees, and sin{sup 2} θ{sub 13} = 0.013 ? 0.028 or sin{sup 2} θ{sub 13} < 0.06 at the 95% confidence level.
Dobos, A. P.
2012-05-01
This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.
Geographic and Operational Site Parameters List (GOSPL) for the 2004 Composite Analysis
Last, George V.; Nichols, William E.; Kincaid, Charles T.
2004-07-01
This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for the 2004 Composite Analysis. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site, its operational/disposal history, and its environmental settings (past, current, and future).
Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion
Brown, N. R.; Brown, N. R.; Baek, J. S; Hanson, A. L.; Cuadra, A.; Cheng, L. Y.; Diamond, D. J.
2014-04-30
It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.
Estimation of economic parameters of U.S. hydropower resources
Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.
2003-06-01
Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”
Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments
Bass, Matthew
2014-01-01
The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.
Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter
Li, Huidong; Deng, Zhiqun; Yuan, Yong; Carlson, Thomas J.
2012-07-02
The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. As part of the transmitter downsizing effort some of the design parameters of the lead zirconate titanate (PZT) ceramic tube transducer in the transmitter were studied, including the type of PZT, the backing material, the necessary drive voltage, the transmitting bandwidth and the length of the transducer. It was found that, to satisfy the 156-dB source level requirement of JSATS, a square wave with a 10-volt amplitude is required to drive 'soft' PZT transducers. PZT-5H demonstrated the best source level performance. For Navy types I and II, 16 volts or 18 volts were needed. Ethylene-propylene-diene monomer (EPDM) closed-cell foam was found to be the backing material providing the highest source level. The effect of tube length on the source level is also demonstrated in this paper, providing quantitative information for downsizing of small piezoelectric transmitters.
Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion
Brown N. R.; Brown,N.R.; Baek,J.S; Hanson, A.L.; Cuadra,A.; Cheng,L.Y.; Diamond, D.J.
2013-03-31
It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. . The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). In addition, a summary of the methodology to obtain these results is presented.
Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Trishchenko, Alexander
2008-01-15
Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.
Aluminum ion parameters for the 2015 PP-on-Al setup in RHIC
Gardner, C. J.
2015-10-02
In this note the nominal parameters for aluminum ions in Booster, AGS, and RHIC are given for the PP-on-Al setup in RHIC. The setup parameters are summarized in Sections 13, 14, 15.
Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...
Cold-Crucible Design Parameters for Next Generation HLW Melters
Gombert, D.; Richardson, J.; Aloy, A.; Day, D.
2002-02-26
and Environmental Laboratory (INEEL), is providing preliminary data on the CCIM technology using a small laboratory unit at the Khlopin Radium Institute in St. Petersburg Russia with INEEL Sodium Bearing Waste surrogate. The task includes both the baseline borosilicate glass and a new iron-phosphate glass developed at the University of Missouri-Rolla, which may offer significant advantages in compatibility with greater concentrations of highly refractory oxides. This project is integrating two disparate advances to develop a system with strong potential for benefit to the Department of Energy. Collaborative development of basic physical parameter data on the CCIM using promising glass formulations is being conducted by University of Missouri - Rolla, Russian and American researchers.
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.
Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach
Herawati, Ida Winardhi, Sonny; Priyono, Awali
2015-09-30
Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at
The Efficacy of Galaxy Shape Parameters in Photometric Redshift...
Office of Scientific and Technical Information (OSTI)
GENERAL PHYSICS; MORPHOLOGY; NEURAL NETWORKS; SHAPE; GALAXIES; PARAMETRIC ANALYSIS; RED SHIFT Astrophysics,ASTRO Word Cloud More Like This Full Text preview image File size N...
Parameter sensitivity of plasma wakefields driven by self-modulating proton beams
Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.
2014-08-15
The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.
