Sample records for general energy disruptions

  1. Energy modeling IV--planning for energy disruptions

    SciTech Connect (OSTI)

    Feingold, B.W.; Courtney, L. (eds.)

    1982-01-01T23:59:59.000Z

    On May 10-12, 1982, the Institute of Gas Technology held the symposium ''Energy Modeling IV: Planning for Energy Disruptions,'' the fourth in a series of energy modeling symposia. Although all four of the energy modeling symposia presented by IGT emphasized new modeling techniques, each had a specific theme. This symposium addressed the role of modeling in dealing with the problems of disruptions in the supply and price of energy. The symposium brought together modelers and planners from federal and state governmental agencies, utilities, management and consulting organizations, and academic institutions. The participants discussed the complex planning problems presented by both gradual and sudden fluctuations in energy supply or price, whether caused by political, physical, economic, or natural events, and the resultant threats to the stability of businesses and the security of nations. A separate abstract was pepared for each paper for the Energy Data Base (EDB); on paper is included in Energy Research Abstracts (ERA) and 22 for Energy Abstracts for Policy Analysis (EAPA).

  2. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex

    E-Print Network [OSTI]

    Newman, Eric A.

    General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not pre, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well

  3. GENERAL CIRCULATION Energy Cycle

    E-Print Network [OSTI]

    Grotjahn, Richard

    process. PE is useful for global energy balance. Solar radiant energy does not reach the Earth equally everywhere. On average, the tropics receive and absorb far more solar energy annually than the polar regionsGENERAL CIRCULATION Contents Energy Cycle Mean Characteristics Momentum Budget Overview Energy

  4. Local Leaders: Respond to Natural Gas Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNatural Gas Disruptions

  5. Predictions on runaway current and energy during disruptions in tokamak plasmas

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    that the ripple resonance leads to a reduction in the runaway beam energy if the runaway production is dominated discharge terminations due to normal disruptions and the killer pellet injection. Plasma­surface interaction

  6. General | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrder No. 131-D

  7. Casimir Energies and General Relativity Energy Conditions

    E-Print Network [OSTI]

    N. Graham

    2006-01-06T23:59:59.000Z

    Quantum systems often contain negative energy densities. In general relativity, negative energies lead to time advancement, rather than the usual time delay. As a result, some Casimir systems appear to violate energy conditions that would protect against exotic phenomena such as closed timelike curves and superluminal travel. However, when one examines a variety of Casimir systems using self-consistent approximations in quantum field theory, one finds that a particular energy condition is still obeyed, which rules out exotic phenomena. I will discuss the methods and results of these calculations in detail and speculate on their potential implications in general relativity.

  8. Business Owners: Prepare for Utility Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLight Wa Business

  9. Homeowners: Respond to Natural Gas Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof EnergyFuel ShortagesNatural

  10. Local Leaders: Respond to Natural Gas Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy Emergency

  11. Homeowners: Respond to Natural Gas Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star Home

  12. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  13. First measurements of ion energy distribution at the divertor strike point during DIII-D disruptions

    SciTech Connect (OSTI)

    Parks, P.B.; Brooks, N.H.; West, W.P.; Wong, C.P.C. [General Atomics, San Diego, CA (United States); Bastasz, R.; Wampler, W.R.; Whyte, D.

    1995-12-31T23:59:59.000Z

    Plasma/wall interaction studies are being carried out using the Divertor Materials Exposure System (DiMES) on DIII-D. The objective of the experiment is to determine the kinetic energy and flux of deuterium ions reaching the divertor target during argon-induced radiative disruptions. The experiment utilizes a special slotted ion analyzer mounted over a Si sample to collect the fast charge-exchange (CX) deuterium neutrals emitted within the recycled cold neutral layer (CNL) which serves as a CX target for the incident ions. A theoretical interpretation of the experiment reveals a strong forward pitch-angle dependence in the approaching ion distribution function. The depth distribution of the trapped D in the Si sample was measured using low-energy direct recoil spectroscopy. Comparison with the TRIM code using monoenergetic ions indicated that the best fit to the data was obtained for an ion energy of 100 eV. An estimate of the CNL thickness {integral}nd{ell} indicates that during disruptions the CNL cushion is thick enough to reduce the local ion heat load by {approximately}30% due to CX refluxing.

  14. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  15. Localization of Energy in General Relativity

    E-Print Network [OSTI]

    Jose W. Maluf

    1995-04-07T23:59:59.000Z

    In the framework of the teleparallel equivalent of general relativity the energy density of asymptoticaly flat gravitational fields can be naturally and unambiguously defined. Upon integration of the energy density over the whole three dimensional space we obtain the ADM energy. We use this energy density to calculate the energy inside a Schwarzschild black hole.

  16. Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

    E-Print Network [OSTI]

    Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

  17. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  18. General Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy

  19. General Compression | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,

  20. General Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion Eolicaform View source

  1. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta en Marcha,Geary,GenSelfandAtomics

  2. General Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta en

  3. Numerical simulation of the plasma current quench following a disruptive energy loss

    SciTech Connect (OSTI)

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01T23:59:59.000Z

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds.

  4. General Questions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.GenaWhere can I

  5. EIS-0470: Cape Wind Energy Project, Final General Conformity...

    Broader source: Energy.gov (indexed) [DOE]

    70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

  6. General Service LED Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not Measurement SensitiveGeneralGeneral

  7. Toward Energy Efficient Municipalities: General Comments on Policy...

    Energy Savers [EERE]

    Energy Efficient Municipalities: General Comments on Policy and Logistical Challenges to Smart Grid Implementation Toward Energy Efficient Municipalities: General Comments on...

  8. General Biomass Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22tecnologíasEnergyGenencorGeneral

  9. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y. [CH2M Hill (United States)

    2007-02-15T23:59:59.000Z

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  10. Alaska - CPCN General Information | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County,90 - ResponseCPCN General

  11. Qatar General Petroleum Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublic ArtTexasUnst,PyronGeneral Petroleum

  12. First measurements of the ion energy distribution at the divertor strike point during DIII-D disruptions

    SciTech Connect (OSTI)

    Parks, P.B.; Brooks, N.H.; West, W.P.; Wong, C.P.C. [General Atomics, San Diego, CA (United States); Bastasz, R.; Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); Whyte, D. [Inst. National de la Recherche Scientifique, Varennes, Quebec (Canada)

    1996-03-01T23:59:59.000Z

    Plasma disruptions are a serious concern in tokamak design because of the high impulsive heat loads which can cause strong erosion of divertor materials due to enhanced sputtering, or melting/ablation in the most severe cases. Predictions of net erosion rates and hence component lifetimes are very difficult and are highly dependent on the plasma conditions over the divertor target. It is therefore necessary to characterize the properties of the scrape-off plasma near the divertor target plate under these special conditions. Here, plasma/wall interaction studies are being carried out using the Divertor Materials Exposure System (DiMES) on DIII-D. The objective of the experiment is to determine the kinetic energy and flux of deuterium ions reaching the divertor target during argon-induced radiative disruptions. The experiment utilizes a special slotted ion analyzer mounted over a Si sample to collect the fast charge-exchange (CX) deuterium neutrals emitted within the recycled cold neutral layer (CNL) which serves as a CX target for the incident ions. A theoretical interpretation of the experiment reveals a strong forward pitch-angle dependence in the approaching ion distribution function. The depth distribution of the trapped D in the Si sample was measured using low-energy direct recoil spectroscopy. Comparison with the TRIM code using monoenergetic ions indicated that the best fit to the data was obtained for an ion energy of 100 eV. An estimate of the CNL thickness {integral}nd{ell} indicates that during disruptions the CNL cushion is thick enough to reduce the local ion heat load by {approximately}30% due to CX refluxing.

  13. Generalized equation of state for dark energy

    SciTech Connect (OSTI)

    Barboza, E. M. Jr.; Alcaniz, J. S. [Observatorio Nacional, 20921-400, Rio de Janeiro - RJ (Brazil); Zhu, Z.-H. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Silva, R. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal - RN (Brazil); Departamento de Fisica, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoro - RN (Brazil)

    2009-08-15T23:59:59.000Z

    A generalized parametrization w{sub {beta}}(z) for the dark energy equation of state is proposed and some of its cosmological consequences are investigated. We show that in the limit of the characteristic dimensionless parameter {beta}{yields}+1, 0 and -1 some well-known equation of state parametrizations are fully recovered whereas for other values of {beta} the proposed parametrization admits a wider and new range of cosmological solutions. We also discuss possible constraints on the w{sub {beta}}(z) parameters from current observational data.

  14. General Guidance on NEPA | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance on NEPA

  15. General Privacy Act Guidance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance on NEPAPrivacy

  16. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    System Alternatives and their General Environmental Impacts (MESSAGE) (Redirected from Model for Energy Supply System Alternatives and their General Environmental Impacts) Jump to:...

  17. 2014-12-30 Issuance: Energy Conservation Standard for General...

    Energy Savers [EERE]

    2014-12-30 Issuance: Energy Conservation Standard for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Final Rule 2014-12-30 Issuance: Energy Conservation...

  18. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model for Energy Supply System...

  19. WiFi Meet FuFi: Disruptive Innovation in Logistics Catalysed by Energy

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-07-30T23:59:59.000Z

    Cost of energy per unit of goods or services is likely to evolve as a key differentiator of economic growth. The debt of nations will be re-structured. Corporations, big or small, may not escape from managing their energy ...

  20. General Purpose Microcomputers in Energy Management

    E-Print Network [OSTI]

    Schmidt, P. S.

    1981-01-01T23:59:59.000Z

    these may be implemented in energy management. A project at the University of Texas at Austin to develop a package of energy conservation software is described, and examples are given of other commercially available software suitable for energy conservation...

  1. General Renewable Energy Technology Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance on

  2. Quasi-local definitions of energy in general relativity

    E-Print Network [OSTI]

    Bjoern S. Schmekel

    2007-08-31T23:59:59.000Z

    The problem of defining energy in general relativity is reviewed very briefly, and the properties of Brown-York-like expressions are discussed.

  3. 2014-12-05 Issuance: Energy Conservation Standard for General...

    Office of Environmental Management (EM)

    Conservation Standard for General Service Lamps; Notice of Public Meeting and Availability of the Preliminary Technical Support Document 2014-12-05 Issuance: Energy...

  4. Disrupting the (Energy) Status Quo: ARPA-E Helping the U.S. Face 21st

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFT ENVIRONMENTALCombustion

  5. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    these and any other conditions. PLANNING FOR THE FUTURE GM is also deeply involved in trying to develop effective energy planning guidelines to meet the long term planning needs of our plants. One approach has been to review the energy outlook projections... by a number of organizations and agencies and apply these pro jections to GM operations. Table IV contains the energy outlook projections to 1990 by Exxon, Shell and the U.S. Department of Energy. Also shown is the actual energy consumed by form...

  6. A general design for energy test procedures

    SciTech Connect (OSTI)

    Meier, Alan

    2000-06-15T23:59:59.000Z

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  7. GUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM

    E-Print Network [OSTI]

    Energy Inc., a U.S. based publicly-traded, green energy technology company. Bartels is a frequent speakerGUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM Chairman, Global Smart Grid Federation Board Member and Former Chairman, GridWise Alliance Guido Bartels heads up IBM's energy

  8. Disruption Tolerant Shell

    E-Print Network [OSTI]

    Lukac, Martin; Girod, Lewis; Estrin, D

    2006-01-01T23:59:59.000Z

    Disruption Tolerant Shell ? Martin Lukac UCLA CENS 3563a reliable asynchronous remote shell interface (referred toas Disruption Tolerant Shell, DTS) to accomplish the

  9. General Biodiesel Incorporated | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22tecnologíasEnergyGenencor

  10. Healthcare Energy: Massachusetts General Hospital Gray Building |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NREL partnered with

  11. Portland General Electric Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin:Porter

  12. DOE General Competencies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE CitesFuel Cell Technologies

  13. Office of Inspector General | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,

  14. General Information of the DOE VPP program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGOof Energy GeneralGeneralGeneral

  15. All General Counsel Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgricultural Outlook ForumofEnergy

  16. General Plasma Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation, search

  17. General Motors Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not Measurement Sensitive DOEGeneral

  18. General Privacy Act Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not Measurement Sensitive

  19. General Building Spa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion Eolica

  20. SWRCB General NPDES Permits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions Jump to:SMInformationSVVCenterSWRCB

  1. Widget:GeneralRedirect | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:WestwoodCreatePageFormFieldsDisplayToggle Jump

  2. Portland General Electric Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to Reduce EmissionsPoncha

  3. Office of Inspector General | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding access

  4. Texas General Land Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation TengchongTex-La Electric Coop-Texas IncTexas

  5. 12. Energy balance of particles 12.1 General solutions

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    12. Energy balance of particles 12.1 General solutions In this chapter we want to study only to consider the heating/cooling balance of the temperature as a parameter of a known energy distribution by the balance of effects that depend on the particle energy. We can write down a continuity equation

  6. General Brent Scowcroft | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.Gena E.

  7. General Counsel Law Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.Gena E.THIS PAGE

  8. DOE General Competencies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel CellMillionDOE

  9. Anatomy of a disruption in MTX (Microwave Tokamak Experiment)

    SciTech Connect (OSTI)

    Hooper, E.B.; Casper, T.A.; Lasnier, C.J.; Makowski, M.A.; Meyer, W.H.; Moller, J.M.; Oasa, K.; Rice, B.W.; Wood, R.D.

    1990-10-15T23:59:59.000Z

    Disruptions are observed in the Microwave Tokamak Experiment, MTX (nee Alcator C), over a wide range of plasma parameters. Indeed, disruptions often occur far from the boundaries of the operating space as defined by Hugill and l{sub i}-q plots. Despite this, the general behavior during the disruptive process is generally similar whatever the operating parameters. This report will describe one disruption in detail in order to provide a detailed anatomy of the event.

  10. General Merchandise 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01T23:59:59.000Z

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  11. Generalized Mean-payoff and Energy Games Krishnendu Chatterjee1

    E-Print Network [OSTI]

    Doyen, Laurent

    Generalized Mean-payoff and Energy Games Krishnendu Chatterjee1 , Laurent Doyen2 , Thomas A. Henzinger1 , and Jean-François Raskin3 1 IST Austria (Institute of Science and Technology Austria) 2 LSV of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure

  12. An action with positive kinetic energy term for general relativity

    E-Print Network [OSTI]

    T. Mei

    2007-11-02T23:59:59.000Z

    At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic energy term for general relativity. Based on this action, the corresponding theory of canonical quantization is discussed.

  13. Negative kinetic energy term of general relativity and its removing

    E-Print Network [OSTI]

    T. Mei

    2009-03-30T23:59:59.000Z

    We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

  14. An analysis of oil supply disruption scenarios

    E-Print Network [OSTI]

    Mork, Knut Anton

    1981-01-01T23:59:59.000Z

    This report brings the results of simulations of some oil supply disruptions on the M.I.T. Energy Laboratory Energy Macro Model. This model has previously been used to study the macroeconomic effects of the 1973-74 and ...

  15. Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model

    E-Print Network [OSTI]

    Orfeu Bertolami

    2005-04-14T23:59:59.000Z

    We review the main features of the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and discuss how it admits an unique decomposition into dark energy and dark matter components once phantom-like dark energy is excluded. In the context of this approach we consider structure formation and show that unphysical oscillations or blow-up in the matter power spectrum are not present. Moreover, we demonstrate that the dominance of dark energy occurs about the time when energy density fluctuations start evolving away from the linear regime.

  16. EA-376 Societe Generale Energy Corp | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEEauthorizong

  17. General Renewable Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrder No. 131-D

  18. Beijing China Sciences General Energy Environment GEE | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPowerBean CommercialBeijingChangjiang

  19. Analysis of Generalized Ghost Version of Pilgrim Dark Energy

    E-Print Network [OSTI]

    M. Sharif; Abdul Jawad

    2014-08-18T23:59:59.000Z

    The proposal of pilgrim dark energy is based on the speculation that phantom-like dark energy possesses enough resistive force to preclude the black hole formation in the later universe. We explore this phenomenon by assuming the generalized ghost version of pilgrim dark energy. We find that most of the values of the interacting ($\\xi^2$) as well as pilgrim dark energy ($u$) parameters push the equation of state parameter towards phantom region. The squared speed of sound shows that this model remains stable in most of the cases of $\\xi^2$ and $u$. We also develop $\\omega_\\Lambda-\\omega'_\\Lambda$ plane and observe that this model corresponds to thawing as well as freezing regions. Finally, it is shown that the non-interacting and interacting generalized ghost versions of pilgrim dark energy correspond to $\\Lambda$CDM limit on the statefinder plane.

  20. Static, cylindrical symmetry in general relativity and vacuum energy

    E-Print Network [OSTI]

    Trendafilova, Cynthia

    2011-08-08T23:59:59.000Z

    that currently exist in the theory. 30 REFERENCES [1] Schutz B F 2009 A First Course in General Relativity (Cambridge, UK: Cambridge University Press) [2] Weyl H 1917 Ann. Phys., Lpz 54 117 [3] Levi-Civita T 1919 Atti Acc. Lincei Rend. 28 101 [4] Marder L...STATIC, CYLINDRICAL SYMMETRY IN GENERAL RELATIVITY AND VACUUM ENERGY A Senior Scholars Thesis by CYNTHIA TRENDAFILOVA Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements...

  1. Energy dissipation in wave propagation in general relativistic plasma

    E-Print Network [OSTI]

    Ajanta Das; S. Chatterjee

    2009-11-03T23:59:59.000Z

    Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.

