Powered by Deep Web Technologies
Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

2

general_atomics.cdr  

Office of Legacy Management (LM)

300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial park. No ground water wells are at or near the Hot Cell...

3

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

4

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

5

Princeton Plasma Physics Lab - General Atomics (GA)  

NLE Websites -- All DOE Office Websites (Extended Search)

general-atomics-ga General general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http://www.pppl.gov/node/1132

American Fusion News Category: 
general-atomics-ga">General Atomics (GA)
6

Hot neutron star in generalized thermo-statistics  

E-Print Network (OSTI)

Hot neutron star in generalized thermo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract The hot neutron star (NS) is investigated for the ...rst time in the generalized thermo-statistics. The study of neutron star (NS) is an important subject in nuclear physics and astro- physics. The equation

7

Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms  

DOE R&D Accomplishments (OSTI)

A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

Continetti, R. E.; Balko, B. A.; Lee, Y. T.

1989-02-00T23:59:59.000Z

8

General Relativistic Effects in Atom Interferometry  

SciTech Connect

Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

2008-03-17T23:59:59.000Z

9

Reaction studies of hot silicon, germanium and carbon atoms  

SciTech Connect

The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

Gaspar, P.P.

1990-11-01T23:59:59.000Z

10

General Atomics Compliance Order, October 6, 1995 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Atomics General Atomics Agreement Name General Atomics Compliance Order, October 6, 1995 HWCA 95/96-017 State California Agreement Type Compliance Agreement Legal Driver(s) FFCAct Scope Summary Address LDR requirements pertaining to storage and treatment of covered waste at General Atomics Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 10/6/1995 SCOPE * Address LDR requirements pertaining to storage and treatment of covered waste at General Atomics. * Require adherence to the Site Treatment Plan which provides overall schedules for achieving compliance with LDR storage and treatment requirements based on milestones. ESTABLISHING MILESTONES * Respondent shall carry out all activities in accordance with the schedules and

11

International Atomic Energy Agency General Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Atomic Energy Agency General Conference International Atomic Energy Agency General Conference International Atomic Energy Agency General Conference September 17, 2007 - 2:41pm Addthis Remarks As Prepared for Delivery by Secretary Bodman Thank you Mr. President. Let me congratulate you on your selection as President of this 51st General Conference of the International Atomic Energy Agency. I also wish to thank Dr. ElBaradei for his leadership as Director General. I am very pleased to be here participating in the opening session of this General Conference. It has already been an eventful week here in Vienna. Yesterday I was privileged to host a ministerial meeting on the Global Nuclear Energy Partnership. This momentous event marked the tripling in size of this partnership with agreement by 16 partners on the GNEP Statement of

12

Secretary Chu Addresses the International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Addresses the International Atomic Energy Agency Secretary Chu Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a

13

Secretary Chu Addresses the International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addresses the International Atomic Energy Agency Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a message from President Barack Obama:

14

Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Murray Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca Mountain Project * DUF6 * Plateau Remediation Contract * Washington River Closure Project * SRS Liquid Waste AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AFS Technology Provider

15

Microsoft Word - DOE-ID-14-088 General Atomics EC B3-6.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Project Title: Modularization Fabrication and Characterization of Complex Silicon Carbide Composite Structures - General Atomics SECTION B. Project Description General Atomics...

16

Slow and fast light dynamics in a chiral cold and hot atomic medium  

E-Print Network (OSTI)

We study Chiral Based Electromagnetically Induced Transparency (CBEIT) of a light pulse and its associated subluminal and superluminal behavior through a cold and a hot medium of 4-level \\textit{double-Lambda type} atomic system. The dynamical behavior of this chiral based system is temperature dependent. The magnetic field based chirality and dispersion is always opposite as compared with the electric field ones. Contrastingly, the response of the chiral effect along with the incoherence Doppler broadening mechanism enhances the superluminal behavior as compared with its traditional degrading effect. Nevertheless, the intensity of a coupled microwave field destroys the coherence of the medium and degrade superluminality and subluminality of the sysmtem. The undistorted retrieved pulse from a hot chiral medium delays by $896 ns$ than from a cold chiral medium under same set of parameters. Nevertheless, it advances by $-31n s$ in the cold chiral medium when a suitably different spectroscopic parameters are sel...

Bacha, Bakht A; Nazmidinov, Rashid G

2014-01-01T23:59:59.000Z

17

Egemen Kolemen General Atomics, 13-417, PO Box 85608  

E-Print Network (OSTI)

Position Princeton Plasma Physics Laboratory, Princeton, NJ Oct 2011 - present Research Scientist working-455-2285 Mobile Phone: 609-240-2021 Email: ekolemen@pppl.gov Website : http://www.princeton.edu/~ekolemen/ Current on plasma dynamics and control Collaborating at DIII-D Tokamak, General Atomics, San Diego, CA Education

Rowley, Clarence W.

18

International Atomic Energy Agency - General Session | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- General Session - General Session International Atomic Energy Agency - General Session September 18, 2006 - 8:53am Addthis Prepared Remarks for Energy Secretary Samuel Bodman Thank you Director General ElBaradei. Congratulations to Mr. Abdul Samad Minty on your election as President of this, the 50th IAEA General Conference. President George W. Bush sends a letter wishing us a productive conference. Let me draw from his message: "My Administration has announced a bold new proposal called the Global Nuclear Energy Partnership. We will work with countries to meet their growing energy needs, dispose of waste safely, advance nonproliferation, and keep nuclear technology out of the hands of terrorist networks and terrorist states. "We will encourage reliable access to nuclear fuel for countries that agree

19

Generalized Collective States and Their Role in a Collective State Atomic Interferometer and Atomic Clock  

E-Print Network (OSTI)

We investigate the behavior of an ensemble of N non-interacting, identical atoms, excited by a laser with a wavelength of $\\lambda$. In general, the i-th atom sees a Rabi frequency $\\Omega_i$, an initial position dependent laser phase $\\phi_i$, and a motion induced Doppler shift of $\\delta_i$. When $\\Omega_i=\\Omega$ and $\\delta_i=\\delta$ for all atoms, the system evolves into a superposition of (N+1) symmetric collective states (SCS), independent of the values of $\\phi_i$. If $\\phi_i=\\phi$ for all atoms, these states simplify to the well-known Dicke collective states. When $\\Omega_i$ or $\\delta_i$ is distinct for each atom, the system evolves into a superposition of SCS as well as asymmetric collective states (ACS). For large N, the number of ACS's $(2^N-N-1)$ is far greater than that of the SCS. We show how to formulate the properties of all the collective states under various non-idealities, and use this formulation to understand the dynamics thereof. For the case where $\\Omega_i=\\Omega$ and $\\delta_i=\\delta$ for all atoms, we show how to determine the amplitudes of the generalized collective states in a simple manner. For the case where $\\Omega_i$ or $\\delta_i$ is distinct for each atom, we show how the SCS and ACS's can be treated on the same footing. Furthermore, we show that the collective states corresponding to the absorption of a given number of photons can be visualized as an abstract, multi-dimensional rotation in the Hilbert space spanned by the ordered product states of individual atoms. We also consider the effect of treating the center of mass degree of freedom of the atoms quantum mechanically on the description of the collective states. Specifically, we show that it is indeed possible to construct a generalized collective state, as needed for the collective state atomic interferometer we recently proposed, when each atom is assumed to be in a localized wave packet.

Resham Sarkar; May E. Kim; Renpeng Fang; Yanfei Tu; Selim M. Shahriar

2014-08-11T23:59:59.000Z

20

Slow and fast light dynamics in a chiral cold and hot atomic medium  

E-Print Network (OSTI)

We study Chiral Based Electromagnetically Induced Transparency (CBEIT) of a light pulse and its associated subluminal and superluminal behavior through a cold and a hot medium of 4-level \\textit{double-Lambda type} atomic system. The dynamical behavior of this chiral based system is temperature dependent. The magnetic field based chirality and dispersion is always opposite as compared with the electric field ones. Contrastingly, the response of the chiral effect along with the incoherence Doppler broadening mechanism enhances the superluminal behavior as compared with its traditional degrading effect. Nevertheless, the intensity of a coupled microwave field destroys the coherence of the medium and degrade superluminality and subluminality of the sysmtem. The undistorted retrieved pulse from a hot chiral medium delays by $896 ns$ than from a cold chiral medium under same set of parameters. Nevertheless, it advances by $-31n s$ in the cold chiral medium when a suitably different spectroscopic parameters are selected. The corresponding group index of the medium and the time delay/advance, are studied and analyzed explicitly [Note: A revise version is under preparation

Bakht A Bacha; Fazal Ghafoor; Rashid G Nazmidinov

2014-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International Atomic Energy Agency General Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2007 - 2:41pm 17, 2007 - 2:41pm Addthis Remarks As Prepared for Delivery by Secretary Bodman Thank you Mr. President. Let me congratulate you on your selection as President of this 51st General Conference of the International Atomic Energy Agency. I also wish to thank Dr. ElBaradei for his leadership as Director General. I am very pleased to be here participating in the opening session of this General Conference. It has already been an eventful week here in Vienna. Yesterday I was privileged to host a ministerial meeting on the Global Nuclear Energy Partnership. This momentous event marked the tripling in size of this partnership with agreement by 16 partners on the GNEP Statement of Principles, which establishes the partnership's goals and path for implementation.

22

GA Hot Cell D&D Closeout Report  

Office of Legacy Management (LM)

GENERAL ATOMICS GENERAL ATOMICS HOT CELL FACILITY DECONTAMINATION & DECOMMISSIONING PROJECT FINAL PROJECT CLOSEOUT REPORT prepared for GA HOT CELL D&D PROJECT CONTRACT NUMBERS DE-AC03-84SF11962 and DE-AC03-95SF20798 PBS VL-GA-0012 Approvals Prepared by: James Davis, III Date Project Manager, Oakland Environmental Programs Office Reviewed by: John Lee Date Deputy, Oakland Environmental Programs Office Approved by: Laurence McEwen Date Acting Director, Oakland Environmental Programs Office General Atomics Hot Cell Facility D&D Project Closeout Report Contents Page i CONTENTS CONTENTS.....................................................................................................................................

23

ESS 2012 Peer Review - GRIDS Soluble Lead Flow Battery Technology - Aaron Sathrum, General Atomics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atomics Proprietary Information Atomics Proprietary Information 1 GRIDS Soluble Lead Flow Battery Technology General Atomics and the University of California, San Diego Aaron J. Sathrum (General Atomics): Aaron.Sathrum@ga.com Advanced Research Projects Agency - Energy (ARPA-e) OVERVIEW TECHNICAL CHALLENGES RESULTS MODELING CHARACTERIZATION FLOW BATTERY OUTLOOK Anode: Pb 2+ + 2e -  Pb Cathode: Pb 2+ + 2H 2 O  PbO 2 + 4H + + 2e - Overall: H 2 O  Pb + PbO 2 + 4H + Cell Potential = 1.76V Energy Density = 75Wh/kg, 95Wh/L General Atomics (GA) and the University of California, San Diego (UCSD) are jointly developing a soluble lead flow battery 1 where the active lead material is dissolved into methanesulfonic acid, which allows for the use of a single electrolyte and eliminates the

24

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL ATOMICS FOR AN ADVANCE WAIVER OF THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENERAL ATOMICS FOR AN ADVANCE WAIVER OF THE GENERAL ATOMICS FOR AN ADVANCE WAIVER OF THE GOVERNMENT'S DOMESTIC AND FOREIGN PATENT AND COPYRIGHT RIGHTS UNDER DOE CONTRACT DE-AC03-00SF21868; DOE WAIVER NO W(A)-00-017; SAN 685 The Petitioner, General Atomics (GA), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions in the above cited research and development contract (GA Contract). See Appendix A- General Atomics' Petition, Petition Answer I. In addition, GA would like to assert copyright in computer software and delay the immediate release of unpublished technical data. The Development of the Technology and Selection Of GA Prior to 1995, DOE funded GA's work to develop technology related to Gas Turbine Modular Helium Reactors (GT-MHR). See Appendix A, Petition Answers 4 and 8. After the Government

25

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM  

E-Print Network (OSTI)

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM on the tank bottom will be opened. The Continued on back #12;http://AgBioenergy.tamu.edu concentrated algae

26

DOE - Office of Legacy Management -- Gen_Atomics  

Office of Legacy Management (LM)

General Atomics Hot Cell Facility, California, Site General Atomics Hot Cell Facility, California, Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents General Atomics Hot Cell Facility, California, Site Fact Sheet Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Environmental Assessment Other Documents Fact Sheet General Atomics Hot Cell Facility, California, Site Fact Sheet December 12, 2011 Environmental Assessment Final Environmental Assessment for Decontaminating and Decommissioning the General Atomics Hot Cell Facility DOE/EA-1053 August 1995 Other Documents

27

International Atomic Energy Agency General Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2008 - 3:43pm 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Mr. President. Congratulations on your selection as President of this, the 52nd General Conference. And I again extend my thanks and appreciation to Dr. El Baradei for his leadership as the IAEA's Director General. Mr. President, for a half century the IAEA has led the international effort to make nuclear power safe for the world. Though we have made significant progress in that regard, a great deal of work yet remains. The IAEA is critical to the global effort to enhance energy security. In a world where fossil fuels alone cannot meet the projected growth in energy demand, where energy production and consumption must be balanced as never before against environmental concerns, nuclear power is a major part of our

28

Dilute gas of ultracold two-level atoms inside a cavity; generalized Dicke model  

E-Print Network (OSTI)

We consider a gas of ultracold two-level atoms confined in a cavity, taking into account for atomic center-of-mass motion and cavity mode variations. We use the generalized Dicke model, and analyze separately the cases of a Gaussian, and a standing wave mode shape. Owing to the interplay between external motional energies of the atoms and internal atomic and field energies, the phase-diagrams exhibit novel features not encountered in the standard Dicke model, such as the existence of first and second order phase transitions between normal and superradiant phases. Due to the quantum description of atomic motion, internal and external atomic degrees of freedom are highly correlated leading to modified normal and superradiant phases.

Jonas Larson; Maciej Lewenstein

2009-02-06T23:59:59.000Z

29

U.S. Energy Secretary Addresses International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Addresses International Atomic Energy Agency Secretary Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 - 4:48pm Addthis VIENNA, AUSTRIA - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's General Conference today in Vienna. Opening with a message from President Barack Obama, Secretary Chu highlighted the importance of safety and security in the nuclear industry in light of the tragic events at Fukushima this year, and outlined the four priorities of President Obama's nuclear agenda: promoting the peaceful use of nuclear energy, strengthening the nuclear proliferation regime, pursuing nuclear disarmament and enhancing nuclear security The following are excerpts of Secretary Chu's remarks as prepared for

30

U.S. Energy Secretary Addresses International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Secretary Addresses International Atomic Energy Agency U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 - 2:24pm Addthis VIENNA, AUSTRIA - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's General Conference today in Vienna. Opening with a message from President Barack Obama, Secretary Chu highlighted the importance of safety and security in the nuclear industry in light of the tragic events at Fukushima this year, and outlined the four priorities of President Obama's nuclear agenda: promoting the peaceful use of nuclear energy, strengthening the nuclear proliferation regime, pursuing nuclear disarmament and enhancing nuclear security The following are excerpts of Secretary Chu's remarks as prepared for

31

Resonance enhanced multiphoton ionisation probing of H atoms in a hot lament chemical vapour deposition reactor  

E-Print Network (OSTI)

multiphoton ionisation (MPI) spectroscopy, resonance enhanced at the two photon energy by the state, to detect measurements obtained using alternative in situ detection methods, and are generally consistent with current,10 C 2 H 4 using techniques such as coherent anti-Stokes Raman spec- troscopy (CARS),10h13 vacuum

Bristol, University of

32

Testing General Relativity and Alternative Theories of Gravity with Space-based Atomic Clocks and Atom Interferometers  

E-Print Network (OSTI)

The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of $\\Delta f/f \\sim 10^{-16}$ in an elliptic orbit around the Earth would constrain the PPN parameters $|\\beta -1|, |\\gamma-1| \\lesssim 10^{-6}$. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

Ruxandra Bondarescu; Andreas Schrer; Philippe Jetzer; Raymond Anglil; Prasenjit Saha; Andrew Lundgren

2014-12-05T23:59:59.000Z

33

Hot Canyon  

ScienceCinema (OSTI)

This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

None

2013-03-01T23:59:59.000Z

34

Microsoft Word - DOE-ID-13-001 General Atomics EC B3-6.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 SECTION A. Project Title: Development of ASTM Standard for SiC-SiC Joint Testing - General Atomics SECTION B. Project Description General Atomics (GA) proposes to develop an instrumented test rig and standard test method to measure the strength of joints between cylindrical SiC-SiC tubing and endplugs at elevated, reactor-relevant temperatures. The test will be an endplug pushout method in which an axial load is applied to the internal surface of the endplug while the outer tubular ceramic surface is fixed in place. GA will use ancillary equipment to diagnose failure modes of a ceramic joint under realistic conditions. SECTION C. Environmental Aspects / Potential Sources of Impact Chemical Use/Storage - Precursors are used to produce silicon carbide (SiC) coatings, including methyltrichlorosilane CH

35

International Atomic Energy Agency 49th Session of the General Conference |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49th Session of the General 49th Session of the General Conference International Atomic Energy Agency 49th Session of the General Conference September 26, 2005 - 10:51am Addthis Remarks Prepared for Energy Secretary Samuel Bodman [Videotaped Remarks as Delivered by Secretary Bodman ] Good morning. I regret that I cannot be with you in Vienna due to the extraordinary events related to the recent Hurricanes in the United States - and the continuing recovery efforts that are addressing devastation on our gulf coast. These two storms have claimed many hundreds of lives, destroyed whole communities, and displaced large numbers of Americans. As you know, our gulf-coast region is home to a very significant percentage of America's oil and natural gas facilities. Because of the severity of the most recent storm, Hurricane Rita, and the

36

Effective cluster interactions using the generalized perturbation method in the atomic-sphere approximation  

Science Journals Connector (OSTI)

We describe the generalized perturbation method in the atomic-sphere approximation (ASA) for calculating the effective cluster interactions. Based on our development of Korringa-Kohn-Rostoker coherent-potential approximation in the ASA [Singh et al., Phys. Rev. B 44, 8578 (1991)], the present approach is the next step towards developing a first-principles method that can be easily applied to describe substitutionally disordered alloys based on simple lattice structures as well as complex lattice structures with low symmetry. To test the accuracy of the ASA results, we have calculated the effective pair interactions (EPI) up to fourth-nearest neighbors for the substitutionally disordered Pd0.5V0.5 and Pd0.75Rh0.25 alloys. Our calculated EPIs are in good agreement with the respective muffin-tin results.

Prabhakar P. Singh and A. Gonis

1993-03-15T23:59:59.000Z

37

Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory  

SciTech Connect

This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.

Bench, T.R.

1997-05-01T23:59:59.000Z

38

Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes  

SciTech Connect

The Kubo-Greenwood formulation for calculation of optical conductivities with an average atom model is extended to calculate thermal conductivities. The method is applied to species and conditions of interest for inertial confinement fusion. For the mixed species studied, the partial pressure mixing rule is used. Results including pressures, dc, and thermal conductivities are compared to ab initio calculations. Agreement for pressures is good, for both the pure and mixed species. For conductivities, it is found that the ad hoc renormalization method with line broadening, described in the text, gives best agreement with the ab initio results. However, some disagreement is found and the possible reasons for this are discussed.

