Computable General Equilibrium Models for Sustainability Impact...
Publications, Softwaremodeling tools User Interface: Other Website: iatools.jrc.ec.europa.eudocsecolecon2006.pdf Computable General Equilibrium Models for Sustainability...
Computable General Equilibrium Model Fiscal Year 2013 Capability Development Report - April 2014
Edwards, Brian Keith; Rivera, Michael K.; Boero, Riccardo
2014-04-01
This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.
Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...
Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M; Watson, David B
2007-01-01
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
Fraser, D.W.H.; Abdelmessih, A.H.
1995-09-01
A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.
Measurements and non-local thermodynamic equilibrium modeling...
Office of Scientific and Technical Information (OSTI)
thermodynamic equilibrium modeling of mid-Z plasma emission Citation Details In-Document Search Title: Measurements and non-local thermodynamic equilibrium modeling of mid-Z ...
Multicomponent Equilibrium Models for Testing Geothermometry Approaches
Cooper, D. Craig; Palmer, Carl D.; Smith, Robert W.; McLing, Travis L.
2013-02-01
Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.
General Equilibrium Modeling Package (GEMPACK) | Open Energy...
This tool is included in the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Approach The GEMPACK is used for building and solving applied...
Modeling International Relationships in Applied General Equilibrium...
Related Tools Manual for Quantitative Evaluation of the Co-Benefits Approach to Climate Change Long-Range Energy Alternatives Planning System (LEAP) Object-Oriented Energy,...
General Equilibrium Model for Economy - Energy - Environment...
and non-energy related emissions of carbon dioxide (CO2), other GHG such as methane (CH4), nitrous oxide (N20) sulfur hexafluoride (SF6), hydrofluorocarbon (HFC), and...
Heavy ion collisions and the pre-equilibrium exciton model
Betak, E.
2012-10-20
We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
Rezai, Raheleh Ebrahimi, Farshad
2014-04-15
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electronelectron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the currentvoltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electronelectron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. We determine the transport properties of SIAM using the non-equilibrium STLS method. We compare our results with order-U2 IPT and NRG. We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. We show that the method keeps the universal scaling behavior and correct exponential behavior
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Malolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-09-23
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.
Coupling of an average-atom model with a collisional-radiative equilibrium model
Faussurier, G. Blancard, C.; Cossé, P.
2014-11-15
We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.
VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis
G. S. Chang
2006-09-01
The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.
ENV-Linkages General Equilibrium Model | Open Energy Information
Topics: Co-benefits assessment Resource Type: Softwaremodeling tools Website: www.oecd.orgofficialdocumentsdisplaydocumentpdf?coteECOWKP(2008)6 References: OECD1...
General Equilibrium Emissions Model (GEEM) | Open Energy Information
Development (IISD) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Goods...
Non-equilibrium scaling analysis of the Kondo model with voltage bias
Fritsch, Peter Kehrein, Stefan
2009-05-15
The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the {beta}-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.
Plasmoid solutions of the HahmKulsrudTaylor equilibrium model
Dewar, R. L. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia and Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan)] [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia and Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Bhattacharjee, A.; Kulsrud, R. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Wright, A. M. [The Australian National University, Canberra ACT 0200 (Australia)] [The Australian National University, Canberra ACT 0200 (Australia)
2013-08-15
The HahmKulsrud (HK) [T. S. Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985)] solutions for a magnetically sheared plasma slab driven by a resonant periodic boundary perturbation illustrate fully shielded (current sheet) and fully reconnected (magnetic island) responses. On the global scale, reconnection involves solving a magnetohydrodynamic (MHD) equilibrium problem. In systems with a continuous symmetry, such MHD equilibria are typically found by solving the GradShafranov equation, and in slab geometry the elliptic operator in this equation is the 2-D Laplacian. Thus, assuming appropriate pressure and poloidal current profiles, a conformal mapping method can be used to transform one solution into another with different boundary conditions, giving a continuous sequence of solutions in the form of partially reconnected magnetic islands (plasmoids) separated by Syrovatsky current sheets. The two HK solutions appear as special cases.
Modeling Mathematical Programs with Equilibrium Constraints in Pyomo
Hart, William E.; Siirola, John Daniel
2015-07-01
We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.
Generalized gas-solid adsorption modeling: Single-component equilibria
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.
2015-01-07
Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can bemore » further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set
Generalized Environment for Modeling Systems
Energy Science and Technology Software Center (OSTI)
2012-02-07
GEMS is an integrated environment that allows technical analysts, modelers, researchers, etc. to integrate and deploy models and/or decision tools with associated data to the internet for direct use by customers. GEMS does not require that the model developer know how to code or script and therefore delivers this capability to a large group of technical specialists. Customers gain the benefit of being able to execute their own scenarios directly without need for technical support.more » GEMS is a process that leverages commercial software products with specialized codes that add connectivity and unique functions to support the overall capability. Users integrate pre-existing models with a commercial product and store parameters and input trajectories in a companion commercial database. The model is then exposed into a commercial web environment and a graphical user interface (GUI) is applied by the model developer. Users execute the model through the web based GUI and GEMS manages supply of proper inputs, execution of models, routing of data to models and display of results back to users. GEMS works in layers, the following description is from the bottom up. Modelers create models in the modeling tool of their choice such as Excel, Matlab, or Fortran. They can also use models from a library of previously wrapped legacy codes (models). Modelers integrate the models (or a single model) by wrapping and connecting the models using the Phoenix Integration tool entitled ModelCenter. Using a ModelCenter/SAS plugin (DOE copyright CW-10-08) the modeler gets data from either an SAS or SQL database and sends results back to SAS or SQL. Once the model is working properly, the ModelCenter file is saved and stored in a folder location to which a SharePoint server tool created at INL is pointed. This enables the ModelCenter model to be run from SharePoint. The modeler then goes into Microsoft SharePoint and creates a graphical user interface (GUI) using the ModelCenter Web
LLNL Ocean General Circulation Model
Energy Science and Technology Software Center (OSTI)
2005-12-29
The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.
Comparison of transition densities in the DDHMS model of pre-equilibrium emission
Brito, L.; Carlson, B. V.
2014-11-11
The DDHMS (double differential hybrid Monte Carlo simulation) model treats nucleon-induced pre-equilibrium reactions as a series of particle-particle and particle-hole interactions in the space of energy and angle. This work compares spectra obtained within the model using diferent approximations to the density of accessible states. The calculations are performed with the EMPIRE reaction model code, a modular system containing several nuclear reaction models that permits a fairly complete descritpion of the reaction, from elastic scattering and absorption through the pre-equilbrium stage to the final decay by statistical emission.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.
Kowalsky, Michael B.; Moridis, George J.
2006-11-29
In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.
Laser induced plasma on copper target, a non-equilibrium model
Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis
2014-02-15
The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.
Compactlike kinks and vortices in generalized models
Bazeia, D.; Hora, E. da; Menezes, R.; Oliveira, H. P. de; Santos, C. dos
2010-06-15
This work deals with the presence of topological defects in k-field models, where the dynamics is generalized to include higher order power in the kinetic term. We investigate kinks in (1, 1) dimensions and vortices in (2, 1) dimensions, focusing on some specific features of the solutions. In particular, we show how the kinks and vortices change to compactlike solutions, controlled by the parameter used to introduce the generalized models.
Simple implementation of general dark energy models
Bloomfield, Jolyon K.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk
2014-03-01
We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.
Systematic validation of non-equilibrium thermochemical models using Bayesian inference
Miki, Kenji; Panesi, Marco; Prudhomme, Serge
2015-10-01
The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.
Entropy analysis on non-equilibrium two-phase flow models
Karwat, H.; Ruan, Y.Q.
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
GW approach to Anderson model in and out of equilibrium : scaling properties in the Kondo regime.
Spataru, Dan Catalin
2010-03-01
The low-energy properties of the Anderson model for a single impurity coupled to two leads are studied using the GW approximation. We find that quantities such as the spectral function at zero temperature, the linear-response conductance as function of temperature or the differential conductance as function of bias voltage exhibit universal scaling behavior in the Kondo regime. We show how the form of the GW scaling functions relates to the form of the scaling functions obtained from the exact solution at equilibrium. We also compare the energy scale that goes inside the GW scaling functions with the exact Kondo temperature, for a broad range of the Coulomb interaction strength in the asymptotic regime. This analysis allows to clarify a presently suspended question in the literature, namely whether or not the GW solution captures the Kondo resonance.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The Vegetation-Ecosystem Modeling and Analysis Project (VEMAP) was a large, collaborative, multi-agency program to simulate and understand ecosystem dynamics for the continental U.S. The project involved the development of common data sets for model input including a high-resolution topographically-adjusted climate history of the U.S. from 1895-1993 on a 0.5? grid, with soils and vegetation cover. The vegetation cover data set includes a detailed agricultural data base based on USDA statistics and remote sensing, as well as natural vegetation (also derived from satellite imagery). Two principal model experiments were run. First, a series of ecosystem models were run from 1895 to 1993 to simulate current ecosystem biogeochemistry. Second, these same models were integrated forward using the output from two climate system models (CCC (Canadian Climate Centre) and Hadley Centre models) using climate results translated into the VEMAP grid and re-adjusted for high-resolution topography for the simulated period 1994-2100.[Quoted from http://www.cgd.ucar.edu/vemap/findings.html] The VEMAP Data Portal is a central collection of files maintained and serviced by the NCAR Data Group. These files (the VEMAP Community Datasets) represent a complete and current collection of VEMAP data files. All data files available through the Data Portal have undergone extensive quality assurance.[Taken from http://www.cgd.ucar.edu/vemap/datasets.html] Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai
2014-12-31
The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less
New model for nucleon generalized parton distributions
Radyushkin, Anatoly V.