  2. General Compression Looks at Energy Storage from a Different Angle |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGOof Energy General Assembly of

  3. EA-97-C Portland General Electric | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy toCWPPortland General

  4. Nevada Stormwater General Permit NVR100000 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) JumpAirWork (WaterStormwater General Permit

  5. General Renewable Energy-Financing Mechanisms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion EolicaformFinancing

  6. General Renewable Energy-Market Development Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracionInformation Market

  7. General Renewable Energy-Policy and Regulatory Studies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracionInformation

  8. New agegraphic dark energy model with generalized uncertainty principle

    E-Print Network [OSTI]

    Yong-Wan Kim; Hyung Won Lee; Yun Soo Myung; Mu-In Park

    2008-08-07T23:59:59.000Z

    We investigate the new agegraphic dark energy models with generalized uncertainty principle (GUP). It turns out that although the GUP affects the early universe, it does not change the current and future dark energy-dominated universe significantly. Furthermore, this model could describe the matter-dominated universe in the past only when the parameter $n$ is chosen to be $n>n_c$, where the critical value determined to be $n_c=2.799531478$.

  9. General Electric Company Evaluation of Sustainable Energy Options

    E-Print Network [OSTI]

    and performance of each electricity infrastructure scenario in various timescales of power system operation. In addition, three different 2018 electricity infrastructure scenarios were developed. The impact of eachGeneral Electric Company Evaluation of Sustainable Energy Options for the Big Island of Hawaii

  10. EA-376 Societe Generale Energy Corp | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441 AquilonEA-375 Rainbow376

  11. International Atomic Energy Agency - General Session | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2, 2015ITRATIOAL AGREE-

  12. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <UtahGeneral

  13. Office of the General Counsel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,Intelligence andGeneral Counsel Search Search form

  14. A dark energy model alternative to generalized Chaplygin gas

    E-Print Network [OSTI]

    Hoavo Hova; Huanxiong Yang

    2010-11-22T23:59:59.000Z

    We propose a new fluid model of dark energy for $-1 \\leq \\omega_{\\text{eff}} \\leq 0$ as an alternative to the generalized Chaplygin gas models. The energy density of dark energy fluid is severely suppressed during barotropic matter dominant epochs, and it dominates the universe evolution only for eras of small redshift. From the perspective of fundamental physics, the fluid is a tachyon field with a scalar potential flatter than that of power-law decelerated expansion. Different from the standard $\\Lambda\\text{CDM}$ model, the suggested dark energy model claims that the cosmic acceleration at present epoch can not continue forever but will cease in the near future and a decelerated cosmic expansion will recover afterwards.

  15. A dark energy model alternative to generalized Chaplygin gas

    E-Print Network [OSTI]

    Hova, Hoavo

    2010-01-01T23:59:59.000Z

    We propose a new fluid model of dark energy for $-1 \\leq \\omega_{\\text{eff}} \\leq 0$ as an alternative to the generalized Chaplygin gas models. The energy density of dark energy fluid is severely suppressed during barotropic matter dominant epochs, and it dominates the universe evolution only for eras of small redshift. From the perspective of fundamental physics, the fluid is a tachyon field with a scalar potential flatter than that of power-law decelerated expansion. Different from the standard $\\Lambda\\text{CDM}$ model, the suggested dark energy model claims that the cosmic acceleration at present epoch can not continue forever but will cease in the near future and a decelerated cosmic expansion will recover afterwards.

  16. Interacting holographic dark energy models: A general approach

    E-Print Network [OSTI]

    S. Som; A. Sil

    2014-12-01T23:59:59.000Z

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density $\\rho_d=3(\\alpha H^2+\\beta\\dot{H})$. Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy(RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for $\\beta>0.5$ irrespective of the presence of interaction. A choice of $\\alpha=1$ and $\\beta=2/3$ leads to a varying $\\Lambda$-like model introducing an IR cutoff length $\\Lambda^{-1/2}$. It is concluded that among the popular choices an interaction of the form $Q\\propto H\\rho_m$ suits the best in avoiding the coincidence problem in this model.

  17. Dark Energy and Search for the Generalized Second Law

    E-Print Network [OSTI]

    Balendra Kr. Dev Choudhury; Julie Saikia

    2009-06-03T23:59:59.000Z

    The discovery of accelerated Hubble expansion in the SNIa data and the observed power spectrum of the microwave background radiation provide an ample support for Dark energy and Dark matter. Except for the so far well-known facts that cold dark matter (or simply dark matter) is pressureless, and dark energy has a negative pressure, the nature of these two still remains a complete mystery. The mystery facilitates different consideration. In one hand, dark matter and dark energy are assumed as distinct entities, and other interpretation is that both are different manifestation of a common structure, often referred as quartessence. Chaplygin gas, a perfect fluid also favours the second interpretation. Here, we consider modified chaplygin gas as dark energy candidate. Taking into account the existence of the observer's event horizon in accelerated universe, we find the condition where the generalized second law of gravitational thermodynamics is valid and the positivity of the temperature of the phantom fluid remains intact.

  18. Noise-induced energy excitation by a general environment

    E-Print Network [OSTI]

    Fernando C. Lombardo; Paula I. Villar

    2007-08-07T23:59:59.000Z

    We analyze the effects that general environments, namely ohmic and non-ohmic, at zero and high temperature induce over a quantum Brownian particle. We state that the evolution of the system can be summarized in terms of two main environmental induced physical phenomena: decoherence and energy activation. In this article we show that the latter is a post-decoherence phenomenon. As the energy is an observable, the excitation process is a direct indication of the system-environment entanglement particularly useful at zero temperature.

  19. General Equilibrium Modeling Package (GEMPACK) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation, search Name:General

  20. General Recommendations for a Federal Data Center Energy Management

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting. |OctoberNiketaGeneral Information

  1. Washington Construction Storm Water General Permit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformation Construction Storm Water General PermitLegal

  2. Disruption Tolerant Shell (SYS 13)

    E-Print Network [OSTI]

    Martin Lukac; Lewis Girod; Deborah Estrin

    2006-01-01T23:59:59.000Z

    Sensing Disruption Tolerant Shell Martin Lukac, Lewis Girod,Solution: Disruption Tolerant Shell Data Delivery: DTN Usemanagement tool: remote shell (ssh) Published data is hop-

  3. General Workforce Restructuring Plan Template | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance onWorkforce

  4. Jet energy scale setting with "photon+Jet" events at LHC energies. Generalities, selection rules

    E-Print Network [OSTI]

    D. V. Bandourin; V. F. Konoplianikov; N. B. Skachkov

    2000-12-14T23:59:59.000Z

    "photon+Jet" events, based on the q~q-> g+photon and qg-> q+photon subprocesses, are proposed for jet energy scale setting and hadron calorimeter calibration at LHC energies. General features and selection criteria of "photon+Jet" events that would provide a good photon Pt - jet Pt balance are described. CMS detector geometry is taken as the basement.

  5. Weathering the cold of `94. A review of the January 1994 energy supply disruptions in the Eastern United States

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report examines the causes of and responses to the very low temperatures over a wide region of the Eastern US causing unprecedented sustained demand for energy during the week of January 16--22, 1994. The topics of the report include the vagaries of the weather, the North American power supply structure, a chronology of major events of January, natural gas industry operations during peak demand periods, and recommendations for fuel supply, load forecasting, and energy emergency response exercises.

  6. Interception and disruption

    SciTech Connect (OSTI)

    Solem, J.C.

    1995-07-01T23:59:59.000Z

    Given sufficient warning we might try to avert a collision with a comet or asteroid by using beamed energy or by using the kinetic energy of an interceptor rocket. If motivated by the opportunity to convert the object into a space asset, perhaps a microgravity mine for construction materials or spacecraft fuels, we might try a rendezvous to implant a propulsion system of some sort. But the most cost-effective means of disruption is a nuclear explosive. In this paper, I discuss optimal tactics for terminal intercept, which can be extended to remote-interdiction scenarios as well. I show that the optimal mass ratio of an interceptor rock carrying a nuclear explosive depends mainly on the ratio of the exhaust velocity to the assailant-object closing velocity. I compare the effectiveness of stand-off detonation, surface burst, and penetration, for both deflection and pulverization, concluding that a penetrator has no clear advantage over a surface-burst device for deflection, but is a distinctly more capable pulverizer. The advantage of a stand-off device is to distribute the impulse more evenly over the surface of the object and to prevent fracture, an event which would greatly complicate the intercept problem. Finally, I present some results of a model for gravitationally bound objects and obtain the maximum non-fracturing deflection speed for a variety of object sizes and structures. For a single engagement, I conclude that the non-fracturing deflection speed obtainable with a stand-off device is about four times the speed obtainable with a surface-burst device. Furthermore, the non-fracturing deflection speed is somewhat dependent on the number of competent components of the object, the speed for a 13 component object being about twice that for a 135 component object.

  7. Consistently Orienting Facets in Polygon Meshes by Minimizing the Dirichlet Energy of Generalized Winding Numbers

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    orienting facets in polygon meshes by minimizing the Dirichlet energy of generalized winding numbers. While based on the Dirichlet energy of the generalized winding number. Our motivation came from the fact Dirichlet energy of the corresponding generalized winding number. 2 Method 2.1 Patch extraction

  8. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other...

  9. Renewable Energy Demonstration Project by the National Renewable Energy Laboratory and the General Services Administration

    SciTech Connect (OSTI)

    Carlisle, N; Hoo, E; Westby, R [National Renewable Energy Lab., Golden, CO (United States); Hancock, E [Ed Hancock and Associates, Boulder, CO (United States); Lu, J [General Services Administration, Washington, DC (United States)

    1994-11-01T23:59:59.000Z

    The Energy Policy Act of 1992 (EPACT) requires the General Services Administration (GSA) to implement a solar energy program to demonstrate and evaluate the performance of available technologies expected to have widespread commercial application. The GSA decided to carry out the project at the Denver Federal Center because of its proximity to the National Renewable Energy Laboratory (NREL). The location was thought to be of mutual benefit to NREL and the GSA: it provides NREL an opportunity to deploy technology and it provides the GSA an opportunity to gain a hands-on learning experience with renewables. The GSA plans to document their experience and use it as a case study in part of a larger training effort on renewable energy. This paper describes the technology selection process and provides an update on the status of the project.

  10. Investing in Our Energy Future: The Story of General Compression...

    Broader source: Energy.gov (indexed) [DOE]

    General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to...

  11. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL STRATEGIC PLAN

    Office of Environmental Management (EM)

    OFFICE OF INSPECTOR GENERAL STRATEGIC PLAN FISCAL YEARS 2014 - 2019 "Strengthening the integrity, economy, and efficiency of the Department's programs and operations."...

  12. Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through

    E-Print Network [OSTI]

    Deng, Zhigang

    Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through Automated challenge. In this paper, we propose a novel framework to improve the energy efficiency of GPU-based General configurations to improve the energy efficiency of any given GPGPU program. Through preliminary empirical

  13. A Generalized Free Energy Perturbation Theory Accounting for End States with Differing Configuration Space Volume

    E-Print Network [OSTI]

    Ullmann, G. Matthias

    A Generalized Free Energy Perturbation Theory Accounting for End States with DifferingVised Manuscript ReceiVed: NoVember 23, 2010 We present a generalized free energy perturbation theory states of a physical system. It is shown that the present free energy perturbation theory stated

  14. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Xing, Eric P.

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy component of our free energy estimates can useful in distinguishing native

  15. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy compo- nent of our free energy estimates can be useful in distinguishing

  16. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation H Detection, Free Energy, Probabilistic Graphical Models #12;Abstract We present a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP). The accuracy and utility

  17. PUBLISHED VERSION Free Energy Generalization of the Peierls Potential in Iron

    E-Print Network [OSTI]

    PUBLISHED VERSION Free Energy Generalization of the Peierls Potential in Iron M. R. Gilbert, P) and may be found at 10.1103/PhysRevLett.111.095502 #12;Free Energy Generalization of the Peierls Potential for bcc Fe. We compute the Peierls free energy path as a function of stress and temperature and show

  18. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Solid-State Lighting in General Illumination Applications - Report A U.S. DOE SSL report on Energy Savings Potential of Solid-State Lighting in General Illumination...

  19. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Solid-State Lighting in General Illumination Applications - Factsheet A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination...

  20. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM Energy Savings Potential of Solid-State Lighting in General Illumination Applications January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program...

  1. Energy Savings Potential of Solid-State Lighting in General Illumination Applications- Factsheet

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination Applications.

  2. use of renewable en-ergy options generally

    E-Print Network [OSTI]

    Delaware, University of

    states and New York City are suing f, counterbal- able energy becomes far more economical (e.g., Awerbuch, 2003). This is because the risk profiles BRACING FOR AN UNCERTAIN ENERGY FUTURE: RENEWABLE ENERGY AND THE US ELECTRICITY INDUSTRY The risk profiles

  3. Energy Secretary Moniz's Remarks at the 2013 IAEA General Conference...

    Energy Savers [EERE]

    "experts would be mobilized to apply atomic energy to the needs of agriculture, medicine, and other peaceful activities and a special purpose would be to provide abundant...

  4. 2015-01-26 Issuance: Energy Conservation Standards for General...

    Broader source: Energy.gov (indexed) [DOE]

    Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period...

  5. Washington Energy Facility Site Evalutation Council - Generalized Siting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy ResourcesProcess | Open Energy

  6. Testimony by the Inspector General | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |EnergyTankless orTerrachanicsTestimony

  7. EA-97-B Portland General Electric Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy toCWP

  8. EA-97-D Portland General Electric Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy toCWPPortland

  9. Title 43 CFR 3000 General | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpen EnergyAct | Open EnergySubpart

  10. Khazanah Nasional Berhad Beijing China Sciences General Energy JV | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec SrlKenyonKetchikanEnergy

  11. NRS 704 - Regulation of Public Utilities Generally | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy Thermal Conversion8 -

  12. Mass-Energy-Momentum in General Relativity. Only there because of Spacetime?

    E-Print Network [OSTI]

    Wüthrich, Christian

    Mass-Energy-Momentum in General Relativity. Only there because of Spacetime? DRAFT VERSION. Dennis to possess mass to the requirement of them having a mass-energy-momentum density tensor Tµ (energy tensor property of matter, looking at how the energy tensor for a relativistic material system can be derived

  13. MHK Projects/General Hampton Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kWDonaldsville, LA

  14. General Electric: ENERGY STAR Referral (PFSF5NFZ****) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSECCSDepartmentEnergy

  15. Global Energy Management System Implementation: General Dynamics Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermal energy toGettingGiveand Energy6,

  16. General Renewable Energy-Productive Uses and Development Impact | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracionInformationEnergy

  17. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL STRATEGIC PLAN

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment of Energyand ENERGY OFFICE OF

  18. Office of the General Counsel | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies OMBOfficeofOffice ofOffice

  19. U.S. Department of Energy Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families" |Program -

  20. U.S. Department of Energy Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families" |Program

  1. U.S. Department of Energy Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families" |ProgramReview

  2. U.S. Department of Energy Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families"

  3. U.S. Department of Energy General Competencies

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December 11, 2008for FiscalU.S.

  4. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 Audit ReportU.S.Texas

  5. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 Audit

  6. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 AuditManagement Alert

  7. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 AuditManagement

  8. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0

  9. U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 Inspection Report

  10. GSMSolar formerly Shanghai General Silicon Material Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicioncurriculum Jump

  11. General Mining Act of 1872 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport,GateGeneraciones872 Year 1890

  12. ORS Chapter 273 State Lands Generally | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for Geothermal Resources |Chapter

  13. Oregon ORS 537 Appropriation of Water Generally | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees forInformation National

  14. Title 30 CFR 1201 General | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpen Energy Information

  15. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker,Modernizing

  16. NAC 704 - Regulation of Public Utilities Generally | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources Jump to:MuskingumMyers-4 Jump-84 -

  17. NMS 74-1 Environmental Improvement General Provisions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF AdvisorsState

  18. NMSL General Archaeological Investigation Permit Applicatoin | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriation and Use of

  19. General Merchandise 50% Energy Savings Technical Support Document 2009 |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy InformationOpen

  20. General Order No. 131-D | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrder No. 131-D Jump to:

  1. Colorado Water Quality Certification General Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s Energy Office JumpOpen

  2. Department of Energy Selects Small Business to Provide General Construction

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.Contamination ControlDecisionsGeothermal PlantJobEnergyEnvironmentalA fact

  3. WAC - 226 - 050 - General Permit Coverage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah:

  4. LAC Regional Platform Workshop General Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:Kuju Kanko

  5. DEPARTMENT OF ENERGY OFFICE OF GENERAL COUNSEL INTERPRETATION

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3DepartmentENERGY

  6. Office of Inspector General Quarterly Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office of

  7. WAPA General Power Contract Provisions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action PlanNovember

  8. General Electric in India GE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation, search Name:

  9. 50 CFR 13 - General Permit Procedures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National

  10. COP 18 Side Event General Information | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska:CDMValenciaLEDSGPDoha - Advancing

  11. CPUC General Order 131-D | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska:CDMValenciaLEDSGPDoha -CPFL

  12. General Dynamics Case Study for Superior Energy Performance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSECCSDepartment ofFunctions

  13. ENV-Linkages General Equilibrium Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42 EIAELOEMeterENV-Linkages

  14. General Equilibrium Emissions Model (GEEM) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion Eolicaform View

  15. General Renewable Energy-Legal Documents and Operation Manuals | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion

  16. WAC - 173 - 226 - Waste Discharge General Permit Program | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energydba VisionInformation| Open

  17. Sandia Energy - Sandia and General Motors: Advancing Clean Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase onSandia Wind EnergyTheirMODE,

  18. PIA - Energy Inspector General Project Tracking System (EIGPT) | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForumsETTP Badge Imagingof Energy

  19. California Department of General Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28

  20. 33 CFR 320: General Regulatory Policies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopment Guide |and Jump

  1. AZPDES Construction General Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40 -SolarCase Data Survey

  2. U.S. Department of Energy Office of Inspector General

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E Ambassadors and C3E staffU.S.SPECIAL INQUIRY Alleged

  3. OpenEI:General disclaimer | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Communitydesign

  4. International Atomic Energy Agency General Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2,Energy 29, 2008 -

  5. Toward Energy Efficient Municipalities: General Comments on Policy and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTed DonatEnergy Electric

  6. Model for Energy Supply System Alternatives and their General Environmental

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana Geothermal AreaImpacts (MESSAGE)

  7. EFSEC Generalized Siting Process Flowchart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2 AssetEDPEDI TypeOpenEEnergyEFSEC

  8. EPA Region 6 NPDES General Permits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2LtdLegalClassRainfall

  9. Texas Construction General Permit (TXR1500000) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe niceOpenWyoming:Tex.