Starrett, C. E.; Kress, J. D.; Collins, L. A.; Hanson, D. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clerouin, J. [CEA, DAM, DIF, 91297 Arpajon Cedex (France); Recoules, V. [CEA, DAM, DIF, 91297 Arpajon Cedex (France); LUTH UMR8102, Observatoire de Paris, CNRS, Universite Paris Diderot, 92195 Meudon (France)

2012-10-15T23:59:59.000Z

39

Page 1 A E Costley, BPS Workshop II, General Atomics, 1 3 May 2001 DIAGNOSTICS FOR BURNING PLASMA EXPERIMENTS  

E-Print Network (OSTI)

for Machine protection Plasma control Physics evaluation The measurements of some parameters may contribute A E Costley, BPS Workshop II, General Atomics, 1 Ð 3 May 2001 Machine protection Need to protect, ie 'ionization front' position and/or Te and ne at the divertor plate. #12;ITER Page 7 A E Costley

40

Simulations of Atomic Processes at Semiconductor Surfaces - General-Method and Chemisorption on Gaas(110)  

E-Print Network (OSTI)

& F(r)= ?2a ~ V(r) ( +py(r), (2.15) BU,)F"=? (2.22) so the strength of the electronic force is determined by the interatomic matrix element V(r) and its dependence on the separation of the atoms r. The equilibrium separation is given by 2a ~ V..., but Si bonding at the As?As bridge site 2. Notice that the x vibrations of Si have higher fre- quency than those of C, even though Si is a heavier atom. The reason, of course, is that Si sits between two As atoms, above the surface, and experiences...

MENON, M.; Allen, Roland E.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar Works in Seattle: Domestic Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

42

REPORT ON ATOMIZATION TESTS FOR PROJECT TITLED - BIODIESEL BLENDS IN MICROTURBINE.  

SciTech Connect

The injectors for the Capstone turbine have the general design shown in figure 1 below. It consists of an airblast atomizer with a cylindrical fuel nozzle and an annular air passage surrounding it. The airblast atomizer is surrounded by a 'mixing tube' with circular holes just downstream of the atomizer outlet and swirler holes further downstream. During operation, these holes bring 'hot' air/gases to help vaporize and provide premixed fuel and air for combustion downstream of the 'mixing' tube.

KRISHNA,C.R.

2007-01-01T23:59:59.000Z

43

HOT TOPIC: Nanotechnology lecture  

Science Journals Connector (OSTI)

...Check-Bits HOT TOPIC: Nanotechnology lecture TOP SITE www.ukonlineforbusiness...proper handling. HOT TOPIC Nanotechnology lecture FUTURESHOCK Cyborgs...Cheltenham and Gloucester Branch. Nanotechnology Devices Defying Nature is taking......

HOT TOPIC: Nanotechnology lecture

2003-11-01T23:59:59.000Z

44

General Atomics | Open Energy Information  

Open Energy Info (EERE)

offers research, development and consulting services to the nuclear industry, including nuclear energy production, manufacturing, defense and related applications. References:...

45

Composite material reinforced with atomized quasicrystalline particles and method of making same  

DOE Patents (OSTI)

A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

Biner, Suleyman B. (Ames, IA); Sordelet, Daniel J. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Anderson, Iver E. (Ames, IA)

1998-12-22T23:59:59.000Z

46

Peaceful Uses of the Atom and Atoms for Peace  

Office of Scientific and Technical Information (OSTI)

Peaceful Uses of the Atom Peaceful Uses of the Atom Fermi and Atoms for Peace · Understanding the Atom · Seaborg · Teller Atoms for Peace Atoms for Peace + 50 - Conference, October 22, 2003 Celebrating the 50th anniversary of President Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General Assembly of the United Nations, New York City, December 8, 1953 Documents: Atomic Power in Space: A History A history of the Space Isotope Power Program of the United States from the mid-1950s through 1982; interplanetary space exploration successes and achievements have been made possible by this technology. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

47

Hot Plate Station  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature is limited to 200C in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released...

48

Pilgrim Hot Springs, Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

data processing and use of FLIR - fast, cost effective method to measure natural heat loss * Pilgrim Hot Springs Resource Development - baseload power for the Nome area....

49

Hot and dark matter  

E-Print Network (OSTI)

In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

D'Eramo, Francesco

2012-01-01T23:59:59.000Z

50

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

51

Manhattan Project: Adventures Inside the Atom  

Office of Scientific and Technical Information (OSTI)

ADVENTURES INSIDE THE ATOM ADVENTURES INSIDE THE ATOM General Electric, National Archives (1948) Resources > Library Below is Adventures Inside the Atom, a comic book history of nuclear energy that was produced in 1948 by the General Electric Company. Scroll down to view the full-size images of each page. This publication was produced at the request of the the Assistant Manager for Public Education, Oak Ridge Operations Office, Atomic Energy Commission. It is reproduced here via the National Archives. Adventures Inside the Atom, p. 1 Adventures Inside the Atom, p. 2 Adventures Inside the Atom, p. 3 Adventures Inside the Atom, p. 4 Adventures Inside the Atom, p. 5 Adventures Inside the Atom, p. 6 Adventures Inside the Atom, p. 7 Adventures Inside the Atom, p. 8 Adventures Inside the Atom, p. 9

52

Transformation of Surface Oxides during Vacuum Heat Treatment of a Powder Metallurgical Hot Work Tool Steel.  

E-Print Network (OSTI)

??Characteristics of surface oxide in case of gas atomized Hot Work Tool Steel powder X40CrMoV5-1 in asatomized condition and after heat treatment at different temperatures (more)

Brust, Sebastian

2013-01-01T23:59:59.000Z

53

Hadronic Atoms  

E-Print Network (OSTI)

We review the theory of hadronic atoms in QCD+QED. The non-relativistic effective Lagrangian approach, used to describe this type of bound states, is illustrated with the case of pi+pi- atoms. In addition, we discuss the evaluation of isospin-breaking corrections to hadronic atom observables by invoking chiral perturbation theory.

J. Gasser; V. E. Lyubovitskij; A. Rusetsky

2009-03-02T23:59:59.000Z

54

Cornell University Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

55

Chena Hot Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Chena Hot Springs Geothermal Facility Chena Hot Springs Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Hot Springs Geothermal Facility General Information Name Chena Hot Springs Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Location Information Location Fairbanks, Alaska Coordinates 65.0518255°, -146.0474319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.0518255,"lon":-146.0474319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Preliminary steps to the Atomic Energy Commission  

NLE Websites -- All DOE Office Websites (Extended Search)

steps to the Atomic Energy Commission By October 1946, General Groves had seen the writing on the wall. The Manhattan District was destined to give up the atomic energy program to...

59

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

60

Semiclassical atom  

Science Journals Connector (OSTI)

Semiclassical quantization is incorporated into the average potential approach to atomic physics. The stationary energy functional is shown to be the sum of the Thomas-Fermi functional and a mainly oscillatory part. The latter turns out to be a small correction for sufficiently large atomic numbers, allowing perturbative treatment. Further, a detailed study of semiclassical spectra, with emphasis on energy degeneracy, is performed.

Berthold-Georg Englert and Julian Schwinger

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bogoliubov theory and bosonic atoms  

E-Print Network (OSTI)

We formulate the Bogoliubov variational principle in a mathematical framework similar to the generalized Hartree-Fock theory. Then we analyze the Bogoliubov theory for bosonic atoms in details. We discuss heuristically why the Bogoliubov energy should give the first correction to the leading energy of large bosonic atoms.

Phan Thanh Nam

2011-09-13T23:59:59.000Z

62

Hot Springs, Virginia  

SciTech Connect

Three major springs are located in the Warm Springs Valley of the Allegheny Mountains in western Virginia along US route 220--the Warm, Hot and Healing--all now owned by Virginia Hot Springs, Inc. The Homestead, a large and historic luxurious resort, is located at Hot Springs. The odorless mineral water used at The Homestead spa flows from several springs at temperatures ranging from 39{degrees}C to 41{degrees}C (102{degrees} to 106{degrees}F) (Loam and Gersh, 1992). It is piped to individual, one-person bathtubs in separate men`s and women`s bathhouses, where is is mixed to provide an ideal temperature of 40{degrees}C (104{degrees}F). Tubs are drained and refilled after each use so that no chemical treatment is necessary. Mineral water from the same springs is used in an indoor swimming pool maintained at 29{degrees}C (84{degrees}F), and an outdoor swimming pool maintained at 22{degrees}C (72{degrees}F). Eight kilometers (5 miles) away to the northeast, but still within the 6,000-ha (15,000-acre) Homestead property, are the Warm Springs, which flow at 36{degrees}C (96{degrees}F). The rate of discharge is so great, 63 L/s (1000 gpm) (Muffler, 1979) that the two large Warm Springs pools, in separate men`s and women`s buildings, maintain the temperature on a flow-through basis requiring no chemical treatment. The men`s pool was designed by Thomas Jefferson and opened in 1761; the ladies` pool was opened in 1836. The adjacent {open_quotes}drinking spring{close_quotes} and the two covered pools have been preserved in their original condition.

Lund, J.W.

1996-05-01T23:59:59.000Z

63

E-Print Network 3.0 - angiosarcomas generally lack Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

71 Atomic Transport Dense Metallic Summary: National Laboratory Shell Hydrogen Praxair 12;-- Performance Goals General Comments Targets... Priority Barriers -- Atomic...

64

Coping with Hot Work Environments  

E-Print Network (OSTI)

E-340 04/05 Many Texans work under hot, humid conditions. Summer heat is a particular hazard to agricultural pro- ducers who work long hours under the sun. However, other people working in hot yards, gardens, kitchens or industry jobs are also... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A&M...

Smith, David

2005-04-28T23:59:59.000Z

65

Energy savings through hot pressing  

SciTech Connect

Theoretical considerations indicate that the hot-pressing process can provide energy savings. Several selected results demonstrate that, under favorable conditions, practical results exceed theoretical predictions.

Cutshall, K.

1988-04-01T23:59:59.000Z

66

Hot Town, Summer in the City | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Town, Summer in the City Hot Town, Summer in the City Hot Town, Summer in the City June 4, 2012 - 2:06pm Addthis Ernie Tucker Editor, National Renewable Energy Laboratory Last fall, we mentioned the power that the "Inspiration of Music" can have for Energy Savers. At that time heading into winter, we talked generally about using tonal energy to start saving energy. But tunes can get us in the mood for summer, too. Take the Lovin' Spoonful's "Summer in the City" which begins "hot town, summer in the city, back of my neck getting dirty and gritty." I believe we can all relate. Summer months present plenty of opportunities to save energy-as long as you stay cool about it. As a warm up, you could spin Donna Summer's "Dim All the Lights," a bit of advice which never hurts.

67

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Contractor Licensing Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Arkansas Program Type Solar/Wind Contractor Licensing Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal installers: a Restricted Solar Mechanic license, a Supervising Solar Mechanic license, and a Solar Mechanic Trainee classification. Installers with a Restricted Solar Mechanic license can install and maintain systems used to heat domestic hot water, but are not allowed to perform any other plumbing work. Individuals holding a Supervising Solar Mechanic license are able to supervise, install

68

Hot hollow cathode gun assembly  

DOE Patents (OSTI)

A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

Zeren, J.D.

1983-11-22T23:59:59.000Z

69

NSO PAC 5 Meeting Agenda General Atomics  

E-Print Network (OSTI)

Schmidt (Videoconference with off-site FIRE presenter) 12:00 pm Proposed Plan for FY 04 - Meade 12:30 pm Lunch 1:30 pm FIRE Physics Validation Requirements Willis/Bolton (Videoconference with off-site OFES

70

Atom Interferometry  

ScienceCinema (OSTI)

Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

Mark Kasevich

2010-01-08T23:59:59.000Z

71

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

72

Hot carrier diffusion in graphene  

E-Print Network (OSTI)

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

2010-11-01T23:59:59.000Z

73

Hot Spot | Open Energy Information  

Open Energy Info (EERE)

Spot Dictionary.png Hot Spot: Anomalous volcanic regions that can occur within a tectonic plate and are thought to be caused by mantle plumes Other definitions:Wikipedia Reegle...

74

Hot Pot Detail - Evidence of Quaternary Faulting  

SciTech Connect

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

2013-06-27T23:59:59.000Z

75

Hot Pot Detail - Evidence of Quaternary Faulting  

DOE Data Explorer (OSTI)

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

76

JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas  

SciTech Connect

Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

2011-03-07T23:59:59.000Z

77

Atom Probe Tomography | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom Probe Tomography Atom Probe Tomography The LEAP 4000 XHR local electrode atom probe tomography instrument enabled the first-ever comprehensive and accurate 3-D chemical...

78

Prometheus Hot Leg Piping Concept  

SciTech Connect

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

79

General Education GENERAL EDUCATION  

E-Print Network (OSTI)

, the pursuit of truth, the intellectual and ethical development of students, and the general well the consequences of human actions. E. Cross-Cultural Awareness Demonstrate the ability to critically compare

Stuart, Steven J.

80

Hot carrier diffusion in graphene  

Science Journals Connector (OSTI)

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene-oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal dynamics of hot carriers after a pointlike excitation are monitored. Carrier-diffusion coefficients of 11?000 and 5500?cm2?s?1 are measured in epitaxial graphene and reduced graphene-oxide samples, respectively, with a carrier temperature on the order of 3600 K. The demonstrated optical techniques can be used for noncontact and noninvasive in situ detection of transport properties of graphene.

Brian A. Ruzicka; Shuai Wang; Lalani K. Werake; Ben Weintrub; Kian Ping Loh; Hui Zhao

2010-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atomic magnetometer  

DOE Patents (OSTI)

An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

82

Solar Hot Water Market Development in Knoxville, TN | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market...

83

SciTech Connect: Hot electron dynamics in graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

ThesisDissertation: Hot electron dynamics in graphene Citation Details In-Document Search Title: Hot electron dynamics in graphene Hot electron dynamics in graphene Graphene, a...

84

Magnetic island evolution in hot ion plasmas  

SciTech Connect

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

85

Hot gas path component cooling system  

DOE Patents (OSTI)

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

86

Commercial Solar Hot Water Financing Program  

Energy.gov (U.S. Department of Energy (DOE))

The Massachusetts Clean Energy Center (MassCEC) and Paradigm Partners are offering a solar hot water financing program in order to meet MassCEC's objective of growing the commercial solar hot water...

87

Plasma formation by neutral-atom injection into toroidal systems  

Science Journals Connector (OSTI)

In a toroidal-type geometry, the closed magnetic field lines inhibit the loss of cold ions from the system. The resulting cold plasma gives rise to the basic difference between the plasma `build-up' equations for neutral-atom injection into a toroidal system and those for magnetic-mirror geometry. If the cold-ion containment time is long compared with the charge-exchange time with beam atoms, then charge exchange of the hot ions with background gas is not a serious loss process since the cold ions resulting from charge exchange will have a high probability of being reconverted to hot ions. Therefore, the cold plasma makes it much easier to satisfy the conditions for which the hot ions will exponentiate to a high density, as compared to the mirror-geometry case. The derived exponentiating condition has the surprising feature that the required cold-ion containment time decreases as the neutral gas density is increased.

A H Futch Jr; C C Damm

1967-01-01T23:59:59.000Z

88

Measuring atomic properties with an atom interferometer  

E-Print Network (OSTI)

Two experiments are presented which measure atomic properties using an atom interferometer. The interferometer splits the sodium de Broglie wave into two paths, one of which travels through an interaction region. The paths ...

Roberts, Tony David, 1972-

2002-01-01T23:59:59.000Z

89

Hot and Dense QCD Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

90

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

91

Atomic Physics and Thermonuclear Fusion Research  

Science Journals Connector (OSTI)

Presently thermonuclear fusion research is faced with a number of atomic and molecular physics problems depending on the type of high-temperature plasma investigated. The present article discusses some particular atomic physics aspects in connection with magnetically confined plasmas (Tokamaks, Stellarators): (1) rate equations for density, momentum and energy with application to plasmas; (2) initial phase of Tokamak plasmas; (3) influence of impurity radiation on operating conditions of fusion plasmas in general and on Tokamak plasmas in particular; (4) influence of atomic elementary reactions on thermodynamic plasma properties; (5) level structures of highly ionized atoms; (6) spectroscopic diagnostic problems.

H W Drawin

1981-01-01T23:59:59.000Z

92

HotSpot | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HotSpot HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot provides a fast and usually conservative means for estimation of the radiation effects associated with atmospheric release of radioactive materials. The HotSpot atmospheric dispersion models are designed for near-surface releases, short-range (less than 10 km) dispersion, and short-term (less than 24 hours) release durations in

93

Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan  

E-Print Network (OSTI)

Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Spring County City of Hot Springs City of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation...

Hot Springs Metropolitan Planning Organization

2005-11-03T23:59:59.000Z

94

Search for methylamine in high mass hot cores  

E-Print Network (OSTI)

We aim to detect methylamine, CH$_{3}$NH$_{2}$, in a variety of hot cores and use it as a test for the importance of photon-induced chemistry in ice mantles and mobility of radicals. Specifically, CH$_3$NH$_2$ cannot be formed from atom addition to CO whereas other NH$_2$-containing molecules such as formamide, NH$_2$CHO, can. Submillimeter spectra of several massive hot core regions were taken with the James Clerk Maxwell Telescope. Abundances are determined with the rotational diagram method where possible. Methylamine is not detected, giving upper limit column densities between 1.9 $-$ 6.4 $\\times$ 10$^{16}$ cm$^{-2}$ for source sizes corresponding to the 100 K envelope radius. Combined with previously obtained JCMT data analyzed in the same way, abundance ratios of CH$_{3}$NH$_{2}$, NH$_{2}$CHO and CH$_{3}$CN with respect to each other and to CH$_{3}$OH are determined. These ratios are compared with Sagittarius B2 observations, where all species are detected, and to hot core models. The observed ratios su...

Ligterink, N F W; van Dishoeck, E F

2015-01-01T23:59:59.000Z

95

Hot  

Office of Scientific and Technical Information (OSTI)

LLC. UMI Number: 1494695 ii DEDICATION I would like to dedicate this thesis to my advisor Joerg Schmailian, a great physicist and mentor. I've learned a lot from him, no...

96

Ecological Technologies of a Chinese Traditional Folk House in Hot-Summer and Cold-Winter Zone  

E-Print Network (OSTI)

located in Hunan province was conducted. Ecological technologies of the Chinese traditional folk house in the hot-Summer and cold-Winter zone were analyzed from site selection, general plane, plane design, section plane design, construction technologies...

Xie, M.; Zhang, G.; Xu, F.

2006-01-01T23:59:59.000Z

97

Elements & Compounds Atoms (Elements)  

E-Print Network (OSTI)

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12;Nucleus Electrons Cloud of negative charge (2 electrons) Fig. 2.5: Simplified model of a Helium (He) Atom He 4.002602 2 Helium Mass Number (~atomic mass) = number of Neutrons + Protons = 4 for Helium Atomic

Frey, Terry

98

Neutral atom traps.  

SciTech Connect

This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

Pack, Michael Vern

2008-12-01T23:59:59.000Z

99

Colorado's Hot Springs | Open Energy Information  

Open Energy Info (EERE)

http:crossref.org Citation D. Frazier. 2000. Colorado's Hot Springs. Boulder, Colorado: Pruett Publishing Company. 165p. Retrieved from "http:en.openei.orgw...