Constraining the spin and the deformation parameters from the black hole shadow
Tsukamoto, Naoki; Li, Zilong; Bambi, Cosimo E-mail: zilongli@fudan.edu.cn
2014-06-01
Within 5–10 years, very-long baseline interferometry (VLBI) facilities will be able to directly image the accretion flow around SgrA*, the super-massive black hole candidate at the center of the Galaxy, and observe the black hole ''shadow''. In 4-dimensional general relativity, the no-hair theorem asserts that uncharged black holes are described by the Kerr solution and are completely specified by their mass M and by their spin parameter a. In this paper, we explore the possibility of distinguishing Kerr and Bardeen black holes from their shadow. In Hioki and Maeda (2009), under the assumption that the background geometry is described by the Kerr solution, the authors proposed an algorithm to estimate the value of a/M by measuring the distortion parameter δ, an observable quantity that characterizes the shape of the shadow. Here, we try to extend their approach. Since the Hioki-Maeda distortion parameter is degenerate with respect to the spin and possible deviations from the Kerr solution, one has to measure another quantity to test the Kerr black hole hypothesis. We study a few possibilities. We find that it is extremely difficult to distinguish Kerr and Bardeen black holes from the sole observation of the shadow, and out of reach for the near future. The combination of the measurement of the shadow with possible accurate radio observations of a pulsar in a compact orbit around SgrA* could be a more promising strategy to verify the Kerr black hole paradigm.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less
Allegrini, E.; Butera, S.; Kosson, D.S.; Van Zomeren, A.; Van der Sloot, H.A.; Astrup, T.F.
2015-04-15
Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results
Sensitivity analysis of sluicing-leak parameters for the 241-AX tank farm
Davis, J.D., Westinghouse Hanford
1996-12-12
The scope of this work was to analyze the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters. Some of these parameters are controllable. The results were evaluated with respect to their sensitivity to the following types of parameters: hydrostratigraphy and hydraulic properties; volume, duration, and source area of leakage; simultaneous leakage from multiple tanks; pre-existing leaks; barriers to infiltration of meteoric water; and contaminant concentrations and geochemistry.
Measurement of the Kerr spin parameter by observation of a compact object's shadow
Hioki, Kenta; Maeda, Kei-ichi
2009-07-15
A black hole casts a shadow as an optical appearance because of its strong gravitational field. We study how to determine the spin parameter and the inclination angle by observing the apparent shape of the shadow, which is distorted mainly by those two parameters. Defining some observables characterizing the apparent shape (its radius and distortion parameter), we find that the spin parameter and inclination angle of a Kerr black hole can be determined by the observation. This technique is also extended to the case of a Kerr naked singularity.
Probabilistic approach to identify sensitive parameter distributions in multimedia pathway analysis.
Kamboj, S.; Gnanapragasam, E.; LePoire, D.; Biwer, B. M.; Cheng, J.; Arnish, J.; Yu, C.; Chen, S. Y.; Mo, T.; Abu-Eid, R.; Thaggard, M.; Environmental Assessment; NRC
2002-01-01
Sensitive parameter distributions were identified with the use of probabilistic analysis in the RESRAD computer code. RESRAD is a multimedia pathway analysis code designed to evaluate radiological exposures resulting from radiological contamination in soil. The dose distribution was obtained by using a set of default parameter distribution/values. Most of the variations in the output dose distribution could be attributed to uncertainty in a small set of input parameters that could be considered as sensitive parameter distributions. The identification of the sensitive parameters is a first step in the prioritization of future research and information gathering. When site-specific parameter distribution/values are available for an actual site, the same process should be used with these site-specific data. Regression analysis used to identify sensitive parameters indicated that the dominant pathways depended on the radionuclide and source configurations. However, two parameter distributions were sensitive for many radionuclides: the external shielding factor when external exposure was the dominant pathway and the plant transfer factor when plant ingestion was the dominant pathway. No single correlation or regression coefficient can be used alone to identify sensitive parameters in all the cases. The coefficients are useful guides, but they have to be used in conjunction with other aids, such as scatter plots, and should undergo further analysis.