2014-01-01
We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.
Mac Low, Mordecai-Mark; Glover, Simon C. O. E-mail: glover@uni-heidelberg.de
2012-02-20
Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.
General single phase wellbore flow model
Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.
1997-02-05
A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.
Application of Improved Radiation Modeling to General Circulation Models
Michael J Iacono
2011-04-07
This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.
Change of variables as a method to study general ?-models: Bulk universality
Shcherbina, M.
2014-04-15
We consider ? matrix models with real analytic potentials. Assuming that the corresponding equilibrium density ? has a one-interval support (without loss of generality ? = [?2, 2]), we study the transformation of the correlation functions after the change of variables ?{sub i} ? ?(?{sub i}) with ?(?) chosen from the equation ?{sup ?}(?)?(?(?)) = ?{sub sc}(?), where ?{sub sc}(?) is the standard semicircle density. This gives us the deformed ?-model which has an additional interaction term. Standard transformation with the Gaussian integral allows us to show that the deformed ?-model may be reduced to the standard Gaussian ?-model with a small perturbation n{sup ?1}h(?). This reduces most of the problems of local and global regimes for ?-models to the corresponding problems for the Gaussian ?-model with a small perturbation. In the present paper, we prove the bulk universality of local eigenvalue statistics for both one-cut and multi-cut cases.
Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume
2011-01-10
A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-08-04
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-08-04
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore »swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-08-04
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.
Open Geospace General Circulation Model simulation of a substorm...
Office of Scientific and Technical Information (OSTI)
Open Geospace General Circulation Model simulation of a substorm: Axial tail instability ... Country of Publication: United States Language: English Word Cloud More Like This Full ...
A general simulation model for Stirling cycles
Schulz, S.; Schwendig, F.
1996-01-01
A mathematical model for the calculation of the Stirling cycle and of similar processes is presented. The model comprises a method to reproduce schematically any kind of process configuration, including free piston engines. The differential balance equations describing the process are solved by a stable integration algorithm. Heat transfer and pressure loss are calculated by using new correlations, which consider the special conditions of the periodic compression/expansion respectively of the oscillating flow. A comparison between experimental data achieved by means of a test apparatus and calculated data shows a good agreement.
Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.
2014-09-08
We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.
Evaluation of cirrus statistics produced by general circulation models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
using ARM data cirrus statistics produced by general circulation models using ARM data Hartsock, Daniel University of Utah Mace, Gerald University of Utah Benson, Sally University of Utah Category: Modeling Our goal is to evaluate the skill of various general circulation models for producing climatological cloud statistics by comparing them to the cirrus climatology compiled over the Southern Great Plains (SGP) ARM site. This evaluation includes quantifying similar cloud properties and
Posters Comparison Between General Circulation Model Simulation and Central Equatorial
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
61 Posters Comparison Between General Circulation Model Simulation and Central Equatorial Pacific Experiment Measurements G. J. Zhang, S. Sherwood, T. P. Barnett, and V. Ramanathan Scripps Institution of Oceanography University of California, San Diego La Jolla, California Introduction A general circulation model (GCM) is a very powerful tool for understanding many climate issues. However, it must be validated using observational data in order for the model results to be credible in climate
Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.
2015-04-28
Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.
2015-04-28
Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique valuemore » but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.« less
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
Energy Science and Technology Software Center (OSTI)
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based onmore » wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scales accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scales accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.
Kang, Hyun-Ah; Engle, Nancy L.; Bonnesen Peter V.; Delmau, Laetitia H.; Haverlock, Tamara J.; Moyer, Bruce A.
2004-03-29
In the present work, it has been the aim to examine extraction efficiencies of nine proton-ionizable alcohols (HAs) in 1-octanol and to identify both the controlling equilibria and predominant species involved in the extraction process within a thermochemical model. Distribution ratios for sodium (DNa) extraction were measured as a function of organic-phase HA and aqueous-phase NaOH molarity at 25 C. Extraction efficiency follows the expected order of acidity of the HAs, 4-(tert-octyl) phenol (HA 1a) and 4-noctyl- a,a-bis-(trifluoromethyl)benzyl alcohol (HA 2a) being the most efficient extractants among the compounds tested. By use of the equilibrium-modeling program SXLSQI, a model for the extraction of NaOH has been advanced based on an ion-pair extraction by the diluent to give organic-phase Na+OH- and corresponding free ions and cation exchange by the weak acids to form monomeric organic-phase Na+A- and corresponding free organic-phase ions.
Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai
2014-12-31
The heat transfer and fluid transport of supercritical CO_{2} in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.
Caspers, J.L.
1994-08-12
This research postulates and demonstrates incorporating rate-limited sorption effects in the USGS SUTRA code for cleanup of a hypothetical sandy aquifer by pump-and-treat remediation methods. Contaminant transport is assumed to be affected by advection, dispersion, and rate-limited sorption/desorption. Sorption is assumed to be either equilibrium or rate-limited, with the rate-limitation described by either a first-order law, or by Fickian diffusion of contaminant through a spherical immobile pore region. Solutions are arrived at by split operator methods for the transport and one-dimensional Galerkin solutions for the solute concentration equations. The resulting model is tested against an analytical Laplace transform model for both first-order and Fickian diffusion methods in a radial pumping simulation. Model simulations are used to evaluate equilibrium, first-order and Fickian diffusion effects for pulsed and continuous pumping solutions within a hypothetical sandy aquifer. These show that equilibrium methods under-predicted rebound while first-order methods may both under and over predict rebound within the matrix for certain regions and may be equivalent to Fickian diffusion in equilibrium regimes for cleanup time prediction. Model simulations are then used to show the efficiency of pulsed pumping methods in cleanup mass extraction per pumped volume for a contaminated aquifer pump-and-treat remediation activity versus more conventional, continuous pumping methods.
System Advisor Model, SAM 2011.12.2: General Description
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
System Advisor Model, SAM 2011.12.2: General Description Paul Gilman and Aron Dobos Technical Report NREL/TP-6A20-53437 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 System Advisor Model, SAM 2011.12.2: General Description
Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu
2014-01-01
Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLMs net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAMs assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.
Bachrata, A.; Fichot, F.; Quintard, M.; Repetto, G.; Fleurot, J.
2012-05-15
A generalized non local-equilibrium, three-equation model was developed for the macroscopic description of two-phase flow heat and mass transfer in porous media subjected to phase change. Six pore-scale closure problems were proposed to determine all the effective transport coefficients for representative unit cells. An improved model is presented in this paper with the perspective of application to intense boiling phenomena. The objective of this paper is to present application of this model to the simulation of reflooding of severely damaged nuclear reactor cores. In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead to quenching and further fragmentation of the core material. The fragmentation of fuel rods and melting of reactor core materials may result in the formation of a {sup d}ebris bed{sup .} The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), which corresponds to a high permeability porous medium. The proposed two-phase flow model is implemented in the ICARECATHARE code, developed by IRSN to study severe accident scenarios in pressurized water reactors. Currently, the French IRSN has set up two experimental facilities to study debris bed reflooding, PEARL and PRELUDE, with the objective to validate safety models. The PRELUDE program studies the complex two phase flow of water and steam in a porous medium (diameter 180 mm, height 200 mm), initially heated to a high temperature (400 deg. C or 700 deg. C). The series of PRELUDE experiments achieved in 2010 constitute a significant complement to the database of high temperature bottom reflood experimental data. They provide relevant data to understand the progression of the quench front and the intensity of heat transfer. Modeling accurately these experiments required improvements to the
A general circulation model (GCM) parameterization of Pinatubo aerosols
Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I.
1996-04-01
The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.
Non-equilibrium STLS approach to transport properties of single...
Office of Scientific and Technical Information (OSTI)
Non-equilibrium STLS approach to transport properties of single impurity Anderson model Citation Details In-Document Search Title: Non-equilibrium STLS approach to transport ...
Treatment of cloud radiative effects in general circulation models
Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M.
1996-04-01
We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.
Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells
Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; France, Ryan M.; McMahon, William E.; Osterwald, Carl R.; Friedman, Daniel J.
2015-10-02
The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs of the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.
Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells
Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; France, Ryan M.; McMahon, William E.; Osterwald, Carl R.; Friedman, Daniel J.
2015-11-01
The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs of the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.
Single-Column Modeling A Stratiform Cloud Parameterization for General Circulation Models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A Stratiform Cloud Parameterization for General Circulation Models S. J. Ghan and L. R. Leung Pacific Northwest Laboratory Richland, WA 99352 C. C. Chuang and J. E. Penner Lawrence Livermore National Laboratory : Livermore. CA 94550 J. McCaa University of Washington Seattle, Washington The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to
System Advisor Model, SAM 2014.1.14: General Description
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
System Advisor Model, SAM 2014.1.14: General Description Nate Blair, Aron P. Dobos, Janine Freeman, Ty Neises, and Michael Wagner National Renewable Energy Laboratory Tom Ferguson, Paul Gilman, and Steven Janzou Independent Consultants Technical Report NREL/TP-6A20-61019 February 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the
Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; France, Ryan M.; McMahon, William E.; Osterwald, Carl R.; Friedman, Daniel J.
2015-10-02
The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs ofmore » the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.« less
A generalized Fokker-Planck model applied to beam transport
Prinja, A.K.; Pomraning, G.C.
1998-12-31
In this paper the authors consider a generalized Fokker-Planck (GFP) model for the transport of charged-particle beams, when scattering is not sufficiently forward peaked for the well-known Fokker-Planck (FP) approximation to hold. This approximation is strictly valid in the limit that the total scattering cross section {sigma}{sub s} {r_arrow} {infinity} and the mean cosine of scattering {bar {mu}} {r_arrow} 1. When scattering is not sufficiently forward peaked, higher order Fokker-Planck expansions, restricted to differential cross sections that fall off sufficiently rapidly, can be developed. For instance, the Henyey-Greenstein differential cross section does not possess an FP limit at all, while the screened Rutherford cross section satisfies the FP limit only marginally, and its higher order FP limits do not exist. For cross sections that fall off faster than screened Rutherford, including the exponential phase function, higher order truncations exist.
Generalized Modeling of Enrichment Cascades That Include Minor Isotopes
Weber, Charles F
2012-01-01
The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but such nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be
Environmental Impact and Sustainability Applied General Equilibrium...
to the economics of climate change, including baseline of CO2 and greenhouse gases, impact of climate change on economy, adaptation to climate change, and distributional...
Whetton, P.H.; Pittock, A.B.; Haylock, M.R. ); Rayner, P.J. )
1994-03-01
To assist in estimating likely future climate change in the Australian region, the authors examine the results of four different general circulation modeling experiments run to assess the equilibrium impact of doubling greenhouse gases. The results examined were the most recent available at the time of study from various research centers in North America and Europe, as well as those of the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The approach used is, first, to assess the quality of the control (1 x CO[sub 2]) simulations from each of the models of mean sea level (MSL) pressure and precipitation in the Australian region by comparing these with the corresponding observed patterns; and, second, to then analyze the 2 x CO[sub 2] results of only those model experiments with the best control simulations. Of the models examined two are chosen on the basis of their simulation of current climate in the region: the CSIRO four-level model (CSIRO4) and the United Kingdom Meteorological Office (UKMO) model. For conditions of equivalent doubling of CO[sub 2], both models show substantial increases in surface air temperature of around 4[degrees]-6[degrees] inland and 2[degrees]-4[degrees]C in coastal regions. Both models show decreased MSL pressure over the Australian continent and increases in rainfall over northern, central, and eastern Australia, particularly in the summer half of the year. The CSIRO4 model, but not the UKMO model, also shows increased pressure to the south of the continent and decreased winter rainfall in southwest and southern Australia. Generally, field significance tests show the pattern and magnitude of the changes to be significant of CSIRO4 (for which the necessary monthly simulated data were available). 42 refs., 20 figs., 5 tabs.
Rucker, G
2007-05-01
Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.
Rucker, Gregory G.
2007-07-01
Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)
Butlitsky, M. A.; Zelener, B. V.
2014-07-14
A two-component plasma model, which we called a shelf Coulomb model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The shelf Coulomb model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ? parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ? and ? = ?e{sup 2}n{sup 1/3} (where ? = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ? and ? parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ?{sub crit}?13(T{sub crit}{sup *}?0.076),?{sub crit}?1.8(v{sub crit}{sup *}?0.17),P{sub crit}{sup *}?0.39, where specific volume v* = 1/?{sup 3} and reduced temperature T{sup *} = ?{sup ?1}.
Generalized charge-screening in relativistic ThomasFermi model
Akbari-Moghanjoughi, M.
2014-10-15
In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}?r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar
Model for Energy Supply System Alternatives and their General...
Resource Type: Softwaremodeling tools Website: www-tc.iaea.orgtcwebabouttcstrategyThematicpdfpresentationsener References: Overview of IAEA PESS Models 1 "MESSAGE...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; Stone, James J.
2016-02-03
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other
Some properties of correlations of quantum lattice systems in thermal equilibrium
Frhlich, Jrg; Ueltschi, Daniel
2015-05-15
Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.
Robert G. Ellingson
2004-09-28
One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.
Prediction of cloud droplet number in a general circulation model
Ghan, S.J.; Leung, L.R.
1996-04-01
We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.
Towards breaking temperature equilibrium in multi-component Eulerian schemes
Grove, John W; Masser, Thomas
2009-01-01
We investigate the effects ofthermal equilibrium on hydrodynamic flows and describe models for breaking the assumption ofa single temperature for a mixture of components in a cell. A computational study comparing pressure-temperature equilibrium simulations of two dimensional implosions with explicit front tracking is described as well as implementation and J-D calculations for non-equilibrium temperature methods.
Stochastic resonance in a generalized Von Foerster population growth model
Lumi, N.; Mankin, R.
2014-11-12
The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.
Evaluation of a stratiform cloud parameterization for general circulation models
Ghan, S.J.; Leung, L.R.; McCaa, J.
1996-04-01
To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.
System Advisor Model, SAM 2011.12.2: General Description
Gilman, P.; Dobos, A.
2012-02-01
This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.
System Advisor Model, SAM 2014.1.14: General Description
Blair, N.; Dobos, A. P.; Freeman, J.; Neises, T.; Wagner, M.; Ferguson, T.; Gilman, P.; Janzou, S.
2014-02-01
This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.
Moortgat, Joachim Firoozabadi, Abbas
2013-10-01
Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.
Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model
Boer, J. de; Halpern, M.B.
1996-06-05
The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.
Fuel-efficient cruise performance model for general aviation piston engine airplanes
Parkinson, R.C.H.
1982-01-01
The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its simplicity and low volume data storage requirements, appears suitable for airborne microprocessor implementation.
Saintonge, Amélie; Lutz, Dieter; Genzel, Reinhard; Tacconi, Linda J.; Berta, Stefano; Förster Schreiber, Natascha M.; Poglitsch, Albrecht; Sturm, Eckhard; Wuyts, Eva; Wuyts, Stijn; Magnelli, Benjamin; Nordon, Raanan; Baker, Andrew J.; Bandara, Kaushala
2013-11-20
We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star-forming galaxies. We present new observations for a sample of 17 lensed galaxies at z = 1.4-3.1, which allow us to directly probe the cold interstellar medium of normal star-forming galaxies with stellar masses of ∼10{sup 10} M{sub ☉}, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of submillimeter and normal z ∼ 1-2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR-M{sub *}-redshift parameter space. The mean gas depletion timescale of main-sequence (MS) galaxies at z > 2 is measured to be only ∼450 Myr, a factor of ∼1.5 (∼5) shorter than at z = 1 (z = 0), in agreement with a (1 + z){sup –1} scaling. The mean gas mass fraction at z = 2.8 is 40% ± 15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend of increasing gas fractions with redshift recently observed up to z ∼ 2. The depletion timescale and gas fractions of the z > 2 normal star-forming galaxies can be explained under the 'equilibrium model' for galaxy evolution, in which the gas reservoir of galaxies is the primary driver of the redshift evolution of specific star formation rates. Due to their high star formation efficiencies and low metallicities, the z > 2 lensed galaxies have warm dust despite being located on the star formation MS. At fixed metallicity, they also have a gas-to-dust ratio 1.7 times larger than observed locally when using the same standard techniques, suggesting that applying the local calibration of the δ{sub GDR}-metallicity relation to infer the molecular gas mass of high-redshift galaxies may lead to systematic differences with CO-based estimates.
Wang, Hainan; Thiele, Alexander; Pilon, Laurent
2013-11-15
This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |z_{i}| of either ion species. By contrast, the ion diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τ_{CV} and the “RC time scale” τ_{RC} corresponding to the characteristic time of ions’ electrodiffusion. For τ_{RC} ← τ_{CV}, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τ_{RC} → τ_{CV}, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.
Statistical physics ""Beyond equilibrium
Ecke, Robert E
2009-01-01
The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.
Wu, Wei; Wang, Jin
2014-09-14
We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.
Space Charge and Equilibrium Emittances in Damping Rings
Venturini, Marco; Oide, Katsunobu; Wolski, Andy
2006-06-21
We present a model of dynamics to account for the possible impact of space charge on the equilibrium emittances in storage rings and apply the model to study the current design of the International Linear Collider (ILC) damping rings.
A General Nonlinear Fluid Model for Reacting Plasma-Neutral Mixtures
Meier, E T; Shumlak, U
2012-04-06
A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed.
Krishna, S.; Shukla, A.; Malik, R.P.
2014-12-15
Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.
Simulation of the Low-Level-Jet by general circulation models
Ghan, S.J.
1996-04-01
To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.
Burtis, M.D.; Razuvaev, V.N.; Sivachok, S.G.
1996-10-01
This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.
Modeling of Arctic Storms with a Variable High-Resolution General Circulation Model
Taylor, Mark A.; Roesler, Erika Louise; Bosler, Peter Andrew
2015-08-01
The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.
Matching pre-equilibrium dynamics and viscous hydrodynamics
Martinez, Mauricio; Strickland, Michael
2010-02-15
We demonstrate how to match pre-equilibrium dynamics of a 0+1-dimensional quark-gluon plasma to second-order viscous hydrodynamical evolution. The matching allows us to specify the initial values of the energy density and shear tensor at the initial time of hydrodynamical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models for pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally broadened longitudinal expansion, and present analytic formulas that can be used to fix the necessary components of the energy-momentum tensor. The resulting dynamical models can be used to assess the effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of the standard definitions of nonequilibrium entropy.
Integrated hydrogeological model of the general separations area. Volume 2: groundwater flow model
Flach, G.P.; Harris, M.K.
1997-08-01
This report models the Gordon aquifer, the Gordon confining unit, and the `lower` aquifer zone, `tan clay` confining zone, and `upper` aquifer zone of the Water Table aquifer. The report presents structure-contour and isopach maps of each unit.
A kernel-oriented model for coalition-formation in general environments: Implementation and results
Shehory, O.; Kraus, S.
1996-12-31
In this paper we present a model for coalition formation and payoff distribution in general environments. We focus on a reduced complexity kernel-oriented coalition formation model, and provide a detailed algorithm for the activity of the single rational agent. The model is partitioned into a social level and a strategic level, to distinguish between regulations that must be agreed upon and are forced by agent-designers, and strategies by which each agent acts at will. In addition, we present an implementation of the model and simulation results. From these we conclude that implementing the model for coalition formation among agents increases the benefits of the agents with reasonable time consumption. It also shows that more coalition formations yield more benefits to the agents.
Equilibrium Distribution of Heavy Quarks in Fokker-Planck Dynamics
Walton, D. Brian; Rafelski, Johann
2000-01-03
We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1 . We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration. (c) 1999 The American Physical Society.
Agarwala, R. [National Institutes of Health, Bethesda, MD (United States); Batzoglou, S. [MIT, Cambridge, MA (United States); Dancik, V. [Univ. of Southern California, Los Angeles, CA (United States)] [and others
1997-06-01
We consider the problem of determining the three-dimensional folding of a protein given its one-dimensional amino acid sequence. We use the HP model for protein folding proposed by Dill, which models protein as a chain of amino acid residues that are either hydrophobic or polar, and hydrophobic interactions are the dominant initial driving force for the protein folding. Hart and Istrail gave approximation algorithms for folding proteins on the cubic lattice under HP model. In this paper, we examine the choice of a lattice by considering its algorithmic and geometric implications and argue that triangular lattice is a more reasonable choice. We present a set of folding rules for a triangular lattice and analyze the approximation ratio which they achieve. In addition, we introduce a generalization of the HP model to account for residues having different levels of hydrophobicity. After describing the biological foundation for this generalization, we show that in the new model we are able to achieve similar constant factor approximation guarantees on the triangular lattice as were achieved in the standard HP model. While the structures derived from our folding rules are probably still far from biological reality, we hope that having a set of folding rules with different properties will yield more interesting folds when combined.
Edge equilibrium code for tokamaks
Li, Xujing; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
Gao Yajun
2008-08-15
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
Allu, Srikanth; Velamur Asokan, Badri; Shelton, William A; Philip, Bobby; Pannala, Sreekanth
2014-01-01
A generalized three dimensional computational model based on unied formulation of electrode- electrolyte-electrode system of a electric double layer supercapacitor has been developed. The model accounts for charge transport across the solid-liquid system. This formulation based on volume averaging process is a widely used concept for the multiphase ow equations ([28] [36]) and is analogous to porous media theory typically employed for electrochemical systems [22] [39] [12]. This formulation is extended to the electrochemical equations for a supercapacitor in a consistent fashion, which allows for a single-domain approach with no need for explicit interfacial boundary conditions as previously employed ([38]). In this model it is easy to introduce the spatio-temporal variations, anisotropies of physical properties and it is also conducive for introducing any upscaled parameters from lower length{scale simulations and experiments. Due to the irregular geometric congurations including porous electrode, the charge transport and subsequent performance characteristics of the super-capacitor can be easily captured in higher dimensions. A generalized model of this nature also provides insight into the applicability of 1D models ([38]) and where multidimensional eects need to be considered. In addition, simple sensitivity analysis on key input parameters is performed in order to ascertain the dependence of the charge and discharge processes on these parameters. Finally, we demonstarted how this new formulation can be applied to non-planar supercapacitors
KETUSKY, EDWARD
2005-10-31
This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.
EQuilibrium Solutions Inc | Open Energy Information
EQuilibrium Solutions Inc Jump to: navigation, search Name: eQuilibrium Solutions Inc Place: Boston, Massachusetts Zip: 2215 Sector: Carbon, Efficiency Product: Boston-based...
Beyond simple exponential correlation functions and equilibrium...
Office of Scientific and Technical Information (OSTI)
and equilibrium dynamics in x-ray photon correlation spectroscopy Citation Details In-Document Search Title: Beyond simple exponential correlation functions and equilibrium ...
Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model
Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David
2012-01-01
Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.
McManamay, Ryan A
2014-01-01
Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at
A Generalized Fokker-Planck Model for Transport of Collimated Beams
Prinja, Anil K.; Pomraning, G.C.
2001-03-15
A generalized Fokker-Planck (GFP) model is introduced for application to the problem of the angular spreading of a broad beam of charged particles. This approach extends the classic Fokker-Planck (FP) approximation of the scattering operator to instances when the differential scattering cross section is not sufficiently forward peaked for the strict FP representation to be valid. Our previously developed (1 - {mu}){sup n}-moments method is used to construct a truncated hierarchy of moment equations from the GFP and transport equations. For slab thicknesses that are small compared to the transport mean-free-path, the scalar flux is explicitly represented as a Taylor expansion in the depth variable for different truncation orders and for different orders of the generalized Fokker-Planck expansion. Numerical results indicate that the GFP method is a viable method for dealing with larger scattering angles than are possible with the classic FP approximation.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
6Be General Table The General Table for 6Be is subdivided into the following categories: Cluster Model Model Calculations...
Testing the (generalized) Chaplygin gas model with the lookback time-redshift data
Li, Zhengxiang; Wu, Puxun; Yu, Hongwei E-mail: wpx0227@gmail.com
2009-09-01
The Chaplygin gas (CG) and the generalized Chaplygin gas (GCG) models, proposed as candidates of the unified dark matter-dark energy (UDME), are tested with the look-back time (LT) redshift data. We find that the LT data only give a very weak constraint on the model parameter. However, by combing the LT with the baryonic acoustic oscillation peak, we obtain, at the 95.4% confidence level, 0.68 ≤ A{sub c} ≤ 0.82 and 0.59 ≤ h ≤ 0.65 for the CG model , and 0.67 ≤ A{sub s} ≤ 0.89 and −0.29 ≤ α ≤ 0.61 for the GCG model. This shows that both the CG and the GCG are viable as a candidate of UDME. Within the GCG model, we also find that the Chaplygin gas model (α = 1) is ruled out by these data at the 99.7% confidence level.
Evans, J.L.; Frank, W.M.; Young, G.S.
1996-04-01
Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; Gayler, Veronika
2005-06-29
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
5 General Tables The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions The General Table for...
A comparison of general circulation model predictions to sand drift and dune orientations
Blumberg, D.G.; Greeley, R.
1996-12-01
The growing concern over climate change and decertification stresses the importance of aeolian process prediction. In this paper the use of a general circulation model to predict current aeolian features is examined. A GCM developed at NASA/Goddard Space Flight Center was used in conjunction with White`s aeolian sand flux model to produce a global potential aeolian transport map. Surface wind shear stress predictions were used from the output of a GCM simulation that was performed as part of the Atmospheric Model Intercomparison Project on 1979 climate conditions. The spatial resolution of this study (as driven by the GCM) is 4{degrees} X 5{degrees}; instantaneous 6-hourly wind stress data were saved by the GCM and used in this report. A global map showing potential sand transport was compared to drift potential directions as inferred from Landsat images from the 1980s for several sand seas and a coastal dune field. Generally, results show a good correlation between the simulated sand drift direction and the drift direction inferred for dune forms. Discrepancies between the drift potential and the drift inferred from images were found in the North American deserts and the Arabian peninsula. An attempt to predict the type of dune that would be formed in specific regions was not successful. The model could probably be further improved by incorporating soil moisture, surface roughness, and vegetation information for a better assessment of sand threshold conditions. The correlation may permit use of a GCM to analyze {open_quotes}fossil{close_quotes} dunes or to forecast aeolian processes. 48 refs., 8 figs.
Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun
2014-09-08
This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo
2015-03-24
Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less
Extraction of Equilibrium Energy and Kinetic Parameters from Single
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Molecule Force Spectroscopy Data Alex Noy is the Principal Investigator for the Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data. LLNL BES Programs Highlight Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data Dynamic strength data for 10 different biological bonds fitted by the model R.W. Friddle, A. Noy, J.J. De Yoreo, Interpreting the widespread nonlinear force spectra of intermolecular
Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael
2009-04-10
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd
Wakamatsu, M.; Tsujimoto, H. [Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)
2005-04-01
The theoretical predictions are given for the forward limit of the unpolarized spin-flip isovector generalized parton distribution function (E{sup u}-E{sup d})(x,{xi},t) within the framework of the chiral quark soliton model, with full inclusion of the polarization of Dirac sea quarks. We observe that [(H{sup u}-H{sup d})+(E{sup u}-E{sup d})](x,0,0) has a sharp peak around x=0, which we interpret as a signal of the importance of the pionic qq excitation with large spatial extension in the transverse direction. Another interesting indication given by the predicted distribution in combination with Ji's angular momentum sum rule is that the d quark carries more angular momentum than the u quark in the proton, which may have some relation with the physics of the violation of the Gottfried sum rule.
Energy Science and Technology Software Center (OSTI)
2007-02-02
Version 00 GNASH provides a flexible method by which reaction and level cross sections, isomer ratios, and emission spectra (neutron, gamma-ray, and charged-particle) resulting from particle- and photon-induced reactions can be calculated. The September 1991 release of GNASH incorporated an additional option for calculating gamma-ray strength functions and transmission coefficients by including the Kopecky-Uhl model. In addition, improvements were made to the output routines, particularly regarding gamma-ray strength function information. Major improvements in the 1995more » FKK-GNASH release include added capabilities: to read in externally calculated preequilibrium spectrum from, e.g., Feshbach-Kerman-Koonin theory, to do multiple preequilibrium calculations, to calculate appropriate spin distributions for nuclear states formed in preequilibrium reactions, and to do incident-photon calculations. In the 1998 release improvements were made in the accuracy of the exciton model and other calculations, and provision was made for including energy-dependent renormalization of the reaction cross section and energy-dependent exciton model parameterization (for data evaluation purposes). The sample problems provided here are the same as those that were given in the 1998 release; however, the calculations were run using the current version of GNASH (gn9cp8). The major differences between this version and the previous one released in 1998 are as follows: 1. A serious buffering error that affected stored state populations resulting when multiple reactions lead to the same compound nucleus is corrected. This error only affects cases with INPOPT=-1, normally used for high-energy calculations. It is the reason that the present outputs for the p + Zr90 test case (described below) are significantly different from the 1998 results for the same p + Zr90 test case. 2. Minor errors were corrected in estimating preequilibrium contributions to discrete states; interpolating the spin
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
General Table The General Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Be General Table The General Table for 7Be is subdivided into the following categories: Reviews Experimental Work Shell Model Cluster Model Other Theoretical Work Model...