100

Covered Product Category: Hot Food Holding Cabinets  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar Hot Water Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

102

Monitoring SERC Technologies Solar Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

103

2011 IAEA General Conference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 IAEA General Conference 2011 IAEA General Conference Remarks as Prepared for Delivery Secretary Steven Chu Monday, September 19, 2011 Thank you, Ambassador Feruta. Congratulations on your election as President of this Conference. I also want to thank Director General Amano for his outstanding leadership. I am honored to represent the United States today, and I want to share a message from President Barack Obama: "On behalf of the United States, please accept my best wishes for a successful International Atomic Energy Agency General Conference. This year's meeting takes place against the backdrop of the severe earthquake and tsunami that struck Japan in March and the devastating accident at the Fukushima Daiichi Nuclear Power Station that followed. Along with

104

Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces  

E-Print Network (OSTI)

, while identification of a hot spot by alanine scanning establishes the potential to generate substantial, termed "hot spots", that comprise the subset of residues that contribute the bulk of the binding free proposed as prime targets for drug binding.1,4 The established approach to the identification of such hot

Vajda, Sandor

105

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network (OSTI)

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

106

Testing a class of non-Kerr metrics with hot spots orbiting SgrA$^*$  

E-Print Network (OSTI)

SgrA$^*$, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA$^*$ with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle.

Dan Liu; Zilong Li; Cosimo Bambi

2014-11-10T23:59:59.000Z

107

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

Sitko, Michael L.

108

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

Sitko, Michael L.

109

Ceramic hot-gas filter  

DOE Patents (OSTI)

A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

1999-01-01T23:59:59.000Z

110

Ceramic hot-gas filter  

DOE Patents (OSTI)

A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

1999-05-11T23:59:59.000Z

111

Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA,  

Open Energy Info (EERE)

dipole resistivity survey of a portion of the Coso Hot Springs KGRA, dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: A detailed electrical resistivity survey of 54 line-km was completed at the Coso Hot Springs KGRA in September 1977. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with the geothermal system at Coso. The boundaries of this low are generally well defined to the north and west but not as well to the south where an approximate southern limit has been determined. The bedrock resistivity low merges with an observed resistivity low over gravel fill

112

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are

113

New concept for internal heat production in hot Jupiter exo-planets, thermonuclear ignition of dark  

E-Print Network (OSTI)

Discovery of hot Jupiter exo-planets, those with anomalously inflated size and low density relative to Jupiter, has evoked much discussion as to possible sources of internal heat production. But to date, no explanations have come forth that are generally applicable. The explanations advanced typically involve presumed tidal dissipation and/or converted incident stellar radiation. The present, brief communication suggests a novel interfacial nuclear fission-fusion source of internal heat production for hot Jupiters that has been overlooked by theoreticians and which has potentially general applicability.

J. Marvin Herndon

2008-01-01T23:59:59.000Z

114

Disaggregating residential hot water use. Part 2  

SciTech Connect

A major obstacle to gathering detailed data on end-use hot water consumption within residences and commercial buildings is the cost and complexity of the field tests. An earlier study by the authors presented a methodology that could accurately disaggregate hot water consumption into individual end-uses using only information on the flow of hot water from the water heater. The earlier methodology can be extended to a much larger population of buildings, without greatly increasing the cost and complexity of the data collection and analysis, by monitoring the temperature of the hot water lines that go to different parts of the building. For the three residences studied here, thermocouples /monitored the temperatures of four hot water lines at each site. The thermocouple readings provide a positive indication of when hot water starts to flow in a line. Since the end-uses served by each hot water line are known, the uncertainty in assigning a draw to a particular end-use is greatly reduced. Benefits and limitations for the methodology are discussed in the paper. Using the revised methodology, hot water usage in three residences is disaggregated into the following end-uses: showers, baths, clothes washing, dishwashing, kitchen sink, and bathroom sink. For two residences, the earlier methodology--which does not use the thermocouple data--is also used to disaggregate the same draw data.

Lowenstein, A. [AIL Research, Inc., Princeton, NJ (United States); Hiller, C.C. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-10-01T23:59:59.000Z

115

The private city through the hot images  

Science Journals Connector (OSTI)

Hot Images is an artistic mixed reality application that deals with the relation between human beings and city environments, thus proposing a novel cartography and navigation tool for the city. Within the virtual recreated environment of the Hot Images, ... Keywords: color navigation, human space, location based services, mixed reality, urban environments

Cristina Portals

2007-06-01T23:59:59.000Z

116

Are we putting in hot water?  

E-Print Network (OSTI)

, and habitat loss will increase. And while slightly warmer water may not sound so bad to many of us, its effectAre we putting our fish in hot water? Global warming and the world's fisheries · Hot, hungry, and gasping for air · Shrinking fish and fewer babies? · Global warming puts fish on the run · Warm water

Combes, Stacey A.

117

Production of mesoscopic superpositions with ultracold atoms  

E-Print Network (OSTI)

We study mesoscopic superpositions of two component Bose-Einstein condensates. Atomic condensates, with long coherence times, are good systems in which to study such quantum phenomenon. We show that the mesoscopic superposition states can be rapidly generated in which the atoms dispersively interact with the photon field in a cavity. We also discuss the production of compass states which are generalized Schr\\"{o}dinger cat states. The physical realization of mesoscopic states is important in studying decoherence and precision measurement.

H. T. Ng

2007-07-16T23:59:59.000Z

118

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

119

Reading Comprehension - Atomic History  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic History Atomic History A Greek philosopher named Democritus said that all atoms are small, hard particles. He thought that atoms were made of a single material formed into different shapes and sizes. The word " _________ element compound mixture atom " is derived from the Greek word "atomos" which means "not able to be divided." In 1803, John Dalton, a school teacher, proposed his atomic theory. Dalton's theory states that elements (substances composed of only one type of _________ molecules ions atom ) combine in certain proportions to form _________ compounds atoms mixtures elements . In 1897, a British scientist named J. J. Thomson experimented with a cathode-ray tube which had a positively charged plate. The plate attracted negatively charged particles that we now call _________ protons neutrons

120

The Universe Adventure - Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter and Atoms Matter and Atoms Richard Feynman "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is that...all things are made of atoms." -Richard P. Feynman, winner of the 1965 Nobel Prize in Physics All is atoms Matter is made of atoms, and atoms are comprised of protons, neutrons, and electrons. Everything in the Universe is made of matter. Though matter exists in many different forms, each form is made out of the same basic constituents: small particles called atoms. Atoms themselves are made of smaller particles: protons, neutrons, and electrons. Protons and neutrons are composed of even smaller particles called quarks.

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Atomizing nozzle and process  

DOE Patents (OSTI)

High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

1993-07-20T23:59:59.000Z

122

Emission of Visible Light by Hot Dense Metals  

E-Print Network (OSTI)

HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

More, R.M.

2010-01-01T23:59:59.000Z

123

Method for hot gas conditioning  

DOE Patents (OSTI)

A method for cracking and shifting a synthesis gas by the steps of providing a catalyst consisting essentially of alumina in a reaction zone; contacting the catalyst with a substantially oxygen free mixture of gases comprising water vapor and hydrocarbons having one or more carbon atoms, at a temperature between about 530.degree. C. (1000.degree. F.) to about 980.degree. C. (1800.degree. F.); and whereby the hydrocarbons are cracked to form hydrogen, carbon monoxide and/or carbon dioxide and the hydrogen content of the mixture increases with a corresponding decrease in carbon monoxide, and carbon formation is substantially eliminated.

Paisley, Mark A. (Upper Arlington, OH)

1996-02-27T23:59:59.000Z

124

Extended Characterization of Chemical Processes in Hot Cells Using Environmental Swipe Samples  

SciTech Connect

Environmental sampling is used extensively by the International Atomic Energy Agency (IAEA) for verification of information from State declarations or a facilitys design regarding nuclear activities occurring within the country or a specific facility. Environmental sampling of hot cells within a facility under safeguards is conducted using 10.2 cm x 10.2 cm cotton swipe material or cellulose swipes. Traditional target analytes used by the IAEA to verify operations within a facility include a select list of gamma-emitting radionuclides and total and isotopic U and Pu. Analysis of environmental swipe samples collected within a hot-cell facility where chemical processing occurs may also provide information regarding specific chemicals used in fuel processing. However, using swipe material to elucidate what specific chemical processes were/are being used within a hot cell has not been previously evaluated. Staff from Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) teamed to evaluate the potential use of environmental swipe samples as collection media for volatile and semivolatile organic compounds. This evaluation was initiated with sample collection during a series of Coupled End-to-End (CETE) reprocessing runs at ORNL. The study included measurement of gamma emitting radionuclides, total and isotopic U and Pu, and volatile and semivolatile organic compounds. These results allowed us to elucidate what chemical processes used in the hot cells during reprocessing of power reactor and identify other legacy chemicals used in hot cell operations which predate the CETE process.

Olsen, Khris B.; Mitroshkov, Alexandre V.; Thomas, M-L; Lepel, Elwood A.; Brunson, Ronald R.; Ladd-Lively, Jennifer

2012-09-15T23:59:59.000Z

125

Hafnium nitride for hot carrier solar cells  

Science Journals Connector (OSTI)

Abstract Hot carrier solar cells is an attractive technology with the potential of reaching high energy conversion efficiencies approaching the thermodynamic limit of infinitely stacked multi-junction solar cells: 65% under one sun and 86% under maximally concentrated. The hot carrier solar cell is conceptually simple consisting of two key components: absorber and energy selective contacts. High efficiencies are achieved by minimising the energy lost to thermalisaton of hot photo-generated carriers while absorbing majority of the solar spectrum. For this to be achieved, energy selective contacts are required to allow the extraction of carriers fast enough at an energy level above the electronic band edge. It is critical for the absorber to be able to maintain a hot carrier population for a sufficiently long time period for the extraction of carriers while they are hot. Bulk materials with a large gap between acoustic and optical branches in the phonon dispersion are predicted to exhibit slow hot carrier thermalisation rates. Hafnium nitride is such a material with a large gap in its phonon dispersion and is identified as a potential material to be used as a hot carrier absorber. Hafnium nitride has been deposited using reactive sputtering and characterised to investigate material properties and carrier cooling rates.

Simon Chung; Santosh Shrestha; Xiaoming Wen; Yu Feng; Neeti Gupta; Hongze Xia; Pyng Yu; Jau Tang; Gavin Conibeer

2014-01-01T23:59:59.000Z

126

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

127

EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs to Anaconda Transmission Line Rebuild Project, Montana EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power...

128

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers (EERE)

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

129

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

130

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

131

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

132

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

133

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

134

Resistivity Tomography At Crump's Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Tomography At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Tomography At Crump's Hot Springs...

135

Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film  

SciTech Connect

The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

None

2013-02-02T23:59:59.000Z

136

Model for Energy Supply System Alternatives and their General...  

Open Energy Info (EERE)

their General Environmental Impacts AgencyCompany Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways...

137

The Modified Embedded Atom Method  

SciTech Connect

Recent modifications have been made to generalize the Embedded Atom Method (EAM) to describe bonding in diverse materials. By including angular dependence of the electron density in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce the basic energetic and structural properties of 45 elements. This method is ideally suited for examining the interfacial behavior of dissimilar materials. This paper explains in detail the derivation of the method, shows how the parameters of the MEAM are determined directly from experiment or first principles calculations, and examines the quality of the reproduction of the database. Materials with fcc, bcc, hcp, and diamond cubic crystal structure are discussed. A few simple examples of the application of the MEAM to surfaces and interfaces are presented. Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show non-uniform deformation of the fiber.

Baskes, M.I.

1994-08-01T23:59:59.000Z

138

Fragmentation of hot classical drops  

Science Journals Connector (OSTI)

Time evolution of hot drops of matter containing ?230 or ?130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the ?,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

A. Vicentini; G. Jacucci; V. R. Pandharipande

1985-05-01T23:59:59.000Z

139

Hot Leg Piping Materials Issues  

SciTech Connect

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

140

Volume reduction of hot cell plastic wastes  

SciTech Connect

The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

Dykes, F W; Henscheid, J P; Lewis, L C; Lundholm, C W; Nicklas, J H

1989-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

142

Graphene-Base Hot-Electron Transistor  

E-Print Network (OSTI)

B. H. ; Wang, K. L. "Vertical Graphene-Base Hot-Electronoperation in single-layer graphene ferroelectric memory",of Dirac Point Energy at the Graphene/Oxide Interface", Nano

Zeng, Caifu

2014-01-01T23:59:59.000Z

143

Extracting hot carriers from photoexcited semiconductor nanocrystals  

SciTech Connect

During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

Zhu, Xiaoyang [Columbia University Department of Chemistry

2013-09-12T23:59:59.000Z

144

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

145

Wall Drying in Hot and Humid Climates  

E-Print Network (OSTI)

Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

Boone, K.; Weston, T.; Pascual, X.

2004-01-01T23:59:59.000Z

146

Plasmonic Energy Collection through Hot Carrier Extraction  

Science Journals Connector (OSTI)

(9) This fundamental hot-carrier mechanism has been used extensively to determine Schottky barrier heights, yet has not been considered for energy conversion due to low efficiencies. ... After hot carriers reach the interface, they either tunnel through or traverse over the barrier, ?b, to be collected by the other electrode depending on their energies relative to the barrier height. ... Nanoantennas are key optical components for light harvesting; photodiodes convert light into a current of electrons for photodetection. ...

Fuming Wang; Nicholas A. Melosh

2011-10-24T23:59:59.000Z

147

General Thermodynamics  

Science Journals Connector (OSTI)

... principally in the Journal of the Franklin Institute. These ideas relate to a study of thermodynamics from what the author calls a generalized point of view, which concerns itself with ... from what the author calls a generalized point of view, which concerns itself with the thermodynamics of metastable states and irreversible processes as wall as with the stable states and reversible ...

R. W. HAYWOOD

1956-06-02T23:59:59.000Z

148

Testing a class of non-Kerr metrics with hot spots orbiting SgrA$^*$  

E-Print Network (OSTI)

SgrA$^*$, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift...

Liu, Dan; Bambi, Cosimo

2014-01-01T23:59:59.000Z

149

Canopy hot-spot as crop identifier  

SciTech Connect

Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

1986-05-01T23:59:59.000Z

150

Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes  

SciTech Connect

While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

Henderson, H.; Wade, J.

2014-04-01T23:59:59.000Z

151

ATOMS PEACE WAR Eisenhower  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATOMS ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy-United States-History. 2. U.S. Atomic Energy Commission-History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969.

152

Colloquium: Artificial gauge potentials for neutral atoms  

SciTech Connect

When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force. In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are presented. The corresponding Aharonov-Bohm phase is related to the Berry's phase that emerges when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented, such as the emergence of an effective spin-orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an optical lattice, are addressed.

Dalibard, Jean; Gerbier, Fabrice; Juzeliunas, Gediminas; Oehberg, Patrik [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole normale superieure, 24 rue Lhomond, 75005, Paris (France); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, Vilnius 01108 (Lithuania); SUPA, Department of Physics, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

2011-10-01T23:59:59.000Z

153

Accelerated guided atomic pulse  

Science Journals Connector (OSTI)

The deleterious effects of dispersion on a propagating coherent atomic pulse, along the axis of a traveling-wave laser beam, can be ameliorated by the nonlinear self-interacting force due to dipole-dipole coupling between atoms. We show that a wide atomic pulse with a particular profile can retain its shape during propagation and, moreover, the momentum of the pulse increases due to photon absorption. For the wide soliton case, we demonstrate analytically that the self-interacting atomic force scales inversely with the third power of the pulse width.

S. Dyrting; Weiping Zhang; B. C. Sanders

1997-09-01T23:59:59.000Z

154

Atomic Collapse Observed  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 | Tags: Hopper, Materials Science Contact: Linda...

155

Multiplicative Sets of Atoms.  

E-Print Network (OSTI)

??It is possible for an element to have both an atom factorization and a factorization that will always contain a reducible element. This leads us (more)

Rand, Ashley Nicole

2013-01-01T23:59:59.000Z

156

Improved graphite furnace atomizer  

DOE Patents (OSTI)

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

157

Atom Nano-Optics  

Science Journals Connector (OSTI)

Nanolocalized light fields composed of photon dots and photon holes are being used to control the motion of atoms on a nanometer spatial scale.

Balykin, Victor; Klimov, Vasilii; Letokhov, Vladilen

2005-01-01T23:59:59.000Z

158

Deterministic Many-to-Many Hot Potato Routing Allan Borodin  

E-Print Network (OSTI)

Deterministic Many-to-Many Hot Potato Routing Allan Borodin Yuval Rabani Baruch Schieber Abstract We consider algorithms for many-to-many hot potato routing. In hot potato (deflection) routing in each time step. We consider a form of routing known as hot potato routing or deflection routing [1, 5

Borodin, Allan

159

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

160

Experiments with the hot list strategy  

SciTech Connect

Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, the author formulates and features in this report the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements, one or more clauses that are conjectured to play a key role for assignment completion. The chosen clauses - conjectured to merit revisiting, again and again - are placed in an input list of clauses, called the hot list. When an automated reasoning program has decided to retain a new conclusion C - before any other clause is chosen to initiate conclusion drawing - the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, the author focuses on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal; (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts; (3) discovering a proof that is more elegant than previously known; and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program.

Wos, L.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Entanglement dynamics for uniformly accelerated two-level atoms  

E-Print Network (OSTI)

We study, in the paradigm of open quantum systems, the entanglement dynamics of two uniformly accelerated atoms with the same acceleration perpendicular to the separation. The two-atom system is treated as an open system coupled with a bath of fluctuating massless scalar fields in the Minkowski vacuum, and the master equation that governs its evolution is derived. It has been found that, for accelerated atoms with a nonvanishing separation, entanglement sudden death is a general feature when the initial state is entangled, while for those in a separable initial state, entanglement sudden birth only happens for atoms with an appropriate interatomic separation and sufficiently small acceleration. Remarkably, accelerated atoms can get entangled in certain circumstances while the inertial ones in the Minkowski vacuum can not. A comparison between the results of accelerated atoms and those of static ones in a thermal bath shows that, uniformly accelerated atoms exhibit distinct features from those immersed in a th...

Hu, Jiawei

2015-01-01T23:59:59.000Z

162

HOT GAS LINES IN T TAURI STARS  

SciTech Connect

For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 A line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from {approx}20% to up to {approx}80%. The velocity centroids of the BCs and NCs are such that V{sub BC} {approx}> 4 V{sub NC}, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by {approx}10 km s{sup -1}. The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which argues for the presence of a hot (10{sup 5} K) wind. For the overall sample, the Si IV and N V line luminosities are correlated with the C IV line luminosities, although the relationship between Si IV and C IV shows large scatter about a linear relationship and suggests that TW Hya, V4046 Sgr, AA Tau, DF Tau, GM Aur, and V1190 Sco are silicon-poor, while CV Cha, DX Cha, RU Lup, and RW Aur may be silicon-rich.

Ardila, David R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Gregory, Scott G.; Hillenbrand, Lynne A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Ingleby, Laura; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Edwards, Suzan [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB Boulder, CO 80309-0440 (United States); Yang, Hao [Institute for Astrophysics, Central China Normal University, Wuhan 430079 (China); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Abgrall, Herve [LUTH and UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, Place J. Janssen, F-92195 Meudon (France); Alexander, Richard D. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Brown, Joanna M.; Espaillat, Catherine [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Hussain, Gaitee, E-mail: ardila@ipac.caltech.edu [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); and others

2013-07-01T23:59:59.000Z

163

Atoms for Peace Awards  

Science Journals Connector (OSTI)

... Technology, is to be chairman of the Organization and Planning Committee of Atoms for Peace Awards. In addition to Dr. Killian, the Committee will include Dr. Detlev W. ... and Dr. Alan Waterman, director of the National Science Foundation. The Atoms for Peace Awards, it will be recalled, were established last summer as a memorial to Henry Ford ...