A Workflow for Parameter Calibration and and Model Validation in SST: Interim Report.
Pebay, Philippe Pierre; Wilke, Jeremiah J; Sargsyan, Khachik
2014-12-01
This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.
A Large-Scale, High-Resolution Hydrological Model Parameter Data...
Office of Scientific and Technical Information (OSTI)
Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US Citation Details In-Document Search Title: A ...
Broader source: Energy.gov [DOE]
Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.
Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang
2010-05-01
Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.
Ensslin, Torsten A.; Frommert, Mona [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)
2011-05-15
The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequent reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.
Instrument for the measurement and determination of chemical pulse column parameters
Marchant, Norman J.; Morgan, John P.
1990-01-01
An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.
Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device
Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)
2011-06-15
The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.
Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR
Hanson, A.L.; Diamond, D.
2011-09-30
A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.
Parameters affecting resin-anchored cable bolt performance: Results of in situ evaluations
Zelanko, J.C.; Mucho, T.P.; Compton, C.S.; Long, L.E.; Bailey, P.E.
1995-11-01
Cable bolt support techniques, including hardware and anchorage systems, continue to evolve to meet US mining requirements. For cable support systems to be successfully implemented into new ground control areas, the mechanics of this support and the potential range of performance need to be better understood. To contribute to this understanding, a series of 36 pull tests were performed on 10 ft long cable bolts using various combinations of hole diameters, resin formulations, anchor types, and with and without resin dams. These test provided insight as to the influence of these four parameters on cable system performance. Performance was assessed in terms of support capacity (maximum load attained in a pull test), system stiffness (assessed from two intervals of load-deformation), and from the general load-deformation response. Three characteristic load-deformation responses were observed. An Analysis of Variance identified a number of main effects and interactions of significance to support capacity and stiffness. The factorial experiment performed in this study provides insight to the effects of several design parameters associated with resin-anchored cable bolts.
Pseudobond parameters for QM/MM studies involving nucleosides, nucleotides, and their analogs
Chaudret, Robin; Parks, Jerry M; Yang, Weitao
2013-01-01
In biological systems involving nucleosides, nucleotides, or their respective analogs, the ribose sugar moiety is the most common reaction site, for example, during DNA replication and repair. How- ever, nucleic bases, which comprise a sizable portion of nucleotide molecules, are usually unreactive during such processes. In quantum mechanical/molecular simulations of nucleic acid reactivity, it may therefore be advantageous to describe specific ribosyl or ribosyl phosphate groups quantum me- chanically and their respective nucleic bases with a molecular mechanics potential function. Here, we have extended the pseudobond approach to enable quantum mechanical/molecular mechanical simulations involving nucleotides, nucleosides, and their analogs in which the interface between the two subsystems is located between the sugar and the base, namely, the C(sp3) N(sp2) bond. The pseudobond parameters were optimized on a training set of 10 molecules representing several nu- cleotide and nucleoside bases and analogs, and they were then tested on a larger test set of 20 diverse molecules. Particular emphasis was placed on providing accurate geometries and electrostatic prop- erties, including electrostatic potential, natural bond orbital (NBO) and atoms in molecules (AIM) charges and AIM first moments. We also tested the optimized parameters on five nucleotide and nu- cleoside analogues of pharmaceutical relevance and a small polypeptide (triglycine). Accuracy was maintained for these systems, which highlights the generality and transferability of the pseudobond approach. 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772182
Berryman, James G.
2007-12-12
used as a general means of quantifying the effects of fluids inside the fractures. Explicit formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either VTI or HTI symmetry of the reservoir.
A variational approach for dissipative quantum transport in a wide parameter space
Zhang, Yu Kwok, YanHo; Chen, GuanHua; Yam, ChiYung
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.
Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.
Ehgartner, Brian L.; Park, Byoung Yoon
2009-03-01
A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.