Chemical Equilibrium Composition of Aqueous Systems
Energy Science and Technology Software Center (OSTI)
1997-01-01
MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer.
Yock, Adam D. Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.
2014-05-15
Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography
Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael
2010-03-12
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is
Equilibrium calculations of firework mixtures
Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro
1994-12-31
Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
He General Table The General Table for 5He is subdivided into the following categories: Ground State Properties Theoretical Special States Model Discussions Shell Model Cluster...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
He General Table The General Table for 9He is subdivided into the following categories: Shell Model Other Model Calculations Theoretical
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
H General Table The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions...
Nap, R. J.; Tagliazucchi, M.; Szleifer, I.
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads
Keane, R.E.; Long, D.G.; Menakis, J.P.; Hann, W.J.; Bevins, C.D.
1996-10-01
The paper details the landscape succession model developed for the coarse-scale assessment called CRBSUM (Columbia River Basin SUccession Model) and presents some general results of the application of this model to the entire basin. CRBSUM was used to predict future landscape characteristics to evaluate management alternatives for both mid-and coarse-scale efforts. A test and sensitivity analysis of CRBSUM is also presented. This paper was written as a users guide for those who wish to run the model and interprete results, and its was also written as documentation for some results of the Interior Columbia River Basin simulation effort.
Near-equilibrium measurements of nonequilibrium free energy
Crooks, Gavin
2012-04-09
A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a nonequilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.
Magnetic diagnostics for equilibrium reconstructions with eddy...
Office of Scientific and Technical Information (OSTI)
Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experimenta) Citation Details In-Document Search Title: Magnetic diagnostics for...
Trampedach, Regner; Asplund, Martin; Collet, Remo; Nordlund, Ake
2013-05-20
Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.
A general model of resource production and exchange in systems of interdependent specialists.
Conrad, Stephen Hamilton; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Glass, Robert John, Jr.; Breen, Peter; Kuypers, Marshall; Norton, Matthew David; Quach, Tu-Thach; Antognoli, Matthew; Mitchell, Michael David
2011-11-01
Infrastructures are networks of dynamically interacting systems designed for the flow of information, energy, and materials. Under certain circumstances, disturbances from a targeted attack or natural disasters can cause cascading failures within and between infrastructures that result in significant service losses and long recovery times. Reliable interdependency models that can capture such multi-network cascading do not exist. The research reported here has extended Sandia's infrastructure modeling capabilities by: (1) addressing interdependencies among networks, (2) incorporating adaptive behavioral models into the network models, and (3) providing mechanisms for evaluating vulnerability to targeted attack and unforeseen disruptions. We have applied these capabilities to evaluate the robustness of various systems, and to identify factors that control the scale and duration of disruption. This capability lays the foundation for developing advanced system security solutions that encompass both external shocks and internal dynamics.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions The General Table for...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Be General Tables The General Table for 8Be is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodisintegration Fission and Fusion Astrophysical b-decay Hypernuclei
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
B General Table The General Table for 9B is subdivided into the following categories: Shell Model Cluster Model Theoretical Other Model Calculations Complex Reactions Beta-Decay Pions Light-ion and Neutron Induced Reactions Hypernuclei
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
C General Table The General Table for 9C is subdivided into the following categories: Shell Model Cluster Model Other Models Theoretical Beta-Decay Light-ion and Neutron Induced Reactions Astrophysical
Fedorov, Alexey V.; Fedorov, Alexey
2015-01-14
The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.
Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.
1997-02-24
Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation
Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models
Penner, Joyce
2012-06-30
One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.
Agarwala, R. [National Institutes of Health, Bethesda, MD (United States); Batzoglou, S. [MIT Lab. for Computer Science, Cambridge, MA (United States); Dancik, V. [Univ. of Southern California, Los Angeles, CA (United States)] [and others
1997-12-01
A long standing problem in molecular biology is to determine the three-dimensional structure of a protein, given its amino acid sequence. A variety of simplifying models have been proposed abstracting only the {open_quotes}essential physical properties{close_quotes} of real proteins. In these models, the three dimensional space is often represented by a lattice. Residues which are adjacent in the primary sequence (i.e. covalently linked) must be placed at adjacent points in the lattice. A conformation of a protein is simply a self-avoiding walk along the lattice. The protein folding problem STRING-FOLD is that of finding a conformation of the protein sequence on the lattice such that the overall energy is minimized, for some reasonable definition of energy. This formulation leaves open the choices of a lattice and an energy function. Once these choices are made, one may then address the algorithmic complexity of optimizing the energy function for the lattice. For a variety of such simple models, this minimization problem is in fact NP-hard. In this paper, we consider the Hydrophobic-Polar (HP) Model introduced by Dill. The HP model abstracts the problem by grouping the 20 amino acids into two classes: hydrophobic (or non-polar) residues and hydrophilic (or polar) residues. For concreteness, we will take our input to be a string from (H,P){sup +}, where P represents polar residues, and H represents hydrophobic residues. Dill et.al. survey the literature analyzing this model. 8 refs., 2 figs., 1 tab.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
He General Table The General Table for 6He is subdivided into the following categories: Ground State Properties Theoretical Special States Shell Model Cluster and alpha-particle...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
He General Table The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions
Weyermann, D.L.; Fight, R.D.; Garrett, F.D.
1991-08-01
This paper instructs resource analysts on using the southeast Alaska multiresource model (SAMM). SAMM is an interactive microcomputer program that allows users to explore relations among several resources in southeast Alaska (timber, anadromous fish, deer, and hydrology) and the effects of timber management activities (logging, thinning, and road building) on those relations and resources. This guide assists users in installing SAMM on a microcomputer, developing input data files, making simulation runs, and strong output data for external analysis and graphic display.
The Theory of Variances in Equilibrium Reconstruction
Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren
2008-01-14
The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The #27;σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature.
Reliable Viscosity Calculation from Equilibrium Molecular Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simulations: A Time Decomposition Method - Joint Center for Energy Storage Research July 7, 2015, Research Highlights Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method Schematic demonstration of the time decomposition method Scientific Achievement An equilibrium molecular dynamics-based computational method is developed and tested for the reliable calculation of viscosity. Significance and Impact Viscosity is one of the key properties
Edge Equilibrium Code (EEC) For Tokamaks
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
Characterization of non equilibrium effects on high quality critical flows
Camelo, E.; Lemonnier, H.; Ochterbeck, J.
1995-09-01
The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.
Near equilibrium distributions for beams with space charge in...
Office of Scientific and Technical Information (OSTI)
Near equilibrium distributions for beams with space charge in linear and nonlinear periodic focusing systems Citation Details In-Document Search Title: Near equilibrium ...
Diluted equilibrium sterile neutrino dark matter (Journal Article...
Office of Scientific and Technical Information (OSTI)
Diluted equilibrium sterile neutrino dark matter Citation Details In-Document Search This content will become publicly available on November 5, 2016 Title: Diluted equilibrium ...
Diluted equilibrium sterile neutrino dark matter (Journal Article...
Office of Scientific and Technical Information (OSTI)
Diluted equilibrium sterile neutrino dark matter This content will become publicly available on November 5, 2016 Prev Next Title: Diluted equilibrium sterile neutrino dark ...
Effects of the magnetic equilibrium on gyrokinetic simulations...
Office of Scientific and Technical Information (OSTI)
Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak ... Title: Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak ...
Bottom-up coarse-grained models that accurately describe the...
Office of Scientific and Technical Information (OSTI)
the CG models accurately reproduce the equilibrium density, compressibility, and average ... CORRELATIONS; DENSITY; ENERGY DENSITY; EQUILIBRIUM; FLUCTUATIONS; HEPTANE; LIQUIDS; ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Li General Table The General Table for 6Li is subdivided into the following categories: Ground State Properties of 6Li Special States Theoretical Shell Model Cluster Models Complex...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
He General Tables The General Table for 8He is subdivided into the following categories: Reviews Ground-state Properties Shell Model Cluster Model Other Theoretical Work Elastic and Inelastic Scattering b-decay
Boltzmann equation solver adapted to emergent chemical non-equilibrium
Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann
2015-01-15
We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ?(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ?(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup }-annihilation)
MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.
1997-05-01
The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-03-15
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
subdivided into the following categories: Reviews Ground-State Properties Shell Model Cluster Model Other Theoretical Work These General Tables correspond to "Energy Levels of...
Ivanov, A. A. Martynov, A. A. Medvedev, S. Yu. Poshekhonov, Yu. Yu.
2015-03-15
In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (with arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.
Sonnad, Kiran G.; Cary, John R.
2015-04-15
A procedure to obtain a near equilibrium phase space distribution function has been derived for beams with space charge effects in a generalized periodic focusing transport channel. The method utilizes the Lie transform perturbation theory to canonically transform to slowly oscillating phase space coordinates. The procedure results in transforming the periodic focusing system to a constant focusing one, where equilibrium distributions can be found. Transforming back to the original phase space coordinates yields an equilibrium distribution function corresponding to a constant focusing system along with perturbations resulting from the periodicity in the focusing. Examples used here include linear and nonlinear alternating gradient focusing systems. It is shown that the nonlinear focusing components can be chosen such that the system is close to integrability. The equilibrium distribution functions are numerically calculated, and their properties associated with the corresponding focusing system are discussed.