1955-10-29T23:59:59.000Z

164

Hirshfeld atom refinement  

Science Journals Connector (OSTI)

The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly-L-Ala obtained from synchrotron X-ray and neutron diffraction data at 12, 50, 150 and 295 K. Structural parameters involving hydrogen atoms are determined with comparable precision from both experiments and agree mostly to within two combined standard uncertainties.

Capelli, S.C.

2014-08-29T23:59:59.000Z

165

Decontamination of Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility  

SciTech Connect

The large scale decontamination of the concrete Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility demonstrates that novel management and innovative methods are crucial to ensuring that the successful remediation of the most contaminated facilities can be achieved with minimal risk to the project stakeholders. (authors)

Anderson, M.G.; Halishak, W.F. [MOTA Corporation, West Columbia, SC (United States)

2008-07-01T23:59:59.000Z

166

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan  

E-Print Network (OSTI)

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

Whitehouse, Kamin

167

Atomic dark matter  

SciTech Connect

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

168

HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces  

DOE Data Explorer (OSTI)

HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

Pettit, Frank K.; Bowie, James U.(DOE-Molecular Biology Institute)

169

Extracting hot carriers from photoexcited semiconductor nanocrystals  

SciTech Connect

This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called Shockley-Queisser limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates hot charge carriers that quickly cool to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a phonon bottleneck wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

Zhu, Xiaoyang

2014-12-10T23:59:59.000Z

170

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

ASD General Information ASD General Information APS Resources & Information A list of useful links for APS staff and users. APS Technical Publications Links to APS technical publications. APS Publications Database The official and comprehensive source of references for APS-related journal articles, conference papers, book chapters, dissertations, abstracts, awards, invited talks, etc. Image Library A collection of APS images. Responsibilities & Interfaces for APS Technical Systems Descriptions of the responsibilities of APS technical groups and how they interface with one another. APS Procedures Operational procedures for the APS. APS Specifications Specifications and approvals for upgrades or changes to existing APS hardware and software. APS Radiation Safety Policy & Procedures Committee Minutes

171

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Project Hot Pot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Pot Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

University of Colorado Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

174

Just Hot Resources Consulting | Open Energy Information  

Open Energy Info (EERE)

Hot Resources Consulting Hot Resources Consulting Jump to: navigation, search Name Just Hot Resources Consulting Place Windsor, California Zip 95492 Sector Geothermal energy Product A California-based consulting firm specializing in geothermal drilling project management. Coordinates 43.21638°, -89.340849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.21638,"lon":-89.340849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

176

Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides  

E-Print Network (OSTI)

the hot carrier conduction near the Fermi energy (EF) through the band states or other localized statesAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial

Jo, Moon-Ho

177

Network for transfer of an arbitrary $n$-qubit atomic state via cavity QED  

E-Print Network (OSTI)

I show a scheme which allows a perfect transfer of an unknown single-qubit atomic state from one atom to another by letting two atoms interact simultaneously with a cavity QED. During the interaction between atom and cavity, the cavity is only virtually excited and accordingly the scheme is insensitive to the cavity field states and cavity decay. Based on this scheme, a network for transfer of an arbitrary single-qubit atomic state between atoms is engineered. Then the scheme is generalized to perfectly transfer an arbitrary 2-qubit atomic state and accordingly a network for transfer of an arbitrary 2-qubit atomic state is designed. At last, it is proven that the schemes can be generalized to an arbitrary $n(n\\ge 3)$-qubit atomic state transfer case and a corresponding network is also proposed.

Zhan-jun Zhang

2005-04-29T23:59:59.000Z

178

Cooling of hot electrons in amorphous silicon  

SciTech Connect

Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

1997-07-01T23:59:59.000Z

179

Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems  

E-Print Network (OSTI)

We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4$\\pi$ detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.

Marini, P; Boisjoli, M; Verde, G; Chbihi, A; Ademard, G; Auger, L; Bhattacharya, C; Borderie, B; Bougault, R; Frankland, J; Galichet, E; Gruyer, D; Kundu, S; La Commara, M; Lombardo, I; Lopez, O; Mukherjee, G; Napolitani, P; Parlog, M; Rivet, M F; Rosato, E; Roy, R; Spadaccini, G; Vigilante, M; Wigg, P C; Bonasera, A

2015-01-01T23:59:59.000Z

180

Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems  

E-Print Network (OSTI)

We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4$\\pi$ detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.

P. Marini; H. Zheng; M. Boisjoli; G. Verde; A. Chbihi; G. Ademard; L. Auger; C. Bhattacharya; B. Borderie; R. Bougault; J. Frankland; E. Galichet; D. Gruyer; S. Kundu; M. La Commara; I. Lombardo; O. Lopez; G. Mukherjee; P. Napolitani; M. Parlog; M. F. Rivet; E. Rosato; R. Roy; G. Spadaccini; M. Vigilante; P. C. Wigg; A. Bonasera

2015-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hot springs, geochemistry, and regional heat flow of northcentral Mexico  

SciTech Connect

To date we have found, sampled and performed chemical analyses on 21 hot springs (T > 30/sup 0/C), 4 hot wells (T > 30/sup 0/C) and 15 warm springs (T = 25 to 30/sup 0/C) from the states of Chihuahua, Coahuila and Sonora, Mexico. Also in order to establish background chemistry, an additional 250 cold wells and springs (T = 12 to 25/sup 0/C) were sampled and analyzed and several hundred water analyses from the several thousand provided by various Mexican agencies were included. The technique of silica geothermometry was used to estimate the regional heat flow of northcentral Mexico. Both the traditional heat flow and the silica heat flow values are generally high and show considerable scatter as is typical of areas having Tertiary and Quaternary volcanic and tectonic activity. Specific areas of high heat flow (> 2.5 HFU) include the Presidio and Los Muertos Bolsons, the Cuidad Chihuahua-Chuatemoc area, the Delicias area, and the area south of the San Bernardino Bolson of southeast Arizona. Areas of lower heat flow (2.0 to 2.5 HFU) include the Jimenez-Camargo region and the area between the Los Muertos and Presidio Bolsons.

Swanberg, C.A.; Marvin, P.R.; Salazar S., L.; Gutierrez, C.G.

1981-10-01T23:59:59.000Z

182

Uncertainties on Atomic Data  

Science Journals Connector (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

C. P. Ballance; S. D. Loch; A. R. Foster; R. K. Smith; M. C. Witthoeft; T. R. Kallman

183

Relativistic Atomic Structure Calculations  

Science Journals Connector (OSTI)

This review surveys methods for computing the electronic structures of atoms based on the use of relativistic quantum mechanics. The main mathematical formulas are presented with some account of the underlying...

Ian P. Grant

1988-01-01T23:59:59.000Z

184

The Harnessed Atom | Department of Energy  

Energy Savers (EERE)

Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on...

185

Optical imaging of Rydberg atoms .  

E-Print Network (OSTI)

??We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms (more)

Mazurenko, Anton

2012-01-01T23:59:59.000Z

186

Rydberg Atoms for Quantum Information.  

E-Print Network (OSTI)

??I examine interactions between ensembles of cold Rydberg atoms, and between Rydberg atoms and an intense, optical standing wave. Because of their strong electrostatic interactions, (more)

Younge, Kelly Cooper

2010-01-01T23:59:59.000Z

187

Optical atomic magnetometer  

DOE Patents (OSTI)

An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

Budker, Dmitry; Higbie, James; Corsini, Eric P

2013-11-19T23:59:59.000Z

188

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

189

Atomic mass compilation 2012  

SciTech Connect

Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)

2014-03-15T23:59:59.000Z

190

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area (Redirected from Hot Pot Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Six Hot Topics in Planetary Astronomy  

E-Print Network (OSTI)

Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

David Jewitt

2008-11-14T23:59:59.000Z

192

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

193

Plasmas are Hot and Fusion is Cool  

SciTech Connect

Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

None

2011-01-01T23:59:59.000Z

194

How hot is radiation? Christopher Essexa)  

E-Print Network (OSTI)

. Thus radiation is a natural context in which to introduce nonequilibrium temperature. A properly as they exchange a heat flux JQ(12). Subsystem temperatures occur naturally in expres- sions for entropy productionHow hot is radiation? Christopher Essexa) Department of Applied Mathematics, University of Western

Berry, R. Stephen

195

Planetary science: Venusian hot flow anomalies  

Science Journals Connector (OSTI)

... on 22 March 2008, a space-weather event known as a hot flow anomaly (HFA). Such events occur when electric fields associated with the Sun's solar wind create ... the planet lacks a magnetic field, meaning that the bow shock, and so the HFA, would be much closer in. ...

2012-03-14T23:59:59.000Z

196

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

197

Hot-dry-rock geothermal resource 1980  

SciTech Connect

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

198

Present and Future Computing needs in Atomic Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

in Atomic Physics in Atomic Physics John Ludlow, Connor Ballance, Stuart Loch, Teck-Ghee Lee, Mitch Pindzola Auburn University Science Goals * To calculate atomic and molecular collision processes of relevance to controlled fusion energy * Processes include electron-impact excitation and ionization of atoms and their ions, dielectronic recombination of ions and heavy particle impact excitation, ionization and charge transfer with atoms and ions * Ensure collisional data are interfaced with plasma modelling codes (ADAS, TRANSP) * We are presently focused on light elements like H, He, Li, Be, B, C, Ne * In the next 3-5 years we shall look at heavier fusion related elements such as Xe, Mo, W ADAS * The fundamental atomic data is processed through the ADAS suite of codes to give generalized collisional-

199

Reaffirming America's Commitment to the Peaceful Use of the Atom |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirming America's Commitment to the Peaceful Use of the Atom Reaffirming America's Commitment to the Peaceful Use of the Atom Reaffirming America's Commitment to the Peaceful Use of the Atom September 19, 2011 - 5:03pm Addthis Secretary Chu meets with officials during a visit to the International Atomic Energy Agency's (IAEA) Incident and Emergency Center in Vienna. | Photo Courtesy of IAEA. Secretary Chu meets with officials during a visit to the International Atomic Energy Agency's (IAEA) Incident and Emergency Center in Vienna. | Photo Courtesy of IAEA. Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Secretary Chu is in Vienna, Austria as he leads the United States delegation to the General Conference of the International Atomic Energy Agency, the United Nations organization dedicated to the safe and peaceful

200

Ionization of many-electron atoms by a quasistatic electric field Dimitri Fisher and Yitzhak Maron  

E-Print Network (OSTI)

Ionization of many-electron atoms by a quasistatic electric field Dimitri Fisher and Yitzhak Maron 1997 We present a general expression for the field ionization probability of atoms and ions under electron in the outer nl subshell, the expression obtained here is applicable to atoms and ions with any

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Standard Model tests with trapped radioactive atoms  

E-Print Network (OSTI)

We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear $\\beta$ decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.

J. A. Behr; G. Gwinner

2009-03-04T23:59:59.000Z

202

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

203

Federal Energy Management Program: Covered Product Category: Hot Food  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Food Holding Cabinets to someone by E-mail Hot Food Holding Cabinets to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Google Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Delicious Rank Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

204

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...  

Energy Savers (EERE)

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4?...

205

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...  

Energy Savers (EERE)

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the...

206

Sun-Sentinel Red hot email heats up Wasserman Schultz,  

E-Print Network (OSTI)

Sun-Sentinel Red hot email heats up Wasserman Schultz, West rift South Florida members of Congress take feud public July 20, 2011|By Anthony Man, Sun Sentinel Congressman Allen West's red hot response

Belogay, Eugene A.

207

Hot Water Heating System Operation and Energy Conservation  

E-Print Network (OSTI)

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

208

An Energy Policy Perspective on Solar Hot Water Equipment Mandates  

E-Print Network (OSTI)

An Energy Policy Perspective on Solar Hot Water Equipmentlast dol- ENERGY POLICY lar spent on solar equipment gaveENERGY POLICY tween a new house with solar hot water

Williams, Stephen F.

1981-01-01T23:59:59.000Z

209

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network (OSTI)

A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

210

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

211

Inspector General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of the Under Secretary for Nuclear Security Edward B. Held (Acting) Under Secretary for Nuclear Security DEPARTMENT OF ENERGY Office of the Under Secretary for Management & Performance Vacant Under Secretary for Management and Performance Office of the Under Secretary for Science & Energy Vacant Under Secretary for Science and Energy Southwestern Power Administration Bonneville Power Administration Western Area Power Administration Southeastern Power Administration U.S. Energy Information Administration Loan Programs Office Advanced Research Projects Agency - Energy General Counsel Assistant Secretary for Congressional & Intergovernmental Affairs Chief Human Capital Officer

212

Hydrogen Atom in Relativistic Motion  

E-Print Network (OSTI)

The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.

M. Jarvinen

2005-04-11T23:59:59.000Z

213

Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV  

Energy.gov (U.S. Department of Energy (DOE))

Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

214

Jaloro': A New Multiple Virus Resistant Hot Yellow Jalapeno Pepper.  

E-Print Network (OSTI)

, with four replications, separated by Duncan's Multiple Range Test, 5% level. 2 Pungency rating: 10 = super hot,S = mild, 1 = nonpungent. Table 7. Comparative performance test of 'Jaloro' compared with other jalapenos, spring 1990, TAES-Weslaco, Texas..., with four replications, separated by Duncan's Multiple Range Test, 5% level. 2 Pungency rating: 10 = super hot,S = mild, 1 = nonpungent. Table 7. Comparative performance test of 'Jaloro' compared with other jalapenos, spring 1990, TAES-Weslaco, Texas...

Villalon, Benigno

1992-01-01T23:59:59.000Z

215

Statistical atom: Some quantum improvements  

Science Journals Connector (OSTI)

The Thomas-Fermi model is improved by simultaneously introducing three different quantum corrections. The first concerns the nonlocality of quantum mechanics; we go beyond the von Weizscker approach by including arbitrary powers of the gradient of the single-particle potential. The second is a special treatment of the strongly bound electrons, which removes the incorrect statistical description of the vicinity of the nucleus. In the third we generalize Dirac's way of handling the exchange interaction by, again, including gradient effects to arbitrary order. All this is done in the framework of a "potential-functional method" and results in a new differential equation for the potential. The comparison of numerical results with both experimental and Hartree-Fock data for the mean-squared distance indicates a superiority of the new statistical theory over the Hartree-Fock theory, at least for the description of the outer reaches of the atom.

Berthold-Georg Englert and Julian Schwinger

1984-05-01T23:59:59.000Z

216

Lesson 3- Atoms and Isotopes  

Energy.gov (U.S. Department of Energy (DOE))

Youve probably heard people refer to nuclear energy as atomic energy. Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy.

217

Educational Multiwavelength Atomic Emission Spectrometer  

E-Print Network (OSTI)

atomic absorption is the capability for simultaneous multielement analysis. It can be used colleges had acquired atomic absorption instruments by the year 1990.[2] In contrast, atomic emission with the acetylene-air flame source taken from an existing atomic absorption instrument. Two spectrometer units

Nazarenko, Alexander

218

Temperature effect on recol tritium ractions in solid alkanes at 20 to 300 K. Comparison of recoil T atoms with H (D) atoms in. gamma. radiolysis  

SciTech Connect

Hydrogen atom abstraction by recoil T atoms in neopentane and decane-d/sub 22/ has been studied at 20, 77, 195, and 300 K by means of ESR spectroscopy and radiogas chromatography. The results are compared with the reaction of H (or D) atoms produced by ..gamma.. radiolysis. When the experiments are conducted at 77 K, the reaction or recoil tritium atoms in the neo-C/sub 5/H/sub 12/-i-C/sub 4/H/sub 9/D (2 mol %) and n-C/sub 10/D/sub 22/-n-C/sub 10/H/sub 22/ (10 mol %) mixtures do not parallel those of H and D atoms generated by ..gamma.. irradiation, whereas the results at other temperatures below and above 77 K (20, 195, and 300 K) are more nealy comparable. The different results at 77 K are attributed to the ability of H and D atoms but not T atoms to diffuse and react with i-C/sub 4/H/sub 9/D (or n-C/sub 10/H/sub 22/) solute molecules. The failure of the thermal diffusion of the T atoms at 77 K is explained by a model in which nearly all of the recoil T atoms react either by hot reaction or have a high probability of reacting with a fragment near the end of the path and only a few percent of them diffuse into the bulk matrix.

Aratono, Y. (Japan Atomic Energy Research Institute, Ibaraki); Tachikawa, E.; Miyazaki, T.; Kawai, Y.; Fueki, K.

1982-01-21T23:59:59.000Z

219

Control, automation and the hot rolling of steel  

Science Journals Connector (OSTI)

...Shercliff and M. J. Stowell Control, automation and the hot rolling of steel P.J...Rugby CV21 1BU, UK The current state of automation and control for hot rolling mills...mills|rolling mill models| Control, automation and the hot rolling of steel By P...

1999-01-01T23:59:59.000Z

220

OptimizingResourceUtilizationandTestability Using Hot Potato Techniques  

E-Print Network (OSTI)

OptimizingResourceUtilizationandTestability Using Hot Potato Techniques Miodrag Potkonjak Sujit Dey C&C Research Laboratories, NEC USA, Princeton, NJ 08540 ABSTRACT This paper introduces hot potato reduced using new technique. It is also dem- onstrated how hot potato techniques can be effectively used

Potkonjak, Miodrag

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quantum measurements of atoms using cavity QED  

SciTech Connect

Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

Dada, Adetunmise C.; Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, Martin L.; Kendon, Vivien M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Everitt, Mark S. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

2011-04-15T23:59:59.000Z

222

Hydrogen atom in de Sitter spaces  

E-Print Network (OSTI)

The hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of the variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. A qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points.

O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. M. Red'kov; A. M. Ishkhanyan

2014-12-28T23:59:59.000Z

223

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunrise and Sunset Visual Differences Sunrise and Sunset Visual Differences Name: Joey Status: other Grade: other Country: Canada Date: Spring 2012 Question: It seems that sunrise and sunset don't look symmetric. I mean that sunsets tend to have much redder skies and sunrise is usually a bit gloomier. If you see a picture, many times you can tell if its sunrise or sunset, even though I would think they should like identical, except that the sun is either going up or going down. Why do they not appear the same but in reverse? Replies: Funny you should ask as a paper just arrived which is sure to have the answer and I will read it now....... OK, the morning sky, and the sky in general, is blue due to Rayleigh scattering [which affects short wavelengths the most] of the sun light by air molecules and other microscopic particles.

224

Iowa Powder Atomization Technologies  

SciTech Connect

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2012-01-01T23:59:59.000Z

225

Atomic Josephson vortices  

SciTech Connect

We show that Josephson vortices in a quasi-one-dimensional atomic Bose Josephson junction can be controllably manipulated by imposing a difference of chemical potentials on the atomic Bose-Einstein condensate waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides.

Kaurov, V. M.; Kuklov, A. B. [Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314 (United States)

2006-01-15T23:59:59.000Z

226

Atomic Force Microscope  

SciTech Connect

The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

Day, R.D.; Russell, P.E.