Parameter Analysis of the VPIN (Volume synchronized Probability of Informed Trading) Metric
Song, Jung Heon; Wu, Kesheng; Simon, Horst D.
2014-03-01
VPIN (Volume synchronized Probability of Informed trading) is a leading indicator of liquidity-induced volatility. It is best known for having produced a signal more than hours before the Flash Crash of 2010. On that day, the market saw the biggest one-day point decline in the Dow Jones Industrial Average, which culminated to the market value of $1 trillion disappearing, but only to recover those losses twenty minutes later (Lauricella 2010). The computation of VPIN requires the user to set up a handful of free parameters. The values of these parameters significantly affect the effectiveness of VPIN as measured by the false positive rate (FPR). An earlier publication reported that a brute-force search of simple parameter combinations yielded a number of parameter combinations with FPR of 7%. This work is a systematic attempt to find an optimal parameter set using an optimization package, NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) by Audet, le digabel, and tribes (2009) and le digabel (2011). We have implemented a number of techniques to reduce the computation time with NOMAD. Tests show that we can reduce the FPR to only 2%. To better understand the parameter choices, we have conducted a series of sensitivity analysis via uncertainty quantification on the parameter spaces using UQTK (Uncertainty Quantification Toolkit). Results have shown dominance of 2 parameters in the computation of FPR. Using the outputs from NOMAD optimization and sensitivity analysis, We recommend A range of values for each of the free parameters that perform well on a large set of futures trading records.
Compartment modeling of dynamic brain PETThe impact of scatter corrections on parameter errors
Hggstrm, Ida Karlsson, Mikael; Larsson, Anne; Schmidtlein, C. Ross
2014-11-01
Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. Methods: The GATE Monte Carlo (MC) software was used to perform 2 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3?-deoxy-3?-({sup 18}F)fluorothymidine (FLT), and were denoted FLT{sub 1} and FLT{sub 2}. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived timeactivity curves. Calculated parameters were compared to the true input to the MC simulations. Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT{sub 1}) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT{sub 2}) for K{sub 1}, k{sub 2}, k{sub 3}, k{sub 4}, V{sub a}, and K{sub i}, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of K{sub i} and k{sub 3}, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k{sub 3} and K{sub i} estimates while
Using a scalar parameter to trace dislocation evolution in atomistic modeling
Yang, Jinbo; Zhang, Z F; Osetskiy, Yury N; Stoller, Roger E
2015-01-01
A scalar gamma-parameter is proposed from the Nye tensor. Its maximum value occurs along a dislocation line, either straight or curved, when the coordinate system is purposely chosen. This parameter can be easily obtained from the Nye tensor calculated at each atom in atomistic modeling. Using the gamma-parameter, a fully automated approach is developed to determine core atoms and the Burgers vectors of dislocations simultaneously. The approach is validated by revealing the smallest dislocation loop and by tracing the whole formation process of complicated dislocation networks on the fly.
Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases
Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.; Hay, Tristan R.
2012-11-01
The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.
Polarized proton parameters for the 2015 PP-on-Au setup in RHIC
Gardner, C. J.
2015-08-25
Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.
Design Parameters and Objectives of a High--Resolution X--ray...
Office of Scientific and Technical Information (OSTI)
Technical Report: Design Parameters and Objectives of a High--Resolution X--ray Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search ...
Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC
Gardner, C. J.
2015-10-02
Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.
Veesaert, C.J.; LaBoon, J.H.
1995-12-31
As the Bureau of Reclamation (Reclamation) moves away from design and construction of new water resource projects toward optimizing the management of existing water resource projects, monitoring the condition of high risk structures such as dams becomes very important. To address this need, Reclamation has developed a logical approach of monitoring the safety of a dam over time. This approach analyzes visual and instrumentation performance parameters unique to each dam, Performance parameters specify the expected performance (behavior) of both embankment and concrete dams, including those concrete dams effected by alkali-aggregate reaction. This paper presents an overview of the concept of performance parameters in monitoring the safety of dams, which have experienced alkali-aggregate reaction. Three case studies are presented to illustrate the use of performance parameters in monitoring a dam`s behavior over time, relative to the effects of alkali-aggregate reaction.