TMED-4 INTERIM REPORT PURE ZR EQUILIBRIUM TEST RESULTS
Korinko, P.; Morgan, G.
2010-12-17
Due to higher than expected permeation rates in the production of tritium in the TVA, a development and testing program was implemented to develop the understanding of why the higher rates were occurring. In addition, improved data are needed for both the design as well as the predictive models. One part of the program was to determine the equilibrium pressure of hydrogen and tritium over NPZ (1). During the course of this testing, some curious results were discovered (2) compared to the published literature data (3). Due to these apparently results, a follow-on task was undertaken to determine the equilibrium pressure of protium and deuterium over pure zirconium. A series of experiments were conducted to determine equilibrium pressures and isotherm data for the zirconium - protium and zirconium - deuterium systems. The data match the published literature data reasonably well with the plateau extending to loadings of about 1.4. There is a significant pressure rise for loadings greater than 1.7.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Saenz, Juan A.; Chen, Qingshan; Ringler, Todd
2015-05-19
Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less
Saenz, Juan A.; Chen, Qingshan; Ringler, Todd
2015-05-19
Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWA framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.
Chemical Equilibrium Composition of Aqueous Systems
Energy Science and Technology Software Center (OSTI)
1996-12-30
MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.
Transport and equilibrium in field-reversed mirrors
Boyd, J.K.
1982-09-01
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
information General Information JLF Contacts Request a Tour
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Li General Table The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure b-decay Muons Hypernuclei and Mesons Hypernuclei and Baryons Pion, Kaon and Eta-Mesons Other Work Applications
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
B General Tables The General Table for 8B is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodisintegration and Coulomb Dissociation Elastic and Inelastic Scattering Fragmentation Reactions Astrophysical b Decay Nucleon Spatial Distribution
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Li General Tables The General Table for 8Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodissociation Fusion and Fission Elastic and Inelastic Scattering Fragmentation Reactions Astrophysical b Decay Hypernuclei Pions, Kaons and h-mesons
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Li General Table The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations Complex Reactions Beta-Decay Pions Muons Photodisintegration Elastic and Inelastic Scattering Electromagnetic Transitions Astrophysical
Nuclear Reactions X-Sections By Evaporation Model, Gamma-Cascades
Energy Science and Technology Software Center (OSTI)
2000-06-27
Calculation of energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and gamma ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement to the 1976 STAPRE program (NEA 0461) relates to level density approach, implemwnted in subroutine ZSTDE. Generalized superfluid model is incorporated, Boltzman-gas modelling of intrinsic state density and semi-empirical modelling ofmore » a few quasiparticle effects in total level density in equilibrium and saddle deformations of actinide nuclei.« less
ON MOLECULAR HYDROGEN FORMATION AND THE MAGNETOHYDROSTATIC EQUILIBRIUM OF SUNSPOTS
Jaeggli, S. A.; Lin, H.; Uitenbroek, H.
2012-02-01
We have investigated the problem of sunspot magnetohydrostatic equilibrium with comprehensive IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 15650 A and nearby OH lines. We have found that some sunspots show isothermal increases in umbral magnetic field strength which cannot be explained by the simplified sunspot model with a single-component ideal gas atmosphere assumed in previous investigations. Large sunspots universally display nonlinear increases in magnetic pressure over temperature, while small sunspots and pores display linear behavior. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field, and we propose that this may explain the observed rapid increase in umbral magnetic field strength relative to temperature. Existing multi-component sunspot atmospheric models predict that a significant amount of molecular hydrogen (H{sub 2}) exists in the sunspot umbra. The formation of H{sub 2} can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. In addition to the survey observations, we have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H{sub 2}, and demonstrate that a significant population of H{sub 2} exists in the coolest regions of large sunspots.
Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry
Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin; Wang, Zhirui; Berkery, John W.
2013-12-15
This paper presents a calculation of neoclassical toroidal viscous torque independent of large-aspect-ratio expansions across kinetic regimes. The Perturbed Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose, and is compared to previous combined regime models as well as regime specific limits and a drift kinetic ?f guiding center code. It is shown that retaining general expressions, without circular large-aspect-ratio or other orbit approximations, can be important at experimentally relevant aspect ratio and shaping. The superbanana plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is recovered by the PENT calculations and shown to require highly accurate treatment of geometric effects.
Out-of-Equilibrium Kondo Effect in Double Quantum Dots
Aguado, Ramon; Langreth, David C.
2000-08-28
The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The Hamiltonian is solved by means of a nonequilibrium generalization of the slave-boson mean-field theory. It is demonstrated that measurements of the differential conductance dI/dV , for appropriate values of voltages and tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. For large voltages and arbitrarily large interdot tunneling, there is a critical voltage above which the physical behavior of the system again resembles that of two decoupled quantum dots. (c) 2000 The American Physical Society.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =
Secular equilibrium of radium in Western coal
Casella, V.R.; Fleissner, J.G.; Styron, C.E.
1980-01-01
Concentrations of radium-226, radium-228, and thorium-228 in coal from six Western states have been measured by gamma spectroscopy. The existence of secular equilibrium was verified for radium-226 and previously measured uranium-238 and also for radium-228 and thorium-228. The measured radionuclide concentrations for Western coal averaged about 0.3 pCi/g for radium-226 and 0.2 pCi/g for radium-228 and thorium-228. These average values are not greatly different from those in coal from other provinces of the United States.
Process for operating equilibrium controlled reactions
Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard
2001-01-01
A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.
Haywood, J.M.; Roberts, D.L.; Slingo, A.
1997-07-01
A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.
Non-equilibrium many body dynamics
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Chen, Xin
2014-04-21
Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.
Stabilization of beam-weibel instability by equilibrium density ripples
Mishra, S. K. Kaw, Predhiman; Das, A.; Sengupta, S.; Ravindra Kumar, G.
2014-01-15
In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length) collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.
Van Gorder, Robert A.
2014-11-15
In R. A. Van Gorder, General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation, Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, Comment on General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation [Phys. Fluids 26, 065105 (2014)], Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it was clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.
Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping
2013-03-14
This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar
Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy
Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2015-12-01
We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.
Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2015-12-01
We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibriummore » quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.« less
U.S. Energy Information Administration (EIA) Indexed Site
General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or
Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...
Office of Scientific and Technical Information (OSTI)
Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...
Electron Broadening of Isolated Lines with Stationary Non-Equilibrium...
Office of Scientific and Technical Information (OSTI)
Title: Electron Broadening of Isolated Lines with Stationary Non-Equilibrium Level Populations It is shown that a quantum kinetic theory approach to line broadening, extended to ...
Free boundary, high beta equilibrium in a large aspect ratio...
Office of Scientific and Technical Information (OSTI)
The equilibrium solution also provides information on the flux surface topology. The plasma is bounded by a separatrix. Increasing the plasma pressure at fixed total current causes ...
Non-equilibrium tunneling in zigzag graphene nanoribbon break...
Office of Scientific and Technical Information (OSTI)
Spintronic devices promise new faster and lower energy-consumption electronic systems. ... In this paper, by utilizing density functional theory and non-equilibrium green function ...
Equilibrium Control Policies for Markov Chains
Malikopoulos, Andreas
2011-01-01
The average cost criterion has held great intuitive appeal and has attracted considerable attention. It is widely employed when controlling dynamic systems that evolve stochastically over time by means of formulating an optimization problem to achieve long-term goals efficiently. The average cost criterion is especially appealing when the decision-making process is long compared to other timescales involved, and there is no compelling motivation to select short-term optimization. This paper addresses the problem of controlling a Markov chain so as to minimize the average cost per unit time. Our approach treats the problem as a dual constrained optimization problem. We derive conditions guaranteeing that a saddle point exists for the new dual problem and we show that this saddle point is an equilibrium control policy for each state of the Markov chain. For practical situations with constraints consistent to those we study here, our results imply that recognition of such saddle points may be of value in deriving in real time an optimal control policy.
Hietala, Niklas Hnninen, Risto
2014-11-15
Van Gorder considers a formulation of the local induction approximation, which allows the vortex to move in the direction of the reference axis [General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation, Phys. Fluids 26, 065105 (2014)]. However, in his analytical and numerical study he does not use it. A mistake in the torsion of a helical vortex is also corrected.
On the equilibrium shape of erythrocytes
Marchenko, V. I. Podolyak, E. R.
2015-04-15
It is shown that the model proposed by Canham quantitatively describes the observed biconcave shape of human erythrocytes.
Helali, H.; Bchir, T.; Araoud, Z.; Charrada, K.
2013-04-15
The aim of this work is to study the local thermodynamic equilibrium (LTE) deviations in arc discharges plasma generated in high-intensity discharge lamps operating under an ac (50 Hz) power supply. To achieve this goal, we elaborate a two-temperature, two-dimensional, and time-depending model. We have found numerical results almost reproducing the experimental data, which allows us to validate this model. After validation, we have discussed different energy term effects on the LTE deviations.
Broader source: Energy.gov [DOE]
This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...
Modeling non-equilibrium phase transitions in isentropically...
Office of Scientific and Technical Information (OSTI)
The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples. Authors: Kane, J ; Smith, R Publication Date: 2005-09-19 OSTI Identifier: ...
Modeling non-equilibrium phase transitions in isentropically...
Office of Scientific and Technical Information (OSTI)
In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response ...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-04-28
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Lifshutz, N.; Pierce, M.