1988-12-01T23:59:59.000Z

227

Atomic Power in Space: A History  

DOE R&D Accomplishments (OSTI)

"Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

1987-03-00T23:59:59.000Z

228

Linear degeneracy in the semiclassical atom  

Science Journals Connector (OSTI)

If the angular and radial quantum numbers of states with the same binding energy satisfy a linear relation, as is the situation in the Coulomb potential, the spectrum is said to be linearly degenerate. We present a detailed study of the consequences of such linear degeneracy in atomic potentials. One of the results is a new, and more general, derivation of Scotts correction to the Thomas-Fermi energy.

Berthold-Georg Englert and Julian Schwinger

1985-07-01T23:59:59.000Z

229

Hot-water power from the earth  

SciTech Connect

This article examines geothermal sites on the West Coast in order to show the progress that has been made in converting geothermal energy into usable electric power. Only about 0.5% of the earth's geothermal reserve can be brought to the surface as dry steam. California's Imperial Valley is possibly the largest geothermal resource in the US. Three demonstration generating plants are each producing between 10 and 14 MW of power near the valley's Salton Sea. The high-temperature water (above 410/sup 0/F) at Brawley is drawn from wells tapping the subterranean reservoir. It is proposed that hot-water power will be economical when methods are found to extract maximum energy from a geothermal deposit and to control clogging and corrosion caused by minerals dissolved in the hot fluid.

Not Available

1984-02-01T23:59:59.000Z

230

Hot clamp design for LMFBR piping systems  

SciTech Connect

Thin-wall, large-diameter piping for liquid metal fast breeder reactor (LMFBR) plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulated cold clamp was designed for the fast flux test facility and was also applied to some prototype reactors thereafter. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface leaving an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp-induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event were discussed.

Kobayashi, T.; Tateishi, M. (Nippon MARC Co., Ltd., Tokyo (Japan))

1993-02-01T23:59:59.000Z

231

Enabling Technologies for Ceramic Hot Section Components  

SciTech Connect

Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

Venkat Vedula; Tania Bhatia

2009-04-30T23:59:59.000Z

232

Dealing in practice with hot-spots  

E-Print Network (OSTI)

The hot-spot phenomenon is a relatively frequent problem occurring in current photovoltaic generators. It entails both a risk for the photovoltaic module's lifetime and a decrease in its operational efficiency. Nevertheless, there is still a lack of widely accepted procedures for dealing with them in practice. This paper presents the IES-UPM observations on 200 affected modules. Visual and infrared inspection, electroluminescence, peak power and operating voltage tests have been accomplished. Hot-spot observation procedures and well defined acceptance and rejection criteria are proposed, addressing both the lifetime and the operational efficiency of the modules. The operating voltage has come out as the best parameter to control effective efficiency losses for the affected modules. This procedure is oriented to its possible application in contractual frameworks.

Moretn, Rodrigo; Leloux, Jonathan; Carrillo, Jos Manuel

2014-01-01T23:59:59.000Z

233

Hot Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Energy Purchaser Idaho Power Location Elmore County ID Coordinates 42.95°, -115.63° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.95,"lon":-115.63,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Interacting double dark resonances in a hot atomic vapor of helium  

SciTech Connect

We experimentally and theoretically study two different tripod configurations using metastable helium ({sup 4}He*), with the probe field polarization perpendicular and parallel to the quantization axis, defined by an applied weak magnetic field. In the first case, the two dark resonances interact incoherently and merge together into a single electromagnetically induced transparency peak with increasing coupling power. In the second case, we observe destructive interference between the two dark resonances inducing an extra absorption peak at the line center.

Kumar, S.; Ghosh, R. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Laupretre, T.; Bretenaker, F.; Goldfarb, F. [Laboratoire Aime Cotton, CNRS-Universite Paris Sud 11, F-91405 Orsay Cedex (France)

2011-08-15T23:59:59.000Z

235

Lee police get hot new cruiser from drug money -Fosters http://www.fosters.com/apps/pbcs.dll/article?AID=/20060223/NEWS08... 1 of 3 2/27/2006 10:15 AM  

E-Print Network (OSTI)

Lee police get hot new cruiser from drug money - Fosters http police get hot new cruiser from drug money By MARCUS WEISGERBER Democrat Staff Writer mweisgerber money seized by the New Hampshire Attorney General's Task Force during a bust last year, Murch said. Lee

New Hampshire, University of

236

Residential hot water distribution systems: Roundtablesession  

SciTech Connect

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

237

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Atomic Scientists Brief Congress  

Science Journals Connector (OSTI)

Topics covered included underground explosions to produce energy, chemicals, or petroleum; advanced reactors capable of producing chemicals; atomic power for space propulsion; direct conversion of heat energy to electricity; and controlled thermonuclear reactions. ... (For details on controlled fusion research see page 46.) ...

1960-04-04T23:59:59.000Z

239

Atomic Power in Japan  

Science Journals Connector (OSTI)

NUCLEAR ENERGY will provide most of the power requirements in Japan by the end of this century. So predicts Charles H. Weaver, vice president in charge of atomic power activities for Westinghouse Electric.Addressing the Conference on Peaceful Uses of ...

1957-05-27T23:59:59.000Z

240

Bohr's model: Extreme atoms  

Science Journals Connector (OSTI)

... by bombarding atoms with accelerated protons, then slow them down by passing them through metallic foil, cool them with cold electrons and trap them with electromagnetic fields. A similar trap ... Curiosity and national pride undoubtedly have a role, with politicians and scientists both looking to stamp their country's name into a new box on the periodic table. But each ...

Richard Van Noorden

2013-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Magnetism and Atomic Structure  

Science Journals Connector (OSTI)

... the information with regard to the atom has been obtained by studying spectra; chemistry, magnetism, X-ray scattering, etc., play only a subsidiary part. We must admit, ... for fresh sources of information. Much may be said in support of the opinion that magnetism will open a new way by which to approach the study of the structure of ...

P. KAPITZA

1927-06-04T23:59:59.000Z

242

Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition  

SciTech Connect

We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

2009-11-01T23:59:59.000Z

243

High Rydberg Atoms: Newcomers to the Atomic Physics Scene  

Science Journals Connector (OSTI)

...HYDROGEN ATOM, NUCLEAR FUSION 5 : 41 ( 1965 ). BAYFIELD...HIGHLY-EXCITED KR ATOMS BY HF AND HCL MOLECULES, BULLETIN...USING A CW TUNABLE DYE LASER, PHYSICAL REVIEW LETTERS...such diverse fields as laser development, laser isotopeseparation, energy...

Ronald F. Stebbings

1976-08-13T23:59:59.000Z

244

GENERAL@ELECTtiIC COMPINY  

Office of Legacy Management (LM)

GENERAL@ELECTtiIC GENERAL@ELECTtiIC COMPINY ~9013 ~APPROVAL NO. 143 Article II, Section 8(b) PICHLAND, WASHINGTON .~. "ANFORD ATOMlC PlOD"CTS O*Ert*,ION ,. u/S; Atomic Energy Comisaion Hailfbrd operations Office Richland, Washington Attention: Mr. J. E. Travis, Manager Gentlemen: EXTRUSION OF URANIUM DIOXIDE FOR GENERAL ~ED&'RIC - APED The Atoinic Power Equipment Depart!++ of ~the The uranium dioxide necess :Material License No. C-3351. for establishing the value'of the.material will be developed with appropriate representatives of your office in accordance with established procedures. A small amount of scrap will be generated in the process but, since this will be usable and is needed in waging studies at Hanford, we do not propose to charge for reprocessing.

245

Laser-induced nonresonant nuclear excitation in muonic atoms  

E-Print Network (OSTI)

Coherent nuclear excitation in strongly laser-driven muonic atoms is calculated. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived and applied to various isotopes; the excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment.

A. Shahbaz; C. Mller; T. J. Buervenich; C. H. Keitel

2008-12-13T23:59:59.000Z

246

Photon statistics of atomic fluorescence after {pi}-pulse excitation  

SciTech Connect

The photon statistics of atomic fluorescence after {pi}-pulse excitation is investigated in a system in which the input and output ports are connected to an atom. Since spontaneous decay during input pulse excitation occurs, the output pulse generally contains a multiphoton component with a certain probability. We quantitatively evaluate the probability of the output pulse containing multiple photons and determine the conditions for ideal single-photon generation.

Yoshimi, Kazuyoshi [College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827 (Japan); Koshino, Kazuki [College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

2010-09-15T23:59:59.000Z

247

Optical imaging of Rydberg atoms  

E-Print Network (OSTI)

We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms are trapped and cooled using a magneto-optical ...

Mazurenko, Anton

2012-01-01T23:59:59.000Z

248

Seaborg Predicts Bright Atomic Future  

Science Journals Connector (OSTI)

Seaborg Predicts Bright Atomic Future ... To explore both the immediate and long-term ramifications of the cutbacks, C&EN talked to the Chairman of the Atomic Energy Commission, Dr. Glenn T. Seaborg . ...

1964-06-15T23:59:59.000Z

249

Dielectric breakdown properties of hot SF{sub 6}/He mixtures predicted from basic data  

SciTech Connect

Sulfur hexafluoride (SF{sub 6}) gas has a quite high global warming potential and hence it is required that applying any substitute for SF{sub 6} gas. Much interest in the use of a mixture of helium and SF{sub 6} as arc quenching medium was investigated indicating a higher recovery performance of arc interruption than that of pure SF{sub 6}. It is known that the electrical breakdown in a circuit breaker after arc interruption occurs in a hot gas environment, with a complicated species composition because of the occurrence of dissociation and other reactions. The likelihood of breakdown relies on the electron interactions with all these species. The critical reduced electric field strength (the field at which breakdown can occur, relative to the number density) of hot SF{sub 6}/He mixtures related to the dielectric recovery phase of a high voltage circuit breaker is calculated in the temperature range from 300 K to 3500 K. The critically reduced electric field strength of these mixtures was obtained by balancing electron generation and loss mechanisms. These were evaluated using the electron energy distribution function derived from the Boltzmann transport equation under the two-term approximation. Good agreement was found between calculations for pure hot SF{sub 6} and pure hot He and experimental results and previous calculations. The addition of He to SF{sub 6} was found to decrease the critical reduced electric field strength in the whole temperature range due to a lack of electron impact attachment process for helium regardless its high ionization potential. This indicates that not the behaviour of dielectric strength but possibly the higher energy dissipation capability caused mainly by light mass and high specific heat as well as thermal conductivity of atomic helium contributes most to a higher dielectric recovery performance of arc interruption for SF{sub 6}/He mixtures.

Wang, Weizong [Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094 (China) [Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an Shaanxi 710049 (China); Tu, Xin; Mei, Danhua [Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ (United Kingdom)] [Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Rong, Mingzhe [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an Shaanxi 710049 (China)

2013-11-15T23:59:59.000Z

250

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

251

Automated inspection of hot steel slabs  

DOE Patents (OSTI)

The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

Martin, Ronald J. (Burnsville, MN)

1985-01-01T23:59:59.000Z

252

Multiple volume compressor for hot gas engine  

DOE Patents (OSTI)

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

253

Hot Fuel Examination Facility/South  

SciTech Connect

This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

Not Available

1990-05-01T23:59:59.000Z

254

Particulate hot gas stream cleanup technical issues  

SciTech Connect

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

255

Appendix G: Radiation HYDROGEN ATOM  

E-Print Network (OSTI)

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix G: Radiation #12;#12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

256

Appendix A: Radiation HYDROGEN ATOM  

E-Print Network (OSTI)

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix A: Radiation #12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

257

Recent Progress in ultracold atoms  

E-Print Network (OSTI)

and Einstein What is Bose-Einstein condensation (BEC)? #12;300 K to 1 mK 109 atoms 1 mK to 1 mK 108 106 atoms How to make a BEC: Cool atoms at ultra low temperature Laser beams Fluorescence Laser cooling (Doppler

Baltisberger, Jay H.

258

Plasma production by the trapping of energetic atoms  

Science Journals Connector (OSTI)

The production of a hot plasma by the injection of streams of energetic atoms into a confining magnetic field is discussed. The experiments described are directed towards injection of 20-keV hydrogen or deuterium atoms into a magnetic mirror field. The results of some numerical calculations of the plasma growth to a steady-state in a constant magnetic field are presented, including the calculation of the spatial distribution of the trapped ions. In these calculations, the primary trapping mechanism is the ionization of beam atoms by trapped ions and electrons. Parametric values are assigned to approximate the experimentally attainable conditions. The indicated equilibrium densities are in the range of 1014/cm3, at ? ? 1%, with typical growth times of a few seconds, if the final density is determined by ion-ion scattering into the mirror loss cone.The practical achievement of a hot plasma by this injection method depends upon maximizing the trapping rate, and minimizing the particle loss due to charge-exchange scattering. Severe requirements are therefore placed on the atomic beam intensity and the gas density in the confinement region. Some of the requirements on the build-up conditions imposed by plasma stability considerations are also discussed.Progress toward meeting the technological requirements is described. A highly collimated beam of hydrogen atoms in excess of 5 1017 atoms/sec at 20-keV energy has been produced. The cross-sectional area of the beam is 20 cm2 at a distance of 360 cm from the source; the half-angle divergence is less than 10 milliradians. Vacuum techniques have been developed to achieve base pressures in the 10?10 mm Hg range without extensive bakeout procedure. At the same time pumping speeds exceeding 105l/sec for hydrogen are available.A method of trapping the energetic atoms by means of a transient cold plasma is also discussed. This procedure greatly increases the initial plasma growth rate. The plasma density attainable depends upon the beam intensity, vacuum, and cold plasma density, the latter two being time-dependent. The generation of a suitable cold plasma is described.

C.C. Damm; A.H. Futch; F. Gordon; A.L. Hunt; E.C. Popp; R.F. Post; J.F. Steinhaus

1961-01-01T23:59:59.000Z

259

VARIOUS APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY  

E-Print Network (OSTI)

APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPYthe Zeeman effect to atomic absorption spectroscopy has beenthe Zeeman effect on atomic absorption spectrometry has been

Koizumi, Hideaki

2011-01-01T23:59:59.000Z

260

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

262

Building Energy Software Tools Directory: HOT2 XP  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2 XP HOT2 XP HOT2 XP logo. New member of the HOT2000 family of energy analysis software. Its graphical user interface and simplified input make it a quick and easy tool for analysing energy use in houses. However, the underlying engine is that of HOT2000 and thus provides a state of the art analysis. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users New program, over 300 users. Audience Renovators, builders, utilities, home inspectors, design evaluators, engineers, architects, building and energy code writers, Policy writers, curious homeowners. HOT2XP is also used as the compliance software for the

263

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

264

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

265

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

266

Design package for solar domestic hot water system  

SciTech Connect

Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

None

1980-09-01T23:59:59.000Z

267

Hot cell facility design for large fusion devices  

SciTech Connect

Large hot cell facilities will be necessary to support the operation of large fusion devices. The supporting hot cells will be needed to serve a variety of different functions and tasks, which include reactor component maintenance, tool and maintenance equipment repair, and preparation of radioactive material for shipment and disposal. This paper discusses hot cell facility functions, requirements, and design issues and techniques. Suggested solutions and examples are given.

Barrett, R.J.; Bussell, G.T.

1985-01-01T23:59:59.000Z

268

Hot cell facility design for large fusion devices  

SciTech Connect

Large hot cell facilities will be necessary to support the operation of large fusion devices. The supporting hot cells will be needed to serve a variety of different functions and tasks, which include reactor component maintenance, tool and maintenance equipment repair, and preparation of radioactive material for shipment and disposal. This paper discusses hot cell facility functions, requirements, and design issues and techniques. Suggested solutions and examples are given.

Barrett, R.J.; Bussell, G.T.

1985-07-01T23:59:59.000Z

269

The long hot summer of the tokamak  

E-Print Network (OSTI)

What have the probability for fine weather in summer and the possibility for a future use of nuclear fusion as a practically unlimited and clean energy source got in common? The answer is in the particular nature underlying both physical systems: both the atmosphere and hot magnetized fusion plasmas are determined by similar processes of structure formation in quasi-two-dimensional periodic nonlinear dynamical systems. Self-organization of waves and vortices on small scales in both cases leads to large-scale flows, which are, depending on conditions, either stable for a long time - or can break apart intermittently and expel large vortex structures. In the case of earth's atmosphere, a potential stabilization of the polar jet stream over northern Europe by warming in early summer leads to a high probability for stable hot midsummer weather in central Europe. The efficient utilization of nuclear fusion in a power plant also depends if a stabilization of such zonal flows ("H mode") may be sustained by heating o...

Kendl, Alexander

2012-01-01T23:59:59.000Z

270

Ethylene oxide and Acetaldehyde in hot cores  

E-Print Network (OSTI)

[Abridged] Ethylene oxide and its isomer acetaldehyde are important complex organic molecules because of their potential role in the formation of amino acids. Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. The model reproduces the observed gaseous abundances of ethylene oxid...

Occhiogrosso, A; Herbst, E; Viti, S; Ward, M D; Price, S D; Brown, W A

2014-01-01T23:59:59.000Z

271

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

272

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

273

Ch. III, Interpretation of water sample analyses Waunita Hot...  

Open Energy Info (EERE)

analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

274

Ch. VIII, Soil mercury investigations, Waunita Hot Springs |...  

Open Energy Info (EERE)

mercury investigations, Waunita Hot Springs Authors C. D. Ringrose and R. H. Pearl Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

275

Ch. II, Waunita Hot Springs, Colorado Geothermal Prospect Reconaissanc...  

Open Energy Info (EERE)

Waunita Hot Springs, Colorado Geothermal Prospect Reconaissance Author GeothermEx Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

276

Ch. VI, The geophysical environment around Waunita Hot Springs...  

Open Energy Info (EERE)

Ch. VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

277

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

278

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

279

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

280

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Seismic Data Analysis Program- The "Hot Pot" Project  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Seismic Data Analysis Program- The "Hot Pot" Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

282

DOE ZERH Webinar: Efficient Hot Water Distribution I: What's...  

Office of Environmental Management (EM)

I: What's at Stake Watch the video or view the presentation below Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water...

283

Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...  

Open Energy Info (EERE)

and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis of thermal fluids determined meteoric origin primarily from the Mineral...

284

Field Mapping At Hot Sulphur Springs Area (Goranson, 2005) |...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

285

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

286

Goddard Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

ENERGYGeothermal Home Goddard Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5...

287

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

288

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

289

Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...  

Open Energy Info (EERE)

Prakash, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010)...

290

Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007...  

Open Energy Info (EERE)

Garg, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007) Exploration...

291

Micro-Earthquake At Waunita Hot Springs Geothermal Area (Lange...  

Open Energy Info (EERE)

was to assess the extent of active fault failure and the potential importance of fracture permeability in the subsurface surrounding the hot springs. Notes The first...

292

Chena Hot Springs GRED III Project: Final Report Geology, Petrology...  

Open Energy Info (EERE)

hot springs area. This included pluton mapping, limited mapping of localfaults and fracture orientations, and petrology, mineralogy, geochemistry, of surface rocksamples. 2)...

293

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities...

294

Mandating Solar Hot Water by California Local Governments: Legal Issues  

E-Print Network (OSTI)

the legality of solar mandates in California cities andCITIES & CALIFORNIA ENERGY COMMISSION, SOLAR HANDBOOK FORMandating Solar Hot Water By California Local Governments:

Hoffman,, Peter C.