  10. Texas General Land Office Leasing and Easement Guidelines | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbeInformation Leasing and Easement

  11. Title 7 USC 4201 General Provisions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitat Jump to:USC 4201

  12. Lieutenant General Frank G. Klotz, USAF (Ret), Confirmed as Energy

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration SandiaAdministration NewsAdministrator |

  13. Title 43 CFR 3250 Exploration Operations - General | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen|AmendmentThat WereInformation

  14. Model for Energy Supply System Alternatives and their General Environmental

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi:MiyiImpacts (MESSAGE) |

  15. Montana Domestic Sewage Treatment Lagoons General Permit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir QualityInformation

  16. Montana MPDES General Information Form (MDEQ Form 1) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse Jump to:

  17. Montana Produced Water General Permit - Example Authorization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse

  18. Montana Suction Dredge General Permit Application Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtection

  19. Public Utilities Commission General Order NO. 131-D | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &

  20. RAPID/Geothermal/General Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington < RAPID‎

  1. International Atomic Energy Agency General Conference | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection offor LocalAmongAmerican

  2. UPDES Storm Water Permits: General Construction Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa | OpenSolar

  3. Construction General Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated Edison

  4. EPA - Construction General Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation, searchEMC3, llcENFENrG

  5. EPA - Construction General Permit webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation, searchEMC3,

  6. Dr. Steven Croley Confirmed as General Counsel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011 U.S. DEPARTMENTAssociateExtractedDecemberToday,

  7. Generalized energy equipartition in harmonic oscillators driven by active baths

    E-Print Network [OSTI]

    Claudio Maggi; Matteo Paoluzzi; Nicola Pellicciotta; Alessia Lepore; Luca Angelani; Roberto Di Leonardo

    2014-11-06T23:59:59.000Z

    We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.

  8. Dark Energy: Casimir Effect, Generalized Homogeneity and Axions

    E-Print Network [OSTI]

    Walter F. Wreszinski

    2011-10-11T23:59:59.000Z

    This paper has been withdrawn because a much better version, G. Gazzola, M. C. Nemes and W. F. Wreszinski - On the Casimir Energy for a massive quantum scalar field and the cosmological constant- Annals of Physics (N.Y.) vol. 324, 2095-2107 (2009) has appeared, which corrects several conceptual errors in the present one.

  9. Covariant energy-momentum and an uncertainty principle for general relativity

    E-Print Network [OSTI]

    F. I. Cooperstock; M. J. Dupre

    2014-10-07T23:59:59.000Z

    We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy-momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system. The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy-momentum.

  10. Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity

    E-Print Network [OSTI]

    Eisaku Sakane; Toshiharu Kawai

    2002-09-30T23:59:59.000Z

    In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

  11. Energy-momentum Prescriptions in General Spherically Symmetric Space-times

    E-Print Network [OSTI]

    Saeed Mirshekari; Amir M. Abbassi

    2014-11-29T23:59:59.000Z

    Einstein, Landau-Lifshitz, Papapetrou, Weinberg, and M{\\o}ller energy-momentum prescriptions in general spherically symmetric space-times are investigated. It is shown that for two special but not unusual classes of general spherically symmetric space-times several energy-momentum prescriptions in Schwarzschild Cartesian coordinates lead to some coincidences in energy distribution. It is also obtained that for a special class of spherically symmetric metrics M{\\o}ller and Einstein energy-momentum prescriptions give the same result for energy distribution if and only if it has a specific dependence on radial coordinate.

  12. Generalized London free energy for high-Tc vortex lattices Ian Affleck

    E-Print Network [OSTI]

    Franz, Marcel

    Generalized London free energy for high-Tc vortex lattices Ian Affleck Department of Physics-1829 97 50402-4 The London free energy provides a very simple way of studying the vortex lattice that this effect can arise from additional quartic derivative terms in the Ginzburg-Landau GL free energy47 or

  13. Computable General Equilibrium Models for the Analysis of Energy and Climate Policies

    E-Print Network [OSTI]

    Wing, Ian Sue

    Computable General Equilibrium Models for the Analysis of Energy and Climate Policies Ian Sue Wing of energy and environmental policies. Perhaps the most important of these applications is the analysis Change, MIT Prepared for the International Handbook of Energy Economics Abstract This chapter is a simple

  14. General Coordinate Transformations as the Origins of Dark Energy

    E-Print Network [OSTI]

    V. G. J. Rodgers; Takeshi Yasuda

    2006-01-17T23:59:59.000Z

    In this note we demonstrate that the algebra associated with coordinate transformations might contain the origins of a scalar field that can behave as an inflaton and/or a source for dark energy. We will call this particular scalar field the diffeomorphism scalar field. In one dimension, the algebra of coordinate transformations is the Virasoro algebra while the algebra of gauge transformations is the Kac-Moody algebra. An interesting representation of these algebras corresponds to certain field theories that have meaning in any dimension. In particular the so called Kac-Moody sector corresponds to Yang-Mills theories and the Virasoro sector corresponds to the diffeomorphism field theory that contains the scalar field and a rank-two symmetric, traceless tensor. We will focus on the contributions of the diffeomorphism scalar field to cosmology. We show that this scalar field can, qualitatively, act as a phantom dark energy, an inflaton, a dark matter source, and the cosmological constant Lambda.

  15. Toward Energy Efficient Municipalities: General Comments on Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,DepartmentFebruary 19,Top

  16. Energy and environment: A majors-level general chemistry course

    SciTech Connect (OSTI)

    Eisenberg, R.; Farrar, J.M. [Univ. of Rochester, NY (United States)

    1995-12-31T23:59:59.000Z

    A new introductory chemistry course has been designed and implemented, complete with weekly laboratory, based on a theme of {open_quotes}Energy and the Environment{close_quotes}. The course provides a rigorous introduction to chemical concepts, systems, and practices, and prepares students for further study in chemistry and other natural sciences. In formulating the course, we have correlated important contemporary issues on energy production and utilization including environmental impact with traditional topics of introductory chemistry and have developed a syllabus in which the latter follow the former. We have employed questions like {open_quotes}What makes a good fuel?{close_quotes}, {open_quotes}How efficiently can energy be produced?{close_quotes}, {open_quotes}What is the chemical basis of ozone depletion?{close_quotes} and {open_quotes}What chemistry underlies global warming?{close_quotes} to motivate the science taught. After a three year trial period in which the course was offered as pan of the multidisciplinary Rochester Ventures series together with a writing course based on {open_quotes}Reason and Argument{close_quotes} and a history course focusing on the development of scientific thought from the preindustrial age to the rise of environmentalism, we have presented the new curriculum in the regular introductory chemistry course. Results of this curricular experiment in both small and large course formats will be discussed.

  17. A Dark Year for Tidal Disruption Events

    E-Print Network [OSTI]

    Guillochon, James

    2015-01-01T23:59:59.000Z

    The disruption of a main-sequence star by a supermassive black hole results in the initial production of an extended debris stream that winds repeatedly around the black hole, producing a complex three-dimensional figure that may self-intersect. Both analytical work and simulations have shown that typical encounters generate streams that are extremely thin. In this paper we show that this implies that even small relativistic precessions attributed to black hole spin can induce deflections that prevent the stream from self-intersecting even after many windings. Additionally, hydrodynamical simulations have demonstrated that energy is deposited very slowly via hydrodynamic processes alone, resulting in the liberation of very little gravitational binding energy in the absence of stream-stream collisions. This naturally leads to a "dark period" in which the flare is not observable for some time, persisting for up to a dozen orbital periods of the most bound material, which translates to years for disruptions arou...

  18. General Counsel Law Student Intern Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.Gena E.THIS

  19. General Counsel Undergraduate Intern Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.Gena

  20. January 13, 2010 - General Open Session | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 | 12/1/2014January 2013

  1. Lieutenant General Frank G. Klotz, USAF (Ret), Confirmed as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment Under Secretary for

  2. Office of Inspector General Quarterly Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEEEnergy OfficeOfficeOfficeOffice

  3. General Evaluation SOP 6-26 2006 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM

  4. Office of Inspector General, Hotline Poster | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T OEnergyOffice ofheld

  5. Office of the Assistant General Counsel Electricity & Fossil Energy |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC

  6. Office of the General Counsel Organization Chart | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartmentthe Chief Human

  7. EA-97-B Portland General Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441Department64

  8. EA-97-C Portland General Electric | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441Department64EA-97-C Portland

  9. EA-97-D Portland General Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441Department64EA-97-C

  10. DOE General Counsel Nomination Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel

  11. International Atomic Energy Agency General Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2,

  12. Secretary Chu Addresses the International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolar »MiddleHighHighEnergyorofNeed

  13. Department of Energy Selects Small Business to Provide General Construction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L A R A *WIPPandResponse

  14. Testimony by the Inspector General | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy, U.S. DepartmentTechnology TenTestimony by the

  15. Implications of Disruption to Natural Gas Deliverability

    SciTech Connect (OSTI)

    Science Applications International

    2008-09-30T23:59:59.000Z

    This project was sponsored by Department of Energy/Office of Electricity Delivery and Energy Reliability and managed by the National Energy Technology Laboratory. The primary purpose of the project was to analyze the capability of the natural gas production, transmission and supply systems to continue to provide service in the event of a major disruption in capacity of one or more natural gas transmission pipelines. The project was specifically designed to detail the ability of natural gas market to absorb facility losses and efficiently reallocate gas supplies during a significant pipeline capacity disruption in terms that allowed federal and state agencies and interests to develop effective policies and action plans to prioritize natural gas deliveries from a regional and national perspective. The analyses for each regional study were based on four primary considerations: (1) operating conditions (pipeline capacity, storage capacity, local production, power dispatch decision making and end user options); (2) weather; (3) magnitude and location of the disruption; and, (4) normal versus emergency situation. The detailed information contained in the region reports as generated from this project are Unclassified Controlled Information; and as such are subject to disclosure in accordance with the Freedom of Information Act. Therefore, this report defines the regions that were analyzed and the basic methodologies and assumptions used to completing the analysis.

  16. On the definiteness of associated energy-momentum tensors to a class of general variation problems

    E-Print Network [OSTI]

    Kurt Pagani

    2013-05-31T23:59:59.000Z

    We show the point-wise definiteness and some other properties of the energy-momentum tensor for a certain class of Euler-Lagrange equations under quite general conditions.

  17. Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products products (where normally M e N). We derive the expressions for a generalized extended Pet- lyuk arrangement for the generalized Pet- lyuk column with more than three products. The Vmin diagram was presented in part 1

  18. Energy-momentum distribution of a general plane symmetric spacetime in metric f(R) gravity

    E-Print Network [OSTI]

    Morteza Yavari

    2014-06-13T23:59:59.000Z

    In this paper, the exact vacuum solution of a general plane symmetric spacetime is investigated in metric f(R) gravity with the assumption of constant Ricci scalar. For this solution, we have studied the generalized Landau-Lifshitz energy-momentum complex in this theory to determine the energy distribution expressions for some specific f(R) models. Also, we show that these models satisfy the constant curvature condition.

  19. Towards a Generalized Regression Model for On-body Energy Prediction from Treadmill Walking

    E-Print Network [OSTI]

    Sukhatme, Gaurav S.

    Towards a Generalized Regression Model for On-body Energy Prediction from Treadmill Walking sensor data to energy expenditure is the ques- tion of normalizating across physiological parameters. Common approaches such as weight scaling require validation for each new population. An alternative

  20. An alternative energy bound derivation for a generalized Hasegawa-Mima equation

    E-Print Network [OSTI]

    Fetecau, Razvan C.

    An alternative energy bound derivation for a generalized Hasegawa-Mima equation Jared C. Bronski Razvan Fetecau December 28, 2011 Abstract We present an alternative derivation of the H1 -boundedness function technique similar to the one used for constructing energy bounds for the Kuramoto

  1. Generalized Theory of Forster-Type Nonradiative Energy Transfer in Nanostructures with Mixed Dimensionality

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Generalized Theory of Forster-Type Nonradiative Energy Transfer in Nanostructures with Mixed, Athens, Ohio 45701, United States ABSTRACT: Forster-type nonradiative energy transfer (NRET) is widely that models Forster-type NRET for the cases of mixed dimensionality including all combinations

  2. The emotional effects of disruption

    E-Print Network [OSTI]

    Adcock, Christina Annie Lee

    2004-11-15T23:59:59.000Z

    in the social psychological literature. This study utilizes structuralized ritualization affect theory of social exchange, attribution theory, and the theory of relational cohesion in order to investigate the effects of disruption on the overall positive emotion...

  3. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    ScienceCinema (OSTI)

    Marcus, David; Ingersoll, Eric

    2012-03-21T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression, with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.

  4. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    SciTech Connect (OSTI)

    Marcus, David; Ingersoll, Eric

    2012-02-29T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression, with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.

  5. Gravitational radiation fields in teleparallel equivalent of general relativity and their energies

    E-Print Network [OSTI]

    G. G. L. Nashed

    2011-01-05T23:59:59.000Z

    We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we used the regularized expression of the gravitational energy-momentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.

  6. Energy Analysis and Energy Conservation Options for the Supreme Court and Attorney General Buildings Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    's For The Supreme Court and Attorney General Buildings (KBtu/sf-yr) ABSTRACT The energy use and peak load requirement of the Supreme Court & Attorney General Buildings in Austin, Texas were analyzed using the DOE 2.IB building energy simulation program. An analysis... Energy Commission, September, 1984. [4] Handbook of Fundamentals, ASHRAE 1791 Tullie Circle, N.E., Atlanta, GA 30329. [5] DOE-2, Reference Manual, Version 2.IB, Lawrence Berkeley Laboratory, University of California, Berkeley, CA. 94720, January 19 83. [6...

  7. Dark-energy dependent test of general relativity at cosmological scales

    E-Print Network [OSTI]

    Zolnierowski, Yves

    2015-01-01T23:59:59.000Z

    The $\\Lambda$CDM framework offers a remarkably good description of our universe with a very small number of free parameters, which can be determined with high accuracy from currently available data. However, this does not mean that the associated physical quantities, such as the curvature of the universe, have been directly measured. Similarly, general relativity is assumed, but not tested. Testing the relevance of general relativity for cosmology at the background level includes a verification of the relation between its energy contents and the curvature of space. Using an extended Newtonian formulation, we propose an approach where this relation can be tested. Using the recent measurements on cosmic microwave background, baryonic acoustic oscillations and the supernova Hubble diagram, we show that the prediction of general relativity is well verified in the framework of standard $\\Lambda$CDM assumptions, i.e. an energy content only composed of matter and dark energy, in the form of a cosmological constant o...

  8. Office of Inspector General audit report on the U.S. Department of Energy`s aircraft activities

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    On October 19, 1998, the Office of Inspector General (OIG) was asked to undertake a review of the Department of Energy`s aircraft activities. It was also requested that they report back within 90 days. The OIG has gathered information concerning the number of aircraft, the level of utilization, and the cost of the Department`s aircraft operations. They have also briefly summarized four issues that, in their judgment, may require management attention.

  9. Energy-Momentum of the Friedmann Models in General Relativity and Teleparallel Theory of Gravity

    E-Print Network [OSTI]

    M. Sharif; M. Jamil Amir

    2008-09-09T23:59:59.000Z

    This paper is devoted to the evaluation of the energy-momentum density components for the Friedmann models. For this purpose, we have used M${\\o}$ller's pseudotensor prescription in General Relativity and a certain energy-momentum density developed from his teleparallel formulation. It is shown that the energy density of the closed Friedmann universe vanishes on the spherical shell at the radius $\\rho=2\\sqrt{3}$. This coincides with the earlier results available in the literature. We also discuss the energy of the flat and open models. A comparison shows a partial consistency between the M${\\o}$ller's pseudotensor for General Relativity and teleparallel theory. Further, it is shown that the results are independent of the free dimensionless coupling constant of the teleparallel gravity.

  10. Energy and Momentum of a Stationary Beam of Light in the New General Relativity

    E-Print Network [OSTI]

    Gamal G. L. Nashed; Mohamed M. Mourad

    2006-10-16T23:59:59.000Z

    We give an exact solution to the gravitational field in the new general relativity. The solution creates Bonnor spacetime. This spacetime describes the gravitational field of a stationary beam of light. The energy and momentum of this solution is calculated using the energy-momentum complex given by M{\\o}ller in (1978) within the framework of the Weitzenb{\\rm $\\ddot{o}$}ck spacetime.