1997-08-01
The CertiTest 8160 is a Condensation Nucleus Counter (CNC) based filtration test stand which permits measurement of penetration as a function of particle size. The Model 8140 is also a CNC based filtration test stand which provides a single penetration measurement for a fixed particle distribution aerosol challenge. A study was carried out measuring DOP penetration on a broad range of flat filtration media at various face velocities to compare these two instruments. The tests done on the CertiTest 8160 incorporated a range of particle sizes which encompassed the most penetrating particle size (MPPS). In this paper we present a correlation between the MPPS penetration as measured by the CertiTest 8160 and the penetration values obtained on the Model 8140. We observed that at the lowest air face velocities of the study the Model 8140 tended to overpredict the MPPS penetration as measured by the CertiTest 8160. We also present a correlation of MPPS penetration with face velocity which may be of use for extrapolation purposes. 5 refs., 8 figs.
Ganguly, A. E-mail: aganguly@maths.iitkgp.ernet.in; Das, A.
2014-11-15
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model.
Van Gorder, Robert A.
2014-06-15
In his study of superfluid turbulence in the low-temperature limit, Svistunov [Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.
Colbert, J.J.; Sheehan, K.A.
1995-08-16
This document describes the structure, organization, and mathematical formulations for the Stand-Damage Model and the Biological basis for these formulations. Growth, mortality, and regeneration are modeled along with the effects of user-prescribed defoliation and stand-management actions. The appendices provide a full description of the logic and mathematics in the form of code listings, structure charts, and files.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
General Publications General Publications Print ALS Strategic Plan 2015-19 cover image An updated version of the ALS Strategic Plan, covering the five-year period from 2015 to 2019. As in the 2014-18 version, Section I gives a brief synopsis on beamline and endstation projects. The science drivers behind these projects are explained in greater detail in Section II, and a very brief description of emerging plans for a ALS-U are in Section III. Soft X-ray Science Opportunities Using
Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification
Choi, Jeong
2011-08-15
The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these
Tax reform and energy in the Philippines economy: A general equilibrium computation
Boyd, R.G.; Doroodian, K.; Udomvaech, P.
1994-12-31
This paper examines how energy tax cuts, offset with income tax increases, affect production, consumption, and total welfare in the Philippines economy. Our results show that energy tax cuts expand the energy and nonmetal mining sectors, but decrease output in the manufacturing, agricultural, and metal mining sectors. Consumption of all goods and services combined increases as the amount of energy tax reduction increases. Our welfare results, however, are mixed. While the welfare of the mid- and high-income levels increases, that of the lowest income level decreases. These results are robust with respect to changes in the elasticity of substitution in energy production as well as the elasticity of substitution in consumer demand. From the standpoint of economic efficiency, a policy such as this would enhance growth and aggregate income. From an equity standpoint, however, this policy is highly regressive in spite of the fact that the richest households pay proportionately more to finance the energy tax reduction. 18 refs., 10 tabs.
Nishi, Sakine; Kobayashi, Tsutomu
2015-03-31
The galilean genesis scenario is an alternative to inflation in which the universe starts expanding from Minkowski in the asymptotic past by violating the null energy condition stably. Several concrete models of galilean genesis have been constructed so far within the context of galileon-type scalar-field theories. We give a generic, unified description of the galilean genesis scenario in terms of the Horndeski theory, i.e., the most general scalar-tensor theory with second-order field equations. In doing so we generalize the previous models to have a new parameter (denoted by α) which results in controlling the evolution of the Hubble rate. The background dynamics is investigated to show that the generalized galilean genesis solution is an attractor, similarly to the original model. We also study the nature of primordial perturbations in the generalized galilean genesis scenario. In all the models described by our generalized genesis Lagrangian, amplification of tensor perturbations does not occur as opposed to what happens in quasi-de Sitter inflation. We show that the spectral index of curvature perturbations is determined solely from the parameter α and does not depend on the other details of the model. In contrast to the original model, a nearly scale-invariant spectrum of curvature perturbations is obtained for a specific choice of α.
Kushnir, Y.; Esbensen, S.K.
1986-12-01
The energetics of large-scale disturbances of the wintertime, Northern Hemisphere circulation are studied with the OSU two-level general circulation model. The behavior of simulated eddies with short time-scale (2.5 to 10 days) is found to be consistent with observations and with baroclinic instability theory. Eddies with long time-scales (>10 days) appear to be maintained primarily by high-latitude baroclinic energy conversions. Energy conversions characteristic of barotropic processes are found at jet stream latitudes.
Gangwer, T
1980-01-01
A mechanism for coal liquefaction, based on the concept of thermal cleavage-hydrogen capping donor complexes, is proposed and the quantitative agreement between the derived rate laws and the kinetic data obtained from fifteen publications is presented. The mechanism provides rate laws which describe the preasphaltene, asphaltene, oil and gas time/yield curves for the coal liquefaction process. A simplistic dissolution model is presented and used to relate the proposed mechanism to the experimentally observed products. Based on the quality of the mechanistic fit to the reported coal liquefaction systems, which cover a diverse range of reaction conditions, coal types and donor solvent compositions, it is proposed that the donor solvent/thermal bond cleavage/hydrogen capping mechanism provides a good, quantitative description of the rate limiting process. Interpretation of the rate constant/temperature dependencies in terms of transition state theory indicates formation of the activated complex can involve either physically or chemically controlled steps. A uniform free energy of activation of 52 kcal was found for the diverse liquefaction systems indicating a common transition state describes the reactions. Thus the proposed mechanism unifies the diverse liquefaction kinetic data by using a set of uniform reaction sequences, which have a common transition state, to describe the conversion chemistry. The mechanism thereby creates a common base for intercomparison, interpretation and evaluation of coal conversion for the broad range of processes currently being investigated in the liquefaction field.
Boyle, J.S.
1994-11-01
Divergence and convergence centers at 200 hPa and mean sea level pressure (MSLP) cyclones were located every 6 hr for a 10-yr general circulation model (GCM) simulation with the ECMWF (Cycle 36) for the boreal winters from 1980 to 1988. The simulation used the observed monthly mean sea surface temperature (SST) for the decade. Analysis of the frequency, location, and strength of these centers and cyclones gives insight into the dynamical response of the model to the varying SST. The results indicate that (1) the model produces reasonable climatologies of upper-level divergence and MSLP cyclones; (2) the model distribution of anomalies of divergence and convergence centers and MSLP cyclones is consistent with observations for the 1982-83 and 1986-87 El Nifio events; (3) the tropical Indian Ocean is the region of greatest divergence activity and interannual variability in the model; (4) the variability of the divergence centers is greater than that of the convergence centers; (5) strong divergence centers occur chiefly over the ocean in the midlatitudes but are more land-based in the tropics, except in the Indian Ocean; and (6) locations of divergence and convergence centers can be a useful tool for the intercomparison of global atmospheric simulations.
Fe Atomic Data for Non-equilibrium Ionization Plasmas (Conference) |
Office of Scientific and Technical Information (OSTI)
SciTech Connect Fe Atomic Data for Non-equilibrium Ionization Plasmas Citation Details In-Document Search Title: Fe Atomic Data for Non-equilibrium Ionization Plasmas No abstract prepared. Authors: Eriksen, Kristoffer A. [1] ; Fontes, Christopher J. [1] ; Colgan, James P. [1] ; Zhang, Honglin [1] ; Hungerford, Aimee L. [1] ; Fryer, Christopher L. [1] ; Hughes, John P. [2] ; Smith, Randall K. [3] ; Badenes, Carles [4] + Show Author Affiliations Los Alamos National Laboratory Rutgers
Houze, Jr., Robert A.
2013-11-13
We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Kerner, Boris S.
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
On the nature of unstable equilibrium points in power systems
Berggren, B.; Andersson, G. . Dept. of Electric Power Systems)
1993-05-01
This paper concerns the application of direct methods for transient stability analysis of stressed power systems. One of the most important issues in this area is to find the controlling unstable equilibrium point for the disturbance under consideration. This paper provides a conceptual framework for discussing stable and unstable equilibrium points in power systems based on simple topological arguments. It is for instance shown that every conceivable case of system separation can be related to a specific unstable equilibrium point (u.e.p) in an unloaded system. This result can be seen as a verification of the soundness of the often used corrected corner point approximation and ray point approximation, since these two approximations would give the same unstable equilibrium points in an unloaded system. Moreover, it is shown, by an example, that some of these unstable equilibrium points can disappear when the loading of the system increases. The implications of the findings of this paper are discussed for the so-called MOD method of finding the controlling u.e.p., which is used in some software packages. Finally, a method based on a combination of MOD method and the BCU method is outlined and proposed as the subject of future investigation.
Chemical-equilibrium calculations for aqueous geothermal brines
Kerrisk, J.F.
1981-05-01
Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.
Equilibrium and Stability of High-{beta} Plasmas in Wendelstein 7-AS
Geiger, Joachim E.; Weller, Arthur; Zarnstorff, Michael C.; Nuehrenberg, Carolin; Werner, Andreas Horst Franz; Kolesnichenko, Yaroslav I.
2004-07-15
One of the major goals for Wendelstein 7-AS (W7-AS) was the testing of the theoretical basis for the optimized configuration of Wendelstein 7-X (W7-X), currently under construction in Greifswald, Germany. In the last experimental campaign of W7-AS, volume-averaged {beta} values >3% have been achieved. The underlying experimental changes leading to these results are briefly reviewed. The equilibrium characteristics expected from magnetohydrodynamic (MHD) theory are modeled in a simplified picture and compared with three-dimensional equilibrium calculations. A wide range of parameters has been covered in the experiments with and without net toroidal currents. Experimental data are compared with free-boundary equilibrium calculations and exhibit good agreement. The high-{beta} equilibria usually showed only small MHD activity. The most prominent activities are low-frequency pressure-driven modes connected with low-order rationals also expected from numerical calculations using the CAS3D code, and Alfv and eacute;n modes driven by energetic particles from the tangential neutral beam injection. Comparison of experimentally measured frequencies and mode structures from soft-X-ray tomography with theoretical predictions also shows the improving understanding of these modes in stellarators. The agreement of experiment and theory gives confidence in the predictions for W7-X.