1981-01-01T23:59:59.000Z

295

Vertical Electrical Sounding Configurations At Mt Princeton Hot...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

296

Geothermal: Sponsored by OSTI -- Economics of Developing Hot...  

Office of Scientific and Technical Information (OSTI)

Economics of Developing Hot Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

297

Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department...  

Energy Savers (EERE)

Springs, Alaska Hydrothermal Exploration at Pilgrim Hot Springs, Alaska Lower Temperature Geothermal Resources are Yielding Power Thanks to Energy Department Investments Lower...

298

NREL: State and Local Governments - Solar Hot Topics STAT Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Education & Outreach Solar Technical Assistance Team Webinars Solar 101 Hot Topics DIY Solar Market Analysis Policy Basics Publications Request Assistance Technical Assistance...

299

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...  

Office of Environmental Management (EM)

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes...

300

Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration...

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

302

On neutron numbers and atomic masses  

Science Journals Connector (OSTI)

On neutron numbers and atomic masses ... Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers. ...

R. Heyrovsk

1992-01-01T23:59:59.000Z

303

Atomic Energy Commission Takes Over Responsibility for all Atomic...  

National Nuclear Security Administration (NNSA)

Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

304

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

305

Alternatives for reducing hot-water bills  

SciTech Connect

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

306

Telescopic nanotube device for hot nanolithography  

DOE Patents (OSTI)

A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

Popescu, Adrian; Woods, Lilia M

2014-12-30T23:59:59.000Z

307

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

308

Superconducting cuprate heterostructures for hot electron bolometers  

SciTech Connect

Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2?x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, ?V??I{sup 3}, with a coefficient ?(T) that correlates with the temperature variation of the resistivity d?/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e?ph}?1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

Wen, B.; Yakobov, R.; Vitkalov, S. A. [Department of Physics, City College of New York, New York 10031 (United States)] [Department of Physics, City College of New York, New York 10031 (United States); Sergeev, A. [SUNY Research Foundation, SUNY at Buffalo, Buffalo, New York 14226 (United States)] [SUNY Research Foundation, SUNY at Buffalo, Buffalo, New York 14226 (United States)

2013-11-25T23:59:59.000Z

309

Final Environmental Assessment BPA's Hot Springs - Garrison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA's Hot Springs - Garrison Fiber Optic Project DOE-EA-1 002 POWER ADMINISTRATION Bonneville Power Administration DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

310

Use of low temperature blowers for recirculation of hot gases  

DOE Patents (OSTI)

An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

Maru, H.C.; Forooque, M.

1982-08-19T23:59:59.000Z

311

Self-contained hot-hollow cathode gun source assembly  

DOE Patents (OSTI)

A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

Zeren, Joseph D. (Boulder, CO)

1986-01-01T23:59:59.000Z

312

Self-contained hot-hollow cathode gun source assembly  

DOE Patents (OSTI)

A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

Zeren, J.D.

1984-08-01T23:59:59.000Z

313

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

314

Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design  

SciTech Connect

The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

Longyear, A.B. (ed.)

1980-06-01T23:59:59.000Z

315

Magnetic trap for thulium atoms  

SciTech Connect

For the first time ultra-cold thulium atoms were trapped in a magnetic quadrupole trap with a small field gradient (20 Gs cm{sup -1}). The atoms were loaded from a cloud containing 4x10{sup 5} atoms that were preliminarily cooled in a magneto-optical trap to the sub-Doppler temperature of 80 {mu}K. As many as 4x10{sup 4} atoms were trapped in the magnetic trap at the temperature of 40 {mu}K. By the character of trap population decay the lifetime of atoms was determined (0.5 s) and an upper estimate was obtained for the rate constant of inelastic binary collisions for spin-polarised thulium atoms in the ground state (g{sub in} < 10{sup -11}cm{sup 3} s{sup -1}). (magnetic traps)

Sukachev, D D; Sokolov, A V; Chebakov, K A; Akimov, A V; Kolachevskii, N N; Sorokin, Vadim N [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2011-08-31T23:59:59.000Z

316

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

317

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

318

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

319

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

320

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

322

Why sequence thermophiles in Great Basin hot springs?  

NLE Websites -- All DOE Office Websites (Extended Search)

thermophiles in Great Basin hot springs? thermophiles in Great Basin hot springs? A thermophile is an organism that thrives in extremely hot temperature conditions. These conditions are found in the Great Basin hot springs, where the organisms have been exposed to unique conditions which guide their lifecycle. High temperature environments often support large and diverse populations of microorganisms, which appear to be hot spots of biological innovation of carbon fixation. Sequencing these microbes that make their home in deadly heat could provide various insights into understanding energy production and carbon cycling. Converting cellulosic biomass to ethanol is one of the most promising strategies to reduce petroleum consumption in the near future. This can only be achieved by enhancing recovery of fermentable sugars from complex

323

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

324

Solar Hot Water Creates Savings for Homeless Shelters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts? Recovery Act funds are being used to install solar hot water systems at 5 Phoenix shelters. The systems will save Phoenox 33,452 kWh of energy -- about $4,000 -- annually. The systems will reduce about 40,000 pounds of carbon emissions annually. "This project will save us a huge amount of money," says Paul Williams, House of Refuge Sunnyslope's Executive Director. Williams is referring to a recent partnership between the state of Arizona and House of Refuge Sunnyslope to install solar hot water systems at five Phoenix-area housing sites for homeless men, which will make an immediate difference at the

325

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

326

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

327

ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

' ' ATOMIC ENERGY COMMISSION Frank K. Pittman, Director, bivisioa of Waste &&gement and s- portation, Headquarters j CONTAMItUTED RX-AEC-OWNED OR LEASED FACILITIES' This memorandum responds to your TWX certain information on the above subject. the documentation necessary to answer your available due to the records disposal vailing at the time of release or From records that are available and from disc&ions with most familiar with the transfer operations, &have the current radiological conditibn of transferred property is adequate under present standards. The following tabulations follow the format suggested in your TWX and are grouped to an operations or contract r+ponsibility. A,I Ex-AEC Storage Sites - I r:/ National Stockpile Site '(NSS) and OperatEonal

328

Bettis Atomic Power Laboratory  

SciTech Connect

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

329

Rydberg Atoms in Ponderomotive Potentials.  

E-Print Network (OSTI)

??In this thesis, we examine the ponderomotive interaction between an applied optical field and a highly excited Rydberg electron. An atom in a Rydberg state (more)

Knuffman, Brenton J.

2009-01-01T23:59:59.000Z

330

Absorption properties of identical atoms  

SciTech Connect

Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. The modifications of the optical properties are essentially determined by the overlapping between the atoms. The absorption properties differ, in some cases, for bosons and fermions.

Sancho, Pedro, E-mail: psanchos@aemet.es

2013-09-15T23:59:59.000Z

331

EMSL - atomic-resolution imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

atomic-resolution-imaging en Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110). http:www.emsl.pnl.govemslwebpublicationsmolecular-hydrogen-formation-proxima...

332

Magnetism and Atomic Structure. I  

Science Journals Connector (OSTI)

3 January 1921 research-article Magnetism and Atomic Structure. I A. E. Oxley The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access...

1921-01-01T23:59:59.000Z

333

Atom bouncers have it taped  

Science Journals Connector (OSTI)

... University have repeatedly bounced rubidium atoms from magnetic tape of the kind used to record audio signals1. In later experiments, they obtained better results with floppy disks.

Wayne M. Itano

1995-09-28T23:59:59.000Z

334

Light emission of very low density hydrogen excited by an extremely hot light source; applications in astrophysics  

E-Print Network (OSTI)

Stromgren studied the action of an extremely hot source on a diluted pure hydrogen cloud; a very ionized, spherical hydrogen plasma surrounded by neutral atomic hydrogen is formed. A relatively thin intermediate, partially ionized, hydrogen shell, is cooled by the radiation of the atoms. Stromgren was unaware of that this plasma, similar to the plasma of a gas laser, can be superradiant at several eigen frequencies of atomic hydrogen; the superradiant rays emitted tangentially with the sphere appear resulting from a discontinuous ring because of the competition of optical modes. The superradiance intensely depopulates the excited levels, including the continuum of proton-electron collisions, by cascades of transitions combined into resonant multiphotonic transitions so that the gas is cooled brutally beyond the radius of the Stromgren sphere. The extreme brightness of the rays emitted by the source allows a multiphotonic non-resonant absorption leading in stationary states or the ionization continuum. This absorption combines with the superradiant emissions in a multiphotonic diffusion induced by the superradiant rays. Although its brightness remains higher than that of the superradiant rays, the source becomes invisible if it is observed through a small solid angle. The lines emitted inside the sphere are all the more weak as they arrive of an internal area, lower in atoms, and more reddened also by a parametric transfer of energy towards the thermal radiation catalyzed by excited atomic hydrogen present in the sphere only. The Stromgren sphere appears to help to simply explain the appearance and the spectrum of supernova 1987A.

Jacques Moret-Bailly

2008-07-19T23:59:59.000Z

335

Similarity between positronium-atom and electron-atom scattering  

E-Print Network (OSTI)

We employ the impulse approximation for description of positronium-atom scattering. Our analysis and calculations of Ps-Kr and Ps-Ar collisions provide theoretical explanation of the similarity between the cross sections for positronium scattering and electron scattering for a range of atomic and molecular targets observed by S. J. Brawley et al. [Science 330, 789 (2010)].

Fabrikant, I I

2015-01-01T23:59:59.000Z

336

THERMODYNAMICS OF LOW-TEMPERATURE (700-850oC) HOT CORROSION  

E-Print Network (OSTI)

funded low power hot corrosion studies. NRL MemorandumLOW-TEMPERATURE {700-850C) HOT CORROSION A.K. Misra, D.P.TEMPERATURE (700-850" C) HOT CORROSION A.K. Misra and D.P.

Misra, A.K.

2013-01-01T23:59:59.000Z

337

Atomic population distribution in the output ports of cold-atom interferometers with optical splitting and recombination  

SciTech Connect

Cold-atom interferometers with optical splitting and recombination use off-resonant laser beams to split a cloud of Bose-Einstein condensate (BEC) into two clouds that travel along different paths and are then recombined again using optical beams. After the recombination, the BEC in general populates both the cloud at rest and the moving clouds. Measuring a relative number of atoms in each of these clouds yields information about the relative phase shift accumulated by the atoms in the two moving clouds during the interferometric cycle. We derive the expression for the probability of finding any given number of atoms in each of the clouds, discuss features of the probability density distribution, analyze its dependence on the relative accumulated phase shift as a function of the strength of the interatomic interactions, and compare our results with experiment.

Ilo-Okeke, Ebubechukwu O.; Zozulya, Alex A. [Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609 (United States)

2010-11-15T23:59:59.000Z

338

The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary  

SciTech Connect

The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

None

2012-06-04T23:59:59.000Z

339

CPS Energy- Solar Hot Water Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

340

Belief revision in quantum decision theory: gambler's and hot hand fallacies  

E-Print Network (OSTI)

In the present article we introduce a quantum mechanism which is able to describe the creation of correlations in the evaluation of random independent events: such correlations, known as positive and negative recency, correspond respectively to the hot hand's and to the gambler's fallacies. Thus we propose a description of these effects in terms of qubits, which may become entangled, forming a system which can not be described completely only in terms of its constituents. We show that such formalism is able to describe and interpret the experimental results, thus providing a general and unifying framework for the cognitive heuristics.

Riccardo Franco

2008-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas  

SciTech Connect

We present spectra of highly charged iron, gadolinium, and tungsten ions obtained with electron beam ion traps. Spectroscopic studies of these ions are important to diagnose and control hot plasmas in several areas. For iron ions, the electron density dependence of the line intensity ratio in extreme ultraviolet spectra is investigated for testing the model calculation used in solar corona diagnostics. Soft x-ray spectra of gadolinium are studied to obtain atomic data required in light source development for future lithography. Tungsten is considered to be the main impurity in the ITER plasma, and thus visible and soft x-ray spectra of tungsten have been observed to explore the emission lines useful for the spectroscopic diagnostics of the ITER plasma.

Nakamura, Nobuyuki [Institute for Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); National Institute for Fusion Science, Gifu 509-5292 (Japan); Ding Xiaobin; Dong Chenzhong [North West Normal University, Lanzhou 730070 (China); Hara, Hirohisa; Watanabe, Tetsuya [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Gifu 509-5292 (Japan); Koike, Fumihiro [School of Medicine, Kitasato University, Kanagawa 252-0373 (Japan); Nakano, Tomohide [Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Ohashi, Hayato [Institute for Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Watanabe, Hirofumi; Yamamoto, Norimasa [Chubu University, Aichi 487-8501 (Japan)

2013-07-11T23:59:59.000Z

342

E-Print Network 3.0 - atomization atomic absorption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

atomic absorption Search Powered by Explorit Topic List Advanced Search Sample search results for: atomization atomic absorption Page: << < 1 2 3 4 5 > >> 1 :coherently trapped in...

343

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of 25%–60%. | Photo courtesy of ©iStockphoto/DaveBolton. Low-flow fixtures and showerheads can achieve water savings of 25%-60%. | Photo courtesy of ©iStockphoto/DaveBolton. What does this mean for me? Fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer to use less hot water and save money. You can lower your water heating costs by using and wasting less hot water in your home. To conserve hot water, you can fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer. Fix Leaks You can significantly reduce hot water use by simply repairing leaks in

344

EXTENDED HOT HALOS AROUND ISOLATED GALAXIES OBSERVED IN THE ROSAT ALL-SKY SURVEY  

SciTech Connect

We place general constraints on the luminosity and mass of hot X-ray-emitting gas residing in extended 'hot halos' around nearby massive galaxies. We examine stacked images of 2165 galaxies from the 2MASS Isolated Galaxy Catalog as well as subsets of this sample based on galaxy morphology and K-band luminosity. We detect X-ray emission at high confidence (ranging up to nearly 10{sigma}) for each subsample of galaxies. The average L{sub X} within 50 kpc is 1.0 {+-} 0.1 (statistical) {+-}0.2 (systematic) Multiplication-Sign 10{sup 40} erg s{sup -1}, although the early-type galaxies are more than twice as luminous as the late-type galaxies. Using a spatial analysis, we also find evidence for extended emission around five out of seven subsamples (the full sample, the luminous galaxies, early-type galaxies, luminous late-type galaxies, and luminous early-type galaxies) at 92.7%, 99.3%, 89.3%, 98.7%, and 92.1% confidence, respectively. Several additional lines of evidence also support this conclusion and suggest that about 1/2 of the total emission is extended, and about 1/3 of the extended emission comes from hot gas. For the sample of luminous galaxies, which has the strongest evidence for extended emission, the average hot gas mass is 4 Multiplication-Sign 10{sup 9} M {sub Sun} within 50 kpc and the implied accretion rate is 0.4 M {sub Sun} yr{sup -1}.

Anderson, Michael E.; Bregman, Joel N. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Dai, Xinyu, E-mail: michevan@umich.edu, E-mail: jbregman@umich.edu, E-mail: xdai@ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)] [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

2013-01-10T23:59:59.000Z

345

E-Print Network 3.0 - alara-conscious hot particle Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

all particles must leave at low energy. Fig. 1. Diffusion path from hot core to cold... , the diffusion path must connect hot ... Source: Fisch, Nathaniel J.- Princeton...

346

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Neal Hot...

347

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity...

348

Field Mapping At Brady Hot Springs Area (Wesnousky, Et Al., 2003...  

Open Energy Info (EERE)

Brady Hot Springs Area (Wesnousky, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Brady Hot Springs Area...

349

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

350

Spectral Emission of Moving Atom  

E-Print Network (OSTI)

A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

J. X. Zheng-Johansson

2008-03-17T23:59:59.000Z

351

Disassembly of hot classical charged drops  

Science Journals Connector (OSTI)

The disassembly of hot classical charged drops containing ?230 and 130 particles is studied with the molecular dynamics method. The strength of the Coulomb repulsion is chosen so that these drops have a binding energy formula similar to that of nuclei. The phase diagram of neutral matter, obtained by switching off the Coulomb force, is also similar to that of nuclear matter. In addition to the total-vaporization, fragmentation, and evaporation modes of the disassembly of neutral drops, the charged drops also break by multiple and binary fission. The liquid-gas phase transition plays an important role in the multiple fission of expanding charged liquid drops. There also appears to be a window in the initial conditions in which binary fission followed by a density oscillation is the dominant mode of breakup. The multiple and binary fission breakups are due to the Coulomb forces, and they yield more massive clusters with relatively few small clusters with ?10 particles. The higher energy fragmentation and total vaporization modes are not significantly influenced by the Coulomb forces. They are primarily due to the liquid-gas transition, and their yields decrease almost monotonically with the number of particles in the cluster.

R. J. Lenk and V. R. Pandharipande

1986-07-01T23:59:59.000Z

352

Hot isostatic press waste option study report  

SciTech Connect

A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

Russell, N.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

353

Superheated water drops in hot oil  

E-Print Network (OSTI)

Drops of water at room temperature were released in hot oil, which had a temperature higher than that of the boiling point of water. Initially, the drop temperature increases slowly mainly due to heat transfer diffusion; convective heat transfer is small because the motion takes place at a small Reynolds number. Once the drop reaches the bottom of the container, it sticks to the surface with a certain contact angle. Then, a part of the drop vaporizes: the nucleation point may appear at the wall, the interface or the bulk of the drop. The vapor expands inside the drop and deforms its interface. The way in which the vapor expands, either smooth or violent, depends on the location of the nucleation point and oil temperature. Furthermore, for temperatures close to the boiling point of water, the drops are stable (overheated); the vaporization does not occur spontaneously but it may be triggered with an external perturbation. In this case the growth of the vapor bubble is rather violent. Many visualization for dif...

Soto, Enrique; Belmonte, Andrew

2009-01-01T23:59:59.000Z

354

Statistical Hot Channel Analysis for the NBSR  

SciTech Connect

A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

Cuadra A.; Baek J.

2014-05-27T23:59:59.000Z

355

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

356

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

357

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

358

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

359

Photon Upconversion with Hot Carriers in Plasmonic Systems  

E-Print Network (OSTI)

We propose a novel scheme of photon upconversion based on harnessing the energy of plasmonic hot carriers. Low-energy photons excite hot electrons and hot holes in a plasmonic nanoparticle, which are then injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a photon of higher energy. We theoretically study the proposed upconversion scheme using Fermi-liquid theory and determine the upconversion quantum efficiency to be as high as 25% in 5 nm silver nanocubes. This upconversion scheme is linear in its operation, does not require coherent illumination, offers spectral tunability, and is more efficient than conventional upconverters.

Naik, Gururaj V

2015-01-01T23:59:59.000Z

360

Hot water geothermal development: opportunities and pilot plant results  

SciTech Connect

It has been projected that up to 11,000 MW of geothermal electric capacity may be on line in the United States by the year 2000. The majority of this capacity will come from hot water geothermal plants, as dry steam resources are limited. Currently, no commercial hot water geothermal capacity exists in the U.S., although, substantial capacity does exist in other countries. Large hot, high temperature resources exist in Southern California's Imperial Valley. Early research work has led to the technical success of a 10 MW unit at Brawley, and to the construction of second generation pilot unit at the Salton Sea resource.

Crane, G.K.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

AtomicNuclear Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

HTML_PAGES HTML_PAGES This AtomicNuclearProperties page is under intermittent development. Suggestions and comments are welcome. Please report errors. Chemical elements: For entries in red, a pull-down menu permits selection of the physical state. Cryogenic liquid densties are at the boiling point at 1 atm. 0n 1Ps 1H 2He 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe 55Cs 56Ba 57La 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn 87Fr 88Ra 89Ac 104Rf 105Db 106Sg 107Bh 108Hs 109Mt 110Ds 111Rg 112 113 114 115 116 mt 118

362

In-situ control system for atomization  

DOE Patents (OSTI)

Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

Anderson, Iver E. (Ames, IA); Figliola, Richard S. (Central, SC); Terpstra, Robert L. (Ames, IA)

1995-06-13T23:59:59.000Z

363

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

364

Draft General Conformity Determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Draft General Conformity Determination U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix I Draft General Conformity Determination Draft General Conformity Determination Cape Wind Energy Project Prepared by Minerals Management Service Herndon, VA November 2008 i TABLE OF CONTENTS 1.0 INTRODUCTION TO THE PROPOSED ACTION............................................................... 1 2.0 GENERAL CONFORMITY REGULATORY BACKGROUND .......................................... 2 2.1 GENERAL CONFORMITY REQUIREMENTS.................................................................... 2 2.2 GENERAL CONFORMITY APPLICABILITY.....................................................................

365

Questions and Answers - Does an atom smasher really smash atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator? is an accelerator? Previous Question (What is an accelerator?) Questions and Answers Main Index Next Question (Where and how do you get your electrons for your accelerator?) Where and how do you get yourelectrons for your accelerator? Does an atom smasher really smash atoms? Well, yes, they do, but we now prefer to call them by their less aggression-centered name, "particle harmony disrupters." Of course some atom smashers do much more smashing than others. We use electrons in our accelerator to study the nucleus of an atom. Remember that electrons are negative, as are the electrons surrounding the target. Since like charged particles repel each other, our particles have to have enough energy to blast through that electron cloud to get to the nucleus. The electrons then

366

General | Open Energy Information  

Open Energy Info (EERE)

Volver Pgina principal General banner.jpg Retrieved from "http:en.openei.orgwindex.php?titleGeneral&oldid519011" What links here Related changes Special pages Printable...

367

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

General User Proposals Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the...

368

General User Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Office General User Proposals Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS...

369

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346°, -111.050499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

370

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

371

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

372

Covered Product Category: Hot Food Holding Cabinets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Food Holding Cabinets Hot Food Holding Cabinets Covered Product Category: Hot Food Holding Cabinets October 7, 2013 - 11:08am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including hot food holding cabinets, which are covered by the ENERGY STAR® program. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Manufacturers display the ENERGY STAR label on complying models. For a model not displaying the label, check the qualified products lists maintained on the ENERGY STAR website. This product category overview covers the following: Meeting Energy Efficiency Requirements

373

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503°, -113.6869923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

374

Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Hobo Hot Springs Sector Geothermal energy Type Aquaculture Location Carson City, Nevada Coordinates 39.192232°, -119.7344478° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

375

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Hunter Hot Spring Greenhouse Sector Geothermal energy Type Greenhouse Location Springdale, Montana Coordinates 45.738268°, -110.2271387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

376

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717°, -115.970954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

377

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

378

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot Springs Sector Geothermal energy Type Greenhouse Location Weiser, Idaho Coordinates 44.2509976°, -116.9693327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

379

Preliminary Assessment of the Structural Controls of Neal Hot Springs  

Open Energy Info (EERE)

Preliminary Assessment of the Structural Controls of Neal Hot Springs Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Abstract The Neal Hot Springs geothermal field is marked by hotsprings that effuse from opaline sinter mounds just north of BullyCreek, in Malheur County, Oregon. Production wells have highflow rates and temperatures above 138C at depths of 850-915 m.On a regional scale, the geothermal field occupies a broad zonewithin the intersection between a regional, N-striking, normalfault system within the Oregon-Idaho graben and a regionalNW-striking, normal fault system within the western Snake

380

Analysis Of Hot Springs And Associated Deposits In Yellowstone National  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Details Activities (6) Areas (1) Regions (0) Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

382

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

383

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility Sand Dunes Hot Spring Sector Geothermal energy Type Aquaculture Location Hooper, Colorado Coordinates 37.7427775°, -105.8752987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

384

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

385

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baumgartner Hot Springs Sector Geothermal energy Type Pool and Spa Location Featherville, Idaho Coordinates 43.6098966°, -115.2581378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

386

Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE To introduce this new electric heat pump water heater, GE ran a memorable ad during the 2010 Winter Olympics featuring snow monkeys enjoying a hot soak. Credit: GE

387

NREL: Learning - Student Resources on Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Photo of a school building next to a pond. Roy Lee Walker Elementary School in Texas incorporates many renewable energy design features, including solar hot water heating. The following resources will help you learn more about solar water heating systems. If you are unfamiliar with this technology, see the introduction to solar hot water. Grades 7-12 NREL Educational Resources Educational resources available to students from the National Renewable Energy Laboratory. High School and College Level U.S. Department of Energy's Energy Savers: Solar Water Heaters Features comprehensive basic information and resources. U.S. Department of Energy's Energy Savers: Solar Swimming Pool Heaters Features comprehensive basic information and resources. U.S. Department of Energy Solar Decathlon

388

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793°, -113.4089438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

389

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Donlay Ranch Hot Spring Sector Geothermal energy Type Greenhouse Location Boise County, Idaho Coordinates 43.9604787°, -115.8563106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

390

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Below you will find Solar Decathlon news from the Hot Water archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

391

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

393

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly Hot Springs Sector Geothermal energy Type Aquaculture Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

394

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

395

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camperworld Hot Springs Sector Geothermal energy Type Pool and Spa Location Garland, Utah Coordinates 41.7410387°, -112.1616194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

397

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Huckelberry Hot Springs Sector Geothermal energy Type Pool and Spa Location Grand Teton Nat'l Park, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

398

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

399

California Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot Springs Sector Geothermal energy Type Pool and Spa Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

400

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chemical and Isotopic Composition of Casa Diablo Hot Spring:...  

Open Energy Info (EERE)

Composition of Casa Diablo Hot Spring: Magmatic CO2 near Mammoth Lakes, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Chemical and...

402

Mathematical model of a Hot Dry Rock system  

Science Journals Connector (OSTI)

......efficiency calculations, geothermal energy, Hot Dry Rock, multiple crack...is to estimate the amount of energy which may be produced by a geothermic power station. Heat capacity...provides a large resource of energy. To obtain the energy cold......

Norbert Heuer; Tassilo Kpper; Dirk Windelberg

1991-06-01T23:59:59.000Z

403

Covered Product Category: Hot Food Holding Cabinets | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of annual energy cost with an assumed hot food holding cabinet life of 12 years. Future electricity price trends and a 3% discount rate are based on Federal guidelines (NISTIR...

404

Hot rocks could help meet US energy needs  

Science Journals Connector (OSTI)

... -4 Hot rocks could help meet US energy needs LucyOdling-Smee Get more out of geothermal, experts advise. ... , experts advise.Geothermal energy takes advantage of heat naturally generated within the earth. Punchstock Nature energy focus ...

Lucy Odling-Smee

2007-01-23T23:59:59.000Z

405

Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...  

Open Energy Info (EERE)

soil samples were taken from a series of profile lines within an approximately 0.06 sq. mi area surrounding the hot springs. Additonally, several samples were taken approximately...

406

Reservoir Investigations on the Hot Dry Rock Geothermal System...  

Open Energy Info (EERE)

Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

407

Atmospheric Condensation Potential of Windows in Hot, Humid Climates  

E-Print Network (OSTI)

frequent atmospheric condensation on external surfaces of windows when their surface temperature drops below the dew point temperature of the hot humid air. To date, external surface condensation on windows has been given relatively much less importance...

El Diasty, R.; Budaiwi, I.

408

Hot Dry Rock Reservoir Engineering | Open Energy Information  

Open Energy Info (EERE)

hydraulically connect the wells. Water pumped down the injection well and through the fracture system is heated by contact with the hot rock and rises to the production well. This...

409

Exploration model for possible geothermal reservoir, Coso Hot...  

Open Energy Info (EERE)

Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

410

Requisites for Highly Efficient Hot-Carrier Solar Cells  

Science Journals Connector (OSTI)

We have constructed new models based on detailed balance of particle and energy fluxes to clarify the operating principle of hot-carrier solar cells (HC-SCs) and find the requisites for high conversion efficiency...

Yasuhiko Takeda

2014-01-01T23:59:59.000Z

411

Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland  

Science Journals Connector (OSTI)

...The hot tap water was a mixture of geothermal fluid transported from 50 operating geothermal wells into geothermal water tanks and then delivered into the laboratory through the one-way district heating system. The fluid from each well...

Vigg Thr Marteinsson; Sigurbjrg Hauksdttir; Cdric F. V. Hobel; Hrefna Kristmannsdttir; Gudmundur Oli Hreggvidsson; Jakob K. Kristjnsson

2001-09-01T23:59:59.000Z

412

Suppression of Dilepton Production in Hot Hadronic Matter  

E-Print Network (OSTI)

Dilepton production from pion-pion annihilation in a hot hadronic matter is studied using an effective chiral Lagrangian that includes explicitly vector mesons. We find that the production rate for dileptons with invariant masses around the rho...

Song, C.; Lee, S. H.; Ko, Che Ming.

1995-01-01T23:59:59.000Z

413

ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report  

Office of Scientific and Technical Information (OSTI)

DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Project Manager Norine H. Karins Prepared by ENERGY...

414

Modeling the emergence of the 'hot zones': tuberculosis and the ...  

E-Print Network (OSTI)

Sep 19, 2004 ... independent but interacting processes: (i) transmission of drug- resistant strains to uninfected ... second-line drugs, and therefore a multitude of different strains cocirculate in the hot ..... or 'slow' routes)2224. Reconstructing...

2004-09-10T23:59:59.000Z

415

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Facility Hot Creek Hatchery Sector Geothermal energy Type Aquaculture Location Mammoth Lakes, California Coordinates 37.648546°, -118.972079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

416

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

418

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

419

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

420

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Facility Facility Mystic Hot Springs Aquaculture Sector Geothermal energy Type Aquaculture Location Monroe, Utah Coordinates 38.6299724°, -112.1207573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

422

Open bottom mesons in hot asymmetric hadronic medium  

E-Print Network (OSTI)

The in-medium masses and optical potentials of $B$ and ${\\bar B}$ mesons are studied in an isospin asymmetric, strange, hot and dense hadronic environment using a chiral effective model. The chiral $SU(3)$ model originally designed for the light quark sector, is generalized to include the heavy quark sector ($c$ and $b$) to derive the interactions of the $B$ and $\\bar B$ mesons with the light hadrons. Due to large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are due to the in-medium interaction of the light quark content of these open-bottom mesons. Both $B$ and $\\bar B$ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, ($B^+$, $B^-$) as well as ($B^0$, ${\\bar B}^0$), is observed to be broken in the medium, due to equal and opposite contributions from a vectorial Weinberg-Tomozawa interaction term. Addition of hyperons to the medium lowers further the in-medium mass for each of these four mesons, while a non-zero isospin asymmetry is observed to break the approximate mass degeneracy of each pair of isospin doublets. These medium effects are found to be strongly density dependent, and bear a considerably weaker temperature dependence. The results obtained in the present investigation are compared to predictions from the quark-meson coupling model, heavy meson effective theory, and the QCD Sum Rule approach.

Divakar Pathak; Amruta Mishra

2014-09-02T23:59:59.000Z

423

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

424

Atoms 2014, 2, 378-381; doi:10.3390/atoms2030378 OPEN ACCESS  

E-Print Network (OSTI)

Atoms 2014, 2, 378-381; doi:10.3390/atoms2030378 OPEN ACCESS atomsISSN 2218-2004 www.mdpi.com/journal/atoms.calisti@univ-amu.fr 3 International Atomic Energy Agency, Atomic and Molecular Data Unit, Nuclear Data Section, P.O. Box for the first two SLSP workshops are for simple atomic systems: the hydrogen atom or hydrogen-like one

425

Chemical factors influencing selenium atomization  

E-Print Network (OSTI)

Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

Buren, Mary Sue

2012-06-07T23:59:59.000Z

426

Hot compression process for making edge seals for fuel cells  

DOE Patents (OSTI)

A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

Dunyak, Thomas J. (Blacksburg, VA); Granata, Jr., Samuel J. (South Greensburg, PA)

1994-01-01T23:59:59.000Z

427

Emission of Visible Light by Hot Dense Metals  

SciTech Connect

We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.

More, R.M.; Goto, M.; Graziani, F.; Ni, P.A.; Yoneda, H.

2009-12-01T23:59:59.000Z

428

ON THE HOT GAS CONTENT OF THE MILKY WAY HALO  

SciTech Connect

The Milky Way appears to be missing baryons, as the observed mass in stars and gas is well below the cosmic mean. One possibility is that a substantial fraction of the Galaxy's baryons are embedded within an extended, million-degree hot halo, an idea supported indirectly by observations of warm gas clouds in the halo and gas-free dwarf spheroidal satellites. X-ray observations have established that hot gas does exist in our Galaxy beyond the local hot bubble; however, it may be distributed in a hot disk configuration. Moreover, recent investigations into the X-ray constraints have suggested that any Galactic corona must be insignificant. Here we re-examine the observational data, particularly in the X-ray and radio bands, in order to determine whether it is possible for a substantial fraction of the Galaxy's baryons to exist in {approx}10{sup 6} K gas. In agreement with past studies, we find that a baryonically closed halo is clearly ruled out if one assumes that the hot corona is distributed with a cuspy Navarro-Frenk-White profile. However, if the hot corona of the galaxy is in an extended, low-density distribution with a large central core, as expected for an adiabatic gas in hydrostatic equilibrium, then it may contain up to 10{sup 11} M {sub Sun} of material, possibly accounting for all of the missing Galactic baryons. We briefly discuss some potential avenues for discriminating between a massive, extended hot halo and a local hot disk.

Fang, Taotao [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)] [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Bullock, James; Boylan-Kolchin, Michael [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States)] [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States)

2013-01-01T23:59:59.000Z

429

THE INTERACTION OF RARE GAS METASTABLE ATOMS  

E-Print Network (OSTI)

in the study of metastable atom reactions. > 1 it- Fig, laa raetastable rare gas atom, three quantities are necessaryOF iiARE GAS METASTABLF ATOMS Andrew Zun-Foh Wang M a t e r

Wang, A.Z.-F.

2011-01-01T23:59:59.000Z

430

Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics  

E-Print Network (OSTI)

We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.

Andrei Khrennikov; Yaroslav Volovich

2006-04-27T23:59:59.000Z

431

LA-2271 CHEMISTRY-GENERAL  

Office of Scientific and Technical Information (OSTI)

2271 2271 CHEMISTRY-GENERAL TID-4500, 14th Ed. LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO REPORT WRITTEN: August 1958 REPORT DISTRIBUTED: March 17, 1959 COMPRESSIBILITY FACTORS AND FUGACITY COEFFICIENTS CALCULATED FROM THE BEATTIE-BRIDGEMAN EQUATION OF STATE FOR HYDROGEN, NITROGEN, OXYGEN, CARBON DIOXIDE, AMMONIA, METHANE, AND HELIUM by C. E. Holley, J r . W. J. Worlton R. K. Zeigler » * This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory. Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

432

UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office  

Office of Legacy Management (LM)

fi ' fi ' J/ui : ,I/ /J ii%/~it~ - ,,(,C, \,\J,iT/~l \ 11, ?' UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office Files (.Thrur V.L.Parsegian, Director, Division of Technical Advisers) Decenber 19, 1950 9; G.Strc&e, Division of Technical Advisers COLD-DRAWING OF TJRAXItZI RODS A BXIDGEPORT BRATS CO'Ei+A!R Symbol: TAtFGSrmam On 12/11/50, an exper%mnt was conducted at the Bridgmort Brass Company in whioh an attanpt m m made to cold-draw hot-foiled rods of uranium tich had been pickled to remove the oxi:!e coating. In addition, a few mpickled bars were drawn. It can be uoncluded from this erperimmt that we x-me unable tith the lubricants used to draw the pickled rods of uranium. This' appears to verify the necessity for an oxide film on the uranium to

433

UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS  

Office of Legacy Management (LM)

AL, 3 AL, 3 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS CINCINNATI AREA P. 0. BOX 39198, CINCINNATI 39, OHIO IN REPLY REFER TO: 0:OJT --r.LAal Cl E:c Mr. J. H. Noyes, Plant Manager National Lead Company of Ohio P. 0. Box 39158 Cincinnati 39, Ohio Subject: HOT TENSILE TESTS OF URANIUM - SOUTHERN RESEARCH INSTITUTE Dear Mr. Noyee: I / Reference is made to your letter of May 17, 1962, on the above subject. Approval is granted for the off-site movement of up to 300 pounds of normal uranium by the National Lead Company of Ohio to the Southern Research Institute, Birmingham, Alabama for testing purposes. Accountability for the material should be retained in SS Station NLO's records during the testing period. The Monthly Material Balance Re-

434

Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging  

E-Print Network (OSTI)

We wish to test the origins proposed for the extended hot H2 at 2000K around the atomic jet from the T Tauri star DGTau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disk wind. We present flux calibrated IFS observations in H2 1-0 S(1) obtained with SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate correction for uneven slit illumination, we performed a thorough analysis and modeled the morphology, kinematics, and surface brightness. We also compared our results with studies in [FeII], [OI], and FUV-pumped H2. The limb-brightened H2 emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and setting an upper limit of 12km/s on any expansion proper motion. The wide-angle H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The l...

Agra-Amboage, Vanessa; Dougados, C; Kristensen, L E; Ibgui, L; Reunanen, J

2014-01-01T23:59:59.000Z

435

Imaging atoms in 3-D  

ScienceCinema (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2014-06-27T23:59:59.000Z

436

ATOMIC ENERGY ACT OF 1946  

NLE Websites -- All DOE Office Websites (Extended Search)

ect of the us0 of atomic energy for civilian purposes upon the social, economic, and political structures of today cannot now bo determined. It is a field in which unknown factors...

437

Quantum information with Rydberg atoms  

Science Journals Connector (OSTI)

Rydberg atoms with principal quantum number n?1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.

M. Saffman; T. G. Walker; K. Mlmer

2010-08-18T23:59:59.000Z

438

Absorption properties of identical atoms  

E-Print Network (OSTI)

Emission rates and other optical properties of multiparticle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

Pedro Sancho

2013-07-31T23:59:59.000Z

439

SIMULATION OF POROSITY AND HOT TEARS IN A SQUEEZE CAST MAGNESIUM CONTROL ARM  

E-Print Network (OSTI)

SIMULATION OF POROSITY AND HOT TEARS IN A SQUEEZE CAST MAGNESIUM CONTROL ARM K.D. Carlson1 , C: Magnesium Alloys, Casting, Shrinkage Porosity, Hot Tears, Modeling Abstract Simulations are performed and hot tears in squeeze casting of magnesium alloys. Introduction Both shrinkage porosity and hot tears

Beckermann, Christoph

440

Network Sensitivity to Hot-Potato Disruptions Renata Teixeira Aman Shaikh Tim Griffin Geoffrey M. Voelker  

E-Print Network (OSTI)

Network Sensitivity to Hot-Potato Disruptions Renata Teixeira Aman Shaikh Tim Griffin Geoffrey M@cs.ucsd.edu ABSTRACT Hot-potato routing is a mechanism employed when there are multi- ple (equally good) interdomain we call hot-potato disruptions. Recent work has shown that hot-potato disruptions can have

Voelker, Geoffrey M.