  11. On the energy of charged black holes in generalized dilaton-axion gravity

    E-Print Network [OSTI]

    I. Radinschi; Farook Rahaman; Asish Ghosh

    2010-03-15T23:59:59.000Z

    In this paper we calculate the energy distribution of some charged black holes in generalized dilaton-axion gravity. The solutions correspond to charged black holes arising in a Kalb-Ramond-dilaton background and some existing non-rotating black hole solutions are recovered in special cases. We focus our study to asymptotically flat and asymptotically non-flat types of solutions and resort for this purpose to the M{\\o}ller prescription. Various aspects of energy are also analyzed.

  12. Analysis of Generalized Ghost Pilgrim Dark Energy in Non-flat FRW Universe

    E-Print Network [OSTI]

    Abdul Jawad

    2014-12-11T23:59:59.000Z

    This work is based on pilgrim dark energy conjecture which states that phantom-like dark energy possesses the enough resistive force to preclude the formation of black hole. The non-flat geometry is considered which contains the interacting generalized ghost pilgrim dark energy with cold dark matter. Some well-known cosmological parameters (evolution parameter ($\\omega_{\\Lambda}$) and squared speed of sound) and planes ($\\omega_{\\Lambda}$-$\\omega_{\\Lambda}'$ and statefinder) are constructed in this scenario. The discussion of these parameters is totally done through pilgrim dark energy parameter ($u$) and interacting parameter ($d^2$). It is interesting to mention here that the analysis of evolution parameter supports the conjecture of pilgrim dark energy. Also, this model remains stable against small perturbation in most of the cases of $u$ and $d^2$. Further, the cosmological planes correspond to $\\Lambda$CDM limit as well as different well-known dark energy models.

  13. Similarity and generalized analysis of efficiencies of thermal energy storage systems

    SciTech Connect (OSTI)

    Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

    2012-03-01T23:59:59.000Z

    This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

  14. Office of Inspector General audit report on the US Department of Energy`s procurement and assistance data system

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The Procurement and Assistance Data System (PADS) is the Department`s official computerized system maintained to collect, track, and report Department of Energy procurement and financial assistance actions. The system stores information used to (1) monitor procurement and financial assistance processes, awards, and administration; (2) provide required recurring reports to the Office of Management and Budget; General Services Administration, Department of Commerce, and Small Business Administration; and (3) satisfy Freedom of Information Act and congressional requests and other public inquiries. The objectives of this audit were to determine whether the system (1) contained accurate, complete, and current data; (2) met user needs and regulatory requirements; and (3) met generally accepted system practices for development and operation. The review was part of the Office of Inspector General`s continuing work with respect to the agency`s information systems and compliance with the Government and Performance Results Act of 1993.

  15. The Generalization of the Decomposition of Functions by Energy operators (Part II) and some Applications

    E-Print Network [OSTI]

    J. P. Montillet

    2014-11-02T23:59:59.000Z

    This work introduces the families of generalized energy operators $([[.]^p]_k^+)_{k\\in\\mathbb{Z}}$ and $([[.]^p]_k^-)_{k\\in\\mathbb{Z}}$ ($p$ in $\\mathbb{Z}^+$). One shows that with Lemma 1, the successive derivatives of $\\big ([[$f$]^{p-1}]_1^+ \\big)^n$ ($n$ in $\\mathbb{Z}$, $n\

  16. The heterogeneous gas with singular interaction: Generalized circular law and heterogeneous renormalized energy

    E-Print Network [OSTI]

    Luis Carlos Garcia del Molino; Khashayar Pakdaman; Jonathan Touboul

    2014-10-26T23:59:59.000Z

    We introduce and analyze $d$ dimensional Coulomb gases with random charge distribution and general external confining potential. We show that these gases satisfy a large deviations principle. The analysis of the minima of the rate function (which is the leading term of the energy) reveals that at equilibrium, the particle distribution is a generalized circular law (i.e. with spherical support but non-necessarily uniform distribution). In the classical electrostatic external potential, there are infinitely many minimizers of the rate function. The most likely macroscopic configuration is a disordered distribution in which particles are uniformly distributed (for $d=2$, the circular law), and charges are independent of the positions of the particles. General charge-dependent confining potentials unfold this degenerate situation: in contrast, the particle density is not uniform, and particles spontaneously organize according to their charge. In that picture the classical electrostatic potential appears as a transition at which order is lost. Sub-leading terms of the energy are derived: we show that these are related to an operator, generalizing the Coulomb renormalized energy, which incorporates the heterogeneous nature of the charges. This heterogeneous renormalized energy informs us about the microscopic arrangements of the particles, which are non-standard, strongly depending on the charges, and include progressive and irregular lattices.

  17. Director-General, The Energy and Resources Institute Chairman, Intergovernmental Panel on Climate Change

    E-Print Network [OSTI]

    Painter, Kevin

    locations diversify raw material sources, especially agricultural or forestry inputs. Industry is alsoDirector-General, The Energy and Resources Institute Chairman, Intergovernmental Panel on Climate extremes can be felt locally or regionally 5 "Mongolian herdsmen face starvation"AGRICULTURE "Heatwave hits

  18. Secretary of Energy Steven Chu speaks to the 2009 IAEA General Conference delegation

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01T23:59:59.000Z

    On Sept. 14, 2009, U.S. Secretary of Energy Steven Chu addressed the 2009 IAEA General Conference delegation. Chu is the first Cabinet official to discuss President Obama's nuclear security and nonproliferation agenda outside the United States since the President delivered his landmark speech in Prague in April 2009.

  19. Thermodynamical description of modified generalized Chaplygin gas model of dark energy

    E-Print Network [OSTI]

    H. Ebadi; H. Moradpour

    2015-04-15T23:59:59.000Z

    We consider a universe filled by a modified generalized Chaplygin gas together with a pressureless dark matter component. We get a thermodynamical interpretation for the modified generalized Chaplygin gas confined to the apparent horizon of FRW universe, whiles dark sectors do not interact with each other. Thereinafter, by taking into account a mutual interaction between the dark sectors of the cosmos, we find a thermodynamical interpretation for interacting modified generalized Chaplygin gas. Additionally, probable relation between the thermal fluctuations of the system and the assumed mutual interaction is investigated. Finally, we show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. The corresponding constraint is also addressed. Moreover, the thermodynamic interpretation of using either a generalized Chaplygin gas or a Chaplygin gas to describe dark energy is also addressed throughout the paper.

  20. General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy Information General

  1. U.S. Energy Secretary Addresses International Atomic Energy Agency General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Reporting Period:

  2. U.S. Energy Secretary Addresses International Atomic Energy Agency General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& ForumVersion:3Groups Announce

  3. Homeowners: Respond to Natural Gas Disruptions | Department of...

    Office of Environmental Management (EM)

    Natural Gas Disruptions Homeowners: Respond to Natural Gas Disruptions Homeowners: Respond to Natural Gas Disruptions Because natural gas is distributed through underground...

  4. Local Leaders: Respond to Natural Gas Disruptions | Department...

    Office of Environmental Management (EM)

    Natural Gas Disruptions Local Leaders: Respond to Natural Gas Disruptions Local Leaders: Respond to Natural Gas Disruptions Because natural gas is distributed through underground...

  5. Generalization of radiative jet energy loss to non-zero magnetic mass

    E-Print Network [OSTI]

    Magdalena Djordjevic; Marko Djordjevic

    2011-05-22T23:59:59.000Z

    Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computation of radiative energy loss. With this goal, an energy loss formalism in a realistic finite size dynamical QCD medium was recently developed. While this formalism assumes zero magnetic mass - in accordance with the one-loop perturbative calculations - different non-perturbative approaches report a non-zero magnetic mass at RHIC and LHC. We here generalize the energy loss to consistently include a possibility for existence of non-zero magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss results. Our analysis indicates a fundamental constraint on magnetic to electric mass ratio.

  6. General Renewable Energy-Best Practices and Lessons Learnt | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracion Eolicaform

  7. General Recommendations for a Federal Data Center Energy Management Dashboard Display

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003Not Measurement SensitiveGeneral

  8. Montana Rule 36.2.10 General State Land Rules | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law.10 General State

  9. COMPI,,PTATIONALMODEL OF SURFACE ABLATION FROM TOKAMAK DISRUPTIONS

    E-Print Network [OSTI]

    Harilal, S. S.

    , with U I = 9.1 MJ/m 2 heat load over a 100 Its duration. more typical of thermal disruptions and plasma to low kinetic energy particles (_ 100 eV). physics calculations which have little bearing on the final. Details of our atomic physics with plasma gun erosion tests on several metal targets, calculation compare

  10. Runaway Geneeration In Disruptions Of Plasmas In TFTR

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Bell, M. G.; Taylor, G.; Medley, S. S. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States)

    2014-03-31T23:59:59.000Z

    Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lasting runaway plasmas, Parail-Pogutse instabilities were observed.

  11. Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores

    SciTech Connect (OSTI)

    Hirsch, A.; Hale, E.; Leach, M.

    2011-03-01T23:59:59.000Z

    This paper summarizes the methodology and main results of two recently published Technical Support Documents. These reports explore the feasibility of designing general merchandise and grocery stores that use half the energy of a minimally code-compliant building, as measured on a whole-building basis. We used an optimization algorithm to trace out a minimum cost curve and identify designs that satisfy the 50% energy savings goal. We started from baseline building energy use and progressed to more energy-efficient designs by sequentially adding energy design measures (EDMs). Certain EDMs figured prominently in reaching the 50% energy savings goal for both building types: (1) reduced lighting power density; (2) optimized area fraction and construction of view glass or skylights, or both, as part of a daylighting system tuned to 46.5 fc (500 lux); (3) reduced infiltration with a main entrance vestibule or an envelope air barrier, or both; and (4) energy recovery ventilators, especially in humid and cold climates. In grocery stores, the most effective EDM, which was chosen for all climates, was replacing baseline medium-temperature refrigerated cases with high-efficiency models that have doors.

  12. The Secretary-General's High-level Group on Sustainable Energy for All commissioned this document to assess the opportunities for meeting the universal energy access objective set by the Secretary-General. It

    E-Print Network [OSTI]

    Kammen, Daniel M.

    #12; The Secretary-General's High-level Group on Sustainable Energy for All commissioned-level Group on Sustainable Energy for All, its members, United Nations, its Member, guidance and encouragement from the Sustainable Energy for All Co-Chairs Chad

  13. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06T23:59:59.000Z

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  14. Generalized Standby-Sparing Techniques for Energy-Efficient Fault Tolerance in Multiprocessor Real-Time Systems

    E-Print Network [OSTI]

    Aydin, Hakan

    Generalized Standby-Sparing Techniques for Energy-Efficient Fault Tolerance in Multiprocessor Real-Sparing (SS) technique has been pre- viously explored to improve energy efficiency while providing fault faults, we develop energy-efficient fault tolerance techniques for real-time systems deploying

  15. Solvation Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model Consistent with the AMBER Force Field

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    Solvation Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model provides rapid estimates of the electrostatic free energies of solvation for diverse molecules of parameters compatible with the AMBER force field is described. The method is used to estimate free energies

  16. Temperature dependence of nuclear matter generalized isovector symmetry energy with Skyrme-type interactions

    E-Print Network [OSTI]

    F. L. Braghin

    2009-06-11T23:59:59.000Z

    The temperature dependence of the nuclear matter isovector symmetry energy coefficient ($\\cA_{0,1}$) is investigated in the framework of the generalized nuclear polarizability with Skyrme interactions, as worked out in Refs. \\cite{npa,prc}. The variation of $\\cA_{0,1}(T)$ is very small (of the order of 1 MeV) for temperatures (T) in the range of 0 and 18 MeV. Different behaviors with temperature are found strongly depending on the Skyrme parameterization, in particular at densities lower than the saturation density $\\rho_0$.

  17. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    SciTech Connect (OSTI)

    Davis, S.N.

    1980-06-01T23:59:59.000Z

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear wastte are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing.

  18. Public Affairs Policy and Planning Requirements for a Fuel Supply Disruption Emergency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-06-08T23:59:59.000Z

    To establish responsibilities and requirements for Department of Energy (DOE) public affairs actions in the case of fuel supply disruption emergency. Cancels DOE 5500.5. Canceled by DOE O 151.1 of 9-25-95.

  19. Generalized z-scaling in proton-proton collisions at high energies

    E-Print Network [OSTI]

    Zborovsk, I

    2006-01-01T23:59:59.000Z

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is fractal measure which depends on kinematical characteristics of the underlying sub-process expressed in terms of the momentum fractions x1 and x2 of the incoming protons. In the generalized approach, the x1 and x2 are functions of the momentum fractions ya and yb of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function psi(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the psi(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phe...

  20. Generalized z-scaling in proton-proton collisions at high energies

    E-Print Network [OSTI]

    I. Zborovsky; M. Tokarev

    2006-03-28T23:59:59.000Z

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is fractal measure which depends on kinematical characteristics of the underlying sub-process expressed in terms of the momentum fractions x1 and x2 of the incoming protons. In the generalized approach, the x1 and x2 are functions of the momentum fractions ya and yb of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function psi(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the psi(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at proton-proton colliders RHIC and LHC.

  1. General purpose dynamic Monte Carlo with continuous energy for transient analysis

    SciTech Connect (OSTI)

    Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)

    2012-07-01T23:59:59.000Z

    For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)

  2. Potential Energy Curves and Generalized Oscillator Strength for Doubly Excited States of Hydrogen Molecule

    E-Print Network [OSTI]

    Santos, Leonardo O; Nascimento, Rodrigo F; Faria, Nelson V de Castro; Jalbert, Ginette

    2015-01-01T23:59:59.000Z

    In this paper we report calculations of potential energy curves in the $1.2 a.u.\\le R\\le100 a.u.$ range at Multireference Configuration Interaction (MRCI) level for doubly excited states of the H$_2$ molecule. We have focused on the $Q_2$ states which lie between the second and third ionization thresholds of H$_2^+$ molecular ion, i.e., $^2\\Sigma_u^+$ state in which lie the H(2l) + H(2l') dissociation channels. The MRCI approach allowed us to successfully identify for the first time the molecular state which dissociates into hydrogen atoms at 2s state. Further, Generalized Oscillator Strength as a function of transferred momentum for three doubly excited states is also presented. (Some figures in this article are in colour only in the electronic version)

  3. Energy and agriculture in the Haitian economy: A computable general equilibrium model

    SciTech Connect (OSTI)

    Jones, D.W.; Wu, M.T.C.; Das, S.; Cohn, S.M.

    1988-02-01T23:59:59.000Z

    This report documents a computable general equilibrium (CGE) model of the economy of Haiti, emphasizing energy use in agriculture. CGE models compare favorably with econometric models for developing countries in terms of their ability to take advantage of available data. The model of Haiti contains ten production sectors: manufacturing, services, transportation, electricity, rice, coffee, sugar cane, sugar refining, general agriculture, and fuelwood and charcoal. All production functions use functional forms which permit factor substitution. Consumption is specified for three income categories of consumers and a government sector with a linear expenditure system (LES) of demand equations. The economy exports four categories of products and imports six. Balanced trade and capital accounts are required for equilibrium. Total sectoral allocations of land, labor and capital are constrained to equal the quantities of these inputs in the Haitian economy as of the early 1980s. The model can be used to study the consequences of fiscal and trade policies and sectorally oriented productivity improvement policies. Guidance is offered regarding how to use the model to study economic growth and technological change. Limitations of the mode are also pointed out as well as user strategies which can lessen or work around some of those limitations. 19 refs.

  4. Generalized oscillator strengths for inner-shell excitation of SF6 recorded with a high-performance electron energy loss

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Generalized oscillator strengths for inner-shell excitation of SF6 recorded with a high-performance electron energy loss spectrometer I.G. Eustatiu a , J.T. Francis b , T. Tyliszczak b , C.C. Turci c , A) are reported up to very high momentum transfer. These have been measured with a variable impact energy

  5. A Proposal of Positive-Definite Local Gravitational Energy Density in General Relativity

    E-Print Network [OSTI]

    J. H. Yoon

    1993-01-15T23:59:59.000Z

    We propose a 4-dimensional Kaluza-Klein approach to general relativity in the (2,2)-splitting of space-time using the double null gauge. The associated Lagrangian is equivalent to the Einstein-Hilbert Lagrangian, since it yields the same field equations as the E-H Lagrangian does. It is describable as a (1+1)-dimensional Yang-Mills type gauge theory coupled to (1+1)-dimensional matter fields, where the minimal coupling associated with the diffeomorphism group of the 2-dimensional spacelike fibre space automatically appears. Written in the first-order formalism, our Lagrangian density directly yields a non-zero local Hamiltonian density, where the associated time function is the retarded time. From this Hamiltonian density, we obtain a positive-definite local gravitational energy density. In the asymptotically flat space-times, the volume integrals of the proposed local gravitational energy density over suitable 3-dimensional hypersurfaces correctly reproduce the Bondi and the ADM surface integral, at null and spatial infinity, respectively, supporting our proposal. We also obtain the Bondi mass-loss formula as a negative-definite flux integral of a bilinear in the gravitational currents at null infinity.

  6. A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe

    E-Print Network [OSTI]

    Rahul Ghosh; Surajit Chattopadhyay; Ujjal Debnath

    2011-10-22T23:59:59.000Z

    This work is motivated by the work of Kim et al (2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy inter- acting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this inter- action. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolu- tion of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.

  7. SIMMER-II: A computer program for LMFBR disrupted core analysis

    SciTech Connect (OSTI)

    Bohl, W.R.; Luck, L.B.