MINEQL-EIR. Chemical Equilibrium Composition of Aqueous Systems
Westall, J.C.; Zachary, J.L.; Morel, F.M.M; Schweingruber, M.
1986-11-21
MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.
Constrained Generalized Supersymmetries
Toppan, Francesco; Kuznetsova, Zhanna
2005-10-17
We present a classification of admissible types of constraint (hermitian, holomorphic, with reality condition on the bosonic sectors, etc.) for generalized supersymmetries in the presence of complex spinors. A generalized supersymmetry algebra involving n-component real spinors Qa is given by the anticommutators {l_brace}Q{sub a},Q{sub b}{r_brace} = Z{sub ab} where the matrix Z appearing in the r.h.s. is the most general symmetric matrix. A complex generalized supersymmetry algebra is expressed in terms of complex spinors Qa and their complex conjugate Q* a. The most general (with a saturated r.h.s.) algebra is in this case given by {l_brace}Q{sub a},Q{sub b}{r_brace} P{sub ab}{l_brace}Q*{sub a}, Q*{sub b}{r_brace} = P*{sub ab}{l_brace}Q{sub a},Q*{sub b}{r_brace} = R{sub ab} where the matrix Pab is symmetric, while Rab is hermitian. The bosonic right hand side can be expressed in terms of the rank-k totally antisymmetric tensors P{sub ab} {sigma}k(C{gamma}{sub [{mu}}{sub 1...{mu}}{sub k]}){sub ab}P{sup [{mu}{sup 1...{mu}{sup k}]}.The decomposition in terms of anti-symmetric tensors for any space-time up to dimension D = 13 is presented. Real type, complex type, and quaternionic type space-times are classified. Any restriction on the saturated bosonic generators that allows all possible combinations of these tensors is in principle admissible by a Lorenz-covariant requirement. We investigate division algebra constraints and their influence on physical models. High spin theory models are presented as examples of the applications of such models.
Global Biofuels Modeling and Land Use
Broader source: Energy.gov (indexed) [DOE]
... equilibrium models * Oil, natural gas and coal supply curves are explicitly modeled to ... supplyuse of biofuels depends on how consumers respond in the transportation market. ...
Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field
Zhou, Deng
2015-09-15
The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.
Gent, F. A.; Erdélyi, R.; Fedun, V.
2014-07-01
A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.
Equilibrium and Stability of Partial Toroidal Plasma Discharges
Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R.; Xie, J.
2011-01-04
The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).
Non-Equilibrium Pathways during Electrochemical Phase Transformations in
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution | Stanford Synchrotron Radiation Lightsource Non-Equilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution Friday, February 27, 2015 The energy density of current batteries is limited by the practical capacity of the positive electrode, which is the determined by the properties of the active material and its concentration in the
Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.
Energy Science and Technology Software Center (OSTI)
2000-11-27
Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less
NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER
DeMille, David; LeHur, Karyn
2013-11-27
Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.
Decoherence of spin-deformed bosonic model
Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.
2013-07-15
The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.
Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR
Hanson, A.L.; Diamond, D.
2011-09-30
A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.
Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.
2009-07-15
White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.
A New Twist on the Magnetic Equilibrium of a Toroidal Plasma...
Office of Science (SC) Website
A New Twist on the Magnetic Equilibrium of a Toroidal Plasma Fusion Energy Sciences (FES) ... A New Twist on the Magnetic Equilibrium of a Toroidal Plasma The reversed field pinch's ...
High-Z Non-Equilibrium Physics and Bright X-ray Sources with...
Office of Scientific and Technical Information (OSTI)
Technical Report: High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets Citation Details In-Document Search Title: High-Z Non-Equilibrium Physics and ...
Thermal equilibrium of non-neutral plasma in dipole magnetic field
Sato, N.; Kasaoka, N.; Yoshida, Z.
2015-04-15
Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
C General Tables The General Table for 8C is subdivided into the following categories: Reviews Other Theoretical Work...
Early Out-Of-Equilibrium Beam-Plasma Evolution
Firpo, M.-C.; Lifschitz, A.F.
2006-03-24
We solve analytically the out-of-equilibrium initial stage that follows the injection of a radially finite electron beam into a plasma at rest and test it against particle-in-cell simulations. For initial large beam edge gradients and not too large beam radius, compared to the electron skin depth, the electron beam is shown to evolve into a ring structure. For low enough transverse temperatures, the filamentation instability eventually proceeds and saturates when transverse isotropy is reached. The analysis accounts for the variety of very recent experimental beam transverse observations.
Axisymmetric plasma equilibrium in gravitational and magnetic fields
Krasheninnikov, S. I.; Catto, P. J.
2015-12-15
Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.
Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Fluid Mech. (2010), vol. 644, pp. 257-280. c Cambridge University Press 2010 doi:10.1017/S0022112009992394 257 Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments I. V. K H A L Z O V 1 †, A. I. S M O L Y A K O V 2 A N D V. I. I L G I S O N I S 3 1 Center for Magnetic Self-Organization, University of Wisconsin, 1150 University Avenue, Madison, WI 53706, USA 2 University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan, S7N5E2, Canada 3
Coupled spin-boson systems far from equilibrium
Salkola, M.I. [Department of Physics, Stanford University, Stanford, California 94305 (United States)] [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bishop, A.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kenkre, V.M.; Raghavan, S. [Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
1996-11-01
Nonequilibrium quantum dynamics of a system comprising a (pseudo) spin-1/2 object coupled to a boson degree of freedom is studied. It is shown that the time evolution of the system is described by a set of elementary scattering processes. Through these processes the system approaches an equilibrium in which the spin is in a mixed state that on average maximizes its entropy. However, the irregular behavior of the system is unrelated to {open_quote}{open_quote}quantum chaos{close_quote}{close_quote} as the Hamiltonian is integrable. {copyright} {ital 1996 The American Physical Society.}
Measurement and modeling of advanced coal conversion processes, Volume III
Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G.
1993-08-01
A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.
Rotational and translational temperature equilibrium in an inductively coupled plasma
Shimada, Masashi; Tynan, George R.; Cattolica, Robert
2006-09-15
Rotational temperature has been used widely as neutral gas temperature measurement in different types of plasmas (electron cyclotron resonance, inductively coupled plasma, helicon, hollow cathode, etc.), and has been assumed to be in equilibrium with translational temperature. The direct experimental comparison of rotational and translational temperature in low-temperature plasmas has not been reported. In this research, optical emission spectroscopy is used to measure the neutral gas rotational temperature, T{sub rot}, from the second-positive band of a nitrogen molecule (380 nm). The results are compared with the Doppler-broadened translational temperature, T{sub trans}, of Ar (750 nm) and He (587 nm), determined with a high-resolution spectrometer at various partial pressures of N{sub 2} in Ar/N{sub 2} and He/N{sub 2} plasmas. The results demonstrated that T{sub rot} and T{sub trans} are in equilibrium in the conditions [10{sup 10}
Off-equilibrium photon production during the chiral phase transition
Michler, Frank; Hees, Hendrik van; Dietrich, Dennis D.; Leupold, Stefan; Greiner, Carsten
2013-09-15
In the early stage of ultrarelativistic heavy-ion collisions chiral symmetry is restored temporarily. During this so-called chiral phase transition, the quark masses change from their constituent to their bare values. This mass shift leads to the spontaneous non-perturbative creation of quarkantiquark pairs, which effectively contributes to the formation of the quarkgluon plasma. We investigate the photon production induced by this creation process. We provide an approach that eliminates possible unphysical contributions from the vacuum polarization and renders the resulting photon spectra integrable in the ultraviolet domain. The off-equilibrium photon numbers are of quadratic order in the perturbative coupling constants while a thermal production is only of quartic order. Quantitatively, we find, however, that for the most physical mass-shift scenarios and for photon momenta larger than 1 GeV the off-equilibrium processes contribute less photons than the thermal processes. -- Highlights: We investigate first-order photon emission arising from the chiral mass shift. We provide an ansatz eliminating possible unphysical vacuum contributions. Our ansatz leads to photon spectra being integrable in the ultraviolet domain.
Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus
Weitzner, Harold
2014-02-15
An alternative representation of an ideal magnetohydrodynamic equilibrium is developed. The representation is a variation of one given by A. Salat, Phys. Plasmas 2, 1652 (1995). The system of equations is used to study the possibility of non-symmetric equilibria in a topological torus, here an approximate rectangular parallelopiped, with periodicity in two of the three rectangular coordinates. An expansion is carried out in the deviation of pressure surfaces from planes. Resonances are manifest in the process. Nonetheless, provided the magnetic shear is small, it is shown that it is possible to select the magnetic fields and flux surfaces in such a manner that no singularities appear on resonant surfaces. One boundary surface of the parallelopiped is not arbitrary but is dependent on the equilibrium in question. A comparison of the solution sets of axisymmetric and non-axisymmetric equilibria suggests that the latter have a wider class of possible boundary shapes but more restrictive rotational transform profiles. No proof of convergence of the series is given.
Bozeman, Jeffrey; Chen, Kuo-Huey
2014-12-09
On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.
Collins, David
2010-05-15
A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds {approx}10{sup 5}.
Aqueous Electrolyte Modeling in Aspen Plus G. E
Office of Scientific and Technical Information (OSTI)
... The Dielectric Constant of Water and Debye-Huckel limiting Law Slopes, J. Phys. Chem. Ref. ... Dissolved gases are modeled using Henry's Law. Chemical reaction equilibrium is modeled ...
V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein
2010-06-17
This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.