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Collapse and revival of the Doppler-Rabi oscillations of a moving atom in a cavity  

SciTech Connect

Collapse and revival of the Doppler-Rabi oscillations of a two-level atom moving in a cavity electromagnetic field are analyzed. The coupled atom-field dynamics are predicted accurately by numerical calculation and approximately by using the stationary phase approximation combined with the Poisson summation formula. The collapse and revival patterns are shown to be qualitatively different in the cases of moving atom and atom at rest. In particular, quantum revivals of Doppler-Rabi oscillations occur with a period determined by the Doppler shift of the atomic transition frequency. This regime of Doppler-Rabi oscillations requires that the Rabi frequency and the Doppler shift satisfy the condition {omega}{sub R} << {omega}{sub D}. Under the inverse relation, the collapse- revival phenomenon generally does not occur. It is shown that even a small amount of atom-cavity detuning eliminates collapse-revival behavior. The analysis is performed for both coherent and thermal cavity fields.

Kozlovskii, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)], E-mail: kozlovsk@sci.lebedev.ru

2008-11-15T23:59:59.000Z

442

Selfish atom selects quantum resonances at fractional atomic frequencies  

E-Print Network (OSTI)

We show that the atom as a "quantum entity", driven by an external field in the form of pulse sequence at repetition rate equal to the internal quantum frequency divided by an integer n, responds resonantly. It seeks and finds its characteristic frequencies in any possible combination of its frequencies. This is an indication of self expression by the atom at many sub-frequencies of its own transition frequencies. It is a non-intuitive phenomenon since the external repetition rate has no quantum character, yet the atom responds to it if the rate is equal to 1/n its eigen-frequency. We believe that our results will have implications in other quantum related processes, such as resonant enhancement of chemical reactions and biological processes.

Gennady A. Koganov; Reuben Shuker

2014-09-17T23:59:59.000Z

443

Testing atomic mass models with radioactive beams  

SciTech Connect

Significantly increased yields of new or poorly characterized exotic isotopes that lie far from beta-decay stability can be expected when radioactive beams are used to produce these nuclides. Measurements of the masses of these new species are very important. Such measurements are motivated by the general tendency of mass models to diverge from one another upon excursions from the line of beta-stability. Therefore in these regions (where atomic mass data are presently nonexistent or sparse) the models can be tested rigorously to highlight the features that affect the quality of their short-range and long-range extrapolation properties. Selection of systems to study can be guided, in part, by a desire to probe those mass regions where distinctions among mass models are most apparent and where yields of exotic isotopes, produced via radioactive beams, can be optimized. Identification of models in such regions that have good predictive properties will aid materially in guiding the selection of additional experiments which ultimately will provide expansion of the atomic mass database for further refinement of the mass models. 6 refs., 5 figs.

Haustein, P.E.

1989-01-01T23:59:59.000Z

444

String model of the Hydrogen Atom  

E-Print Network (OSTI)

A non-moving electron hydrogen model is proposed, resolving a long standing contradiction (94 years) in the hydrogen atom. This, however, forces to not use the "in an orbit point particle kinetic energy" as the phenomenon responsible for the atom stability. The repulsion between the masses of the electron and proton is what is responsible of such stability. The mass of the electron is a field fully described by the uncertainty principle through the confinement of the particle, which is also consistent with the general theory of relativity that states: "mass-energy tells the space how to bend". Ergo, mass exerts a tension on its surrounding space and the lighter the mass the larger the space it will occupy. Based on this concept it is proposed that the orbital is the electron. The electron's orbitals are just the electron's different ways of intersecting the space; with different magnetic momenta. The coupling of this momenta with the magnetic moment of the proton finally explains the hyperfine structure of the hydrogen spectrum with an overwhelming simplicity

Omar Yepez

2007-01-31T23:59:59.000Z

445

Transport coefficients of a hot pion gas  

Science Journals Connector (OSTI)

General expressions for transport coefficients of a single-component gas (namely, thermal conductivity and shear and bulk viscosities) of bosons are derived from a Boltzmann-Uehling-Uhlenbeck transport equation by means of the Chapman-Enskog method to first order. These expressions are then used for the calculation of the associated transport relaxation times and applied to the pion gas produced in ultrarelativistic heavy-ion collisions. The influence of Bose enhancement factors on transport properties can be seen by comparison with previous calculations. 1996 The American Physical Society.

D. Davesne

1996-06-01T23:59:59.000Z

446

Collection of atomic mercury by electrostatic precipitators  

Science Journals Connector (OSTI)

... Flameless atomic absorption spectroscopy was used to measure the difference in the mercury concentration of gas ...

O. M. G. NEWMAN; D. J. PALMER

1978-10-12T23:59:59.000Z

447

RICE UNIVERSITY Ultracold Collisions in Atomic Strontium  

E-Print Network (OSTI)

RICE UNIVERSITY Ultracold Collisions in Atomic Strontium by Sarah B. Nagel A Thesis Submitted Houston, Texas February, 2008 #12;Abstract Ultracold Collisions in Atomic Strontium by Sarah B. Nagel In this work with atomic Strontium, the atoms are first laser cooled and subse- quently trapped, in a MOT

Killian, Thomas C.

448

Atomic Cascade in Muonic and Hadronic Hydrogen Atoms  

E-Print Network (OSTI)

The atomic cascade in $\\mu^- p$ and $\\pi^- p$ atoms has been studied with the improved version of the extended cascade model in which new quantum mechanical calculations of the differential and integral cross sections of the elastic scattering, Stark transitions and Coulomb de-excitation have been included for the principal quantum number values $n\\le 8$ and the relative energies $E \\ge 0.01$ eV. The $X$-ray yields and kinetic energy distributions are compared with the experimental data.

T. S. Jensen; V. P. Popov; V. N. Pomerantsev

2007-12-18T23:59:59.000Z

449

Observation of relativistic antihydrogen atoms  

SciTech Connect

An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

Blanford, Glenn DelFosse

1998-01-01T23:59:59.000Z

450

Committee on Atomic, Molecular, and Optical Sciences (CAMOS)  

SciTech Connect

The Committee on Atomic, Molecular, and Optical Sciences is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences -- National Research Council. The atomic, molecular, and optical (AMO) sciences represent a broad and diverse field in which much of the research is carried out by small groups. These groups generally have not operated in concert with each other and, prior to the establishment of CAMOS, there was no single committee or organization that accepted the responsibility of monitoring the continuing development and assessing the general public health of the field as a whole. CAMOS has accepted this responsibility and currently provides a focus for the AMO community that is unique and essential. The membership of CAMOS is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include atomic physics, molecular science, and optics. A special effort has been made to include a balanced representation from the three subfields. (A roster is attached.) CAMOS has conducted a number of studies related to the health of atomic and molecular science and is well prepared to response to requests for studies on specific issues. This report brief reviews the committee work of progress.

Not Available

1992-01-01T23:59:59.000Z

451

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

452

Atomizing, continuous, water monitoring module  

DOE Patents (OSTI)

A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

Thompson, C.V.; Wise, M.B.

1997-07-08T23:59:59.000Z

453

Zim's Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zim's Hot Springs Geothermal Area Zim's Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zim's Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Idaho Batholith GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

454

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

455

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

Neal Hot Springs II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs II Geothermal Project Neal Hot Springs II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs II Geothermal Project Project Location Information Coordinates 44.023055555556°, -117.46° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.023055555556,"lon":-117.46,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

458

Lee Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Geothermal Project Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lee Hot Springs Geothermal Project Project Location Information Coordinates 39.208055555556°, -118.72388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.208055555556,"lon":-118.72388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Geographic Information System At Brady Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Brady Hot Springs Geographic Information System At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

460

Leach Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Leach Hot Springs Geothermal Project Leach Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information Coordinates 40.603888888889°, -117.64805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.603888888889,"lon":-117.64805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SRNL is Hot on the [Fungi] Trail | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRNL is Hot on the [Fungi] Trail SRNL is Hot on the [Fungi] Trail SRNL is Hot on the [Fungi] Trail August 6, 2010 - 9:20am Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs "Mold research" is probably not the most glamorous sounding job out there. While some types of mold are good - cultured molds are used in food production and a variety of medications are derived from mold - many common household molds are your basic "gross" variety: not only a nuisance to clean up but hazardous to your health. Unfortunately, with recent national disasters and flooding events across the country, more and more families are dealing with these damaging molds on a regular basis - creating a need to identify the most toxic mold types, determine the best

462

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

463

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert  

Open Energy Info (EERE)

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Details Activities (3) Areas (3) Regions (0) Abstract: Gaseous emissions from the landscape can be used to explore for geothermal systems, characterize their lateral extent, or map the trends of concealed geologic structures that may provide important reservoir permeability at depth. Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes

464

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

465

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

466

Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen,  

Open Energy Info (EERE)

Ingebritsen, Ingebritsen, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Defense of previous 1993 thermal gradient hole interpretations. References S. E. Ingebritsen, M. A. Scholl, D. R. Sherrod (1996) Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Breitenbush_Hot_Springs_Area_(Ingebritsen,_Et_Al.,_1996)&oldid=510797"

467

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

468

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

'Hot Water' 'Hot Water' New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example, in the Appliances Contest graphic, the scores for running the refrigerator,

469

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

470

Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood,  

Open Energy Info (EERE)

2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

471

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

472

Membranes and MEAs for Dry, Hot Operating Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

and MEA's and MEA's for Dry, Hot Operating Conditions - Kick off 1 3 Membranes and MEA's for Dry, Hot Operating Conditions DE-FG36-07GO17006 Steve Hamrock 3M Company February 13, 2007 2007 DOE HFCIT Kick-Off Meeting This presentation does not contain any proprietary or confidential information Membranes and MEA's for Dry, Hot Operating Conditions - Kick off 2 3 Overview 3 Timeline * Project start 1/1/07 * Project end 12/31/10 * 0% complete Barriers A. Durability B. Performance DOE Technical Targets (2010) * Durability w/cycling: > 5000 hrs, * Conductivity 0.1 S/cm @120ºC * Cost: $20/m 2 , Budget * Total Project funding $11.4 million - $8.9 million - DOE - $2.5 million - contractor cost share (22%) * Received in FY07: $ 0 * Case Western Reserve Univ. * Colorado School of Mines * University of Detroit Mercy

473

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

474

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

475

Impacts of criticality safety on hot fuel examination facility operations  

SciTech Connect

The Hot Fuel Examination Facility (HFEF) complex comprises four large hot cells. These cells are used to support the nation's nuclear energy program, especially the liquid-metal fast breeder reactor, by providing nondestructive and destructive testing of irradiated reactor fuels and furnishing the hot cell services required for operation of Experimental Breeder Reactor II (EBR-II). Because it is a research rather than a production facility, HFEF assignments are varied and change from time to time to meet the requirements of our experimenters. Such a variety of operations presents many challenges, especially for nuclear criticality safety. The following operations are reviewed to assure that accidental criticality is not possible, and that all rules and regulations are met: transportation, temporary storage, examinations, and disposition.

Garcia, A.S.; Courtney, J.C.; Bacca, J.P.

1985-11-01T23:59:59.000Z

476

EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE  

SciTech Connect

Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (?30MK) fast (>500 km s{sup 1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

Imada, S. [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)] [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Aoki, K.; Hara, H.; Watanabe, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)] [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Shimizu, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)

2013-10-10T23:59:59.000Z

477

Chico Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Greenhouse Location Pray, Montana Coordinates 45.3802143°, -110.6815999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

478

Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Space Heating Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

479

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Maine Program Type Solar/Wind Contractor Licensing In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North American Board of Certified Energy Practitioners (NABCEP). The state solar thermal rebate program maintains a list of Efficiency Maine registered vendors/installers. In addition, Efficiency Maine has information for vendors interested in becoming registered and listed on the [http://www.efficiencymaine.com/at-home/registered-vendor-locator web

480

Commonwealth Solar Hot Water Commercial Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Feasibility study: $5,000; Construction: 25% system costs or $50,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 08/04/2011 State Massachusetts Program Type State Rebate Program Rebate Amount Feasibility study: $5,000; Construction grants: $45*number of collectors*SRCC Rating (Private); $55*number of collectors*SRCC Rating (Public/Non-Profit) Massachusetts Manufactured adder: $200-$500 Metering adder: Up to $1,500

Note: This page contains sample records for the topic "general atomics hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Space Heating Location Hot Sulphur Springs, Colorado Coordinates 40.0730411°, -106.1027991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

482

Neal Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Project Neal Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs Geothermal Project Project Location Information Coordinates 44.023055555556°, -117.46° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.023055555556,"lon":-117.46,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Vibrational Modes of Adsorbed Atoms  

E-Print Network (OSTI)

for AronXe B. Neon Ar The lowest surface m ver g.ur ace mode branc mo d o' td 'th es of the " rin " ce e wit an adsorbate of modes assoc' tia ed with th e; there are for the ads stion, the bra h sorbate atoms I c 1.ons ranch labeled 2H s. n... , are the real ads teristic force con t tons ants for ad is evident that in Fi . 2 t "heavier" than th ig. the adsorbate is n e substrate M & terpretation b M, ) in tkis in- ecause the weaknes th l' ht ofth ds o ke adsorbate atoms (m, &m, IBRATIQNAI...

LAWRENCE, WR; Allen, Roland E.

1977-01-01T23:59:59.000Z

484

Relativistic atomic beam spectroscopy II  

SciTech Connect

The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

NONE

1989-12-31T23:59:59.000Z

485

Atomic-binding-energy oscillations  

Science Journals Connector (OSTI)

We investigate the oscillatory supplement to the statistical nonrelativistic binding-energy formula for neutral atoms. The semiclassical approach proves capable of deriving these oscillations. It turns out that their amplitude is proportional to Z4/3 (Z is the number of electrons), and that their period is determined by the maximum angular momentum available in Thomas-Fermi atoms, i.e., 0.928Z1/3. Our calculation also provides an understanding of the peculiar shape of the oscillations, which show sharp minima and wide, structured maxima.

Berthold-Georg Englert and Julian Schwinger

1985-07-01T23:59:59.000Z

486

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

SciTech Connect

There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

Lutz, Jim; Melody, Moya

2012-11-08T23:59:59.000Z

487

Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 4, 4: January 4, 2010 HOT Lanes in the U.S. to someone by E-mail Share Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on Facebook Tweet about Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on Twitter Bookmark Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on Google Bookmark Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on Delicious Rank Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on Digg Find More places to share Vehicle Technologies Office: Fact #604: January 4, 2010 HOT Lanes in the U.S. on AddThis.com... Fact #604: January 4, 2010 HOT Lanes in the U.S. There are six States that currently have high-occupancy toll (HOT) lanes.

488

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...  

Open Energy Info (EERE)

the trends of concealed geologic structures. Ion chromatography, gas chromatography, atomic absorption spectrometry, and inductively coupled plasma-mass spectrometry have been...

489

Chena Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Chena Hot Springs Chena Hot Springs Sector Geothermal energy Type Greenhouse Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

490

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Space Heating Location Fairmont, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

491

Circle Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Circle Hot Springs Circle Hot Springs Sector Geothermal energy Type Greenhouse Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

492

Io hot spots - infrared photometry of satellite occultations  

SciTech Connect

Io's active hot spots, which are presently mapped on the basis of IR photometry of this moon's occultation by other Gallilean satellites, are obtained with greatest spatial resolution near the sub-earth point. A model is developed for the occultation lightcurves, and its fitting to the data defines the apparent path of the occulting satellite relative to Io; the mean error in apparent relative position of occulting satellites is of the order of 178 km. A heretofore unknown, 20-km diameter hot spot is noted on Io's leading hemisphere. 31 references.

Goguen, J.D.; Matson, D.L.; Sinton, W.M.; Howell, R.R.; Dyck, H.M.

1988-12-01T23:59:59.000Z

493

Experimental study of hot deformation behavior in API X65 steel  

Science Journals Connector (OSTI)

The hot deformation behavior of API X65 steel was investigated by hot compression tests. A temperature range between 950 and 1150C was used for experiments with different strain rates of 0.01, 0.1 and 1s?1. The obtained flow curves were used together with work hardening rate analyses to study the dynamic recrystallization (DRX) behavior of the tested steel. The retardation of DRX in higher ZenerHollomon parameter (Z) values was observed. In lower Z values however, transition from single peak DRX to multiple peaks DRX occurred. Different constitutive equations, including the power law, the exponential law and the hyperbolic sine law were used to express the Z parameter as a function of the peak stress. A new procedure was proposed to determine the optimum value of stress multiplier (?) in the hyperbolic sine law equation. This equation with the proposed procedure had the best performance for modeling the DRX behavior of API X65 steel. Furthermore, the relationship between the Z parameter and the peak stress was investigated using the power law relation. This gave the Z exponent of 0.173 for peak stress and 0.153 for peak strain. The normalized critical stress and strain for initiation of DRX were found to be 0.89 and 0.6, respectively. The obtained results are in general consistent with the experimental results from similar works.

M. Rakhshkhorshid; S.H. Hashemi

2013-01-01T23:59:59.000Z

494

The Atmospheric Circulation and Observable Properties of Non-Synchronously Rotating Hot Jupiters  

E-Print Network (OSTI)

We study the feasibility of observationally constraining the rotation rate of hot Jupiters, planets that are typically assumed to have been tidally locked into synchronous rotation. We use a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively), including the effect of variable stellar heating. We compare two observable properties: 1) the spatial variation of flux emitted by the planet, measurable in orbital phase curves, and 2) the net Doppler shift in transmission spectra of the atmosphere, which is tantalizingly close to being measurable in high-resolution transit spectra. Although we find little difference between the observable properties of the synchronous and non-synchronous models of HD 189733b, we see significant differences when we compare the models of HD 209458b. In particular, the slowly rotating model of HD 2094...

Rauscher, E

2014-01-01T23:59:59.000Z

495

The impact of hot-melt adhesives on the paper recycling process  

SciTech Connect

Hot melts and other adhesives can cause contamination problems in recycling paper and paper board. Some types of hot melts cause more problems than others in fouling mill equipment and affecting paper quality. Adhesive manufacturers are evaluating two categories of repulpable hot melts--dispersible or soluble hot melts and recoverable hot melts. This paper examines the paper recycling process to understand how hot melts cause problems. A simplified depiction of a paper recycling operation is shown. The steps in the process are described.

Hayes, P.J. (Nacan Products Ltd., Bampton, Ontario (Canada). Adhesive Division); Kauffman, T.F. (National Starch and Chemical Co., Bridgewater, NJ (United States))

1993-11-01T23:59:59.000Z

496

Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach  

SciTech Connect

Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms.

Sindelka, Milan; Moiseyev, Nimrod [Department of Chemistry and Minerva Center of Nonlinear Physics in Complex Systems, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

2006-11-15T23:59:59.000Z

497

Breitenbush Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Breitenbush Hot Springs Geothermal Area Breitenbush Hot Springs Geothermal Area (Redirected from Breitenbush Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Breitenbush Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78166667,"lon":-121.975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Mickey Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mickey Hot Springs Geothermal Area Mickey Hot Springs Geothermal Area (Redirected from Mickey Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mickey Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.346045,"lon":-118.346045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Dixie Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Hot Springs Geothermal Area Dixie Hot Springs Geothermal Area (Redirected from Dixie Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7977,"lon":-118.0673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Umpqua Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Umpqua Hot Springs Geothermal Area Umpqua Hot Springs Geothermal Area (Redirected from Umpqua Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Umpqua Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.294,"lon":-122.367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}