    1990-06-01T23:59:59.000Z

    SIMMER-2 (Version 12) is a computer program to predict the coupled neutronic and fluid-dynamics behavior of liquid-metal fast reactors during core-disruptive accident transients. The modeling philosophy is based on the use of general, but approximate, physics to represent interactions of accident phenomena and regimes rather than a detailed representation of specialized situations. Reactor neutronic behavior is predicted by solving space (r,z), energy, and time-dependent neutron conservation equations (discrete ordinates transport or diffusion). The neutronics and the fluid dynamics are coupled via temperature- and background-dependent cross sections and the reactor power distribution. The fluid-dynamics calculation solves multicomponent, multiphase, multifield equations for mass, momentum, and energy conservation in (r,z) or (x,y) geometry. A structure field with nine density and five energy components; a liquid field with eight density and six energy components; and a vapor field with six density and on energy component are coupled by exchange functions representing a modified-dispersed flow regime with a zero-dimensional intra-cell structure model.

  8. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect (OSTI)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01T23:59:59.000Z

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  9. Disruptions, loads, and dynamic response of ITER

    SciTech Connect (OSTI)

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D. [Oak Ridge National Lab., TN (United States); Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). International Thermonuclear Experimental Reactor (ITER) Team

    1995-12-31T23:59:59.000Z

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures.

  10. The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass

    E-Print Network [OSTI]

    Ohanian, Hans C

    2010-01-01T23:59:59.000Z

    We establish a general relation between the canonical energy-momentum tensor and the tensor that acts as the source of the gravitational field in Einstein's equations. In General Relativity, we use this relation to give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, regardless of the presence of nonminimal couplings. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

  11. "Circularization" vs. Accretion -- What Powers Tidal Disruption Events?

    E-Print Network [OSTI]

    Piran, Tsvi; Krolik, Julian; Cheng, Roseanne M; Shiokawa, Hotaka

    2015-01-01T23:59:59.000Z

    A tidal disruption event (TDE) takes place when a star passes near enough to a massive black hole to be disrupted. About half the star's matter is given elliptical trajectories with large apocenter distances, the other half is unbound. To "circularize", i.e., to form an accretion flow, the bound matter must lose a significant amount of energy, with the actual amount depending on the characteristic scale of the flow measured in units of the black hole's gravitational radius (~ 10^{51} (R/1000R_g)^{-1} erg). Recent numerical simulations (Shiokawa et al., 2015) have revealed that the circularization scale is close to the scale of the most-bound initial orbits, ~ 10^3 M_{BH,6.5}^{-2/3} R_g ~ 10^{15} M_{BH,6.5}^{1/3} cm from the black hole, and the corresponding circularization energy dissipation rate is $\\sim 10^{44} M_{BH,6.5}^{-1/6}$~erg/s. We suggest that the energy liberated during circularization, rather then energy liberated by accretion onto the black hole, powers the observed optical TDE candidates (e.g.A...

  12. A generalized framework for in-line energy deposition during steady-state Monte Carlo radiation transport

    SciTech Connect (OSTI)

    Griesheimer, D. P. [Bertis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 (United States); Stedry, M. H. [Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301 (United States)

    2013-07-01T23:59:59.000Z

    A rigorous treatment of energy deposition in a Monte Carlo transport calculation, including coupled transport of all secondary and tertiary radiations, increases the computational cost of a simulation dramatically, making fully-coupled heating impractical for many large calculations, such as 3-D analysis of nuclear reactor cores. However, in some cases, the added benefit from a full-fidelity energy-deposition treatment is negligible, especially considering the increased simulation run time. In this paper we present a generalized framework for the in-line calculation of energy deposition during steady-state Monte Carlo transport simulations. This framework gives users the ability to select among several energy-deposition approximations with varying levels of fidelity. The paper describes the computational framework, along with derivations of four energy-deposition treatments. Each treatment uses a unique set of self-consistent approximations, which ensure that energy balance is preserved over the entire problem. By providing several energy-deposition treatments, each with different approximations for neglecting the energy transport of certain secondary radiations, the proposed framework provides users the flexibility to choose between accuracy and computational efficiency. Numerical results are presented, comparing heating results among the four energy-deposition treatments for a simple reactor/compound shielding problem. The results illustrate the limitations and computational expense of each of the four energy-deposition treatments. (authors)

  13. The Role of Energy and a New Approach to Gravitational Waves in General Relativity

    E-Print Network [OSTI]

    F. I. Cooperstock

    1999-04-19T23:59:59.000Z

    The energy localization hypothesis of the author that energy is localized in non-vanishing regions of the energy-momentum tensor implies that gravitational waves do not carry energy in vacuum. If substantiated, this has significant implications for current research. Support for the hypothesis is provided by a re-examination of Eddington's classic calculation of energy loss by a spinning rod. It is emphasized that Eddington did not monitor the entire Tolman energy integral, concentrating solely upon the change of the 'kinetic' part of the energy . The 'quadrupole formula' is thus seen to measure the kinetic energy change. When the derivative of the missing stress-trace integral is computed, it is seen to cancel the Eddington term and hence the energy of the rod is conserved, in support of the localization hypothesis. The issue of initial and final states is addressed.

  14. A Generalized Method for Estimation of Industrial Energy Savings from Capital and Behavioral Programs

    E-Print Network [OSTI]

    Luneski, R. D.

    2011-01-01T23:59:59.000Z

    In 2005, NEEA engaged the food processing industry in the Northwest with a behavior based program called Continuous Energy Improvement (CEI). Industrial energy efficiency programs have historically been limited to large ...

  15. U.S. Department of Energy Office of Inspector General Annual...

    Broader source: Energy.gov (indexed) [DOE]

    Carbon Fiber Technology Center The Department of Energy's International Thermonuclear Experimental Reactor (ITER) Responsibilities Depleted Uranium Operations at...

  16. Tokamak plasma current disruption infrared control system

    DOE Patents [OSTI]

    Kugel, Henry W. (Somerset, NJ); Ulrickson, Michael (E. Windsor, NJ)

    1987-01-01T23:59:59.000Z

    In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.

  17. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect (OSTI)

    Crowe, B.M.

    1980-08-01T23:59:59.000Z

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  18. Wyo. Stat. § 37-1-101 et seq.: In General | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale, Indiana:-266-2

  19. General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpen Energy

  20. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpenEnergy

  1. Environmental Stresses Disrupt Telomere Length Homeostasis

    E-Print Network [OSTI]

    Shamir, Ron

    Environmental Stresses Disrupt Telomere Length Homeostasis Gal Hagit Romano1,2,3. , Yaniv Harari1 and Biotechnology, Tel Aviv University, Tel Aviv, Israel, 2 Blavatnik School of Computer Science, Tel Aviv response to environmental signals. These results demonstrate that telomere length can be manipulated

  2. Membrane disruption by optically controlled microbubble cavitation

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Membrane disruption by optically controlled microbubble cavitation PAUL PRENTICE1 , ALFRED October 2005; doi:10.1038/nphys148 I n fluids, pressure-driven cavitation bubbles have a nonlinear underpinning phenomena such as sonoluminescence1 and plasma formation2 . If cavitation occurs near a rigid

  3. Azadegan, A. 2013 SupplyChainDisruptions,

    E-Print Network [OSTI]

    Lin, Xiaodong

    of America Toyota Recall BP Oil Spill Chinese Toys Recall A.AzadeganPresentationtoDepartmentof Homeland Acceleration Recall #12;Azadegan, A. 2013 2010 Deepwater Horizon oil spill The disruption: Major oil spill from semi-submersible exploratory offshore drilling rig Deepwater Horizon in the Gulf of Mexico. What

  4. A general end point free energy calculation method based on microscopic configurational space coarse-graining

    E-Print Network [OSTI]

    Tian, Pu

    2015-01-01T23:59:59.000Z

    Free energy is arguably the most important thermodynamic property for physical systems. Despite the fact that free energy is a state function, presently available rigorous methodologies, such as those based on thermodynamic integration (TI) or non-equilibrium work (NEW) analysis, involve energetic calculations on path(s) connecting the starting and the end macrostates. Meanwhile, presently widely utilized approximate end-point free energy methods lack rigorous treatment of conformational variation within end macrostates, and are consequently not sufficiently reliable. Here we present an alternative and rigorous end point free energy calculation formulation based on microscopic configurational space coarse graining, where the configurational space of a high dimensional system is divided into a large number of sufficiently fine and uniform elements, which were termed conformers. It was found that change of free energy is essentially decided by change of the number of conformers, with an error term that accounts...

  5. Fluid Mechanics Part 1: General (Mechanical) Energy Equation and other topics

    E-Print Network [OSTI]

    Nimmo, Francis

    pressure which then pushes on a piston, as in an internal combustion engine. 1 #12;Examples: high water at dierent cases. Internal ows So far the discussion has been very general. We now focus on internal ows, where the uid is enclosed on all sides (e.g. by a pipe). Internal ows are classied as laminar (for Re

  6. U.S. Department of Energy Office of Inspector General fiscal year 1999 annual performance plan

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    This plan is published pursuant to requirements of the Government Performance and Results Act of 1993. The plan outlines the goals, objectives, and strategies that the Office of Inspector General intends to implement and execute in FY 1999. The plan also includes the details of this office`s efforts to continually improve customer service.

  7. General Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide andNationalallGeneralGeneral

  8. China Solar Power CSP aka General Solar Power Yantai Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding Ltd Place:

  9. AAAAAAAAAAAAAAA U.S. Department of Energy Office of Inspector General

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummary Special Report

  10. Special Report U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview -Special Report 1501 MACY

  11. U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL ANNUAL PERFORMANCE REPORT

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergy Cooperation |U.S. C3EEnergy

  12. U.S. Department of Energy Office of Inspector General Annual Performance Report FY 2012

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families"

  13. U.S. Departmetn of Energy, Office of Inspector General, Annaul Peformance

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident at RatonU.S.AdoptionCollegiateReport FY 2009,

  14. To: Daniel Cohen, Assistant General Counsel for Legislation, Regulation, and Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites AnnualSTATEMENTFebruary

  15. To: John Cymbalsky, United States Department of Energy From: Amy Shepherd, General Counsel, AHRI

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites25, 2015 To: John

  16. U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL No. I01IG001

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation WorkDecemberInjuryU.S. ENERGYOFFICE OF

  17. U.S. Department of Energy Office of Inspector General Office of Audit Services

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 Inspection Reportof the

  18. U.S. Department of Energy Office of Inspector General Office of Audit Services

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum |December0 Inspection Reportof

  19. U.S. Energy Secretary Chu to Lead Delegation to IAEA 54th Annual General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& ForumVersion:3Groups AnnounceTexas

  20. DOE/IG-0067 U.S. Department of Energy Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency,8-9612-985-2007Supplemental Environmental67 U.S. Department

  1. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses85511

  2. The general Service raet PG for Xcel energy in denver is not included |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreenElectricityOpen|OpenEI

  3. U.S. General Services Administration - Form SF299 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas2022WindU S ArmyRoadmaps Jump

  4. Title 40 CFR 260: Hazardous Waste Management System: General | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen EnergyR.to

  5. Title 43 U.S.C. 1764 General Requirements for Rights of Way | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformation 61 Drilling1969 | Open Energy

  6. Colorado - C.R.S. 12-25-201 - Surveyors - General Provisions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies Inc JumpEnergy

  7. NMAC 19.14.1 Geothermal Power General Provisions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF Advisors LLC JumpNF-Capacity up to9.141

  8. General Equilibrium Model for Economy - Energy - Environment (GEM-E3) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen Energy Information

  9. General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen Energy InformationOpen

  10. General Merchandise 2009 TSD Chicago High Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen Energy

  11. General Merchandise 2009 TSD Chicago Low Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen EnergyOpen

  12. General Merchandise 2009 TSD Miami Low Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergy Information

  13. U.N. Secretary General tells NREL Clean Energy a Top Priority | OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15: WaterEnergy0-9a

  14. Colorado - C.R.S. 24-65.1-102 - General Definitions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur dColmar,US - 108 Jump

  15. The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass

    E-Print Network [OSTI]

    Hans C. Ohanian

    2013-02-28T23:59:59.000Z

    We establish a general relation between the canonical energy-momentum tensor of Lagrangian dynamics and the tensor that acts as the source of the gravitational field in Einstein's equations, and we show that there is a discrepancy between these tensors when there are direct nonminimal couplings between matter and the Riemann tensor. Despite this discrepancy, we give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, even in the presence of nonminimal second-derivative couplings and-or linear or nonlinear second-derivative terms of any kind in the Lagrangian. The gravitational mass is defined by the asymptotic Newtonian potential at large distance from the system, and the inertial mass is defined by the volume integral of the energy density determined from the canonical energy-momentum tensor. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling and long range of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

  16. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper ...

  17. Statement of Gregory H. Friedman Inspector General U.S. Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacility in

  18. Office of Inspector General audit report on the U.S. Department of Energy`s funds distribution and control system at the Federal Energy Technology Center

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    In Fiscal Year 1998, the Federal Energy Technology Center (FETC) was responsible for managing about $723 million in budgetary resources. The objective of this audit was to determine if FETC had a funds distribution and control system to ensure appropriated funds were managed in accordance with congressional intent and applicable policies and procedures. Improvements are needed in FETC`s administration of budgetary and accounting transactions. FETC did not have a comprehensive system to allocate indirect costs to funding programs and work-for-others projects. In addition, FETC did not completely adhere to Headquarters Clean Coal budget direction. The Office of Inspector General (OIG) reached its conclusions despite a scope impairment. Written documentation was not always available, and the audit team did not have ready access to key personnel who could explain certain transactions and management practices and procedures. In order to strengthen the FETC financial management system, the OIG recommended (1) the development of policies, procedures, and practices to accurately collect and allocate indirect costs and (2) improvements in internal control procedures. The OIG also recommended that the Chief Financial Officer conduct a detailed for cause review of the financial management practices at FETC and work with the Office of Field Management to develop a schedule for reviewing the financial management systems of all Departmental elements.

  19. DEPARTMENT OF ENERGY OFFICE OF GENERAL COUNSEL INTERPRETATION REGARDING EXEMPTION RELIEF PURSUANT TO

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3DepartmentENERGY

  20. By E-Mail Daniel Cohen Assistant General Counsel for Legislation, Regulation, and Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState andGreenhouseDepartment ofSpecifiers

  1. By E-Mail Daniel Cohen Assistant General Counsel for Legislation, Regulation, and Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState andGreenhouseDepartment ofSpecifiersJune

  2. By E-Mail Daniel Cohen Assistant General Counsel for Legislation, Regulation, and Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState andGreenhouseDepartment

  3. United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-Japan JointGreen7/053/03 THU

  4. Energy Secretary Moniz's Remarks at the 2013 IAEA General Conference in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014 OutdoorEnergy

  5. Form PI-1 General Application for Air Preconstruction Permit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana, California:GroupandDesignated

  6. WAC - 173-400 General Regulations for Air Pollution Sources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: EnergydbaInformationInformation 400

  7. WAC 173-400 - General Regulations for Air Pollution Sources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah:Information Wildlife30 -160-151 Jump

  8. File:GeneralConstructionPermiUTR3000000t.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf:08, 15 March

  9. Statement of Gregory H. Friedman Inspector General U.S. Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacility inStatement of Gregory H. Friedman

  10. 2014-12-05 Issuance: Energy Conservation Standard for General Service

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery LargeStandards forRule

  11. 2014-12-30 Issuance: Energy Conservation Standard for General Service

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery LargeStandards

  12. 2015-01-26 Issuance: Energy Conservation Standards for General Service

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 AnnualDillingham,7,

  13. Steven P. Croley, Esq. Office of General Counsel U.S. Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems Steam Systems4:StephenSteve8,

  14. Steven P. Croley, Esq. Office of General Counsel U.S. Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems Steam

  15. 2 CCR State Lands Commission Article 1, General Provisions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykVOpenOpenDesignated Ground

  16. 30 TAC, part 1, chapter 116, rule 116.111 General Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado3Substantive

  17. Hawaii Guidelines for NPDES Notice of General Permit Coverage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAdd toInformation Notice

  18. Hawaii NPDES General Permit Notice of Intent Forms Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpenInformation

  19. MHK Projects/General Sullivan and Little Bay BRI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdamsGastineauBRI

  20. Application to Export Electric Energy OE Docket No. EA-376 Societe Generale

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPower Marketing,Energy Corp. | Department of

  1. Pre- and Post-Full-Application General Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Powersubsidiary ofEnergyPre- and

  2. Energy Savings Potential of Solid-State Lighting in General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | Department of Energy HVACEnergy

  3. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1.4 Number4681

  4. Texas Water Code 27A General Provisions for Injection Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/WindPetroleum Storage Tanks

  5. The General Bridge Act of 1946 (33 U.S.C. 525 - 533) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation,Book:Closings |Open

  6. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.479.113332

  7. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.479.1133322

  8. File:Texas Construction General Permit (TXR150000).pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdf Jump to:Temporary storage

  9. General Merchandise 2009 TSD Miami High Plug Load Baseline | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpen

  10. U.A.C. R317-1: Definitions and General Requirements | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15: Water Quality

  11. Resilience of natural gas networks during conflicts, crises and disruptions

    E-Print Network [OSTI]

    Carvalho, Rui; Bono, Flavio; Masera, Marcelo; Arrowsmith, David K; Helbing, Dirk

    2013-01-01T23:59:59.000Z

    Human conflict, geopolitical crises, terrorist attacks, and natural disasters can turn large parts of energy distribution networks offline. Europe's current gas supply network is largely dependent on deliveries from Russia and North Africa, creating vulnerabililties to social and political instabilities. During crises, less delivery may mean greater congestion, as the pipeline network is used in ways it has not been designed for. Given the importance of the security of natural gas supply, we develop a model to handle network congestion on various geographical scales. We offer a resilient response strategy to energy shortages and quantify its effectiveness for a variety of relevant scenarios. In essence, Europe's gas supply can be made robust even to major supply disruptions, if a fair distribution strategy is applied.

  12. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  13. Erosion Damage of Nearby Plasma-Facing Components during a Disruption on the Divertor Plate*

    E-Print Network [OSTI]

    Harilal, S. S.

    Erosion Damage of Nearby Plasma-Facing Components during a Disruption on the Divertor Plate* A those of the United States Governmentor any agency thereof. #12;Erosion Damage of Nearby Plasma radiation emitted by heating of the vapor cloud. This radiation energy can cause serious erosion damage

  14. A general methodology for quantum modeling of free-energy profile of reactions in solution: An application to the Menshutkin NH3 CH3Cl

    E-Print Network [OSTI]

    Truong, Thanh N.

    A general methodology for quantum modeling of free-energy profile of reactions in solution methodology for calculating free-energy profile of reaction in solution using quantum mechanical methods screening model GCOSMO was employed in this study, though any continuum model with existing free-energy

  15. 2014-04-11 Issuance: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for general service fluorescent lamps and incandescent reflectors lamps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on April 11, 2014.

  16. Action Center for the Office of the General Counsel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM Loan

  17. Level: National Data; Row: General Energy-Management Activities within NAICS Codes;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.54

  18. Contacts for the Deputy General Counsel for Energy Policy (GC-70) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us Contact Us U.S.

  19. DOE/IG-0448 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEA - 0942 E N v8 AUDIT REPORT U.S.

  20. International Atomic Energy Agency 49th Session of the General Conference |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2, 2015ITRATIOAL

  1. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of TrainingAMO Program Peer ReviewContract Awards

  2. U.S. Departmetn of Energy, Office of Inspector General, Annaul Peformance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.Department ofU.S.Rights-of-Way Study,

  3. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5Management of

  4. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5Management ofModernization

  5. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5Management

  6. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5ManagementUse and Management

  7. Audit Report U.S. Department of Energy Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5ManagementUse and

  8. Energy Savings Forecast of Solid-State Lighting in General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack(CHP)Saving GiftApplications |

  9. International Atomic Energy Agency 49th Session of the General Conference |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15 IntellectualInterim Final

  10. Dark energy homogeneity in general relativity: are we applying it correctly?

    E-Print Network [OSTI]

    Duniya, Didam

    2015-01-01T23:59:59.000Z

    Thusfar, there does not appear to be an agreed definition of homogeneous dark energy (DE). In this work, we argue that a correct definition of homogeneous DE is one whose density perturbation in comoving gauge vanishes. Using different DE models, we then investigate the consequence of this approach in the power spectrum -- with all the power spectra being normalized to match each other on small scales, at z = 0. We find that on super-Hubble scales, relativistic corrections in the observed galaxy power spectrum are able to distinguish a homogeneous DE from the concordance model and from a clustering DE, at low z and for high magnification bias. However, the matter power spectrum: is incapable of distinguishing a homogeneous DE from the concordance model (on all scales), at z = 0; but is able to differentiate it from a clustering DE, particularly at low z. Moreover, we found that relativistic effects become enhanced with decreasing magnification bias, and with increasing z.

  11. Experimental analysis of general ion recombination in a liquid-filled ionization chamber in high-energy photon beams

    SciTech Connect (OSTI)

    Chung, Eunah; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal General Hospital (L5-113), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Davis, Stephen [Department of Medical Physics, McGill University Health Centre, Montreal General Hospital (L5-112), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada)

    2013-06-15T23:59:59.000Z

    Purpose: To study experimentally the general ion recombination effect in a liquid-filled ionization chamber (LIC) in high-energy photon beams. Methods: The general ion recombination effect on the response of a micro liquid ion chamber (microLion) was investigated with a 6 MV photon beam in normal and SRS modes produced from a Varian{sup Registered-Sign} Novalis Tx{sup TM} linear accelerator. Dose rates of the linear accelerator were set to 100, 400, and 1000 MU/min, which correspond to pulse repetition frequencies of 60, 240, and 600 Hz, respectively. Polarization voltages applied to the microLion were +800 and +400 V. The relative collection efficiency of the microLion response as a function of dose per pulse was experimentally measured with changing polarization voltage and pulse repetition frequencies and was compared with the theoretically calculated value. Results: For the 60 Hz pulse repetition frequency, the experimental relative collection efficiency was not different from the theoretical one for a pulsed beam more than 0.3% for both polarization voltages. For a pulsed radiation beam with a higher pulse repetition frequency, the experimental relative collection efficiency converged to the theoretically calculated efficiency for continuous beams. This result indicates that the response of the microLion tends toward the response to a continuous beam with increasing pulse repetition frequency of a pulsed beam because of low ion mobility in the liquid. Conclusions: This work suggests an empirical method to correct for differences in general ion recombination of a LIC between different radiation fields. More work is needed to quantitatively explain the LIC general ion recombination behavior in pulsed beams generated from linear accelerators.

  12. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08T23:59:59.000Z

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) of $0.52/ft{sup 2} in climate zone 14, followed by $0.32/ft{sup 2} in climate zone 16 and $0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $0.93/ft{sup 2} in climate zone 14, followed by $0.55/ft{sup 2} in climate zone 16, $0.46/ft{sup 2} in climate zone 12, $0.30/ft{sup 2} in climate zone 3, $0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $1.37/ft{sup 2} in climate zone 14, followed by $0.86/ft{sup 2} in climate zone 16, $0.84/ft{sup 2} in climate zone 3, $0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.

  13. Helical Disruptions in Small Loops of DNA

    E-Print Network [OSTI]

    Zoli, Marco

    2015-01-01T23:59:59.000Z

    The thermodynamical stability of DNA minicircles is investigated by means of path integral techniques. Hydrogen bonds between base pairs on complementary strands can be broken by thermal fluctuations and temporary fluctuational openings along the double helix are essential to biological functions such as transcription and replication of the genetic information. Helix unwinding and bubble formation patterns are computed in circular sequences with variable radius in order to analyze the interplay between molecule size and appearance of helical disruptions. The latter are found in minicircles with $100$ base pairs and appear as a strategy to soften the stress due to the bending and torsion of the helix.

  14. TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE

    SciTech Connect (OSTI)

    Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

    2011-08-01T23:59:59.000Z

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

  15. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide andNationalallGeneral

  16. Recovery Act: Enhancing State Energy Assurance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to...

  17. 9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy

    E-Print Network [OSTI]

    Temple, Blake

    9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

  18. General Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version)Confinement |GeneralGeneral

  19. General Recommendations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version)Confinement |GeneralGeneral»

  20. COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS

    E-Print Network [OSTI]

    Howard, John

    COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS J. HOWARD, M. PERSSON* Plasma Research Laboratory, Research School of Physical Sciences, Australian National University, Canberra

  1. Shattered Pellet Disruption Mitigation Technology Development for ITER

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, T. C. [Oak Ridge National Laboratory (ORNL); Meitner, Steven J [ORNL; Edgemon, Timothy D [ORNL; Parks, P. B. [General Atomics; Commaux, Nicolas JC [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Caughman, John B [ORNL; Rasmussen, David A [ORNL

    2010-01-01T23:59:59.000Z

    The mitigation of first wall thermal and mechanical loads and damage from runaway electrons during disruptions are critical for successful long term operation of ITER. Disruption mitigation tools based on shattered pellet injection are being developed at Oak Ridge National Laboratory that can be employed on ITER to provide the necessary mitigation of thermal and mechanical loads from disruptions as well as provide collisional damping to inhibit the formation of runaway electrons . Here we present progress on the development of the technology to provide reliable disruption mitigation with large shattered cryogenic pellets. An example of how this concept can be employed on ITER is discussed.

  2. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William

    2010-01-01T23:59:59.000Z

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  3. Assessment of CRBR core disruptive accident energetics

    SciTech Connect (OSTI)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01T23:59:59.000Z

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

  4. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounsel Law StudentGeneral

  5. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    E-Print Network [OSTI]

    Hong, Tianzhen

    2010-01-01T23:59:59.000Z

    Californiabuildingenergyefficiencystandardsforthe CaliforniaBuildingenergyEfficiencyStandards(CEC2008California buildingenergyefficiencystandards(CEC

  6. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    E-Print Network [OSTI]

    Hong, Tianzhen

    2010-01-01T23:59:59.000Z

    2008). Californiabuildingenergyefficiency standardsCalifornia buildingenergyefficiencystandards(Title24)2008CaliforniaBuildingEnergyEfficiencyStandards(Title

  7. Energy Analysis and Energy Conservation Options for the Supreme Court and Attorney General Buildings Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    , and electric energy for base buildings and buildings with California standards. Because the California standards restrict the total glazing to 50% of the exterior wall area, lighting levels to 1.5 w/sf and requires a heat pump for heating, the average total... of heat pumps. Appendix D provides the cooling and heating peak load components of each building as well as system monthly loads for each floor. Implementing the California standards would reduce the Energy Use Index for the buildings. However...

  8. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    E-Print Network [OSTI]

    Hong, Tianzhen

    2010-01-01T23:59:59.000Z

    energyconsumptionsurvey(EIA2003) indicating that officeEIA2003). CommercialBuildingEnergy ConsumptionSurvey.

  9. Post-Disruptive Runaway Electron Beam in COMPASS Tokamak

    E-Print Network [OSTI]

    Vlainic, Milos; Cavalier, Jordan; Weinzettl, Vladimir; Paprok, Richard; Imrisek, Martin; Ficker, Ondrej; Noterdaeme, Jean-Marie

    2015-01-01T23:59:59.000Z

    For ITER-relevant runaway electron studies, such as suppression, mitigation, termination and/or control of runaway beam, obtaining the runaway electrons after the disruption is important. In this paper we report on the first achieved discharges with post-disruptive runaway electron beam, entitled "runaway plateau", in the COMPASS tokamak. The runaway plateau is produced by massive gas injection of argon. Almost all of the disruptions with runaway electron plateaus occurred during the plasma current ramp-up phase. Comparison between the Ar injection discharges with and without plateau has been done for various parameters. Parametrisation of the discharges shows that COMPASS disruptions fulfill the range of parameters important for the runaway plateau occurrence. These parameters include electron density, electric field, disruption speed, effective safety factor, maximum current quench electric field. In addition to these typical parameters, the plasma current value just before the massive gas injection surpris...

  10. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya [ORNL; Dimitrovski, Aleksandar D [ORNL; Fernandez, Steven J [ORNL; Groer, Christopher S [ORNL; Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Omitaomu, Olufemi A [ORNL; Shankar, Mallikarjun [ORNL; Spafford, Kyle L [ORNL; Vacaliuc, Bogdan [ORNL

    2012-11-01T23:59:59.000Z

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  11. IEEE Power and Energy Society General Meeting, July 2010, Minneapolis, MN USA c 2010 IEEE A cutset area concept for phasor monitoring

    E-Print Network [OSTI]

    Dobson, Ian

    IEEE Power and Energy Society General Meeting, July 2010, Minneapolis, MN USA c 2010 IEEE A cutset area concept for phasor monitoring Ian Dobson, Fellow IEEE ECE Department University of Wisconsin together voltage angle phasor measurements at several buses to measure the angle stress across an area

  12. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version)ConfinementGeneral Tables The

  13. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect (OSTI)

    Li, Shuo; Li, Chengyuan [Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Anders, Peter, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2015-01-01T23:59:59.000Z

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup 1}) ? 7.5, intermediate-age, log (t yr{sup 1}) in [7.5, 8.5], and old samples, log (t yr{sup 1}) ? 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  14. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 15, NO. 4, DECEMBER 2000 433 An Approach to Evaluate the General Performance of

    E-Print Network [OSTI]

    LaMeres, Brock J.

    the General Performance of Stand-Alone Wind/Photovoltaic Generating Systems M. Hashem Nehrir, Senior Member for evaluating the general performance of stand-alone wind/photovoltaic generating systems. Simple models of stand-alone generating systems and gaining a better insight in the component sizes needed before

  15. Supply chain disruptions : managing risks vs. managing crises

    E-Print Network [OSTI]

    Lee, Garrett J. (Garrett James)

    2007-01-01T23:59:59.000Z

    This thesis looks at two back-to-back disruptive supply chain events, one due to a sole-supplier's bankruptcy and the other caused by Hurricane Rita, that occurred at a specialty chemical company, and uses these examples ...

  16. The End of Core: Should Disruptive Innovation in Telecommunication

    E-Print Network [OSTI]

    de Weck, Olivier L.

    The End of Core: Should Disruptive Innovation in Telecommunication Invoke Discontinuous Regulation, USA Master of Science, Technology and Policy Program Massachusetts Institute of Technology, USA of Doctor of Philosophy in Technology, Management, and Policy at the Massachusetts Institute of Technology

  17. Androgen Receptor Formation in Prenatally Endocrine Disrupted Mice

    E-Print Network [OSTI]

    Irwin, Conor David

    2013-10-03T23:59:59.000Z

    contributing to physical activity suggests that androgen receptors are key mediators in activity regulation (3,4). Current literature suggests that certain chemicals, like Benzyl butyl phthalate (BBP), disrupts androgen receptor formation prenatally (5, 6...

  18. Risk from network disruptions in an aerospace supply chain

    E-Print Network [OSTI]

    Wilson, Bryan K. (Bryan Keith)

    2010-01-01T23:59:59.000Z

    This thesis presents methods for determining the effects of risk from disruptions using an aerospace supply chain as the example, primarily through the use of a computer simulation model. Uncertainty in the current marketplace ...

  19. Optimizing interventions for the treatment of vascular flow disruptions

    E-Print Network [OSTI]

    Boval, Brett Lawrence

    2014-01-01T23:59:59.000Z

    All tissues rely on perfusion and therefore intact blood flow. When flow is disrupted the coupled interaction between the functional and fluid domains of a tissue is impeded and viability is lost. Aortic stenosis is a ...

  20. Assessing Journey Time Impacts of Disruptions on London's Piccadilly Line

    E-Print Network [OSTI]

    Freemark, Yonah (Yonah Slifkin)

    2013-01-01T23:59:59.000Z

    Public transport users depend on a reliable level of service on a daily basis. But system disruptions, caused by infrastructure problems, passenger events, and crew duty constraints, can result in reduced reliability for ...

  1. Business Owners: Prepare for Utility Disruptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing atGreenhouse Gases

  2. Constraining H{sub 0} in general dark energy models from Sunyaev-Zeldovich/X-ray technique and complementary probes

    SciTech Connect (OSTI)

    Holanda, R.F.L.; Lima, J.A.S. [Departamento de Astronomia (IAGUSP), Universidade de So Paulo, Rua do Mato 1226, 05508-900, So Paulo, SP (Brazil); Cunha, J.V. [Centro de Cincias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adlia 166, 09210-170, Santo Andr, SP (Brazil); Marassi, L., E-mail: holanda@astro.iag.usp.br, E-mail: jvcunha@ufpa.br, E-mail: luciomarassi@ect.ufrn.br, E-mail: limajas@astro.iag.usp.br [Escola de Cincia e Tecnologia, UFRN, 59072-970, Natal, RN (Brazil)

    2012-02-01T23:59:59.000Z

    In accelerating dark energy models, the estimates of the Hubble constant, H{sub 0}, from Sunyaev-Zel'dovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (?{sub M}), the curvature (?{sub K}) and the equation of state parameter (?). In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical ? model obtained through the SZE/X-ray technique, we constrain H{sub 0} in the framework of a general ?CDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter ? = p{sub x}/?{sub x}. In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BAO) and the CMB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ?CDM model H{sub 0} = 74{sup +5.0}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?) whereas for a flat universe with constant equation of state parameter we find H{sub 0} = 72{sup +5.5}{sub ?4.0} km s{sup ?1} Mpc{sup ?1}(1?). By assuming that galaxy clusters are described by a spherical ? model these results change to H{sub 0} = 62{sup +8.0}{sub ?7.0} and H{sub 0} = 59{sup +9.0}{sub ?6.0} km s{sup ?1} Mpc{sup ?1}(1?), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Hubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a flat ?CDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H{sub 0} estimates for this combination of data.

  3. Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few general exact results

    E-Print Network [OSTI]

    Potsdam, Universitt

    Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few application is free energy recovery from non-equilibrium pulling experiments in the single molecule field. We is a "partial" work measurement): it leads to a violation of FRs and to wrong free energy estimates

  4. Massive Gas Injection Experiments at JET Performance and Characterisation of the Disruption Mitigation Valve

    E-Print Network [OSTI]

    Massive Gas Injection Experiments at JET Performance and Characterisation of the Disruption Mitigation Valve

  5. The generalized second law for the interacting new agegraphic dark energy in a non-flat FRW universe enclosed by the apparent horizon

    E-Print Network [OSTI]

    K. Karami; A. Abdolmaleki

    2011-01-31T23:59:59.000Z

    We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting new agegraphic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe. Whereas, the evolution of the entropy of the universe and apparent horizon, separately, depends on the equation of state parameter of the interacting new agegraphic dark energy model.

  6. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22T23:59:59.000Z

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  7. General Electric Company Oahu Wind Integration Study

    E-Print Network [OSTI]

    to disruptions in supply. Further, the volatility in oil prices translates into volatility in electricity prices. As oil prices increase, Hawaii consumers face increases in energy prices as well as the price of most was approximately 13% of the State Gross Product. Most of the imported oil is used for transportation fuel

  8. Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    E-Print Network [OSTI]

    Dean Morgan; Stuart Thom; Elizabeth Winstanley; Phil M. Young

    2007-06-28T23:59:59.000Z

    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.

  9. A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars

    E-Print Network [OSTI]

    Kuroda, Takami; Kotake, Kei

    2015-01-01T23:59:59.000Z

    We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account the so-called standard set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation and nucleon-nucleon bremsstrahlung are included. In addition to gravitational redshift and Doppler effects, these energy-coupling reactions are incorporated in the moment equations in a covariant form. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we conduct several ...

  10. Characteristics of discharge disruptions in the T-10 tokamak

    SciTech Connect (OSTI)

    Stefanovskii, A. M., E-mail: stefan@nfi.kiae.ru; Dremin, M. M.; Kakurin, A. M.; Kislov, A. Ya.; Mal'tsev, S. G.; Notkin, G. E.; Pavlov, Yu. D.; Poznyak, V. I.; Sushkov, A. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    The results of experimental studies of discharge disruptions in the T-10 tokamak at the limiting plasma density are presented. On the basis of measurements of the generated soft X-ray emission, for a group of 'slow' disruptions, the dynamics of the magnetic configuration of the central part of the plasma column is studied and the possible role of the m/n = 1/1 mode in the excitation of predisruptions or the final stage of disruption is analyzed. It is shown that the characteristics of plasma electron cooling in predisruptions correspond to those of electron cooling upon pellet injection into T-10 and in discharge predisruptions occurring in regimes with the 'quiet mode.' It is found that, in the latter case, the reason for predisruptions and fast electron cooling in the plasma core is the instability of the m/n = 2/1 mode, its spontaneous spatial reconstruction, and the generation of a 'cooling wave' during this process. Measurements of the electron temperature (determined from the plasma radiation intensity at the second electron cyclotron harmonic) in the zone of the m/n = 2/1 mode have shown that the transformation of the m/n = 2/1 mode leads to the excitation of predisruptions and the final phase of disruption not only in regimes with the 'quiet mode,' but also in disruptions of ordinary ohmic discharges. The experimental results obtained in this work make it possible to determine the scenario of the development of 'slow' discharge disruptions in the T-10 tokamak at the limiting plasma density.

  11. Feedback control of major disruptions in International Thermonuclear Experimental Reactor

    SciTech Connect (OSTI)

    Sen, A. K. [Plasma Physics Laboratory, Columbia University, New York, New York 10026 (United States)

    2011-08-15T23:59:59.000Z

    It is argued that major disruptions in ITER can be avoided by the feedback control of the causative MHD precursors. The sensors will be 2D-arrays of ECE detectors and the suppressors will be modulated ECH beams injected radially to produce non-thermal radial pressures to counter the radial dynamics of MHD modes. The appropriate amplitude and phase of this signal can stabilize the relevant MHD modes and prevent their evolution to a major disruption. For multimode MHD precursors, an optimal feedback scheme with a Kalman filter is discussed.

  12. Beport No. U.S. Department of Energy November 1995 INS-0-96-02 Office of Inspector General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher| Department ofBeowawe Binary

  13. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11. Number

  14. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11. Number2

  15. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11.

  16. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1.4 Number4681432

  17. Copyright 2010 IEEE. Reprinted from Proceedings of the 2010 IEEE Power & Energy Society General Meeting, Minneapolis, MN, USA.

    E-Print Network [OSTI]

    Kemner, Ken

    . A majority of the wind power in the United States is sold on long-term power purchase agreements, which hedgeCopyright 2010 IEEE. Reprinted from Proceedings of the 2010 IEEE Power & Energy Society;1 Abstract--This paper discusses risk management, contracting, and bidding for a wind power producer

  18. General Engineer (Chief Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in the Office of the Manager. If selected for this position you will serve as a General Engineer (Chief Engineer) in the Office of the Manager for the Department of Energy,...

  19. Convex Approximations of a Probabilistic Bicriteria Model with Disruptions

    E-Print Network [OSTI]

    Morton, David

    sam- pling scheme based on distributional information on the time of disruption. We establish that our of the bicriteria problem. Key words: programming, stochastic: probabilistic constraints; simulation; programming: multiple criteria 1. Introduction When optimizing large-scale stochastic systems, performance should

  20. Genomic signatures of relaxed disruptive selection associated with speciation reversal

    E-Print Network [OSTI]

    within the most polluted lakes. Here we investigate the effects of eutrophication on the selective forces oxygen concentration) representing the strength of eutrophication. Results: Whilst we identify disruptive eutrophication: as the likelihood decreases that AFLP restriction sites will fall within regions of heightened

  1. Pellet Driven Disruptions in Tokamaks H.R. Strauss

    E-Print Network [OSTI]

    Strauss, Hank

    Pellet Driven Disruptions in Tokamaks H.R. Strauss Courant Institute of Mathematical Sciences New York University W. Park Princeton Plasma Physics Laboratory Abstract Pellet injection can trigger ballooning like instability in tokamaks, driven by the large pressure perturbation of the pellet cloud

  2. A Probabilistic Routing Disruption Attack on DSR and Its Analysis

    E-Print Network [OSTI]

    Levi, Albert

    A Probabilistic Routing Disruption Attack on DSR and Its Analysis ?zleyi Ocakolu, Burak Bayolu}@sabanciuniv.edu Abstract -- In this paper, we propose an attack model against DSR ad hoc network routing protocol and analyze the effects of this attack model on DSR route discovery mechanism. The analysis of the attack

  3. Despite its chaotic and disrupted opening, Heathrow's Terminal 5 is

    E-Print Network [OSTI]

    Challenges Despite its chaotic and disrupted opening, Heathrow's Terminal 5 is one of the world and to study the lessons that the project sector could draw from BAA's project management. Heathrow Terminal 5 into the planning and construction of Terminal 5 at London's Heathrow airport shows how organisations can learn from

  4. ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION

    E-Print Network [OSTI]

    Gray, Matthew

    4/17/2011 1 ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION Emily Hockman M of acoustic pollution in the oceans and effects on marine mammals Where do we go from here? #12;4/17/2011 2 ON ACOUSTIC POLLUTION Anthropogenic sound generation Transportation Army/Navy Research Commercial Birds

  5. Office of Inspector General audit report on the U.S. Department of Energy`s consolidated financial statements for fiscal year 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Department prepared the Fiscal Year 1998 Accountability Report to combine critical financial and program performance information in a single report. The Department`s consolidated financial statements and the related audit reports are included as major components of the Accountability Report. The Office of Inspector General audited the Department`s consolidated financial statements as of and for the years ended September 30, 1998 and 1997. In the opinion of the Office of Inspector General, except for the environmental liabilities lines items in Fiscal year 1998, these financial statements present fairly, in all material respects, the financial position of the Department as of September 30, 1998 and 1997, and its consolidated net cost, changes in net position, budgetary resources, financing activities, and custodial activities for the years then ended in conformity with Federal accounting standards. In accordance with Government Auditing Standards, the Office of Inspector General issued a separate report on the Department internal controls. This report discusses needed improvements to the environmental liabilities estimating process and the reporting of performance measure information.

  6. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    SciTech Connect (OSTI)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); O'Leary, Ryan M., E-mail: jfg@ucolick.org [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-10T23:59:59.000Z

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that {approx} 10{sup 5} stars, {approx} 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  7. Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of...

  8. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MWMemo of Intent MemoFrom: LeoTo:

  9. Office of Inspector General audit report on the U.S. Department of Energy`s implementation of the Government Performance and Results Act

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Government Performance and Results Act of 1993 (Results Act) was enacted to improve Federal program effectiveness and public accountability by promoting a new focus on results-oriented management. The Results Act requires plans that define the mission, long-term goals, and shorter-term performance measures. Further, the Act envisions that there will be an apparent relationship between this information and specific activities listed in the Department`s budget requests. Taken together, these elements should clearly describe the outputs and outcomes the Department expects to deliver for the resources expended. The objectives of this audit were to determine whether the Department had implemented the requirements of the Results Act by (1) integrating the planning, budgeting, and performance measures for its programs into a unified, Departmentwide strategy; (2) developing specific, measurable, and results-oriented performance standards to which its programs and contractors could be held accountable; and (3) developing the means to collect reliable performance data and to use that data in evaluating whether performance actions produce intended results. The information in the Fiscal Year 1999 budget requests for the Offices of Environmental Management, Defense Programs, Energy Research, Energy Efficiency and Renewable Energy, and Nuclear Energy Science and Technology formed the basis of the review.

  10. US Department of Energy Office of Inspector General semiannual report to Congress, April 1--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The report summarizes significant audit, inspection, and investigative accomplishments for the reporting period which facilitated DOE management efforts to improve management controls and ensure efficient and effective operation of its programs. During this period, the Office of IG issued 52 audit and 7 inspection reports. For reports issued during the period, the Office made audit recommendations that, when implemented by management, could result in $554 million being put to better use. Management committed to taking corrective actions which is estimated to result in a more efficient use of funds totaling $22.4 million. IG actions in identifying attainable economies and efficiencies in Departmental operations have recently provided a positive dollar impact of about $4 million per audit employee per year. Also, the Office of Inspections committed major resources reviewing the Secretary of Energy`s foreign travel. IG investigations led to 20 criminal convictions, as well as criminal and civil prosecutions which resulted in fines and recoveries of $29, 365,094. The Office also provided 27 investigative referrals to management for recommended positive action.

  11. Office of Inspector General report on inspection of selected issues regarding the Department of Energy accident investigation program

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    One method used by the Department of Energy (DOE) to promote worker safety is through the Department`s accident investigation program. The objectives of the program are, among other things, to enhance safety and health of employees, to prevent the recurrence of accidents, and to reduce accident fatality rates and promote a downward trend in the number and severity of accidents. The Assistant Secretary, Office of Environment, Safety and Health (EH), through the EH Office of the Deputy Assistant Secretary for Oversight, is responsible for implementation of the Department`s accident investigation program. As part of the inspection, the authors reviewed an April 1997 EH accident investigation report regarding an accident involving a Lockheed Martin Energy Systems (LMES) welder, who suffered fatal burns when his clothing caught fire while he was using a cutting torch at the Oak Ridge K-25 Site. They also reviewed reports of other accident investigations conducted by EH and DOE field organizations. Based on the review of these reports, the authors identified issues concerning the adequacy of the examination and reporting by accident investigation boards of specific management systems and organizations as a possible accident root cause. The inspection also identified issues concerning worker safety that they determined required immediate management attention, such as whether occurrences were being reported in the appropriate management systems and whether prompt consideration was being given to implementing revisions of national standards when the revisions increased worker safety.

  12. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

  13. Reentry aerodynamic disruption analysis of thermionic reactor-thermo-converter TOPAZ-2

    SciTech Connect (OSTI)

    Grinberg, E.I.; Nikolaev, V.S. (Scientific Production Association Krasnaya Zvezda'', Moscow 115230 (Russian Federation)); Usov, V.A. (RRC Kurchatov Institute'', Moscow 123182 (Russian Federation)); Gafarov, A.A. (Research Institute of Thermal Processes, Moscow (Russian Federation))

    1993-01-15T23:59:59.000Z

    This paper presents preliminary results of analysis for the TOPAZ-2 thermionic converter-reactor aerodynamic disruption during reentry.

  14. atp hydrolysis energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency response capabilities in case of oil supply disruptions. n Promote sustainable energy policies that spur economic growth and environmental protection in a global...

  15. Energy Vulnerability Assessment for the US Pacific Islands. Technical Appendix 2

    SciTech Connect (OSTI)

    Fesharaki, F.; Rizer, J.P.; Greer, L.S.

    1994-05-01T23:59:59.000Z

    The study, Energy Vulnerability Assessment of the US Pacific Islands, was mandated by the Congress of the United States as stated in House Resolution 776-220 of 1992, Section 1406. The resolution states that the US Secretary of Energy shall conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption. Such study shall outline how the insular areas shall gain access to vital oil supplies during times of national emergency. The resolution defines insular areas as the US Virgin Islands, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and Palau. The US Virgin Islands and Puerto Rico are not included in this report. The US Department of Energy (USDOE) has broadened the scope of the study contained in the House Resolution to include emergency preparedness and response strategies which would reduce vulnerability to an oil supply disruption as well as steps to ameliorate adverse economic consequences. This includes a review of alternative energy technologies with respect to their potential for reducing dependence on imported petroleum. USDOE has outlined the four tasks of the energy vulnerability assessment as the following: (1) for each island, determine crude oil and refined product demand/supply, and characterize energy and economic infrastructure; (2) forecast global and regional oil trade flow patterns, energy demand/supply, and economic activities; (3) formulate oil supply disruption scenarios and ascertain the general and unique vulnerabilities of these islands to oil supply disruptions; and (4) outline emergency preparedness and response options to secure oil supplies in the short run, and reduce dependence on imported oil in the longer term.

  16. Office of Inspector General report on followup audit on the procurement of support services for the Energy Information Administration

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This audit was performed to follow up on actions taken in response to the July 1990 report on ``Procurement of Support Services for the Energy Information Administration`` (CR-OC-90-2). The audit disclosed that over 50% of the work under six of the cost-reimbursement contracts examined was recurring and could have been estimated with a reasonable degree of accuracy making the work suitable for fixed-price contracting. The report made recommendations to the Head of Procurement and the Administrator, EIA. These recommendations were to comply with procurement regulations by identifying recurring tasks that were susceptible to fixed-price contracting, preparing definitive statements of work that would permit fixed-price contracting, and awarding fixed-price contracts. Procurement recognized the benefits of fixed-price contracting and agreed to work closely with the EIA to identify work susceptible to fixed-price contracting. These efforts resulted in the award of two labor hour contracts but no firm-fixed-price contracts. The purpose of this followup audit was to review Procurement and EIA actions to develop definitive work statements for recurring tasks that are suitable for firm-fixed-price contracts. The audit objective was to determine what progress Procurement and EIA have made in utilizing firm-fixed-price contracts. In FY 1996, EIA had 14 contracts valued at about $202 million that were issued as cost reimbursement and labor hour contracts.

  17. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2005-11-01T23:59:59.000Z

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  18. Office of Inspector General audit report on the U.S. Department of Energy`s management of Associated Western Universities grant programs

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Department of Energy (DOE), recognizing the need to maintain a strong science and engineering base at a time when enrollments in these disciplines were declining, implemented several educational programs. Among these were educational programs to provide faculty and students of US colleges and universities with energy-related training and research experience. Associated Western Universities (AWU), a nonprofit organization, administered post-secondary educational programs for DOE through grants and, occasionally, subcontracts. The objectives of the audit were to determine whether: (1) DOE was achieving its goal of enhancing US science and engineering education and (2) AWU was appropriately accumulating and classifying its costs. It was found that DOE was not fully achieving its objective of enhancing science and engineering education for students of US colleges and universities. In addition, it was found that AWU had not complied with cost principles for nonprofit organizations as required under the terms of the grants. Specifically, AWU misclassified a $13,000 overrun of direct program cost as indirect cost, incurred $40,000 of idle facility costs that were unallowable under the terms of the grant, misclassified indirect costs as direct costs, and claimed reimbursement for consultant costs that were inappropriate under the terms of the consulting contract. These discrepancies resulted in $53,000 of questionable costs, as well as costs having been charged to the Office of Energy Research (ER) grant that should have been charged to the Richland and Idaho grants. The authors recommended that the Managers of the Richland and Idaho Operations offices take actions to ensure that the objectives of DOE`s educational programs are met. In addition, they recommended that the Manager, Idaho Operations Office, direct the Contracting Officer to have AWU comply with the appropriate cost principles for nonprofit organizations.

  19. Office of Inspector General audit report on ``The U.S. Department of Energy`s X-Change 1997: The global D and D marketplace conference``

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Department of Energy and Florida International University (FIU), a state university, cosponsored the X-Change 1997: The Global D and D Marketplace conference (X-Change Conference) that was held December 1--5, 1997, in Miami, Florida. The purpose of the conference was to disseminate information on decontamination and decommissioning problems, solutions, and technologies to an international audience of government, industry, and academia. Through a contract with the Department, FIU was responsible for conference planning, organization, and logistical support. FIU awarded a subcontract to ICF, Inc. to work on the conference. ICF, Inc. is a major Department contractor with responsibilities for projects at Hanford, Argonne National laboratory and Los Alamos National Laboratory. The audit objectives were to determine whether FIU had controls in place to ensure that public funds were used appropriately, and whether fiscal practices associated with the conference were consistent with Government requirements and Department policy. FIU implemented accounting and budget mechanisms to identify and control the sources and uses of funds. However, the absence of a Departmental policy on funding conferences resulted in questionable fiscal practices associated with the conference. These are discussed.

  20. Zero-point energy of vacuum fluctuation as a candidate for dark energy versus a new conjecture of antigravity based on the modified Einstein field equation in general relativity

    E-Print Network [OSTI]

    Guang-jiong Ni

    2005-06-02T23:59:59.000Z

    In order to clarify why the zero-point energy associated with the vacuum fluctuations cannot be a candidate for the dark energy in the universe, a comparison with the Casimir effect is analyzed in some detail. A principle of epistemology is stressed that it is meaningless to talk about an absolute (isolated) thing. A relative thing can only be observed when it is changing with respect to other things. Then a new conjecture of antigravity --the repulsive force between matter and antimatter derived from the modified Einstein field equation in general relativity-- is proposed. this is due to the particle-antiparticle symmetry based on a new understanding about the essence of special relativity. Its possible consequences in the theory of cosmology are discussed briefly, including a new explanation for the accelerating universe and gamma-ray-bursts.

  1. Generalized Galilean Genesis

    E-Print Network [OSTI]

    Nishi, Sakine

    2015-01-01T23:59:59.000Z

    The galilean genesis scenario is an alternative to inflation in which the universe starts expanding from Minkowski in the asymptotic past by violating the null energy condition stably. Several concrete models of galilean genesis have been constructed so far within the context of galileon-type scalar-field theories. We give a generic, unified description of the galilean genesis scenario in terms of the Horndeski theory, i.e., the most general scalar-tensor theory with second-order field equations. In doing so we generalize the previous models to have a new parameter (denoted by {\\alpha}) which results in controlling the evolution of the Hubble rate. The background dynamics is investigated to show that the generalized galilean genesis solution is an attractor, similarly to the original model. We also study the nature of primordial perturbations in the generalized galilean genesis scenario. In all the models described by our generalized genesis Lagrangian, amplification of tensor perturbations does not occur as ...

  2. General Employee Radiological Training

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGOof Energy General

  3. The influence of an ITER-like wall on disruptions at JET

    SciTech Connect (OSTI)

    Vries, P. C. de, E-mail: Peter.de.Vries@jet.efda.org; Hogeweij, G. M. D. [FOM institute DIFFER, EURATOM association, P.O. Box 1207, Nieuwegein (Netherlands)] [FOM institute DIFFER, EURATOM association, P.O. Box 1207, Nieuwegein (Netherlands); Baruzzo, M.; Murari, A. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, 35127 Padova (Italy)] [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, 35127 Padova (Italy); Jachmich, S. [ERM/KMS, Association EURATOM-Belgian State, B-1000 Brussels, Brussels (Belgium)] [ERM/KMS, Association EURATOM-Belgian State, B-1000 Brussels, Brussels (Belgium); Joffrin, E.; Reux, C. [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France)] [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France); Lomas, P. J.; Matthews, G. F. [CCFE/Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [CCFE/Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Nunes, I. [Associao EURATOM-IST, Instituto de Plasmas e Fuso Nuclear, 1049-001 Lisboa (Portugal)] [Associao EURATOM-IST, Instituto de Plasmas e Fuso Nuclear, 1049-001 Lisboa (Portugal); Ptterich, T. [Max-Planck-Institut fr Plasmaphysik, EURATOM Association, 85748 Garching (Germany)] [Max-Planck-Institut fr Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Vega, J. [Asociacin EURATOM/CIEMAT para Fusin, Madrid (Spain) [Asociacin EURATOM/CIEMAT para Fusin, Madrid (Spain); JET-EFDA Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Contributors

    2014-05-15T23:59:59.000Z

    In order to preserve the integrity of large tokamaks such as ITER, the number of disruptions has to be limited. JET has operated previously with a low frequency of disruptions (i.e., disruption rate) of 3.4% [P. C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]. The start of operations with the new full-metal ITER-like wall at JET showed a marked rise in the disruption rate to 10%. A full survey was carried out to identify the root causes, the chain-of-events and classifying each disruption, similar to a previous analysis for carbon-wall operations. It showed the improvements made to avoid various disruption classes, but also indicated those disruption types responsible for the enhanced disruption rate. The latter can be mainly attributed to disruptions due to too high core radiation but also due to density control issues and error field locked modes. Detailed technical and physics understanding of disruption causes is essential for devising optimized strategies to avoid or mitigate these events.

  4. General Dynamics and Nissan Case Studies Highlight Benefits of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy Performance General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy...

  5. General Questions | Department of Energy

    Office of Environmental Management (EM)

    District of Columbia, U.S. territories, and among Native American tribes. View the interactive U.S. map where you look up the contact information for state and local...

  6. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    SciTech Connect (OSTI)

    Kucka, Marek [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States)] [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Pogrmic-Majkic, Kristina; Fa, Svetlana [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia)] [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia); Stojilkovic, Stanko S. [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States)] [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Kovacevic, Radmila, E-mail: radmila.kovacevic@dbe.uns.ac.rs [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia)] [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia)

    2012-11-15T23:59:59.000Z

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ? Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ? Atrazine also stimulates PRL and androgens secretion. ? Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ? Atrazine specificity toward cAMP-specific PDEs was indicated by no changes in cGMP. ? Rolipram, a specific PDE4 inhibitor, also prevents stimulatory effects of atrazine. ? Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific PDE4.

  7. General Engineer

    Broader source: Energy.gov [DOE]

    Term Appointments do not confer competitive status and cannot be converted to permanent positions without further competition. The mission of the Solar Energy Technologies Office (SETO) is to...

  8. Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX

    SciTech Connect (OSTI)

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Scott, S; Titus, P; Waganer, L

    2012-09-26T23:59:59.000Z

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. This paper reviews the AT pilot plant design, detailing the selected maintenance approach, the device arrangement and sizing of the in-vessel components. Details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will also be discussed.

  9. U. S. Energy: aviation perspective

    SciTech Connect (OSTI)

    Blake, C.L.

    1983-11-01T23:59:59.000Z

    This report is a sequel/update of The Impact of Petroleum, Synthetic and Cryogenic Fuels on Civil Aviation, DOT/FAA/EM-82/29, June, 1982. Where the earlier report is more concerned with energy resources and availability, this report is more concerned with energy supply/demand balance and with prices. The report reviews world and U.S. energy, U.S. transportation energy, aviation fuel, natural gas, alternative fuels and energy sources, synthetic fuels, aviation fuel conservation, and petroleum price vulnerability. It draws heavily on The National Energy Policy Plan of 1983 and its supporting documents. World oil production and prices should remain generally steady for thirty to fifty years, growing slightly faster than the world economy. Near-term prices should be softer. OPEC can raise prices whenever demand for its production exceeds 80% of OPEC production capacity. The U.S. could delay or reverse future price rises by encouraging, or at least reducing restrictions against, domestic production. All future energy forecasts are risky. A disruption in crude production at any time until at least year 2000, can easily increase fuel prices by 100%.

  10. Vaporization studies of plasma interactive materials in simulated plasma disruption events

    SciTech Connect (OSTI)

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-03-01T23:59:59.000Z

    The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm/sup 2/. It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs.

  11. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Commaux, Nicolas JC [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; Jernigan, Thomas C [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Parks, P. B. [General Atomics] [General Atomics; Rasmussen, David A [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  12. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431

    E-Print Network [OSTI]

    Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

    2008-01-01T23:59:59.000Z

    Draft Report to Congress on Server and Data Center EnergyEfficiency Drives Worldwide Server Virtualization Adoption,Disrupting the Worldwide Server Market, According to IDC.

  13. Disrupting Heteronormative Codes: When Cylons in Slash Goggles Ogle AnnaKournikova

    E-Print Network [OSTI]

    Marino, Mark C.

    2009-01-01T23:59:59.000Z

    2] Marino, M. 2006. Critical Code Studies. electronic bookDisrupting Heteronormative Codes: When Cylons in Slashcharacteristics of computer code using a Critical Code

  14. Hyperaccretion during tidal disruption events: Weakly bound debris envelopes and jets

    SciTech Connect (OSTI)

    Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu [Also at Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 391, Boulder, CO 80309, USA. (United States)

    2014-02-01T23:59:59.000Z

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such 'zero-Bernoulli accretion' flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  15. General Engineers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version)short

  16. General Information

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12Nevada National Security

  17. GENERAL ASSIGNMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! (U.S.

  18. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect (OSTI)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24T23:59:59.000Z

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  19. Quantifying hazards: asteroid disruption in lunar distant retrograde orbits

    E-Print Network [OSTI]

    Roa, Javier

    2015-01-01T23:59:59.000Z

    The Asteroid Redirect Mission (ARM) proposes to retrieve a near-Earth asteroid and position it in a lunar distant retrograde orbit (DRO) for later study, crewed exploration, and ultimately resource exploitation. During the Caltech Space Challenge, a recent workshop to design a crewed mission to a captured asteroid in a DRO, it became apparent that the asteroid's low escape velocity (<1 cm s$^{-1}$) would permit the escape of asteroid particles during any meaningful interaction with astronauts or robotic probes. This Note finds that up to 5% of escaped asteroid fragments will cross Earth-geosynchronous orbits and estimates the risk to satellites from particle escapes or complete disruption of a loosely bound rubble pile.

  20. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    SciTech Connect (OSTI)

    S.P. Gerhardt

    2012-09-27T23:59:59.000Z

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  1. Initiation disruptor systems and methods of initiation disruption

    DOE Patents [OSTI]

    Baum, Dennis W

    2014-09-23T23:59:59.000Z

    A system that may be used as an initiation disruption system (IDS) according to one embodiment includes an explosive charge; a plurality of particles in a layer at least partially surrounding the explosive charge; and a fire suppressant adjacent the plurality of particles. A method for disabling an object according to one embodiment includes placing the system as recited above near an object; and causing the explosive charge to initiate, thereby applying mechanical loading to the object such that the object becomes disabled. Additional systems and methods are also presented. A device according to another embodiment includes a plurality of particles bound by a binder thereby defining a sidewall having an interior for receiving an explosive; and a fire suppressant adjacent the plurality of particles and binder. Additional systems and methods are also presented.

  2. Fluid-filled bomb-disrupting apparatus and method

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  3. Models for Mitigating Supply Chain Disruptions Lawrence V. Snyder

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Example In 1998, strikes at two General Motors parts plants Snyder (Lehigh University) Supply Chain Example In 1998, strikes at two General Motors parts plants Snyder (Lehigh University) Supply Chain Example In 1998, strikes at two General Motors parts plants Led to shutdown of 100+ other parts plants

  4. The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event

    SciTech Connect (OSTI)

    Chornock, R.; Berger, E.; Zauderer, B. A.; Kamble, A.; Soderberg, A. M.; Czekala, I.; Dittmann, J.; Drout, M.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Rest, A.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lawrence, A., E-mail: rchornock@cfa.harvard.edu [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2014-01-01T23:59:59.000Z

    We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ?0.002 M {sub ?}, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.

  5. 8Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . SHe GeneralLi

  6. Disruption avoidance in the SINP-Tokamak by means of electrode-biasing at the plasma edge

    SciTech Connect (OSTI)

    Basu, Debjyoti [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India) [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India); Instituto de Ciencias Nucleares-UNAM, Mexico D.F. 04510 (Mexico); Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India)] [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India); Martinell, Julio J. [Instituto de Ciencias Nucleares-UNAM, Mexico D.F. 04510 (Mexico)] [Instituto de Ciencias Nucleares-UNAM, Mexico D.F. 04510 (Mexico); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2013-05-15T23:59:59.000Z

    Control of plasma disruption by a biased edge electrode is reported in SINP-Tokamak. The features that characterize a plasma disruption are reduced with increasing bias potential. The disruption can be completely suppressed with the concomitant stabilization of observed MHD modes that are allegedly precursors of the disruption. An m = 3/n = 1 tearing mode, which apparently causes disruption can be stabilized when a negative biasing potential is applied near the edge. These changes in the disruptive behavior with edge biasing are hypothesized to be due to changes in the current density profile.

  7. Accepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium in

    E-Print Network [OSTI]

    Harilal, S. S.

    geometrical effects on divertor erosion dynamics. Lithium expansion in divertor and SOL areas may potentiallyAccepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium the impact of ELMs and disruptions on lithium in the NSTX divertor, Journal of Nuclear Materials (2010), doi

  8. Moderate threat causes longer lasting disruption to processing in anxious individuals

    E-Print Network [OSTI]

    Bishop, Sonia

    Moderate threat causes longer lasting disruption to processing in anxious individuals Sophie: Forster S, Castle E, Nunez-elizalde AO and Bishop SJ(2014) Moderate threat causes longer lasting in anxiety1 Moderate threat causes longer lasting disruption to processing2 in anxious individuals.3 Sophie

  9. GENERAL PRINCIPLES OF AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! (U.S.GENERAL

  10. General Infrastructure Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounsel Law StudentGeneralOn

  11. General User Proposals (GUPs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Proposals

  12. Tidal Interactions and Disruptions of Giant Planets on Highly Eccentric Orbits

    E-Print Network [OSTI]

    Joshua A. Faber; Frederic A. Rasio; Bart Willems

    2004-11-15T23:59:59.000Z

    We calculate the evolution of planets undergoing a strong tidal encounter using smoothed particle hydrodynamics (SPH), for a range of periastron separations. We find that outside the Roche limit, the evolution of the planet is well-described by the standard model of linear, non-radial, adiabatic oscillations. If the planet passes within the Roche limit at periastron, however, mass can be stripped from it, but in no case do we find enough energy transferred to the planet to lead to complete disruption. In light of the three new extrasolar planets discovered with periods shorter than two days, we argue that the shortest-period cases observed in the period-mass relation may be explained by a model whereby planets undergo strong tidal encounters with stars, after either being scattered by dynamical interactions into highly eccentric orbits, or tidally captured from nearly parabolic orbits. Although this scenario does provide a natural explanation for the edge found for planets at twice the Roche limit, it does not explain how such planets will survive the inevitable expansion that results from energy injection during tidal circularization.

  13. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    emissions prices? How would CO2 regulations impact coal, gas, electricity, & SO2 markets? 3. Disruptions1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc: integrated fuel, electricity networks environmental impacts electricity commodity markets behavior

  14. In this paper we describe a generalized classification method for HMM-based speech recognition systems, that uses free energy as

    E-Print Network [OSTI]

    Singh, Rita

    recognition systems, that uses free energy as a discriminant function rather than conventional probabilities negative free energy [2] of the HMM at a temperature . Consequently, MAP classifica- tion is equivalent to minimizing the free energy of the classifier with respect to the class at T = 1. In speech recognition

  15. Characterization of endocrine-disruption and clinical manifestations in large-mouth bass from Florida lakes

    SciTech Connect (OSTI)

    Gross, D.A.; Gross, T.S. [Univ. of Florida, Gainesville, FL (United States); Johnson, B. [Florida Game and Freshwater Fish Commission, Eustis, FL (United States); Folmar, L. [Environmental Protection Agency, Gulf Breeze, FL (United States)

    1995-12-31T23:59:59.000Z

    Previous efforts from this laboratory have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefore, a survey of large mouth bass populations was conducted on several lakes in North Central Florida to examine reproductive and clinical health. Large-mouth bass were collected from lakes Apopka, Griffin, Jessup and Woodruff. Approximately 24 fish (12 males and 12 females) were collected from each lake during the spawning (March--April) and non-reproductive (July--August) seasons. Plasma samples were collected for analysis of estrogen, testosterone and 11-keto-testosterone concentrations. Gonadal and liver tissues were collected for histological analysis. General blood chemistry analyses and parasite surveys were also conducted to estimate general health. Additionally, fillet samples were collected and analyzed for pesticide levels. Fish from Lake Apopka had unusual concentrations of estrogen and 11-keto-testosterone in plasma when compared to bass from Lakes Woodruff, Jessup and Griffin. Parasites loads were significantly higher for bass from lake Apopka than from the other lakes. Male bass on Apopka had depressed concentrations of 11-keto-testosterone, skewing the E/T ratios upward while female bass had higher concentrations of estrogens than females from the other lakes, again resulting in skewed E/T ratios. These skewed E/T ratios are similar to those observed for alligators on the same lake and raise the possibility that they are caused by contaminants. However, contaminant levels in fillets did not differ significantly between lakes. These studies indicate potentially altered reproductive and immunological function for large-mouth bass living in a contaminated lake.

  16. Disruption Characterization and Database Activities for ITER J.C. Wesley 1), A.W. Hyatt 1), E.J. Strait 1), D.P. Schissel 1), S.M. Flanagan 1),

    E-Print Network [OSTI]

    1 IT/P1-21 Disruption Characterization and Database Activities for ITER J.C. Wesley 1), A.W. Hyatt, New Jersey, USA 5) Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge Massachusetts, USA 6) Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki

  17. A THERMIE PROGRAMME ACTION THERMIE Daylighting in Buildings The European Commission Directorate-General for Energy (DGXVII) R.E. The THERMIE Programme

    E-Print Network [OSTI]

    unknown authors

    This is an important European Community instrument. It is designed to promote greater use of European energy technologies. THERMIE is a major EC initiative, it will run for five years (1990-94) and it is estimated that the EC contribution during this period will amount to 700 million ECU. The main aims of THERMIE are to: promote innovative energy technologies; disseminate information on these technologies; encourage greater use of new and renewable energy sources; improve energy efficiency; improve environmental protection. THERMIE has been developed from previous EC programmes and provides enhanced provision for:

  18. II. GENERAL COMPLIANCE SUPPLEMENT INTRODUCTION

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit ait'sII. GENERAL COMPLIANCE

  19. A Flow-Through Ultrasonic Lysis System for the Disruption of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Disruption of Bacterial Spores."JALA. Journal of the Association for Laboratory Automation 14(5):277-284. Authors: CL Warner CJ Bruckner-Lea JW Grate TM Straub GJ Posakony NB...

  20. Study of a Busbased DisruptionTolerant Network: Mobility Modeling and Impact on Routing

    E-Print Network [OSTI]

    Zhang, Xiaolan "Ellen"

    traces taken from UMass DieselNet, a DisruptionTolerant Network consisting of WiFi nodes attached for profit or commercial advantage and that copies bear this notice and the full citation on the first page