Pion cloud and sea quark flavor asymmetry in the impact parameter...
Office of Scientific and Technical Information (OSTI)
Pion cloud and sea quark flavor asymmetry in the impact parameter representation Citation Details In-Document Search Title: Pion cloud and sea quark flavor asymmetry in the impact ...
One-parameter semigroups of analytic functions, fixed points and the Koenigs function
Goryainov, Victor V; Kudryavtseva, Olga S
2011-07-31
Analogues of the Berkson-Porta formula for the infinitesimal generator of a one-parameter semigroup of holomorphic maps of the unit disc into itself are obtained in the case when, along with a Denjoy-Wolff point, there also exist other fixed points. With each one-parameter semigroup a so-called Koenigs function is associated, which is a solution, common for all elements of the one-parameter semigroup, of a certain functional equation (Schroeder's equation in the case of an interior Denjoy-Wolff point and Abel's equation in the case of a boundary Denjoy-Wolff point). A parametric representation for classes of Koenigs functions that takes account of the Denjoy-Wolff point and other fixed points of the maps in the one-parameter semigroup is presented. Bibliography: 19 titles.
Sensitivity Analysis of Parameters Affecting Protection of Water Resources at Hanford WA
DAVIS, J.D.
2002-02-08
The scope of this analysis was to assess the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters, some of which can be controlled by operational considerations.
Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1
Not Available
1993-03-01
The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.
Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter
Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2012-07-24
Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.
Effect of plasma parameters on growth and field emission properties of spherical carbon nanotube tip
Sharma, Suresh C.; Tewari, Aarti
2011-06-15
The effect of plasma parameters (e.g., electron density and temperature, ion density and temperature, neutral atom density and temperature) on the growth (without a catalyst), structure, and field emission properties of a spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, positively charged ions, and neutral atoms and the energy balance of the various species in plasma, has been developed. Numerical calculations of the radius of the spherical CNT tip for different CNT number densities and plasma parameters have been carried out for the typical glow discharge plasma parameters. It is found that upon an increase in the CNT number density and plasma parameters, the radius of the spherical CNT tip decreases, and consequently the field emission factor for the spherical CNT tip increases.
Design Parameters and Objectives of a High--Resolution X--ray...
Office of Scientific and Technical Information (OSTI)
Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title: Design Parameters and Objectives of a High--Resolution X--ray Imaging Crystal ...
Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter
Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da
2015-07-30
With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.
Analysis of site parameters affecting natural attenuation in saturated soil. Master's thesis
Potts, W.H.
1993-09-01
This study investigated the natural attenuation mechanisms and some of the parameters affecting those mechanisms in the saturated zone. A literature search revealed numerous studies of various attenuation and the associated parameters. Much of the literature emphasized biodegradation as the most promising attenuation mechanism. BIOPLUME II(TM), a fate and transport model, was used to simulate the fate and transport of contaminant plume. The effects of the model parameters were investigated by observing the distance a contaminant plume was expected to migrate over a fifty year period. The investigation was limited by the model which excludes chemical reactions and some physical and physiochemical reactions. The model simulations indicated that parameters which exhibited significant influence on natural attenuation include hydraulic conductivity, reaeration, and coefficient of anaerobic biodegradation.
U-089:Apache Struts ParameterInterceptor() Flaw Lets Remote Users...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Apache Struts ParameterInterceptor() Flaw Lets Remote Users Execute Arbitrary Commands PLATFORM: Struts 2.0.0 - Struts 2.3.1.1 ABSTRACT: A remote user can execute arbitrary code...
Determination of modeling parameters for power IGBTs under pulsed power conditions
Dale, Gregory E; Van Gordon, Jim A; Kovaleski, Scott D
2010-01-01
While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.
Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model
Hansen, Clifford
2015-10-01
We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .