Sample records for ge energy references

  1. GE, Berkeley Energy Storage for Electric Vehicles | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Just Add Water: GE, Berkeley Lab Explore Possible Key to Energy Storage for Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  2. Ris Energy Report 6 References Reference list for Chapter 3

    E-Print Network [OSTI]

    Risø Energy Report 6 References Reference list for Chapter 3 1. European Commission. (2007). Communication from the Commis- sion to the European Council and the European Parliament ­ An energy policy of the Brussels European Council 8/9 March 2007. Brussels. (7224/1/07 Rev. 1). 3. Danish Energy authority. (2007

  3. Tips: References | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & SolarLaundryReferences Tips:

  4. Z:\\Gerontology\\Program\\Application Packages\\PBD Application Package\\PBD package 2008\\Reference form.doc de partme nt of ge rontology

    E-Print Network [OSTI]

    .doc de partme nt of ge rontology gerontology research centre Letter of ReferenceLetter of Reference

  5. Z:\\Gerontology\\Program\\Application Packages\\MA Application Package\\Application Package 2008\\Reference Form.doc de partme nt of ge rontology

    E-Print Network [OSTI]

    \\Reference Form.doc de partme nt of ge rontology gerontology research centre LETTER OF REFERENCE MASTER

  6. GE Energy Formerly GE Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (SmartCICGE Energy

  7. Flexible Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorking Outside the Box

  8. Ris Energy Report 2 References chapter 3

    E-Print Network [OSTI]

    8 Ris Energy Report 2 References chapter 3 1. IEA (2001), World Energy Outlook, OECD/IEA 2001. 2, Rome. 3. UNDP (2000): World Energy Assessment, NY 2000. 4. WEC (2001): Survey of energy resources. World Energy Council, Lon- don. 5. Kaltschmitt (2001): Martin Kaltschmitt, Hans Hartmann (Hrsg

  9. Desk Reference | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment- theDepartmentEnergyMillDesk

  10. Tips: References | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir DuctsTips:References Tips:

  11. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (2011). The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices. M. Previsic (2011). Economic Methodology...

  12. REFERENCE GUIDE ENERGY CONSERVATION ASSISTANCE ACT (ECAA)

    E-Print Network [OSTI]

    with this requirement. Waste management guidance and plan template can be downloaded at http://www.energy that generate waste. Attachments: Energy Commission Waste Management Plan Guidance Waste Management Plan1 REFERENCE GUIDE ENERGY CONSERVATION ASSISTANCE ACT (ECAA) STATE ENERGY PROGRAM (SEP) AMERICAN

  13. Reference Projections Energy and Emissions

    E-Print Network [OSTI]

    national and international evaluations and preparations of energy, climate and air pollution policy industry. In the Global Economy scenario, the share of coal in electricity production also increases due to the construction of new coal plants. The share of renewable energy, especially wind and biomass, increases rapidly

  14. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power Energy Conversion

  15. GE Wind Energy Germany | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicion NodularGermany Jump to:

  16. GE Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicion NodularGermany Jump

  17. GE Hitachi Nuclear Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (SmartCICGE

  18. Measurement of the direct energy gap of coherently strained SnxGe1x Ge,,001... heterostructures

    E-Print Network [OSTI]

    Atwater, Harry

    Measurement of the direct energy gap of coherently strained SnxGe1x Ge,,001... heterostructures The direct energy gap has been measured for coherently strained SnxGe1 x alloys on Ge 001 substrates with 0 for coherently strained SnxGe1 x alloys indicates a large alloy contribution and a small strain contribution

  19. Notrees 1B (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History ViewTexas:Notrees 1B (GE Energy) Wind

  20. Crystal Lake - GE Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpen Energy Information8) Wind FarmGE

  1. Northern Colorado Wind Energy Center (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View NewNorthern Arizona UniversityGE)

  2. Template:Reference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchieTecniplanReference Jump to:

  3. Commercial Reference Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s(RedirectedColusaCommack,Reference

  4. Ris Energy Report 5 References References for Chapter 3

    E-Print Network [OSTI]

    of nations. New York: Basic Books. 7. Porter, M. E. (1998). Clusters and the new economics of competi- tion- nisms in the development of a new industry: The case of renewable energy technology in Sweden. In Coombs et al. (2005). Uk innovation systems for new and renewable energy technologies: drivers, barriers

  5. Sandia Energy - Marine Hydrokinetics Technology: Reference Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdatesDevelopment Reference Model

  6. 2014 Manufacturing Energy and Carbon Footprints: References

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergy VehicleSessionOffice |OfficeAboutofAugustReferences

  7. Excess vacancies in high energy ion implanted SiGe

    SciTech Connect (OSTI)

    Koegler, R.; Muecklich, A.; Skorupa, W.; Peeva, A.; Kuznetsov, A. Yu.; Christensen, J. S.; Svensson, B. G. [Forschungszentrum Rossendorf, PF 510119, D-01314 Dresden (Germany); Institute of Solid State Physics BAS, Boulevard Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Deparment of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway)

    2007-02-01T23:59:59.000Z

    Excess vacancies generated by high energy implantation with 1.2 MeV Si{sup +} and 2 MeV Ge{sup +} ions in SiGe were investigated after rapid thermal annealing at 900 degree sign C. Excess vacancies were probed by decoration with Cu and measuring the Cu profile by secondary ion mass spectrometry. Cross section transmission electron microscopy of cleaved specimen enabled to visualize nanocavities resulting from agglomeration of excess vacancies. The ion-induced damage in SiGe increases with increasing Ge fraction of the alloy. The amorphization threshold decreases and the extension of a buried amorphous layer increases for given implantation and annealing conditions. In contrast to ballistic simulations of excess defect generation where perfect local self-annihilation is assumed the concentrations of excess vacancies and excess interstitials in SiGe increase with increasing Ge fraction. The main contribution to the high excess vacancy concentration in SiGe results from the inefficient recombination of vacancies and interstitials. The widely used +1 model describing the ion-induced damage in Si is not valid for SiGe.

  8. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU - 2 3NewNew3Energy, CutEnergy

  9. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEARInstruments UserNevadaEnergy

  10. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  11. GE Shenhua JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulongFuturo LatinoEngineeringGEGE

  12. Energy Frontier Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory EnergyFuels

  13. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appropriate acknowledgment of the facility or equipment and its supporting agency. EFRC management reference document Energy Frontier Research Centers Acknowledgments of Support...

  14. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNewNewEnergy We're

  15. GE Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (SmartCICGESolar

  16. Waste to Energy Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout Us >

  17. Green Energy Innovations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'In the-

  18. Evidence for Dark Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m.Experiments with

  19. Sandia Energy - Technical Reference for Hydrogen Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    France Gilbert Henaff The Welding Institute (TWI), UK Richard Pargeter French Alternative Energies and Atomic Energy Commission (CEA), France Laurent Briottet National Institute of...

  20. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01T23:59:59.000Z

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  1. GE Progetti 3i Spa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulongFuturo LatinoEngineeringGE

  2. Department of Energy Construction Safety Reference Guide

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  3. NPS Quick Reference Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriation

  4. Top of the World (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWind Farm Jump to:GE)

  5. Cedar Creek Wind Farm II (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar Jump to:CeCap LLPII (GE)

  6. Commercial Reference Buildings | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space Data CorporationPast Projects » Commercial

  7. Form:Reference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset name below to

  8. Category:Geothermal References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source History View New Pages

  9. Category:Solar References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation

  10. Category:Utilities References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques, clickpage? ForCategory

  11. Category:Wind References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? For detailed

  12. Sandia Energy - Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power Energy ConversionProject

  13. Widget:ReferenceEdit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMap JumpNOTITLE Jump

  14. Property:References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter iconNumOfPlantsRecipeIngredient Jump

  15. Property:Reference material | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial Jump to: navigation,

  16. Property:ReferenceGenre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial Jump to:

  17. Subsurface Knowledge Reference Page | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacilityExcellence | DepartmentSubsurface

  18. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2Cubic Feet) Gas7currentNatural:

  19. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2Cubic Feet)

  20. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2Cubic Feet)August 14, 2012 |

  1. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2Cubic Feet)August 14, 2012

  2. Category:Buildings References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png Addnew

  3. Category:Hydrogen References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back to PV Economics By Building

  4. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsOR

  5. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsOR

  6. Category:References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsORsource

  7. Category:Water References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart

  8. Annual Energy Outlook 2013 Early Release Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    projected in the AEO2012 Reference case * All renewable fuels grow, but biomass and biofuels growth is slower than in AEO2012 * U.S. energy-related carbon dioxide emissions...

  9. Wind Energy Learning Curves for Reference in Expert Elicitations

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Wind Energy Learning Curves for Reference in Expert Elicitations Sarah Mangels, Erin Baker. Abstract: This study presents future projections of wind energy capacity and cost based on historical data. The study will be used during wind- energy expert elicitations (formal interviews aimed to quantify

  10. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubiccurrent CoalDetailed

  11. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual

  12. DOE Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project forDepartment ofCurriculumII

  13. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign InReference

  14. Milford Wind Corridor Phase I (GE Energy) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Name: MidwestTreaty Act

  15. Capricorn Ridge (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney River

  16. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01T23:59:59.000Z

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  17. REFERENCES

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P U T Edelivery205.1B

  18. GE Technology to Help Canada Province Meet Growing Energy Needs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding and collaboration models at its European Global Research Center near Munich, Germany. Mark Little, GE's Senior Vice President and Chief Technology Officer, and thought...

  19. NPS Reference Manual 53: Special Park Uses | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriationReference Manual 53:

  20. Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy

    SciTech Connect (OSTI)

    Ali, Dyan; Richardson, Christopher J. K. [Laboratory for Physical Sciences, University of Maryland, College Park, Maryland 20740 (United States)

    2012-11-15T23:59:59.000Z

    The authors present a study on the thermal evolution of the reflection high-energy electron diffraction pattern of chemically cleaned (001)-oriented Si, Ge, and SiGe surfaces, associating observed changes in the reconstructions with the desorption of known residual contaminants for Si and Ge surfaces. The implications of residual oxides prior to epitaxy on stacking fault densities in the grown films are presented. Further evidence for the two-phase nature of oxides on SiGe surfaces is provided, demonstrating that it is necessary to heat a SiGe surface up to the thermal deoxidation temperature of a Si surface to obtain stacking fault-free growth.

  1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01T23:59:59.000Z

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  2. FAQS Reference Guide - Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    Reference Guide - Quality Assurance FAQS Reference Guide - Quality Assurance This reference guide has been developed to address the competency statements in the April 2002 edition...

  3. Anomaly in the cosmic-ray energy spectrum at GeV-TeV energies

    E-Print Network [OSTI]

    Thoudam, Satyendra

    2015-01-01T23:59:59.000Z

    Recent measurements of cosmic rays by various experiments have found that the energy spectrum of cosmic rays is harder in the TeV region than at GeV energies. The origin of the spectral hardening is not clearly understood. In this paper, we discuss the possibility that the spectral hardening might be due to the effect of re-acceleration of cosmic rays by weak shocks associated with old supernova remnants in the Galaxy.

  4. Property:GreenButtonReference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to: navigation,GreenButtonReference Jump

  5. Template:ReferenceForValue | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchieTecniplanReference Jump

  6. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference Buildings by

  7. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference Buildings

  8. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium office Reference

  9. Renewable Energy Business Development Terms of Reference | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys Holdings Ltd JumpReliantRenergies

  10. Renewable Energy Monitoring Evaluation Terms of Reference | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys Holdings LtdInformationRenewable

  11. Renewable Energy Pipeline Development Terms of Reference | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap JumpReliance IndustriesRenewable

  12. Manufacturing Energy and Carbon Footprint References | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) |

  13. FAQS Reference Guide - Instrumentation and Control | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS Reference Guide -

  14. FAQS Reference Guide - Mechanical Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS Reference Guide

  15. FAQS Reference Guide - Nuclear Safety Specialist | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS Reference GuideNuclear

  16. FAQS Reference Guide - Safeguards and Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS Reference

  17. FAQS Reference Guide - Technical Program Manager | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS ReferenceProgram

  18. Reference Model #1 - Tidal Energy: Resource Dr. Brian Polagye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired Solar FuelReduceReference

  19. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect (OSTI)

    Hudait, Mantu K.; Zhu Yan [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-21T23:59:59.000Z

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  20. FORM FOR ESPC CASE STUDIES AND REFERENCES | Department of Energy

    Office of Environmental Management (EM)

    FORM FOR ESPC CASE STUDIES AND REFERENCES FORM FOR ESPC CASE STUDIES AND REFERENCES Document features a template, sample, and instructions to help Federal agencies develop case...

  1. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H. [JLAB

    2013-12-01T23:59:59.000Z

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  2. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables PDF GIF Updated Reference Case without ARRA Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and...

  3. Secretary Chu Speaks at GE Solar Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle SchoolPhysics | DepartmentRecovery ActofGE Solar

  4. Amorphous Ge quantum dots embedded in SiO{sub 2} formed by low energy ion implantation

    SciTech Connect (OSTI)

    Zhao, J. P. [Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Department of Physics, University of Houston, Houston, Texas 77204 (United States); Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Huang, D. X.; Jacobson, A. J. [Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Chen, Z. Y.; Makarenkov, B. [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Chu, W. K. [Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Department of Physics, University of Houston, Houston, Texas 77204 (United States); Bahrim, B. [Department of Chemistry and Physics, Lamar University, Beaumont, Texas 77710 (United States); Rabalais, J. W. [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Department of Chemistry and Physics, Lamar University, Beaumont, Texas 77710 (United States)

    2008-06-15T23:59:59.000Z

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO{sub 2}, i.e., Ge-SiO{sub 2} quantum dot composites, have been formed by ion implantation of {sup 74}Ge{sup +} isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO{sub 2} obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed.

  5. 1 | Building America eere.energy.gov Evaluation of Ducted GE

    E-Print Network [OSTI]

    : ­ Impact on space conditioning energy consumption and occupant comfort. ­ Impact on demand response space in a number of configurations and as a demand response asset. · This information is necessary1 | Building America eere.energy.gov Evaluation of Ducted GE Hybrid Heat Pump Water Heater in PNNL

  6. Developments in European Thermal Energy Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researching new energy technologies, but with a special eye on the European market. Germany specifically has an energy market that is very dynamic, and quite different from the...

  7. Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration Augmented

    E-Print Network [OSTI]

    Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration relative transformation free energies in a series of molecules with respect to a single reference state of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series

  8. EIA-An Updated Annual Energy Outlook 2009 Reference Case Reflecting...

    U.S. Energy Information Administration (EIA) Indexed Site

    This report updates the Reference Case presented in the Annual Energy Outlook 2009 based on recently enacted legislation and the changing macroeconomic environment. Contents...

  9. GE Appliances: Order (2012-SE-1403) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text ManagementDOEGE Appliances: Order

  10. GE Hybrid Power Generation Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulongFuturo LatinoEngineering |GDFGE

  11. Greenhouse Gas Services AES GE EFS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder JumpIowa: Energy ResourcesInitiative

  12. Saving Energy in China Steel Mills |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I first recognized that many engines working together would reduce more energy than one gas turbine working alone. That led me to think about the gas engine block solution, which...

  13. Longsheng Ge autonomous county Hongshuihe Hydropower Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan

  14. General Electric in India GE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation, search Name:

  15. Meeting Energy Needs in Brazil |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod Eggert Image of Rod Eggert,Energy

  16. Inventors in Action: Energy Everywhere | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn OtherEnergyBPA-Film-Collection Sign InIñupiatInventors

  17. Cedar Creek Wind Farm I (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar Jump to:CeCap LLP Jump

  18. What's Next for Geothermal Heat Energy? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down” in theWhat watersWhat's Next

  19. The Future of Renewable Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5,AuditThe FiveBiofuels AnFuture

  20. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73735809,...

  1. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.27132416,97.48834229,98.7328186,100.0090332,101.3084106,102.6172562,103.9295502 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  2. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.26745605,97.52584839,98.82666779,100.167244,101.5404816,102.9384232,104.3544464 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  3. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73736572,...

  4. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary Tables PDF GIF Updated Reference Case with ARRA Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and...

  5. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    94,3565.775391,3754.245117,3952.363281,4149.89502,4369.788574,4597.428223,4843.846191 "Energy Intensity" " (thousand Btu per 2000 dollar of GDP)" " Delivered Energy",6.45164299,6.4...

  6. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Modeling System run nostimls.d041409a. 2006 and 2007 electricity prices:" "Annual Energy Review 2007, DOEEIA-0384(2007) (Washington, DC, June 2008). 2006 and 2007...

  7. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,3529.548828,3709.913818,3898.838379,4086.605469,4288.022461,4495.833008,4718.956055 "Energy Intensity" " (thousand Btu per 2000 dollar of GDP)" " Delivered Energy",6.45164299,6.4...

  8. An Updated Anual Energy Outlook 2009 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    the current financial 5 National Renewable Energy Laboratory, PTC, ITC, or Cash Grant?, LBNL-1642E, NRELTP-6A2- 45359, March 2009, available at http:eetd.lbl.goveaemp. Energy...

  9. Federal Energy and Water Management Awards: Nomination Quick Reference

    Broader source: Energy.gov [DOE]

    Document offers a checklist of items needed to complete a nomination for the Federal Energy and Water Management Awards.

  10. Designing Renewable Energy Financing Mechanism Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: EnergySprings,Solar PowerEnergy

  11. Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector

    E-Print Network [OSTI]

    Morselli, Aldo

    Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

  12. Reference Buildings by Building Type: Hospital | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNewsEnergy

  13. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA data reports." " Sources: 2006 and 2007 crude oil lower 48 average wellhead price: Energy Information Administration (EIA), Petroleum Marketing Annual 2007, DOE...

  14. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    differ slightly from official EIA data reports." " Sources: 2006 and 2007 data based on: Energy Information Administration (EIA), Annual Coal Report 2007, DOEEIA-0584(2007)...

  15. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    008231967688,0.008167600259,0.008103831671,0.008062551729,0.007977207191,0.007914790884 " Renewable Energy 1",0.3903287351,0.4287254214,0.4870427251,0.468718648,0.4223180115,0.397...

  16. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    .008147886954,0.00808814913,0.008028963581,0.007992021739,0.007911356166,0.007853376679 " Renewable Energy 1",0.3903287351,0.4287254214,0.4871216714,0.4677415192,0.4190168977,0.39...

  17. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hosted by theHelp2Energy

  18. Renewable Energy Terms of Reference: Laws, Policies and Regulations | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable Energy RFPs HomeResources,(RESLtdEnergy

  19. Department of Energy's Hurricane Response Chronology, as Referred to by

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment oftheAL 2010-5

  20. Designing Renewable Energy Financing Mechanism Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: EnergySprings,Solar

  1. Desk Reference on DOE-Flex | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy | Departmentthe Santaof EnergyDepartmentCBI worksMillThe

  2. Changing the PEP-II Center-of-Mass Energy Down to 10 GeV and up to 11 GeV

    SciTech Connect (OSTI)

    Sullivan, M; Bertsche, K.; Novokhatski, A.; Seeman, J.; Wienands, U.; /SLAC

    2009-05-20T23:59:59.000Z

    PEP-II, the SLAC, LBNL, LLNL B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with an 8.973 GeV e- beam and a 3.119 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (E{sub cm}) down to the Upsilon 2S resonance and completed an E{sub cm} scan from the 4S resonance up to 11.2 GeV. The luminosity throughout most of these changes remained near 1 x 10{sup 34} cm{sup -2}s{sup -1}. The E{sub cm} was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed.

  3. Ris Energy Report 3 References for Chapter 3

    E-Print Network [OSTI]

    electricity market. 4. European Commission (2003): Hydrogen Energy and Fuel Cells ­ A Vision of our Future Programmes on Hydrogen and Fuel Cells R&D, Hydrogen Co-ordination Group, IEA/CERT/ HCG(2003)1. 7. IEA (2004 of fuel cell/hydrogen technology. In Proc. 15th World Hydrogen Energy Conf., Yokohama. 28PL-02, CD Rom

  4. FAQS Reference Guide - Aviation Manager | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:Energy FACTOccupational SafetyManager

  5. FAQS Reference Guide - Aviation Safety Officer | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:Energy FACTOccupational

  6. FAQS Reference Guide - Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:Energy FACTOccupationalof

  7. Federal Employee Training Desk Reference | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy ManagementAugustin2012)4 News5 SummaryFederal Employee

  8. 2010 Manufacturing Energy and Carbon Footprints: References | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322 2013ofEnergy five-page document provides the

  9. Renewable Energy Economic and Financial Analysis Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGen EnergyOpenoperative

  10. Sandia Energy - Floating Oscillating Water Column Reference Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy StorageFirst-Ever Asian MELCOR

  11. Reference Buildings by Building Type: Hospital | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNewsEnergy VehicleofIndustry

  12. Reference Buildings by Building Type: Hospital | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNewsEnergypre1980_v1.3_5.0.zip

  13. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium officeEnergyof

  14. Reference Buildings by Building Type: Small Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type:Energy

  15. Reference Buildings by Building Type: Small Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type:Energypost1980_v1.3_5.0.zip

  16. Reference Buildings by Building Type: Strip mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuildingEnergynew2004_v1.3_5.0.zip

  17. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Transportation Sector Key Indicators and Delivered Energy Consumption" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,...

  18. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy-Related Carbon Dioxide Emissions by End Use" " (million metric tons carbon dioxide equivalent, unless otherwise noted)" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015...

  19. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Renewable Energy Generating Capacity and Generation" " (gigawatts, unless otherwise noted)" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022...

  20. Annual Energy Outlook 2014 Early Release Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    2 * Growing domestic production of natural gas and oil continues to reshape the U.S. energy economy, with crude oil approaching the 1970 all-time high of 9.6 million barrels per...

  1. Reference Buildings by Building Type: Large Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy

  2. Reference Buildings by Building Type: Large Hotel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy

  3. Reference Buildings by Building Type: Large office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy

  4. Reference Buildings by Building Type: Large office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy

  5. Reference Buildings by Building Type: Large office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy

  6. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Medium

  7. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  8. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  9. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding

  10. Azimuthal correlations of transverse energy for Pb on Pb at 158 GeV/nucleon

    SciTech Connect (OSTI)

    Wienold, T. [Lawrence Berkeley National Lab., CA (United States); Huang, I. [California Univ., Davis, CA (United States); The NA49 Collaboration

    1996-02-03T23:59:59.000Z

    Azimuthal correlations have been studied in heavy ion reactions over a wide range of beam energies. At low incident energies up to 100 MeV/nucleon where collective effects like the directed sidewards flow are generally small, azimuthal correlations provide a useful tool to determine the reaction plane event by event. In the energy regime of the BEVALAC (up to 1 GeV/nucleon for heavy ions) particular emission patterns, i.e. azimuthal correlations of nucleons and light nuclei with respect to the reaction plane, have been associated with the so called squeeze out and sidesplash effects. These effects are of particular interest because of their sensitivity to the equation of state at the high baryon density which is build up during the collision process. Angular distributions similar to the squeeze out have been observed for pions at the SIS in Darmstadt as well as from the EOS - collaboration. Recently also the sideward flow was measured for pions and kaons. However, the origin of the signal in the case of produced mesons is thought to be of a different nature than that for the nucleon flow. At the AGS, azimuthally anisotropic event shapes have been reported from the E877 collaboration for the highest available heavy ion beam energy (11.4 GeV/nucleon). Using a Fourier analysis of the transverse energy distribution measured in calorimeters, it was concluded that sideward flow is still of significant magnitude. Here we will report a first analysis of azimuthal correlations found in the transverse energy distribution from Pb on Pb collisions at the CERN SPS (158 GeV/nucleon).

  11. The correlation between the surface-energy minima and the shape of self-induced SiGe nanoislands

    SciTech Connect (OSTI)

    Yaremko, A. M.; Valakh, M. Ya.; Dzhagan, V. N., E-mail: dzhagan@isp.kiev.ua; Lytvyn, P. M.; Yukhymchuk, V. A. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

    2006-04-15T23:59:59.000Z

    The effects of the composition, size, and thermal expansion coefficient of self-induced Ge and SiGe nanoislands formed on Si on the value of the islands' total energy are examined. A correlation between the discrete minima in the surface energy of the islands and their shape is considered. The interdiffusion processes that are important at high temperatures of epitaxy are taken into account. The results of calculations are compared with experimental data obtained using atomic-force microscopy.

  12. EERE Program Management Quick Reference Guide | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah RiverSustainability

  13. FAQS Reference Guide - Criticality Safety (NNSA) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartment ofEnergy

  14. FAQS Reference Guide - Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartment ofEnergySafety

  15. Category:Smart Grid References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation DemonstrationsSmart

  16. 2015 DOE Earth Day Reference Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 Annual EM/NE/SC SQA5April 17,

  17. Renewable Energy Cross Sectoral Assessments Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys Holdings Ltd

  18. New Construction - Commercial Reference Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero Campus at UniversityMarkets

  19. Sandia Energy - Technical Reference for Hydrogen Compatibility of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home ClimateMaterials Technical

  20. Annual Energy Outlook 2013 Early Release Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilot DrillingA-Z Index

  1. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, Weekly Refinery andInformationYear Jan FebEnergyAnnual for

  2. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, Weekly Refinery andInformationYear Jan FebEnergyAnnual forfor

  3. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, Weekly Refinery andInformationYear Jan FebEnergyAnnual: Focus

  4. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, Weekly Refinery andInformationYear Jan FebEnergyAnnual:

  5. Attachment F - Bibliography and References | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLCEnergyEnergyAtomic1: DOEA PageF -

  6. Reference Buildings by Building Type: Primary school | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012EnergyBuilding Type: Mediumpre1980_v1.3_5.0.zip

  7. EERE Program Management Quick Reference Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Sustainable Transportation EERE FY 2016March2Quick

  8. U. S. Department of Energy Operational Plan and Desktop Reference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4;DepartmentVulnerabilitiesNanocrystalline|

  9. Reference Buildings by Building Type: Strip mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,

  10. Reference Buildings by Building Type: Strip mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,

  11. Reference Buildings by Building Type: Supermarket | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,

  12. Reference Buildings by Building Type: Supermarket | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,

  13. Reference Buildings by Building Type: Supermarket | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,

  14. FAQS Reference Guide - Aviation Manager | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartment of

  15. FAQS Reference Guide - Environmental Restoration | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartmentEnvironmental

  16. FAQS Reference Guide - Facility Representative | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartmentEnvironmentalFacility

  17. FAQS Reference Guide - Fire Protection Engineering | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt

  18. FAQS Reference Guide - Technical Training | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQS

  19. FAQS Reference Guide - Waste Management | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQSWaste Management FAQS

  20. FAQS Reference Guide - Weapon Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQSWaste Management

  1. FAQS Reference Guide -Radiation Protection | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation and Control FAQSWaste

  2. Excepted Service EJ and EK Desk Reference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11AprilWednesday,

  3. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubiccurrent

  4. Sandia Energy - DOE-Sponsored Reference Model Project Results Released

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors To

  5. Department of Energy's Hurricane Response Chronology, as Referred to by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L ALGAL

  6. Headquarters Security Quick Reference Book | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson Hazle Spindle, LLCForHeadquarters

  7. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamic SwitchingE xProcess |EEOEFRC

  8. Reference Buildings by Building Type: Warehouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zip refbldg_warehouse_new2004_v1-4_7-2.zip More

  9. Reference Buildings by Building Type: Warehouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zip refbldg_warehouse_new2004_v1-4_7-2.zip

  10. Reference Buildings by Building Type: Warehouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zip

  11. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14T23:59:59.000Z

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  12. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...

  13. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; et al

    2012-05-31T23:59:59.000Z

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. Themorepolarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.less

  14. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; Marsh,; Matulenko, Y; Maxwell, J; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Strakovsky, I I; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, M E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P

    2012-05-31T23:59:59.000Z

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.

  15. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect (OSTI)

    Prater, L.S.

    1980-01-01T23:59:59.000Z

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  16. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer

    SciTech Connect (OSTI)

    Tseng, H. H.; Li, H.; Mashanov, V.; Yang, Y. J.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chang, G. E. [Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chiayi County 62102, Taiwan (China)] [Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chiayi County 62102, Taiwan (China); Soref, R. A.; Sun, G. [Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)] [Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)

    2013-12-02T23:59:59.000Z

    We report an investigation of GeSn-based p-i-n photodiodes with an active GeSn layer that is almost fully strained. The results show that (a) the response of the Ge/GeSn/Ge heterojunction photodiodes is stronger than that of the reference Ge-based photodiodes at photon energies above the 0.8 eV direct bandgap of bulk Ge (<1.55??m), and (b) the optical response extends to lower energy regions (1.551.80??m wavelengths) as characterized by the strained GeSn bandgap. A cusp-like spectral characteristic is observed for samples with high Sn contents, which is attributed to the significant strain-induced energy splitting of heavy and light hole bands. This work represents a step forward in developing GeSn-based infrared photodetectors.

  17. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect (OSTI)

    Aggarwal, Sunny, E-mail: sunny.du87@gmail.com; Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15T23:59:59.000Z

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  18. Ris Energy Report 4 References 11. Blasio, R. de; Basso, T. (2004). Standardisation on DER (p. 236).

    E-Print Network [OSTI]

    energy, Solar 2004, ANZSES, Perth, Australia, December 2004. www.Risø.dk/vea/projects/ipsys 19. WAsRisø Energy Report 4 References References 11. Blasio, R. de; Basso, T. (2004). Standardisation - High wind energy penetration systems Planning. In: European Community Wind Energy Conference 1994 (p

  19. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  20. Program reference book for the Energy Economic Data Base Program (EEDB)

    SciTech Connect (OSTI)

    Allen, R.E.; Brown, P.E.; Hodson, J.S.; Kaminski, R.S.; Ziegler, E.J.

    1983-07-01T23:59:59.000Z

    The objective of the Energy Economic Data Base (EEDB) Program is to provide periodic updates of technical and cost (capital, fuel and operating and maintenance) information for nuclear and comparison electric power generating stations that is of significance to the US Department of Energy (USDOE). The purpose of this Reference Book is to provide the historical content of the EEDB through the Fourth Update (1981). It contains important descriptive and tutorial information concerning the structure and use of the EEDB. It also contains reports of work done to support various aspects of the first four updates, together with significant reference data developed during those updates. As a convenience to the user, it is intended that the Reference Book be sufficiently stable that revisions are required no more frequently than once every five years.

  1. Energy dependence of pi-zero production in Cu+Cu collisions at sqrt(s_NN) = 22.4, 62.4, and 200 GeV

    E-Print Network [OSTI]

    PHENIX Collaboration; A. Adare

    2008-01-29T23:59:59.000Z

    Neutral pion transverse momentum (pT) spectra at mid-rapidity (|y| zero yields in p+p collisions scaled by the number of inelastic nucleon-nucleon collisions (Ncoll) at the respective energies, the pi-zero yields for pT \\ge 2 GeV/c in central Cu+Cu collisions at 62.4 and 200 GeV are suppressed, whereas an enhancement is observed at 22.4 GeV. A comparison with a jet quenching model suggests that final state parton energy loss dominates in central Cu+Cu collisions at 62.4 GeV and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

  2. Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components

    E-Print Network [OSTI]

    Dominik Janzing

    2005-11-30T23:59:59.000Z

    If an absolute reference frame with respect to time, position, or orientation is missing one can only implement quantum operations which are covariant with respect to the corresponding unitary symmetry group G. Extending observations of Vaccaro et al., I argue that the free energy of a quantum system with G-invariant Hamiltonian then splits up into the Holevo information of the orbit of the state under the action of G and the free energy of its orbit average. These two kinds of free energy cannot be converted into each other. The first component is subadditive and the second superadditive; in the limit of infinitely many copies only the usual free energy matters. Refined splittings of free energy into more than two independent (non-increasing) terms can be defined by averaging over probability measures on G that differ from the Haar measure. Even in the presence of a reference frame, these results provide lower bounds on the amount of free energy that is lost after applying a covariant channel. If the channel properly decreases one of these quantities, it decreases the free energy necessarily at least by the same amount, since it is unable to convert the different forms of free energies into each other.

  3. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01T23:59:59.000Z

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  4. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Energy Savers [EERE]

    2012 More Documents & Publications AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: GE Smart Grid Capable AC Level 2 Testing Results AVTA: Siemens-VersiCharge...

  5. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect (OSTI)

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23T23:59:59.000Z

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  6. Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

  7. U.S. Department of Energy Reference Model Program RM2: Experimental Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^6 AnnualReference Model

  8. File:East China Map Reference.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdfshaleusa4.pdfReference.pdf Jump to:

  9. Energy dependence of pi, p and pbar transverse momentum spectra for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV

    SciTech Connect (OSTI)

    Ritter, H

    2007-03-26T23:59:59.000Z

    We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV. Data are presented at mid-rapidity (lbar y rbar< 0.5) for 0.2< pT< 12 GeV/c. In the intermediate pT region (2< pT< 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT> 7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at sqrt sNN = 62.4 GeV peak at pT _~;; 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT> 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

  10. TARGET FRAGMENT ENERGIES AND MOMENTA IN THE REACTION OF 4.8 GeV {sup 12}C AND 5.0 GeV {sup 20}Ne WITH {sup 238}U

    SciTech Connect (OSTI)

    Loveland, W.; Luo, Cheng; McGaughey, P. L.; Morrissey, D. J.; Seaborg, G. T.

    1980-10-01T23:59:59.000Z

    Target fragment recoil properties were measured using the thick target-thick catcher technique for the interaction of 4.8 GeV {sup 12}C and 5.0 GeV {sup 20}Ne with {sup 238}U. The target fragment energies and momenta are very similar for the reaction of 4.8 GeV (400 MeV/A) {sup 12}C and 5.0 GeV (250 MeV/A) {sup 20}Ne with {sup 238}U. In the complex variation of fragment momenta with their N/Z ratio, one finds evidence suggesting the existence of several mechanisms leading to the formation of the target fragments. Comparison of these results with the predictions of the intranuclear cascade model of Yariv and Fraenkel and the firestreak model shows that both model predictions grossly overestimate the target fragment momenta.

  11. Measurement of triple gauge boson couplings from $W^{+}W^{-}$ production at LEP energies up to 189 GeV

    E-Print Network [OSTI]

    Abbiendi, G; Ainsley, C; kesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Benelli, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Biebel, O; Bloodworth, Ian J; Boeriu, O; Bock, P; Bhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, H J; Cammin, J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Clarke, P E L; Clay, E; Cohen, I; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Csilling, Akos; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; de Roeck, A; De Wolf, E; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Frtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Glenzinski, D A; Goldberg, J; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruw, M; Gnther, P O; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Harin-Dirac, M; Hauke, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horvth, D; Hossain, K R; Howard, R; Hntemeyer, P; Igo-Kemenes, P; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Kokott, T P; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Khl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yal; Lanske, D; Lawson, I; Layter, J G; Leins, A; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; L, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martnez, G; Mashimo, T; Mttig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Mndez-Lorenzo, P; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; gren, H O; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Psztor, G; Pater, J R; Patrick, G N; Patt, J; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Pooth, O; Przybycien, M B; Quadt, A; Rembser, C; Renkel, P; Rick, Hartmut; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runlfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schrder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Sldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Strhmer, R; Stumpf, L; Surrow, B; Talbot, S D; Tarem, S; Taylor, R J; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Toya, D; Trefzger, T M; Trigger, I; Trcsnyi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Vachon, B; Vannerem, P; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D

    2001-01-01T23:59:59.000Z

    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.

  12. Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped

    E-Print Network [OSTI]

    McDonald, Kirk

    data. Pion kinetic energy of 40 MeV corresponds to momentum of 113 MeV/c #12;MARS - dash-dotted lines #12;MARS - dash-dotted lines #12;#12;#12;HARP collaboration conclusion #12;#12;HARP vs HARP-CDP #12 angle pion production · Negative pion yield was studied at 10 GeV/c using JINR 2-m propane bubble

  13. EPR investigation of defects in Bi12GeO20:Cr single crystal irradiated by high energy uranium ions

    E-Print Network [OSTI]

    Stefaniuk, I; Rogalska, I; Wrbel, D

    2013-01-01T23:59:59.000Z

    The results of investigations of EPR spectra of chromium doped $Bi_{12} GeO_{20} (BGO)$ single crystals are presented. The crystals were studied before and after irradiation by the $^{235}U$ ions with energy 9.47 MeV/u and fluency $5 \\cdot 10^{2} cm^{-2}$. The effect of heating irradiated samples in air on the EPR spectra is also studied.

  14. Ponnequin Wind Energy Project: Reference site avian study, January 1, 1998--December 31, 1998

    SciTech Connect (OSTI)

    Kerlinger, P.; Curry, R.; Ryder, R.

    2000-04-05T23:59:59.000Z

    This report summarizes the results of surveys completed during the period January 1, 1998, through December 31, 1998, at the Ponnequin Wind Energy Project in Weld County, Colorado. The surveys were conducted at two reference sites, and include a pre-construction avian abundance and use survey and raptor nesting, prey, and carcass surveys. The reference sites were situated immediately to the west of the project site in Weld County, Colorado, and 4.8 kilometers to the north of the site in Laramie County, Wyoming. The surveys were conducted along two 800-meter (m) main transects at each site with two 400-m (by 100-m) perpendicular transects. About 30 complete surveys were completed during the year, with a greater frequency of surveys in the late spring and early autumn. The surveys revealed mostly common species, with no endangered or threatened species on the sites. Small numbers of raptors were observed on or near the project and reference areas. During the winter, avian use and abundance was minimal. Prey species consisted primarily of thirteen-lined ground squirrels and northern pocket gophers. Two songbird carcasses were found. The results of these surveys, combined with data from several more months of surveys, will be compared to surveys conducted after construction of the wind farm.

  15. Transverse energy measurement in sqrt{s_{NN}} = 62.4 GeV Au+Au collisions at RHIC

    E-Print Network [OSTI]

    Raghunath Sahoo; Subhasis Chattopadhaya; Alexandre A. P. Suaide; Marcia Maria de Moura; D. P. Mahapatra

    2005-10-20T23:59:59.000Z

    The transverse energy distributions ($E_{T}$) have been measured for Au + Au collisions at $\\sqrt{s_{NN}} = 62.4$ GeV by the STAR experiment at RHIC. They have been obtained from two measurements, the hadronic transverse energy ($E_{T}^{had}$) and the electromagnetic transverse energy($E_{T}^{em}$). $E_{T}^{had}$ has been measured from the tracks obtained by Time Projection Chamber (TPC) excluding the electrons and positrons. $E_{T}^{em}$ has been obtained by the STAR Barrel Electromagetic Calorimeter (BEMC) which measures the energy of electrons, positrons and photons. The measure of transverse energy gives an estimate of the energy density of the fireball produced in heavy ion collisions. $E_{T}$ per participant pair gives information about the production mechanism of particles.

  16. Technical reference book for the Energy Economic Data Base (EEDB) Program

    SciTech Connect (OSTI)

    Allen, R.E.; Benedict, R.G.; Hodson, J.S.

    1984-09-01T23:59:59.000Z

    The Energy Economic Data Base (EEDB) Program is sponsored by the US Department of Energy (DOE) for the purpose of developing current technical and cost information for nuclear and comparison electric power generating stations. The EEDB contains a variety of nuclear and coal-fired power plant technical data models. Each of these data models is a complete and detailed conceptual design for a single unit, commercial, steam electric, power generating station located on a standard hypothetical Middletown site. A major effort for the Sixth Update (1983) has been the updating of the system design descriptions and selected engineering drawings for the technical data models. This update took the form of revising and expanding the system design descriptions and engineering drawings contained in the Base Data Studies, to include the technical information developed and recorded in the first five EEDB updates. The results of the update effort are contained in this EEDB Program Technical Reference Book.

  17. Analysis of the Decay $e^{+} e^{-} \\to \\text{invisible} + H(\\to ? ?)$ at a Collision Energy of 500 GeV

    E-Print Network [OSTI]

    Jan Strube; Marcel Stanitzki

    2009-02-18T23:59:59.000Z

    The analysis of $e^{+} e^{-} \\to \\text{invisible} + H(\\to \\mu \\mu)$ at a next generation linear collider presents an opportunity to study the coupling of the Yukawa couplings of the second generation in a clean environment. We give an overview over the experimental challenges of this analysis at a collision energy of 500 GeV and present an outlook to the results of the analysis at a collision energy of 250 GeV.

  18. Measurement of the reaction $?p \\TO K^ + ?(1520)$ at photon energies up to 2.65 GeV

    E-Print Network [OSTI]

    F. W. Wieland; J. Barth; K. -H. Glander; J. Hannappel; N. Jpen; F. Klein; E. Klempt; R. Lawall; D. Menze; M. Ostrick; E. Paul; I. Schulday; W. J. Schwille

    2010-11-03T23:59:59.000Z

    The reaction $\\gamma p \\TO K^+\\Lambda(1520)$ was measured in the energy range from threshold to 2.65 GeV with the SAPHIR detector at the electron stretcher facility ELSA in Bonn. The $\\Lambda(1520)$ production cross section was analyzed in the decay modes $pK^-$, $n \\bar{K}^0$, $\\Sigma^{\\pm}\\pi^{\\mp}$, and $\\Lambda\\pi^+\\pi^-$ as a function of the photon energy and the squared four-momentum transfer $t$. While the cross sections for the inclusive reactions rise steadily with energy, the cross section of the process $\\gamma p \\TO K^+\\Lambda(1520)$ peaks at a photon energy of about 2.0 GeV, falls off exponentially with $t$, and shows a slope flattening with increasing photon energy. The angular distributions in the $t$-channel helicity system indicate neither a $K$ nor a $K^\\star$ exchange dominance. The interpretation of the $\\Lambda(1520)$ as a $\\Sigma(1385)\\pi$ molecule is not supported.

  19. A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy

    SciTech Connect (OSTI)

    Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

    2014-01-01T23:59:59.000Z

    Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

  20. Measurements of transverse energy distributions in Au plus Au collisions at root s(NN)=200 GeV

    E-Print Network [OSTI]

    Adams, J.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Arkhipkin, D.; Averichev, GS; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bharadwaj, S.; Bhatia, VS; Bichsel, H.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopdhyay, S.; Chen, HF; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; De Moura, MM; Derevschikov, AA; Didenko, L.; Dietel, T.; Dong, WJ; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Mazumdar, MRD; Eckardt, V.; Edwards, WR; Efimov, LG; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, KJ; Fomenko, K.; Fu, J.; Gagliardi, Carl A.; Gans, J.; Ganti, MS; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, JE; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, SM; Guo, Y.; Gupta, A.; Gutierrez, TD; Hallman, TJ; Hamed, A.; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hiort, E.; Hoffmann, GW; Huang, HZ; Huang, SL; Hughes, EW; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Jiang, H.; Jones, PG; Judd, EG; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, VY; Kiryluk, J.; Kisiel, A.; Kislov, EM; Klay, J.; Klein, SR; Klyachko, A.; Koetke, DD; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, VI; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kunz, CL; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Lane, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; LeVine, MJ; Li, C.; Li, Q.; Li, Y.; Lindenbaum, SJ; Lisa, MA; Liu, F.; Liu, L.; Liu, QJ; Liu, Z.; Ljubicic, T.; Llope, WJ; Long, H.; Longacre, RS; Lopez-Noriega, M.; Love, WA; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, GL; Ma, JG; Ma, YG; Magestro, D.; Mahajan, S.; Mahapatra, DP; Majka, R.; Mangotra, LK; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, JN; Matis, HS; Matulenko, YA; McClain, CJ; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Miller, ML; Milosevich, Z.; Minaev, NG; Mironov, C.; Mischke, A.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Mora-Corral, MJ; Morozov, DA; Morozov, V.; Munhoz, MG; Nandi, BK; Nayak, TK; Nelson, JM; Netrakanti, PK; Nikitin, VA; Nogach, LV; Norman, B.; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, RL; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, L.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Sazhin, PS; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schroeder, LS; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, WQ; Shestermanov, KE; Shimanskiy, SS; Simon, F.; Singaraju, RN; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, TDS; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, AAP; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Tarnowsky, T.; Thein, D.; Thomas, JH; Timoshenko, S.; Tokarev, M.; Trainor, TA; Trentalange, S.; Tribble, Robert E.; Tsai, O.; Ulery, J.; Ullrich, T.; Underwood, DG; Urkinbaev, A.; Van Buren, G.; van Leeuwen, M.; Vander Molen, AM; Varma, R.; Vasilevski, IM; Vasiliev, AN; Vernet, R.; Vigdor, SE; Viyogi, VP; Vokal, S.; Voloshin, SA; Vznuzdaev, M.; Waggoner, B.; Wang, F.; Wang, G.; Wang, G.; Wang, XL; Wang, Y.; Wang, Y.; Wang, ZM; Ward, H.; Watson, JW; Webb, JC; Wells, R.; Westfall, GD; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yamamoto, E.; Yepes, P.; Yurevich, VI; Zanevsky, YV; Zhang, H.; Zhang, WM; Zhang, ZP; Zolnierezuk, PA; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, AN.

    2004-01-01T23:59:59.000Z

    . In the following, we describe the detectors which are relevant to the present analysis. The barrel electromagnetic calorimeter (EMC) [22] is a lead-scintillator sampling electromagnetic calorimeter with equal volumes of lead and scintillator. It has a radius... of 2.3 m and is situated just inside the coils of the STAR solenoidal magnet. The electromagnetic energy resolution of the detec- tor is dE /E,16% /?E sGeVd. The results presented in this work used the first EMC patch installed for the 2001 RHIC...

  1. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect (OSTI)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com [Physics Department, Faculty of Science, Al-Azhar University, Assuit (Egypt); Allam, S.H.; El-Sherbini, Th.M. [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)] [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2014-01-15T23:59:59.000Z

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the BreitPauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. The calculations are performed using the configuration interaction method (CIV3). We have calculated the oscillator strengths, line strengths and transition rates. The wavelengths of the transitions are listed in this article. We also have made comparisons between our data and other calculations.

  2. GE Partners on Microgrid Project | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Academia Partner on Microgrid Project GE Awarded a 1.2M Department of Energy Grant to Design Technology to Keep Electricity Flowing after Catastrophic Weather Events...

  3. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In

  4. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hrandel; J. Milke

    2008-10-27T23:59:59.000Z

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  5. Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    E-Print Network [OSTI]

    WA98 Collaboration; M. M. Aggarwal

    2000-12-11T23:59:59.000Z

    Transverse energy, charged particle pseudorapidity distributions and photon transverse momentum spectra have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy pseudorapidity density at midrapidity as N_{part}^{1.08 \\pm 0.06} and N_{coll}^{0.83 \\pm 0.05} is observed. For the charged particle pseudorapidity density at midrapidity we find a scaling as N_{part}^{1.07 \\pm 0.04} and N_{coll}^{0.82 \\pm 0.03}. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.

  6. Energy dependence of phi meson production in central Pb+Pb collisions at sqrt(s_nn) = 6 to 17 GeV

    E-Print Network [OSTI]

    C. Alt; T. Anticic; B. Baatar; D. Barna; J. Bartke; L. Betev; H. Bialkowska; C. Blume; B. Boimska; M. Botje; J. Bracinik; R. Bramm; P. Buncic; V. Cerny; P. Christakoglou; P. Chung; O. Chvala; J. G. Cramer; P. Csato; P. Dinkelaker; V. Eckardt; D. Flierl; Z. Fodor; P. Foka; V. Friese; J. Gal; M. Gazdzicki; V. Genchev; G. Georgopoulos; E. Galadysz; K. Grebieszkow; S. Hegyi; C. Hoehne; K. Kadija; A. Karev; D. Kikola; M. Kliemant; S. Kniege; V. I. Kolesnikov; T. Kollegger; E. Kornas; R. Korus; M. Kowalski; I. Kraus; M. Kreps; D. Kresan; A. Laszlo; R. Lacey; M. van Leeuwen; P. Levai; L. Litov; B. Lungwitz; M. Makariev; A. I. Malakhov; M. Mateev; G. L. Melkumov; A. Mischke; M. Mitrovski; J. Molnar; St. Mrowczynski; V. Nicolic; G. Palla; A. D. Panagiotou; D. Panayotov; A. Petridis; W. Peryt; M. Pikna; J. Pluta; D. Prindle; F. Puehlhofer; R. Renfordt; C. Roland; G. Roland; M. Rybczynski; A. Rybicki; A. Sandoval; N. Schmitz; T. Schuster; P. Seyboth; F. Sikler; B. Sitar; E. Skrzypczak; M. Slodkowski; G. Stefanek; R. Stock; C. Strabel; H. Stroebele; T. Susa; I. Szentpetery; J. Sziklai; M. Szuba; P. Szymanski; V. Trubnikov; D. Varga; M. Vassiliou; G. I. Veres; G. Vesztergombi; D. Vranic; A. Wetzler; Z. Walodarczyk; I. K. Yoo; J. Zimanyi

    2008-10-27T23:59:59.000Z

    Phi meson production is studied by the NA49 Collaboration in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV beam energy. The data are compared with measurements at lower and higher energies and to microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

  7. Measurement of the e+e- --> p anti-p cross section in the energy range from 3.0 to 6.5 GeV

    E-Print Network [OSTI]

    The BABAR Collaboration; J. P. Lees; others

    2013-08-10T23:59:59.000Z

    The e+ e- --> p anti-p cross section and the proton magnetic form factor have been measured in the center-of-mass energy range from 3.0 to 6.5 GeV using the initial-state-radiation technique with an undetected photon. This is the first measurement of the form factor at energies higher than 4.5 GeV. The analysis is based on 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider at e+e- center-of-mass energies near 10.6 GeV. The branching fractions for the decays J/psi --> p anti-p and psi(2S) --> p anti-p have also been measured.

  8. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31T23:59:59.000Z

    This report is the second in a series of three reports describing the potential of GEs DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  9. Prediction of existence of neutral boson with spin 2 in energy (mass) range from zero to 160.77 GeV

    E-Print Network [OSTI]

    Vali A. Huseynov

    2014-09-12T23:59:59.000Z

    We investigate the decay of an arbitrary neutral boson into a pair of on-shell W-bosons in a magnetic field. The possible existence of the new neutral bosons with the spins 0, 2, 3 and with the charge conjugation C=+1 in the energy (mass) range from zero to 160.77 GeV is predicted. The analyses show that the existence of the neutral boson with the spin 2 in the energy (mass) range from zero to 160.77 GeV is more promising and realistic.

  10. Critical exponents and phase transition in gold nuclei fragmentation at energies 10.6 and 4.0 GeV/nucleon

    E-Print Network [OSTI]

    D. Kudzia; B. Wilczynska; H. Wilczynski

    2002-07-25T23:59:59.000Z

    An attempt to extract critical exponents gamma, beta and tau from data on gold nuclei fragmentation due to interactions with nuclear emulsion at energies 4.0 A GeV and 10.6 A GeV is presented. Based on analysis of Campi's 2nd charge moments, two subsets of data at each energy are selected from the inclusive data, corresponding to 'liquid' and 'gas' phases. The extracted values of critical exponents from the selected data sets are in agreement with predictions of 'liquid-gas' model of phase transition.

  11. Centrality dependence of the thermal excitation-energy deposition in 8-15 GeV/c hadron-Au reactions

    E-Print Network [OSTI]

    R. A. Soltz; R. J. Newby; J. L. Klay; M. Heffner; L. Beaulieu; T. Lefort; K. Kwiatkowski; V. E. Viola

    2009-01-09T23:59:59.000Z

    The excitation energy per residue nucleon (E*/A) and fast and thermal light particle multiplicities are studied as a function of centrality defined as the number of grey tracks emitted N_grey and by the mean number of primary hadron-nucleon scatterings and mean impact parameter extracted from it. The value of E*/A and the multiplicities show an increase with centrality for all systems, 14.6 GeV p-Au and 8.0 GeV pi-Au and pbar-Au collisions, and the excitation energy per residue nucleon exhibits a uniform dependence on N_grey.

  12. Valley splitting theory of SiGe/Si/SiGe quantum wells Mark Friesen,1,

    E-Print Network [OSTI]

    Coppersmith, Susan N.

    Valley splitting theory of SiGe/Si/SiGe quantum wells Mark Friesen,1, * Sucismita Chutia,1 Charles an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting interface, with characteristic energy splittings of order 0.11 meV for the case of SiGe/Si/SiGe quantum

  13. Observation of e?e???J/? at center-of-mass energy ?s=4.009 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; et al

    2012-10-01T23:59:59.000Z

    Using a 478 pb? data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s?=4.009 GeV, the production of e?e???J/? is observed for the first time with a statistical significance of greater than 10?. The Born cross section is measured to be (32.12.81.3) pb, where the first error is statistical and the second systematic. Assuming the ?J/? signal is from a hadronic transition of the ?(4040), the fractional transition rate is determined to be B(?(4040)??J/?)=(5.20.50.20.5)10?, where the first, second, and third errors are statistical, systematic, and the uncertainty frommorethe ?(4040) resonant parameters, respectively. The production of e?e???0J/? is searched for, but no significant signal is observed, and B(?(4040)???J/?)less

  14. DES J0454$-$4448: Discovery of the First Luminous z $\\ge$ 6 Quasar from the Dark Energy Survey

    E-Print Network [OSTI]

    Reed, S L; Banerji, M; Becker, G D; Gonzalez-Solares, E; Martini, P; Ostrovski, F; Rauch, M; Abbott, T; Abdalla, F B; Allam, S; Benoit-Levy, A; Bertin, E; Buckley-Geer, E; Burke, D; Rosell, A Carnero; da Costa, L N; ?Andrea, C; DePoy, D L; Desai, S; Diehl, H T; Doel, P; Cunha, C E; Estrada, J; Evrard, A E; Neto, A Fausti; Finley, D A; Fosalba, P; Frieman, J; Gruen, D; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J; Merritt, K; Miquel, R; Mohr, J; Nord, B; Ogando, R; Plazas, A; Romer, K; Roodman, A; Rykoff, E; Sako, M; Sanchez, E; Santiago, B; Schubnell, M; Sevilla, I; Smith, C; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Thomas, D; Tucker, D; Walker, A; Wechsler, R H

    2015-01-01T23:59:59.000Z

    We present the first results of a survey for high redshift, z $\\ge$ 6, quasars using izY multi-colour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the $\\rm z_{AB}, Y_{AB}$ = 20.2, 20.2 (M$_{1450}$ = $-$26.5) quasar DES J0454$-$4448 with an emission line redshift of z = 6.10$\\pm$0.03 and a HI near zone size of 4.6 $\\pm$ 1.7 Mpc.The quasar was selected as an i-band drop out with i$-$z = 2.46 and z$_{AB} $ 50-100 new quasars with z $>$ 6 including 3-10 with z $>$ 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies including determination of the neutral HI fraction of the intergalactic medium (IGM) during the epoch of Hydrogen reionization.

  15. Two source emission behaviour of alpha fragments of projectile having energy around 1 GeV per nucleon

    E-Print Network [OSTI]

    V. Singh; M. K. Singh; Ramji Pathak

    2010-09-17T23:59:59.000Z

    The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass number.

  16. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    to reduce peak demand by 5 percent in 2030 through the increased deployment of demand response programs. In the updated reference case, it is assumed that the Federal expenditures...

  17. 70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    E-Print Network [OSTI]

    G. G. Kiss; Gy. Gyurky; Z. Elekes; Zs. Fulop; E. Somorjai; T. Rauscher; M. Wiescher

    2007-11-07T23:59:59.000Z

    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.

  18. Extraction of large valence-band energy offsets and comparison to theoretical values for strained-Si/strained-Ge type-II heterostructures on relaxed SiGe substrates

    E-Print Network [OSTI]

    Teherani, James T.

    Metal-oxide-semiconductor capacitors were fabricated on type-II staggered gap strained-Si/strained-Ge heterostructures epitaxially grown on relaxed SiGe substrates of various Ge fractions. Quasistatic quantum-mechanical ...

  19. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G; Mariani, C; Alcaraz-Aunion, J L; Brice, S J; Bugel, L; Catala-Perez, J; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; et al

    2011-07-28T23:59:59.000Z

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomoreMonte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.less

  20. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28T23:59:59.000Z

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  1. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In About |

  2. STEP Intern Reference Check Sheet

    Broader source: Energy.gov [DOE]

    STEP Intern Reference Check Sheet, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. Hadron Production Model Developments and Benchmarking in the 0.7 - 12 GeV Energy Region

    E-Print Network [OSTI]

    N. V. Mokhov; K. K. Gudima; S. I. Striganov

    2014-08-29T23:59:59.000Z

    Driven by the needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, and their experiments, the event generators of the MARS15 code have been recently improved. After thorough analysis and benchmarking against data, including the newest ones by the HARP collaboration, both the exclusive and inclusive particle production models were further developed in the crucial for the above projects - but difficult from a theoretical standpoint - projectile energy region of 0.7 to 12 GeV. At these energies, modelling of prompt particle production in nucleon-nucleon and pion-nucleon inelastic reactions is now based on a combination of phase-space and isobar models. Other reactions are still modeled in the framework of the Quark-Gluon String Model. Pion, kaon and strange particle production and propagation in nuclear media are improved. For the alternative inclusive mode, experimental data on large-angle (> 20 degrees) pion production in hadron-nucleus interactions are parameterized in a broad energy range using a two-source model. It is mixed-and-matched with the native MARS model that successfully describes low-angle pion production data. Predictions of both new models are - in most cases - in a good agreement with experimental data obtained at CERN, JINR, LANL, BNL and KEK.

  4. GE, Clean Energy Fuels Partner to Expand Natural Gas Highway | OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulongFuturo

  5. TEE-0074 - In the Matter of GE Appliances & Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an AppealNORDYNE,Energy

  6. $W^{+}W^{-}$ production and triple gauge boson couplings at LEP energies up to 183 GeV

    E-Print Network [OSTI]

    Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bock, P; Bhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Frtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruw, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Hcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horvth, D; Hossain, K R; Howard, R; Hntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Khl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yal; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martnez, G; Mashimo, T; Mttig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; gren, H O; Oreglia, M J; Orito, S; Plinks, J; Psztor, G; Pater, J R; Patrick, G N; Patt, J; Prez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runlfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schning, A; Schrder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Sldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Strhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Von Trne, E; Torrence, E; Towers, S; Trigger, I; Trcsnyi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Vachon, B; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01T23:59:59.000Z

    A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each co...

  7. VEA-0016 - In the Matter of GE Appliances | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access |DarrylDepartment7 -

  8. Xiang Ge Li La Xian Mai Di He Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenerga Jump to:Xiamen

  9. TEE-0077 - In the Matter of GE Appliances & Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an

  10. AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:of Energy

  11. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and MethaneLocations GE

  12. Evidences of high energy protons with energies beyond 0.4 GeV in the solar particle spectrum as responsible for the cosmic rays solar diurnal anisotropy

    E-Print Network [OSTI]

    C. E. Navia; C. R. A. Augusto; M. B. Robba; K. H. Tsui

    2007-06-26T23:59:59.000Z

    Analysis on the daily variations of cosmic ray muons with $E_{\\mu}\\geq 0.2 GeV$ based on the data of two directional muon telescopes at sea level and with a rigidity of response to cosmic proton spectrum above 0.4 GV is presented. The analysis covers two months of observations and in 60% of days, abrupt transitions between a low to a high muon intensity and vice-verse is observed, the period of high muon intensity is from $\\sim 8.0h$ up to $\\sim 19.0h$ (local time) and coincides with the period when the interplanetary magnetic field (IMF) lines overtake the Earth. This behavior strongly suggest that the high muon intensity is due to a contribution of solar protons (ions) on the muon intensity produced by the galactic cosmic rays, responsible for the low muon intensity. This implies that the solar particle spectrum extends to energies beyond 1 GeV. We show that this picture can explain the solar daily variation origin, and it is a most accurate scenario than the assumption of corotating galactic cosmic ray with the IMF lines, specially in the high rigidity region. Obtained results are consistent with the data reported in others papers. Some aspects on the sensitivity of our muon telescopes are also presented.

  13. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas; et. al.,

    2015-05-01T23:59:59.000Z

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmorebetween hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.less

  14. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_\\gamma=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Zachariou, Nicholas; Ivanov, Nikolay Ya; Sargsian, Misak M; Avakian, Robert; Feldman, Gerald; Nadel-Turonski, Pawel; Adhikari, K P; Adikaram, D; Anderson, M D; Pereira, S Anefalos; Avakian, H; Badui, R A; Baltzell, N A; Battaglieri, M; Baturin, V; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Brooks, W K; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glazier, D I; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Ho, D; Holtrop, M; Hughes, S M; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, F J; Kubarovsky, V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P T; McKinnon, B; Mineeva, T; Mirazita, M; Mokeeev, V I; Montgomery, R A; Moutarde, H; Camacho, C Munoz; Net, L A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Phelps, W; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabati, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Wood, M H; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-01-01T23:59:59.000Z

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  15. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas [University of South Carolina; et. al.,

    2015-05-01T23:59:59.000Z

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  16. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Nicholas Zachariou; Yordanka Ilieva; Nikolay Ya. Ivanov; Misak M Sargsian; Robert Avakian; Gerald Feldman; Pawel Nadel-Turonski; K. P. Adhikari; D. Adikaram; M. D. Anderson; S. Anefalos Pereira; H. Avakian; R. A. Badui; N. A. Baltzell; M. Battaglieri; V. Baturin; I. Bedlinskiy; A. S. Biselli; W. J. Briscoe; W. K. Brooks; V. D. Burkert; T. Cao; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; N. Compton; M. Contalbrigo; O. Cortes; V. Crede; A. D'Angelo; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; A. Fradi; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; D. I. Glazier; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; K. Hafidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. Jiang; H. S. Jo; K. Joo; D. Keller; G. Khachatryan; M. Khandaker; A. Kim; W. Kim; F. J. Klein; V. Kubarovsky; P. Lenisa; K. Livingston; H. Y. Lu; I . J . D. MacGregor; N. Markov; P. T. Mattione; B. McKinnon; T. Mineeva; M. Mirazita; V. I. Mokeeev; R. A. Montgomery; H. Moutarde; C. Munoz Camacho; L. A. Net; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; W. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; Y. Prok; D. Protopopescu; A. J. R. Puckett; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabati; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; I. Senderovich; Y. G. Sharabian; Iu. Skorodumina; G. D. Smith; D. I. Sober; D. Sokhan; N. Sparveris; S. Stepanyan; S. Strauch; V. Sytnik; M. Taiuti; Ye Tian; M. Ungaro; H. Voskanyan; E. Voutier; N. K. Walford; D. Watts; X. Wei; M. H. Wood; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta; for the CLAS collaboration

    2015-03-18T23:59:59.000Z

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  17. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region E?=1.1 2.3 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01T23:59:59.000Z

    The beam-spin asymmetry, ?, for the reaction ?d???pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, ?c.m., between 25 and 160. These are the first measurements of beam-spin asymmetries at ?c.m.=90 for photon-beam energies above 1.6 GeV, and the first measurements for angles other than ?c.m.=90. The angular and energy dependence of ? is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmorebetween hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.less

  18. Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014 Outdoor solar| Department of

  19. GE-Prolec CCE Meeting October 19,2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities1

  20. Sandia Energy - Northrop-Grumman, GE Partnerships Tap a Wide Range of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate Change

  1. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption SurveyEnergyphysicistEngineeringRI/FSSystemsAffects

  2. Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | Department ofEnvironmental CleanupDepartment of|

  3. Observation of e?e???J/? at center-of-mass energy ?s=4.009 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. C.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2012-10-01T23:59:59.000Z

    Using a 478 pb? data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s?=4.009 GeV, the production of e?e???J/? is observed for the first time with a statistical significance of greater than 10?. The Born cross section is measured to be (32.12.81.3) pb, where the first error is statistical and the second systematic. Assuming the ?J/? signal is from a hadronic transition of the ?(4040), the fractional transition rate is determined to be B(?(4040)??J/?)=(5.20.50.20.5)10?, where the first, second, and third errors are statistical, systematic, and the uncertainty from the ?(4040) resonant parameters, respectively. The production of e?e???0J/? is searched for, but no significant signal is observed, and B(?(4040)???J/?)<2.810?? is obtained at the 90% confidence level.

  4. Energy dependence of {pi}{sub {+-}},p and {bar p} transverse momentum spectra for Au+Au collisions at {radical}{ovr s}{sub NN} = 62.4 and 200 GeV.

    SciTech Connect (OSTI)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ; Varible Energy Cyclotron Centre; Kent State Univ.; Particle Physics Lab.; STAR Collaboration

    2007-10-01T23:59:59.000Z

    We study the energy dependence of the transverse momentum (p{sub T}) spectra for charged pions, protons and anti-protons for Au+Au collisions at {radical}s{sub NN} = 62.4 and 200 GeV. Data are presented at mid-rapidity (|y| < 0.5) for 0.2 < p{sub T} < 12 GeV/c. In the intermediate p{sub T} region (2 < p{sub T} < 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher p{sub T} (p{sub T} > 7 GeV/c) the modification is similar for both energies. The p/{pi}{sup +} and {bar p}/{pi}{sup -} ratios for central collisions at {radical}s{sub NN} = 62.4 GeV peak at p{sub T} {approx_equal} 2 GeV/c. In the p{sub T} range where recombination is expected to dominate, the p/{pi}{sup +} ratios at 62.4 GeV are larger than at 200 GeV, while the {bar p}/{pi}{sup -} ratios are smaller. For p{sub T} > 2 GeV/c, the {bar p}/{pi}{sup -} ratios at the two beam energies are independent of p{sub T} and centrality indicating that the dependence of the {bar p}/{pi}{sup -} ratio on p{sub T} does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

  5. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    U.S. Energy Information Administration (EIA) Indexed Site

    the reintroduction of CAIR have impacts in specific sectors. Figure 1. Non-Hydroelectric Renewable Generation (billion kilowatthours). Need help, contact the National Energy...

  6. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  7. GE Researcher Discusses Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! ( ! ( !ProgressGE

  8. Diffusion in SiGe and Ge

    E-Print Network [OSTI]

    Liao, Christopher Yuan Ting

    2010-01-01T23:59:59.000Z

    Claeys, et al. , "Si versus Ge for future microelectronics,"in Selectively Doped Si/Si x Ge 1-x Superlattices," PhysicalA. Fitzgerald, et al. , "Relaxed Ge x Si 1-x structures for

  9. Diffusion in SiGe and Ge

    E-Print Network [OSTI]

    Liao, Christopher Yuan Ting

    2010-01-01T23:59:59.000Z

    High-electron-mobility Si/SiGe heterostructures: influenceof the relaxed SiGe buffer layer," Semiconductor Science andFrom its discovery to SiGe devices," Materials Science in

  10. Detection of Gamma-Ray Bursts in the 1 GeV - 1 TeV energy range by ground based experiments

    E-Print Network [OSTI]

    Silvia Vernetto

    1999-09-29T23:59:59.000Z

    Ground based extensive air showers arrays can observe GRBs in the 1-1000 GeV energy range using the "single particle" techique. The sensitivity to detect a GRB as a function of the burst parameters and the detector characteristics are discussed. The rate of possible observations is evaluated, making reasonable assumptions on the high energy emission, the absorbtion of gamma-rays in the intergalactic space, the distribution of the sources in the universe and the bursts luminosity function. We show that a large area detector located at high mountain altitude has good prospects for positive detections, providing useful informations on the high energy components of GRBs.

  11. Energy and centrality dependence of particle multiplicity in heavy ion collisions from $\\sqrt{s_{_{NN}}}$ = 20 to 2760 GeV

    E-Print Network [OSTI]

    Leo Zhou; George S. F. Stephans

    2014-07-17T23:59:59.000Z

    The centrality dependence of midrapidity charged-particle multiplicities at a nucleon-nucleon center-of-mass energy of 2.76 TeV from CMS are compared to PHOBOS data at 200 and 19.6 GeV. The results are first fitted with a two-component model which parameterizes the separate contributions of nucleon participants and nucleon-nucleon collisions. A more direct comparison involves ratios of multiplicity densities per participant pair between the different collision energies. The results support and extend earlier indications that the influences of centrality and collision energy on midrapidity charged-particle multiplicities are to a large degree independent.

  12. Search for anomalous production of photonic events with missing energy in $e^+ e^-$ collisions at $\\sqrt{s}$ = 130-172 GeV

    E-Print Network [OSTI]

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Brgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Frtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruw, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Hcker, Andreas; Homer, R James; Honma, A K; Horvth, D; Hossain, K R; Howard, R; Hntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Kanzaki, J I; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Markus, C; Martin, A J; Martin, J P; Martnez, G; Mashimo, T; Mttig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Mller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; gren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Plinks, J; Psztor, G; Pater, J R; Patrick, G N; Patt, J; Prez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rembser, C; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runlfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schning, A; Schrder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Sldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Strhmer, R; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Trne, E; Torrence, E; Towers, S; Trigger, I; Trcsnyi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01T23:59:59.000Z

    Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136, 161 and 172 GeV using the OPAL detector at LEP. Results are presented based on search topologies designed to select events with a single photon and missing transverse energy or events with a pair of acoplanar photons. In both search topologies, cross-section measurements are performed within the kinematic acceptance of the selection. These results are compared with the expectations from the Standard Model processes e+e- -> nu nu(bar) gamma (gamma) (single-photon) and e+e- -> \

  13. References, Canceled -7 Section B - April 16 2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recoveryof Energy

  14. U.S.-India Coal Working Group Terms of Reference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurtherU.S.-China

  15. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    recoveryact.cfm. 5 National Renewable Energy Laboratory, PTC, ITC, or Cash Grant?, LBNL-1642E, NRELTP-6A2-45359, March 2009, available at http:eetd.lbl.goveaemp. 6...

  16. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31T23:59:59.000Z

    General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  17. Analytic Framework for Evaluation of State Energy Efficiency and Renewable Energy Policies with Reference to Stakeholder Drivers

    SciTech Connect (OSTI)

    Brown, E.; Mosey, G.

    2008-07-01T23:59:59.000Z

    This report presents the framework that was developed to analyze energy efficiency and renewable energy policies on the state level based on how well they meet the stakeholder drivers.

  18. Portugal and United States cooperative energy assessment. Volume 3. Reference reports, Part 1

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Statistical data on energy production and consumption and supporting information were obtained from US Bureau of Mines records supplemented by additional data obtained in Portugal. Geologic descriptions and analysis of known areas and of areas having possible future potential have been prepared by the US Geological Survey. Portugal lacks sufficient indigenous supplies of organic fuels to meet its energy demands, and so must import large quantities of petroleum and coal. Approximately 80% of Portugal's electric energy is produced by hydroelectric stations; thermal stations produce the other 20%. Portugal has produced no crude oil, natural gas, or condensate; no resources or reserves in these categories are listed for Portugal in the 1976 World Energy Conference report. Until the last year or so (1980), no significant onshore petroleum exploration had been done in Portugal since 1963. Production of coal in Portugal has declined steadily to the present annual yield of about 200,000 metric tons. On the basis of estimates in only three coal fields, resources of coal of all ranks in Portugal total at least 76 million (10/sup 6/) metric tons. Uranium is mined near Viseu and Guarda in the northern part of Portugal; the Nisa mine in east-central Portugal will begin producing uranium ore in 1985 after installation of a processing plant. Portugal produced 95 metric tons of uranium oxide (U/sub 3/O/sub 8/) from ore stocks in each year from 1972 through 1974; production is assumed to have continued at the same rate since then. Geothermal energy has not been developed in mainland Portugal; however, hot springs that may have geothermal energy potential are known in the Minho district in the northwest. Geothermal energy resources exist in the Azores and a program of evaluation and exploration with technical assistance from the USGS is presently in progress there.

  19. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    SciTech Connect (OSTI)

    Howard, C.D.

    1987-07-01T23:59:59.000Z

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and are usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.

  20. Coal-by-Rail Business-as-Usual Reference Case | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACTClosedfor Elementary

  1. U.S. Department of Energy Reference Model Program RM1: Experimental Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^6 Annual

  2. Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind GeneratingZhongshengZibo Storage BatteryOpen

  3. DOE O 205.1B Reference List | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSAAugust 201005.1B

  4. Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAP JumpZenergyZeppiniLEDS

  5. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy ConsumersExperimental Test ofExperimental

  6. ATOMIC ENERGY COMMISSION Refer to File No. AEGR-1 The CommandinS Officer '

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it !

  7. References and Appendices: U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S. Manufacturing Energy Use and

  8. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    SciTech Connect (OSTI)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01T23:59:59.000Z

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  9. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Schmutz, Jeremy [HudsonAlpha Institute

    2013-03-01T23:59:59.000Z

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  10. a_1(1260) dominance in the process e+e- \\to 4?at energies 1.05--1.38 GeV

    E-Print Network [OSTI]

    CMD2 Collaboration

    1999-04-23T23:59:59.000Z

    First results of the study of the process e+e- \\to 4\\pi by the CMD-2 collaboration at VEPP-2M are presented for the energy range 1.05--1.38 GeV. Using an integrated luminosity of 5.8 pb^{-1}, energy dependence of the processes e+e- \\to \\pi^+\\pi^- 2\\pi^0 and e+e- \\to 2\\pi^+ 2\\pi^- has been measured. Analysis of the differential distributions demonstrates the dominance of the a_1\\pi and \\omega\\pi intermediate states. Upper limits for the contributions of other alternative mechanisms are also placed.

  11. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05T23:59:59.000Z

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  12. ECUT energy data reference series: high-temperature materials for advanced heat engines

    SciTech Connect (OSTI)

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01T23:59:59.000Z

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  13. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesTheGAOHome >About GE

  14. Annual Energy Outlook Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual Coal<

  15. DOE Refers Four ENERGY STAR Models to EPA for Potential De-Listing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOEWasher Waivers

  16. DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOEWasher WaiversDepartment

  17. U.S. Department of Energy Reference Model Program RM1: Experimental Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key topatentMay 2015September 29, 2014 Prepared

  18. Uniaxially stressed Ge:Ga and Ge:Be

    SciTech Connect (OSTI)

    Dubon, O.D. Jr.

    1992-12-01T23:59:59.000Z

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  19. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  20. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    SciTech Connect (OSTI)

    Talochkin, A. B., E-mail: tal@thermo.isp.nsc.ru; Chistokhin, I. B. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-07-15T23:59:59.000Z

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest 'quantum box' model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  1. Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references

    SciTech Connect (OSTI)

    Not Available

    1980-02-25T23:59:59.000Z

    Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

  2. Technical reference book for the Energy Economic Data Base Program (EEDB)

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    This distribution is the latest in a series published since 1978. The overall program purpose is to provide periodically updated, detailed base construction cost estimates for large nuclear electric operating plants. These data, which are representative of current US powerplant construction cost experience, are a useful contribution to program planning by the Office of the Assistant Secretary for Nuclear Energy. The eighth update incorporates the results of a comprehensive update of the technical and cost information for the pressurized water reactor (PWR), large scale prototype breeder reactor nuclear powerplant (LSPB), and 488 MWe high sulfur, coal-fired powerplant (HS5) data models. During the Phase VIII update, the LSPB, which was first incorporated into the previous update, was brought into full conformance with EEDB ground rules, and the level of detail of the data models was extended to the EEDB fully detailed level. We remind the user that the LSPB must still be considered a second-of-a-kind, pre-commercial unit, and any comparisons of it with other EEDB data models should be carefully made recognizing dissimilarity achievement of design and cost maturity, particularly for the nuclear steam supply system and other equipment.

  3. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\\sqrt{s_{NN}} = 19.6$ and 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; J. Bouchet; A. V. Brandin; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calder'on de la Barca S'anchez; J. M. campbell; D. Cebra; M. C. Cervantes; I. Chakaberia; P. Chaloupka; Z. Chang; S. Chattopadhyay; J. H. Chen; X. Chen; J. Cheng; M. Cherney; W. Christie; M. J. M. Codrington; G. Contin; H. J. Crawford; S. Das; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; B. di Ruzza; L. Didenko; C. Dilks; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; G. Eppley; R. Esha; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; P. Federic; J. Fedorisin; Feng; P. Filip; Y. Fisyak; C. E. Flores; L. Fulek; C. A. Gagliardi; D. Garand; F. Geurts; A. Gibson; M. Girard; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; S. Gupta; A. Gupta; W. Guryn; A. Hamad; A. Hamed; R. Haque; J. W. Harris; L. He; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; H. Z. Huang; X. Huang; B. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; K. Jiang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; S. R. Klein; D. D. Koetke; T. Kollegger; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; X. Li; X. Li; W. Li; Z. M. Li; Y. Li; C. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; L. Ma; R. Ma; G. L. Ma; Y. G. Ma; N. Magdy; R. Majka; A. Manion; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; K. Meehan; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; V. Okorokov; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; A. Peterson; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; M. Posik; A. M. Poskanzer; N. K. Pruthi; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; M. K. Sharma; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. Sikora; M. Simko; M. J. Skoby; N. Smirnov; D. Smirnov; D. Solanki; L. Song; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; B. J. Summa; Y. Sun; Z. Sun; X. M. Sun; X. Sun; B. Surrow; D. N. Svirida; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; A. N. Tawfik; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; S. K. Tripathy; B. A. Trzeciak; O. D. Tsai; T. Ullrich; D. G. Underwood; I. Upsal; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; R. Varma; A. N. Vasiliev; R. Vertesi; F. Videbk; Y. P. Viyogi; S. Vokal; S. A. Voloshin; A. Vossen; Y. Wang; F. Wang; H. Wang; J. S. Wang; G. Wang; Y. Wang; J. C. Webb; G. Webb; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; Z. Xu; Q. H. Xu; N. Xu; H. Xu; Y. F. Xu; Y. Yang; C. Yang; S. Yang; Q. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I. -K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; X. P. Zhang; S. Zhang; J. Zhang; Z. Zhang; Y. Zhang; J. L. Zhang; F. Zhao; J. Zhao; C. Zhong; L. Zhou; X. Zhu; Y. Zoulkarneeva; M. Zyzak

    2015-01-21T23:59:59.000Z

    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\\sqrt{s_{NN}}$ = 19.6 GeV for $0.4GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\\sqrt{s_{NN}}$ = 17.3 GeV. For $\\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

  4. Production of isomeric states in the deuteron-induced reaction of gold at incident energy 4 GeV

    E-Print Network [OSTI]

    A. R. Balabekyan; N. A. Demekhina; G. S. Karapetyan; D. R. Drnoyan; V. I. Zhemenik; J. Adam; L. Zavorka; A. A. Solnyshkin; V. M. Tsoupko-Sitnikov

    2014-12-11T23:59:59.000Z

    The independent cross section ratio for production of nuclei from 197Au targets irradiated with 4 GeV deuterons have been measured by off-line gamma-spectroscopy. On the basis of the measured independent cross section ratio of 198m, gAu the average intrinsic angular momentum of the primary nucleus was estimated by means of a simple statistical-model analysis based on the formalism developed by Huizenga and Vandenbosch.

  5. The GE Store

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5,AuditThe FiveBiofuelsGE Store for

  6. QCD analyses and determinations of $\\alpha_{s}$ in $e^{+}e^{-}$ annihilation at energies between 35 and 189 GeV

    E-Print Network [OSTI]

    Pfeifenschneider, P; Movilla-Fernndez, P A; Abbiendi, G; Ackerstaff, K; kesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Biguzzi, A; Bloodworth, Ian J; Bock, P; Bhme, J; Boeriu, O; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Cammin, J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; Davis, R; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Ferrari, P; Fiedler, F; Fierro, M; Fleck, I; Frey, A; Frtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruw, M; Gnther, P O; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Hauke, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horvth, D; Hossain, K R; Howard, R; Hntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Khl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yal; Lanske, D; Lawson, I; Layter, J G; Leins, A; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; L, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martnez, G; Mashimo, T; Mttig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Mndez-Lorenzo, P; Merritt, F S; Mes, H; Meyer, I; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; gren, H O; Okpara, A N; Oreglia, M J; Orito, S; Psztor, G; Pater, J R; Patrick, G N; Patt, J; Prez-Ochoa, R; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Przybycien, M B; Quadt, A; Rembser, C; Rick, Hartmut; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runlfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schning, A; Schrder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Sldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Strhmer, R; Surrow, B; Talbot, S D; Tarem, S; Taylor, R J; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trefzger, T M; Trigger, I; Trcsnyi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D; Jade, The

    2000-01-01T23:59:59.000Z

    We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA p...

  7. Modeling of GE Appliances: Final Presentation

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31T23:59:59.000Z

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances DR-enabled appliances to provide benefits to the utility grid.

  8. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect (OSTI)

    Fthenakis, V.; Kim, H.

    2010-07-15T23:59:59.000Z

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  9. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    SciTech Connect (OSTI)

    Shibayama, Shigehisa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan) [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-08-19T23:59:59.000Z

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

  10. ILC cryogenic systems reference design

    SciTech Connect (OSTI)

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; /Fermilab; Parma, V.; Tavian, L.; /CERN

    2008-01-01T23:59:59.000Z

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  11. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    NA49 Collaboration; Anticic, T.

    2009-04-15T23:59:59.000Z

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  12. Measurement of charm production cross sections in e{sup +}e{sup -} annihilation at energies between 3.97 and 4.26 GeV

    SciTech Connect (OSTI)

    Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A. [Northwestern University, Evanston, Illinois 60208 (United States); Libby, J.; Powell, A.; Wilkinson, G. [University of Oxford, Oxford OX1 3RH (United Kingdom); Ecklund, K. M. [State University of New York at Buffalo, Buffalo, New York 14260 (United States); Love, W.; Savinov, V. [University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Lopez, A. [University of Puerto Rico, Mayaguez, Puerto Rico 00681 (Puerto Rico)] (and others)

    2009-10-01T23:59:59.000Z

    Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D{sup +}, D{sup 0} and D{sub s}{sup +} mesons in e{sup +}e{sup -} annihilations at 13 center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, D{sub s}{sup +}D{sub s}{sup -}, D{sub s}*{sup +}D{sub s}{sup -}, and D{sub s}*{sup +}D{sub s}*{sup -}) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260)

  13. Comparison of Skutterudites and Advanced Thin-Film B4C/B9C and Si/SiGe Materials in Advanced Thermoelectric Energy Recovery Systems

    SciTech Connect (OSTI)

    Hendricks, Terry J.

    2007-03-15T23:59:59.000Z

    Various advanced thermoelectric (TE) materials have properties that are inherently advantageous for particular TE energy recovery applications. Skutterudites, 0- and 1-dimensional quantum-well materials, and thin-film superlattice materials are providing enhanced opportunities for advanced TE energy recovery. This work demonstrates that early skutterudites materials in dual-material, segmented couple designs may be best suited for higher temperature applications associated with spacecraft power systems and very high temperature exhaust waste heat recovery in heavy vehicles. Early thin-film BxC/Si-SiGe materials appear to be well suited for mid-temperature ranges in exhaust waste heat recovery in heavy-duty and passenger vehicles. Potential power generation at specific exhaust temperature levels and for various heat exchanger performance levels are presented showing the current design sensitivities using each of these TE material sets. Mathematical relationships inherently linking optimum TE design variables and the thermal systems design (i.e., heat exchangers) are also investigated.

  14. Proceedings of the workshop on nuclear and particle physics at energies up to 31 GeV: new and future aspects

    SciTech Connect (OSTI)

    Bowman, J.D.; Kisslinger, L.S.; Silbar, R.R. (eds.)

    1981-03-01T23:59:59.000Z

    This report contains the proceedings of the LAMPF Workshop on Nuclear and Particle Physics at Energies up to 31 GeV, New and Future Aspects, held in Los Alamos, January 5 to 8, 1981. Included are invited talks and contributed papers covering recent developments in (a) weak and unified interactions (including discussions of neutrino oscillations), (b) the hadronic description of strong interactions, (c) the quark description of strong interactions, (d) hypernuclei, and (e) new facilities and proposed experiments. One of the motivations for the Workshop was to explore physics justifications for a future high-intensity proton accelerator in this energy regime. Separate abstracts were prepared for papers from this meeting. Six papers were previously included in the data base.

  15. Spectral Studies of Flaring FSRQs at GeV Energies Using Pass 8 Fermi-LAT Data

    E-Print Network [OSTI]

    Britto, Richard J G; Lott, Benot

    2015-01-01T23:59:59.000Z

    Flat spectrum radio quasars (FSRQs) are bright active galactic nuclei surrounded by gas clouds within a UV-visible intense radiation field that form the so-called broad line region (BLR). These objects emit relativistic jets from a region close to the central supermassive black hole and through the BLR. The Fermi-Large Area Telescope (Fermi-LAT) is sensitive to gamma-ray photons from $\\sim$30 MeV to more than 300 GeV. We have performed spectral analysis of bright FSRQs in a 5.5 year (2008-2014) data sample collected by Fermi-LAT, using the new Pass 8 event selection and instrument response function. Also, our study of flaring episodes in a limited time range brings interesting results while compared to the full 5.5 year data samples.

  16. Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV

    SciTech Connect (OSTI)

    Nicholas Zachariou

    2012-05-20T23:59:59.000Z

    Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P{sub y}), along with the polarization transfers (C{sub x'} and C{sub z'} ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 ? 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon polarization, and finally determine the azimuthal asymmetry and any systematic uncertainties associate with it, is comprehensively explained. This work shows that the collected data provide the kinematic coverage and statistics to test the available QCD-based models. The results of this study show that the available theoretical models in their current state do not adequately predict the azimuthal asymmetry in the energy region 1.1 ? 2.3 GeV.

  17. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  18. Poroelastic references

    SciTech Connect (OSTI)

    Christina Morency

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  19. Local order measurement in SnGe alloys and monolayer Sn films on Si with reflection electron energy loss spectrometry

    E-Print Network [OSTI]

    Atwater, Harry

    fine structure EXELFS data obtained by reflection electron energy loss spectrometry REELS-range order obtained using reflection high energy electron diffraction. The results suggest that EXELFS synthesis of artificial structures with abrupt strain and composition profiles. Re- flection high energy

  20. Dissociation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon

    SciTech Connect (OSTI)

    Mamatkulov, K. Z.; Kattabekov, R. R. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Alikulov, S. S. [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan)] [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan); Artemenkov, D. A. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Bekmirzaev, R. N. [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan)] [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan); Bradnova, V.; Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru; Zarubina, I. G.; Kondratieva, N. V.; Kornegrutsa, N. K.; Krivenkov, D. O.; Malakhov, A. I. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Olimov, K. [Uzbek Academy of Sciences, Institute for Physics and Technology (Uzbekistan)] [Uzbek Academy of Sciences, Institute for Physics and Technology (Uzbekistan); Peresadko, N. G.; Polukhina, N. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Kharlamov, S. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-10-15T23:59:59.000Z

    The charge topology in the fragmentation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of {sup 10}C nuclei, about 82% of events are associated with the channel {sup 10}C {yields} 2{alpha}+ 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among {sup 10}C {yields} 2{alpha}+ 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable {sup 9}Be{sub g.s.} nucleus is followed by {sup 8}Be{sub g.s.} + p decays.

  1. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    E-Print Network [OSTI]

    IceCube Collaboration; R. Abbasi; Y. Abdou; T. Abu-Zayyad; J. Adams; J. A. Aguilar; M. Ahlers; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; R. Bay; J. L. Bazo Alba; K. Beattie; J. J. Beatty; S. Bechet; J. K. Becker; K. -H. Becker; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Z. Besson; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Bser; O. Botner; J. Braun; S. Buitink; M. Carson; D. Chirkin; B. Christy; J. Clem; F. Clevermann; S. Cohen; C. Colnard; D. F. Cowen; M. V. D'Agostino; M. Danninger; J. C. Davis; C. De Clercq; L. Demirrs; O. Depaepe; F. Descamps; P. Desiati; G. de Vries-Uiterweerd; T. DeYoung; J. C. Daz-Vlez; M. Dierckxsens; J. Dreyer; J. P. Dumm; M. R. Duvoort; R. Ehrlich; J. Eisch; R. W. Ellsworth; O. Engdegrd; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; T. Feusels; K. Filimonov; C. Finley; M. M. Foerster; B. D. Fox; A. Franckowiak; R. Franke; T. K. Gaisser; J. Gallagher; M. Geisler; L. Gerhardt; L. Gladstone; T. Glsenkamp; A. Goldschmidt; J. A. Goodman; D. Grant; T. Griesel; A. Gro; S. Grullon; M. Gurtner; C. Ha; A. Hallgren; F. Halzen; K. Han; K. Hanson; K. Helbing; P. Herquet; S. Hickford; G. C. Hill; K. D. Hoffman; A. Homeier; K. Hoshina; D. Hubert; W. Huelsnitz; J. -P. Hl; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; J. Jacobsen; G. S. Japaridze; H. Johansson; J. M. Joseph; K. -H. Kampert; T. Karg; A. Karle; J. L. Kelley; N. Kemming; P. Kenny; J. Kiryluk; F. Kislat; S. R. Klein; J. -H. Khne; G. Kohnen; H. Kolanoski; L. Kpke; D. J. Koskinen; M. Kowalski; T. Kowarik; M. Krasberg; T. Krings; G. Kroll; K. Kuehn; T. Kuwabara; M. Labare; S. Lafebre; K. Laihem; H. Landsman; M. J. Larson; R. Lauer; R. Lehmann; J. Lnemann; J. Madsen; P. Majumdar; A. Marotta; R. Maruyama; K. Mase; H. S. Matis; M. Matusik; K. Meagher; M. Merck; P. Mszros; T. Meures; E. Middell; N. Milke; J. Miller; T. Montaruli; A. R. Morse; S. M. Movit; R. Nahnhauer; J. W. Nam; U. Naumann; P. Nieen; D. R. Nygren; S. Odrowski; A. Olivas; M. Olivo; A. O'Murchadha; M. Ono; S. Panknin; L. Paul; C. Prez de los Heros; J. Petrovic; A. Piegsa; D. Pieloth; R. Porrata; J. Posselt; P. B. Price; M. Prikockis; G. T. Przybylski; K. Rawlins; P. Redl; E. Resconi; W. Rhode; M. Ribordy; A. Rizzo; J. P. Rodrigues; P. Roth; F. Rothmaier; C. Rott; T. Ruhe; D. Rutledge; B. Ruzybayev; D. Ryckbosch; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; S. Schlenstedt; T. Schmidt; A. Schukraft; A. Schultes; O. Schulz; M. Schunck; D. Seckel; B. Semburg; S. H. Seo; Y. Sestayo; S. Seunarine; A. Silvestri; K. Singh; A. Slipak; G. M. Spiczak; C. Spiering; M. Stamatikos; B. T. Stanev; G. Stephens; T. Stezelberger; R. G. Stokstad; S. Stoyanov; E. A. Strahler; T. Straszheim; G. W. Sullivan; Q. Swillens; H. Taavola; I. Taboada; A. Tamburro; O. Tarasova; A. Tepe; S. Ter-Antonyan; S. Tilav; P. A. Toale; S. Toscano; D. Tosi; D. Tur?an; N. van Eijndhoven; J. Vandenbroucke; A. Van Overloop; J. van Santen; M. Voge; B. Voigt; C. Walck; T. Waldenmaier; M. Wallraff; M. Walter; Ch. Weaver; C. Wendt; S. Westerhoff; N. Whitehorn; K. Wiebe; C. H. Wiebusch; G. Wikstrm; D. R. Williams; R. Wischnewski; H. Wissing; M. Wolf; K. Woschnagg; C. Xu; X. W. Xu; G. Yodh; S. Yoshida; P. Zarzhitsky

    2010-12-17T23:59:59.000Z

    A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.

  2. Forward Energy and Multiplicity in Au-Au reactions at sqrt{S}=130GeV

    E-Print Network [OSTI]

    Michael Murray; BRAHMS Collaboration

    2001-02-21T23:59:59.000Z

    For relativistic heavy ion collisions the energy flow in the collision reveals information on the equation of state of matter at high density. The BRAHMS experiment has studied the relation between multipliciity in the sidewards direction and zero degree energy using our Tile Multiplicity Array and Zero Degree Calorimeters. To understand this spectrum requires a knowledge of the coalesence of nucleons that are close in phase space. We have also studied electromagnetic collisions and compared our results to lower energy data. As the center of mass energy increases, each nucleus sees a stronger electromagnetic field resulting in more energy being absorbed. This in turn causes an increase in the neutron multiplicity.

  3. Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; C. D. Anson; D. Arkhipkin; E. Aschenauer; G. S. Averichev; J. Balewski; A. Banerjee; Z. Barnovska; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; E. Bruna; S. Bltmann; I. Bunzarov; T. P. Burton; J. Butterworth; X. Z. Cai; H. Caines; M. Caldern de la Barca Snchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; P. Chung; J. Chwastowski; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; R. Derradi de Souza; S. Dhamija; L. Didenko; F. Ding; A. Dion; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; L. Eun; O. Evdokimov; R. Fatemi; S. Fazio; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; Y. Fisyak; E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; S. Gliske; Y. N. Gorbunov; O. G. Grebenyuk; D. Grosnick; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; C. Jena; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; D. P. Kikola; J. Kiryluk; I. Kisel; A. Kisiel; V. Kizka; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; L. M. Lima; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; Y. Lu; X. Luo; A. Luszczak; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; S. Mioduszewski; M. K. Mitrovski; Y. Mohammed; B. Mohanty; M. M. Mondal; B. Morozov; M. G. Munhoz; M. K. Mustafa; M. Naglis; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; L. V. Nogach; J. Novak; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; D. Olson; P. Ostrowski; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; J. Porter; C. B. Powell; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; L. Ruan; J. Rusnak; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; B. Schmidke; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; N. Shah; E. Shahaliev; M. Shao; B. Sharma; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; F. Videbk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; Y. Yang; P. Yepes; L. Yi; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; J. B. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-04-24T23:59:59.000Z

    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\\rm obs}_{2}$), where $\\Delta=(1.3\\pm1.4({\\rm stat})^{+4.0}_{-1.0}({\\rm syst}))\\times10^{-5}+(3.2\\pm0.2({\\rm stat})^{+0.4}_{-0.3}({\\rm syst}))\\times10^{-3}v^{\\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.

  4. The Cosmic Ray Helium and Carbon Nuclei Spectra Measured by Voyager 1 at Low Energies and Earth Based Measurements of these Nuclei up to 200 GeV nuc Concordance at High Energies with a Leaky Box Propagation Model

    E-Print Network [OSTI]

    Webber, W R

    2015-01-01T23:59:59.000Z

    A comparison of the Helium and Carbon interstellar spectra measured at Voyager in the local interstellar medium leads to a different interpretation than a comparison of the Hydrogen to Helium spectra. This is because the He/C ratio is observed to increase rapidly with energy below 40 MeV/nuc in contrast to an almost constant H/He ratio at these low energies. Both the He and C spectra that are observed at Voyager above 40 MeV/nuc and much higher energy spectra from the PAMELA measurements of these two components up to 100 GeV/nuc can be accurately fit to within 10% assuming galactic propagation in a leaky box type of diffusion model in the galaxy with identical source spectra P-2.28 for He and C using a diffusion coefficient P0.50 above 1 GV rigidity. These same exponents also fit the H spectrum from 40 MeV to over 100 GeV. At low energies an excess of He relative to C is observed that would amount to about 20% of the modeled galactic component at 10 MeV/nuc.

  5. SU?C?105?05: Reference Dosimetry of High?Energy Electron Beams with a Farmer?Type Ionization Chamber

    SciTech Connect (OSTI)

    Muir, B; Rogers, D [Carleton University, Ottawa, ON (Canada)] [Carleton University, Ottawa, ON (Canada)

    2013-06-15T23:59:59.000Z

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer?type NE2571 ion chamber for high?energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high?energy electron beams and in a cobalt?60 reference field. Calculated water?to?air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.30.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose?to?water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon?electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high?energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  6. GE Appliances: Order (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with General Electric Appliances after finding GE Appliances had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  7. CHEM 114 GE 124 MATH 110 GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2006-07 CHEM 114 GE 124 MATH 110 GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GE 210 MATH 223CE 212 CMPT 116 Hum/SocSci Jr. GEOE 218 CE 225 MATH 224GE 213# GE 348# CE 295 English 11x# CE 315 CE 311 CE 318 CE 319 CE 317 CE 316CE 327 CE 321 Sr Sci elect#CE 329 CE 328 GE 300# Eng/Sr Sci Elec# CE Elec

  8. Electromagnetic signals from Au+Au collisions at RHIC energy, $\\sqrt{s_{NN}}$=200 GeV and Pb+Pb collisions at LHC energy, $\\sqrt{s_{NN}}$=2.76 TeV

    E-Print Network [OSTI]

    Jajati K. Nayak; Bikash Sinha

    2012-10-15T23:59:59.000Z

    We analyse the recently available experimental data on direct photon productions from Au+Au collisions at $\\sqrt{s_{NN}}$=200 GeV RHIC and from Pb+Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV LHC energies. The transverse momentum ($p_T$) distributions have been evaluated with the assumption of an initial quark gluon plasma phase at temperatures $T_i$=404 and 546 MeV with initial thermalisation times $\\tau_i$=0.2 and 0.1 fm/c respectively for RHIC and LHC energies. The theoretical evalutions agree reasonably well with the experimental observations. The thermal window for the LHC energy is justified through the ratio of the $p_T$ spectra of thermal photons to dileptons.

  9. Hydrogen interaction kinetics of Ge dangling bonds at the Si{sub 0.25}Ge{sub 0.75}/SiO{sub 2} interface

    SciTech Connect (OSTI)

    Stesmans, A., E-mail: andre.stesmans@fys.kuleuven.be; Nguyen Hoang, T.; Afanas'ev, V. V. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium)

    2014-07-28T23:59:59.000Z

    The hydrogen interaction kinetics of the GeP{sub b1} defect, previously identified by electron spin resonance (ESR) as an interfacial Ge dangling bond (DB) defect occurring in densities ?7??10{sup 12}?cm{sup ?2} at the SiGe/SiO{sub 2} interfaces of condensation grown (100)Si/a-SiO{sub 2}/Ge{sub 0.75}Si{sub 0.25}/a-SiO{sub 2} structures, has been studied as function of temperature. This has been carried out, both in the isothermal and isochronal mode, through defect monitoring by capacitance-voltage measurements in conjunction with ESR probing, where it has previously been demonstrated the defects to operate as negative charge traps. The work entails a full interaction cycle study, comprised of analysis of both defect passivation (pictured as GeP{sub b1}-H formation) in molecular hydrogen (?1?atm) and reactivation (GeP{sub b1}-H dissociation) in vacuum. It is found that both processes can be suitably described separately by the generalized simple thermal (GST) model, embodying a first order interaction kinetics description based on the basic chemical reactions GeP{sub b1}?+?H{sub 2}???GeP{sub b1}H?+?H and GeP{sub b1}H???GeP{sub b1}?+?H, which are found to be characterized by the average activation energies E{sub f}?=?1.44??0.04?eV and E{sub d}?=?2.23??0.04?eV, and attendant, assumedly Gaussian, spreads ?E{sub f}?=?0.20??0.02?eV and ?E{sub d}?=?0.15??0.02?eV, respectively. The substantial spreads refer to enhanced interfacial disorder. Combination of the separately inferred kinetic parameters for passivation and dissociation results in the unified realistic GST description that incorporates the simultaneous competing action of passivation and dissociation, and which is found to excellently account for the full cycle data. For process times t{sub a}???35?min, it is found that even for the optimum treatment temperature ?380?C, only ?60% of the GeP{sub b1} system can be electrically silenced, still far remote from device grade level. This ineffectiveness is concluded, for the major part, to be a direct consequence of the excessive spreads in the activation energies, ?23 times larger than for the Si DB P{sub b} defects at the standard thermal (111)Si/SiO{sub 2} interface which may be easily passivated to device grade levels, strengthened by the reduced difference between the average E{sub f} and E{sub d} values. Exploring the guidelines of the GST model indicates that passivation can be improved by decreasing T{sub an} and attendant enlarging of t{sub a}, however, at best still leaving ?2% defects unpassivated even for unrealistically extended anneal times. The average dissociation energy E{sub d}???2.23?eV, concluded as representing the GeP{sub b1}-H bond strength, is found to be smaller than the SiP{sub b}-H one, characterized by E{sub d}???2.83?eV. An energy deficiency is encountered regarding the energy sum rule inherent to the GST-model, the origin of which is substantiated to lie with a more complex nature of the forward passivation process than basically depicted in the GST model. The results are discussed within the context of theoretical considerations on the passivation of interfacial Ge DBs by hydrogen.

  10. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    E-Print Network [OSTI]

    Aggarwal, Kanti M

    2013-01-01T23:59:59.000Z

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The {\\sc grasp} (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac Atomic R-matrix Code ({\\sc darc}) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10$^{8}$ K. Comparisons are made with similar data obtained using the Flexible Atomic Code ({\\sc fac}) to highlight the importance of resonances, included in calcul...

  11. Measurement of the neutron-capture cross section of ??Ge and ??Ge below 15 MeV and its relevance to 0??? decay searches of ??Ge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2015-02-01T23:59:59.000Z

    The neutron radiative-capture cross section of ??Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ~86% ??Ge and ~14% ??Ge used in the 0??? searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the H(p,n)He, H(d,n)He and H(d,n)?He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for ??Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution ?-ray spectroscopy wasmoreused to determine the ?-ray activity of the daughter nuclei of interest. For the ??Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the ??Ge(n,?)??Ge reaction, the present data are about a factor of two larger than predicted. It was found that the ??Ge(n,?)??Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the ??Ge(n,?)??Ge yield due to the larger cross section of the former reaction.less

  12. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect (OSTI)

    Muir, B R; McEwen, M R [Measurement Science and Standards, National Research Council, Ottawa, ON (Canada)

    2014-06-01T23:59:59.000Z

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  13. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of ContractingofReducingImplications

  14. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of

  15. Acoustoelectric effects in very high-mobility p-SiGe/Ge/SiGe heterostructure

    SciTech Connect (OSTI)

    Drichko, I. L.; Diakonov, A. M.; Lebedeva, E. V.; Smirnov, I. Yu. [A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Mironov, O. A. [Warwick SEMINANO R and D Centre, University of Warwick Science Park, Coventry CV4 7EZ (United Kingdom); Kummer, M.; Kaenel, H. von [Laboratorium fuer Festkoerperphysik ETH Zuerich, CH-8093 Zuerich (Switzerland); EpiSpeed SA, Technoparkstrasse 1, CH-8005 Zuerich (Switzerland)

    2009-11-01T23:59:59.000Z

    Measurement results of the acoustoelectric effects [surface acoustic waves (SAW) attenuation and velocity] in a high-mobility p-SiGe/Ge/SiGe structure are presented. The structure was low-energy plasma-enhanced chemical vapor deposition grown with a two-dimensional (2D) channel buried in the strained Ge layer. The measurements were performed as a function of temperature (1.5-4.2 K) and magnetic field (up to 8.4 T) at different SAW intensities at frequencies 28 and 87 MHz. Shubnikov-de Haas-like oscillations of both SAW attenuation and the velocity change have been observed. Hole density and mobility, effective mass, quantum and transport relaxation times, as well as the Dingle temperature were measured with a method free of electric contacts. The effect of heating of the 2D hole gas by the electric field of the SAW was investigated. Energy relaxation time tau{sub e}psilon and the deformation potential constant determined.

  16. About GE Global Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAbout GE Global Research

  17. Titan propels GE wind turbine research into new territory | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titan propels GE wind turbine research into new territory January 17, 2014 The amount of global electricity supplied by wind, the world's fastest growing energy source, is expected...

  18. Quick Reference

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 | SpecialReporting

  19. Production of K{sup +} and of K{sup -} mesons in heavy-ion collisions from 0.6A to 2.0A GeV incident energy

    SciTech Connect (OSTI)

    Foerster, A.; Oeschler, H. [Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Uhlig, F.; Lang, S.; Schmah, A. [Gesellschaft fuer Schwerionenforschung, D-64220 Darmstadt (Germany); Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Boettcher, I.; Kohlmeyer, B.; Menzel, M. [Phillips-Universitaet, D-35037 Marburg (Germany); Brill, D.; Koczon, P.; Laue, F.; Mang, M.; Schwab, E.; Senger, P.; Speer, J. [Gesellschaft fuer Schwerionenforschung, D-64220 Darmstadt (Germany); Debowski, M. [Uniwersytet Jagiellonski, PL-30059 Krakow (Poland); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Dohrmann, F.; Naumann, L.; Scheinast, W. [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Grosse, E. [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany)] (and others)

    2007-02-15T23:59:59.000Z

    This paper summarizes the yields and the emission patterns of K{sup +} and of K{sup -} mesons measured in inclusive C+C, Ni+Ni, and Au+Au collisions at incident energies from 0.6A to 2.0A GeV using the Kaon Spectrometer KaoS at GSI. For Ni+Ni collisions at 1.5A and at 1.93A GeV as well as for Au+Au at 1.5A GeV, detailed results are presented of the multiplicities, of the inverse slope parameters, and of the anisotropies in the angular emission patterns as a function of the collision centrality. When comparing transport-model calculations to the measured K{sup +} production yields, an agreement is only obtained for a soft nuclear equation of state (compression modulus K{sub N}{approx_equal}200 MeV). The production of K{sup -} mesons at energies around 1A to 2A GeV is dominated by the strangeness-exchange reaction K{sup -}N<-->{pi}Y (Y={lambda},{sigma}) which leads to a coupling between the K{sup -} and K{sup +} yields. However, both particle species show distinct differences in their emission patterns suggesting different freeze-out conditions for K{sup +} and K{sup -} mesons.

  20. Sandia National Laboratories: Reference Model 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model 3 Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in Computational Modeling & Simulation, Energy, News, News &...

  1. Sandia National Laboratories: Reference Model Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  2. Sandia National Laboratories: marine hydrokinetic reference models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  3. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 Hum/SocSci Jr. MATH 224 English 11x CHE 220CHE 210 CHECHE 413 Grp. B elective#* Grp. B elective*#CHE 424 CHE 421 CHE 422 GE 348# CHE 423 GE 449# CH E 470

  4. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 HSS@# MATH 224 English 11x CHE 220CHE 210 CHE 323 CHE Grp. B elective#* Grp. B elective*#CHE 424 CHE 421 CHE 422 GE 348# CHE 423 GE 449# CH E 470^ Chemical

  5. CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 ME 227 GE 213# MATH 223 EE 201ME 214 CMPT 116 ME 215 GE 226 MATH 224 Hum/SocSci@# ME 251 ME 229 ME 318 ME 335 ME 313 ME 316 ME 352ME 330 GE 348# ME 328 ME 327 ME 323 ME 321ME 324 RCM 300# ME 418 ME 417 ME 450 ME 431

  6. GE ?????????????????4G?????...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE 4G Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click...

  7. Reference Shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired Solar

  8. Properties of excited states in {sup 77}Ge.

    SciTech Connect (OSTI)

    Kay, B. P.; Chiara, C. J.; Schiffer, J. P.; Kondev, F. G.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.; Univ. of Maryland; Horia-Hulubei National Inst. for Physics and Nuclear Engineering

    2009-07-01T23:59:59.000Z

    The nucleus {sup 77}Ge was studied through the {sup 76}Ge({sup 13}C,{sup 12}C){sup 77}Ge reaction at a sub-Coulomb energy. The angular distributions of rays depopulating excited states in {sup 77}Ge were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of {sup 76}Ge was recently explored using transfer reactions.

  9. Energy band alignment of atomic layer deposited HfO{sub 2} on epitaxial (110)Ge grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04T23:59:59.000Z

    The band alignment properties of atomic layer HfO{sub 2} film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO{sub 2} film. The measured valence band offset value of HfO{sub 2} relative to (110)Ge was 2.28 {+-} 0.05 eV. The extracted conduction band offset value was 2.66 {+-} 0.1 eV using the bandgaps of HfO{sub 2} of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO{sub 2}/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices.

  10. GE Healthcare Introduction

    E-Print Network [OSTI]

    Lebendiker, Mario

    GE Healthcare Introduction HR 16 columns are designed for high resolution liquid chromatography your local GE Healthcare office. System compatibility HR 16 columns are designed to be used with KTATM. Wash the parts thoroughly in distilled water. 4. Reassemble the column (see Assembling the column above

  11. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    NA49 Collaboration

    2005-10-25T23:59:59.000Z

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  12. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    SciTech Connect (OSTI)

    McEwen, Malcolm, E-mail: malcolm.mcewen@nrc-cnrc.gc.ca [National Research Council, 1200 Montreal Road, Ottawa, Ontario (Canada)] [National Research Council, 1200 Montreal Road, Ottawa, Ontario (Canada); DeWerd, Larry [University of Wisconsin, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)] [University of Wisconsin, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Ibbott, Geoffrey [Department of Radiation Physics, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Followill, David [IROC Houston QA Center, Radiological Physics Center, 8060 El Rio Street, Houston, Texas 77054 (United States)] [IROC Houston QA Center, Radiological Physics Center, 8060 El Rio Street, Houston, Texas 77054 (United States); Rogers, David W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada)] [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Seltzer, Stephen [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Seuntjens, Jan [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Qubec (Canada)] [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Qubec (Canada)

    2014-04-15T23:59:59.000Z

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected that the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.

  13. REFERENCES Baines, W. D.

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientificof ScientificQ LA-UR- " "REFERENCES

  14. Spin density matrix elements in exclusive $\\omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Augustyniak, W; Avetissian, A; Blok, H P; Borissov, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Etzelmller, E; Fabbri, R; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Hartig, M; Hasch, D; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapiks, L; Lehmann, I; Lenisa, P; Lorenzon, W; Ma, B -Q; Mahon, D; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Movsisyan, A; Murray, M; Naryshkin, Y; Nass, A; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rostomyan, A; Ryckbosch, D; Schfer, A; Schnell, G; Schler, K P; Seitz, B; Shibata, T -A; Stahl, M; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Yen, S; Zeiler, D; Zihlmann, B; Zupranski, P

    2014-01-01T23:59:59.000Z

    Exclusive electroproduction of $\\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\\omega$ production by longitudinal and transvers...

  15. Measurement of the Cross Section Asymmetry of the Reaction gp-->pi0p in the Resonance Energy Region Eg = 0.5 - 1.1 GeV

    E-Print Network [OSTI]

    F. V. Adamian; A. Yu. Buniatian; G. S. Frangulian; P. I. Galumian; V. H. Grabski; A. V. Hairapetian; H. H. Hakopian; V. K. Hoktanian; J. V. Manukian; A. M. Sirunian; A. H. Vartapetian; H. H. Vartapetian; V. G. Volchinsky; R. A. Arndt; I. I. Strakovsky; R. L. Workman

    2000-11-08T23:59:59.000Z

    The cross section asymmetry Sigma has been measured for the photoproduction of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5 - 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which cover the second and third resonance regions, are compared with existing experimental data and recent phenomenological analyses. The influence of these measurements on such analyses is also considered.

  16. Measurement of the yields of positively charged particles at an angle of 35 Degree-Sign in proton interactions with nuclear targets at an energy of 50 GeV

    SciTech Connect (OSTI)

    Ammosov, V. V.; Antonov, N. N. [Institute for High Energy Physics (Russian Federation)] [Institute for High Energy Physics (Russian Federation); Baldin, A. A. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Golovin, A. A.; Gres, V. N.; Ivanilov, A. A.; Koreshev, V. I.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Sviridov, Yu. M.; Semak, A. A., E-mail: Artem.Semak@ihep.ru; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chujko, B. V. [Institute for High Energy Physics (Russian Federation)] [Institute for High Energy Physics (Russian Federation); Shimanskii, S. S. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation)

    2013-10-15T23:59:59.000Z

    Momentum spectra of cumulative particles in the region of high transverse momenta (P{sub T}) in pA {yields} h{sup +} + X reactions were obtained for the first time. The experiment in which this was done was performed at the SPIN setup (Institute for High Energy Physics, Protvino) in a beam of 50-GeV protons interacting with C, Al, Cu, and W nuclei. Positively charged particles were detected at a laboratory angle of 35 Degree-Sign and in the transverse-momentum range between 0.6 and 3.7 GeV/c. A strong dependence of the particle-production cross section on the atomic number was observed. A comparison with the results of calculations based on the HIJING and UrQMD models was performed in the subcumulative region.

  17. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  18. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

  19. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer in GE Jet Engines Click to

  20. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    E-Print Network [OSTI]

    etal, Abbasi, R,

    2012-01-01T23:59:59.000Z

    The Standard Model Extension (SME) [7] is an e?ective-?eld-and CPT violating coe?cients in the SME, in the context of aX = 2 10 ?23 GeV. L The SME adds to the SM Lagrangian all

  1. Spin density matrix elements in exclusive $?$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

    E-Print Network [OSTI]

    The HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; W. Augustyniak; A. Avetissian; H. P. Blok; A. Borissov; V. Bryzgalov; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Dren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; E. Etzelmller; R. Fabbri; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; F. Garibaldi; G. Gavrilov; V. Gharibyan; M. Hartig; D. Hasch; Y. Holler; I. Hristova; A. Ivanilov; H. E. Jackson; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapiks; I. Lehmann; P. Lenisa; W. Lorenzon; B. -Q. Ma; D. Mahon; S. I. Manaenkov; Y. Mao; B. Marianski; H. Marukyan; A. Movsisyan; M. Murray; Y. Naryshkin; A. Nass; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; A. Rostomyan; D. Ryckbosch; A. Schfer; G. Schnell; K. P. Schler; B. Seitz; T. -A. Shibata; M. Stahl; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; S. Yen; D. Zeiler; B. Zihlmann; P. Zupranski

    2014-10-11T23:59:59.000Z

    Exclusive electroproduction of $\\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\\omega$ production by longitudinal and transverse virtual photons, $\\gamma^{*}_{L} \\to \\omega_{T}$ and $\\gamma^{*}_{T} \\to \\omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $\\gamma^*_T \\to \\omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $\\gamma^*_L \\to \\omega_L$ and $\\gamma^*_T \\to \\omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.

  2. Advanced Analytics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AA (01-2015)GE

  3. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference

  4. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference4

  5. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference46

  6. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E44 Reference

  7. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference

  8. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference4

  9. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference46

  10. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference464

  11. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference

  12. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference6

  13. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference68

  14. References to Astrophysics Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired SolarReferences to

  15. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01T23:59:59.000Z

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  16. Safeguards and Security Program References

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    The manual establishes definitions for terms related to the Department of Energy Safeguards and Security (S&S) Program and includes lists of references and acronyms/abbreviations applicable to S&S Program directives. Cancels the Safeguards and Security Glossary of Terms, dated 12-18-95. Current Safeguards and Security Program References can also be found at Safeguards and Security Policy Information Resource (http://pir.pnl.gov/)

  17. Adsorption of alkali metals on Ge(001)(21) surface. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alkali metals on Ge(001)(21) surface. Adsorption of alkali metals on Ge(001)(21) surface. Abstract: Ab initio total energy calculations have been performed for Na, K...

  18. Ge/SiGe quantum wells on Si(111): Growth, structural, and optical properties

    SciTech Connect (OSTI)

    Gatti, E., E-mail: eleonora.gatti@mater.unimib.it; Pezzoli, F.; Grilli, E. [L-NESS and Dipartimento di Scienza dei Materiali, Universit di Milano Bicocca, via Cozzi 55, I-20125 Milano (Italy); Isa, F.; Chrastina, D.; Isella, G. [L-NESS and Dipartimento di Fisica, Politecnico di Milano, Polo di Como, via Anzani 42, I - 22100 Como (Italy); Mller Gubler, E. [Electron Microscopy Center of ETH Zrich (EMEZ), August-Piccard-Hof 1, CH-8093 Zrich (Switzerland)

    2014-07-28T23:59:59.000Z

    The epitaxial growth of Ge/Si{sub 0.15}Ge{sub 0.85} multiple quantum wells (MQWs) on Si(111) substrates is demonstrated. A 3??m thick reverse, double-step virtual substrate with a final composition of Si{sub 0.10}Ge{sub 0.90} has been employed. High resolution XRD, TEM, AFM and defect etching analysis has been used for the study of the structural properties of the buffer and of the QWs. The QW stack is characterized by a threading dislocation density of about 3??10{sup 7?}cm{sup ?2} and an interdiffusion layer at the well/barrier interface of 2.1?nm. The quantum confined energy levels of this system have been calculated using the kp and effective mass approximation methods. The Ge/Si{sub 0.15}Ge{sub 0.85} MQWs have been characterized through absorption and photoluminescence measurements. The optical spectra have been compared with those of Ge/Si{sub 0.15}Ge{sub 0.85} QWs grown on Si(001) through a thick graded virtual substrate.

  19. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?tk; B. Singh; J. Totans

    2014-07-08T23:59:59.000Z

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  20. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  1. Interface and nanostructure evolution of cobalt germanides on Ge(001)

    SciTech Connect (OSTI)

    Grzela, T., E-mail: grzela@ihp-microelectronics.com; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Koczorowski, W. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dipartimento di Scienze, Universit degli Studi Roma Tre, I-00146 Roma (Italy); Czajka, R. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Radny, M. W. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308 (Australia); Curson, N.; Schofield, S. R. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany)

    2014-02-21T23:59:59.000Z

    Cobalt germanide (Co{sub x}Ge{sub y}) is a candidate system for low resistance contact modules in future Ge devices in Si-based micro and nanoelectronics. In this paper, we present a detailed structural, morphological, and compositional study on Co{sub x}Ge{sub y} formation on Ge(001) at room temperature metal deposition and subsequent annealing. Scanning tunneling microscopy and low energy electron diffraction clearly demonstrate that room temperature deposition of approximately four monolayers of Co on Ge(001) results in the Volmer Weber growth mode, while subsequent thermal annealing leads to the formation of a Co-germanide continuous wetting layer which evolves gradually towards the growth of elongated Co{sub x}Ge{sub y} nanostructures. Two types of Co{sub x}Ge{sub y} nanostructures, namely, flattop- and ridge-type, were observed and a systematic study on their evolution as a function of temperature is presented. Additional transmission electron microscopy and x-ray photoemission spectroscopy measurements allowed us to monitor the reaction between Co and Ge in the formation process of the Co{sub x}Ge{sub y} continuous wetting layer as well as the Co{sub x}Ge{sub y} nanostructures.

  2. International linear collider reference design report

    SciTech Connect (OSTI)

    Aarons, G.

    2007-06-22T23:59:59.000Z

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  3. High Capacity Li Ion Battery Anodes Using Ge Nanowires

    E-Print Network [OSTI]

    Cui, Yi

    High Capacity Li Ion Battery Anodes Using Ge Nanowires Candace K. Chan, Xiao Feng Zhang, and Yi Cui efficiency > 99%. Structural characterization revealed that the Ge nanowires remain intact and connected nanowire anodes are promising candidates for the development of high-energy-density lithium batteries

  4. Band-engineered Ge-on-Si lasers

    E-Print Network [OSTI]

    Liu, Jifeng

    We report optically-pumped Ge-on-Si lasers with direct gap emission near 1600 nm at room temperature. The Ge-on-Si material was band-engineered by tensile strain and n-type doping to compensate the energy difference between ...

  5. Reference Radiation for Cosmic Rays in RBE Research

    E-Print Network [OSTI]

    Feng, Shaoyong

    2011-10-21T23:59:59.000Z

    When astronauts travel in space, they are exposed to high energy cosmic radiations. The cosmic ray spectrum contains very high energy particles, generally up to several GeV per nucleon. Currently NASA is funding research on the effects...

  6. Measurement of Neutral Pions and Direct Photons in Cu + Cu Collisions at 62.4 GeV Center of Mass Energy

    E-Print Network [OSTI]

    Hester, Tim

    2012-01-01T23:59:59.000Z

    excluded as seed towers, to prevent energy loss at the edgealong with edge towers to avoid energy loss outside theres at a higher energy than surronding towers. Additionally,

  7. Thermoelectric properties of nanoporous Ge

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

  8. GE Anna Heijbel / The Storm

    E-Print Network [OSTI]

    Tian, Weidong

    1 / GE Anna Heijbel / The Storm Confocal Optics 50, 100, 200 m 5 IQTL DNA DNA Gels, blots, tissue sections (not in situ), radio-TLC & X-Ray diffraction #12;2 / GE Anna Heijbel / Phosphor m 1010 43 x 35 cm43 x 35 cm Scanning Technology #12;3 / GE Anna Heijbel / Confocal Optics PMTPMT

  9. Energy Dependence of $K/?$, $p/?$, and $K/p$ Fluctuations in Au+Au Collisions from $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; N. M. Abdelwahab; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bltmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Caldern de la Barca Snchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; R. Esha; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamad; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; M. Simko; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbk; Y. P. Viyogi; S. Vokal; S. A. Voloshin; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-10-21T23:59:59.000Z

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K/\\pi$, $p/\\pi$, and $K/p$ fluctuations as measured by the STAR experiment in central 0-5% Au+Au collisions from center-of-mass collision energies $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\\rm \

  10. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect (OSTI)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K. [College of Engineering and Research Center of Ion Beam Technology, Hosei University Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Departments of Arts and Sciences, Osaka Kyoiku University Kashiwara, Osaka 582-8582 (Japan)

    2013-12-04T23:59:59.000Z

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ?10{sup 3} ?cm for un-implanted samples to ?10{sup ?2} ?cm for as-implanted ones are observed. The resistivity is further decreased to ?10{sup ?3} ?cm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 C annealed samples.

  11. Technology makes reds "pop" in LED displays | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveal and Energy Smart consumer brands, and Evolve(tm), GTx(tm), Immersion(tm), Infusion(tm), Lumination(tm), Albeo(tm) and Tetra commercial brands, all trademarks of GE....

  12. HANFORD WASTE MINERALOGY REFERENCE REPORT

    SciTech Connect (OSTI)

    DISSELKAMP RS

    2010-06-29T23:59:59.000Z

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  13. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    SciTech Connect (OSTI)

    DISSELKAMP RS

    2010-06-18T23:59:59.000Z

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  14. Co silicide formation on SiGeC/Si and SiGe/Si layers R. A. Donatona)

    E-Print Network [OSTI]

    on the total strain energy in the layer and restricts the applications where high Ge concentrations are needed spectrometry, secondary ion mass spectroscopy SIMS , and four point probe for sheet resistance measure- ments

  15. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    SciTech Connect (OSTI)

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J. [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Wang, Y. Q., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Ross, G. G.; Barba, D., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [INRS-nergie, Matriaux et Tlcommunications, 1650 boulevard Lionel-Boulet, Varennes Qubec J3X 1S2 (Canada)

    2014-05-28T23:59:59.000Z

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150?C for 1?h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301?kJmol{sup ?1}) are greater than that of Ge-Ge bonds (264?kJmol{sup ?1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  16. HSE 1 HSE 2 HSE 3 GE 1 GE 2 GE 3 Residual effects of Large Vessels in GE BOLD Differential Mapping of Ocular Dominance Columns

    E-Print Network [OSTI]

    HSE 1 HSE 2 HSE 3 GE 1 GE 2 GE 3 Residual effects of Large Vessels in GE BOLD Differential Mapping these techniques in humans. Previous human studies (4-6) instead used the conventional GE BOLD technique, combined and limitations of GE BOLD differential mapping as compared to HSE BOLD differential mapping of ocular dominance

  17. 3 GeV Injector Design Handbook

    SciTech Connect (OSTI)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16T23:59:59.000Z

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  18. GE Global Research Careers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |scienceCareers

  19. GE Global Research Contact | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane

  20. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and MethaneLocations

  1. GE Research and Development | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST Center TheFuel CellI

  2. Characteristics of Sn segregation in Ge/GeSn heterostructures

    SciTech Connect (OSTI)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13T23:59:59.000Z

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  3. Exploring Jet Properties in p-p Collisions at 200 GeV with STAR

    E-Print Network [OSTI]

    Helen Caines

    2009-10-06T23:59:59.000Z

    The mechanisms underlying hadronization are not well understood, both in vacuum and in hot QCD matter. Precise characterization of jet fragmentation to hadrons in p-p collisions will help elucidate the fundamental process of hadronization, and will serve as essential reference to measure the modification of hadronization in heavy ion collisions. We present measurements of fragmentation functions for unidentified particles in jets produced in p-p collisions at 200 GeV using the STAR detector at RHIC. The results from different jet reconstruction algorithms are compared, including variations of the resolution parameter. It is found that the results are largely insensitive to details of the jet-finding algorithm at RHIC energies. Particle production inside and outside of these reconstructed jets will be compared to improve our understanding of the hadronization mechanisms for soft and hard particles in p-p events at RHIC energies.

  4. CTu2J.4.pdf CLEO Technical Digest OSA 2012 Selective-Area Growth of Ge and Ge/SiGe Quantum Wells

    E-Print Network [OSTI]

    Miller, David A. B.

    CTu2J.4.pdf CLEO Technical Digest OSA 2012 Selective-Area Growth of Ge and Ge/SiGe Quantum Wells process for growing high-quality bulk Ge and Ge/SiGe quantum wells in selected areas of 3 m thick silicon. Introduction and motivation Ge and especially Ge/SiGe quantum wells exhibit strong electroabsorption (Franz

  5. GE Wins Manufacturing Leadership Award |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    secured software platform that delivers data and visualizations to all major artificial lift functions at GE Oil & Gas. Several analytic modules were built to extract meaningful...

  6. GE, Aavid Commercialize Dual Cool Jets Technology | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    market. GE's broad array of industrial businesses requires highly advanced and reliable electronics that are increasingly driving the need for advanced cooling solutions to...

  7. GE, University of Washington Disease Detection | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    excited about this team's unique ability to combine new designs for paper-based microfluidics with new nucleic amplification methods and GE's novel paper chemistries to help...

  8. Patent Record Announcement | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalms Village ResortEnergyL L 2PatentGE's E.

  9. GE Cancer Research | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! ( ! ( ! ( !

  10. GE Capital Partnership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! ( ! ( ! ( !Global

  11. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! ( ! ( ! (

  12. Upgrade of CEBAF from 6-GeV To 12-GeV: Status

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-04-01T23:59:59.000Z

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plants capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  13. GE Healthcare Product Guide 2007

    E-Print Network [OSTI]

    Lebendiker, Mario

    GE Healthcare BioProcess Product Guide 2007 #12;How to contact us Europe www.gehealthcare.com/bioprocess or by phone (T), fax (F), and Email Austria T: +43 1 57 606 1613 F: +43 1 57 606 1614 Email: cust.orderde@ge.com Belgium T: 0800 73890 F: 02 416 8206 Email: order.bnl@ge.com Central and East Europe (Austria) T: +43 1

  14. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31T23:59:59.000Z

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  15. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26T23:59:59.000Z

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  16. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature," said Frank Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. Developed over the past decade, these new magnetocaloric...

  17. Contribution of the electron-phonon coupling to Lindhard partition at low energy in Ge and Si detectors for astroparticle physics

    E-Print Network [OSTI]

    Lazanu, Ionel

    2015-01-01T23:59:59.000Z

    The influence of the transient thermal effects on the partition of the energy of selfrecoils in germanium and silicon into energy eventually given to electrons and to atomic recoils respectively is studied. The transient effects are treated in the frame of the thermal spike model, which considers the electronic and atomic subsystems coupled through the electron-phonon interaction. For low energies of selfrecoils, we show that the corrections to the energy partition curves due to the energy exchange during the transient processes modify the Lindhard predictions. These effects depend on the initial temperature of the target material, as the energies exchanged between electronic and lattice subsystems have different signs for temperatures lower and higher than about 15 K. More of the experimental data reported in the literature support the model.

  18. Efficient tunable luminescence of SiGe alloy sheet polymers

    SciTech Connect (OSTI)

    Vogg, G.; Meyer, A. J.-P.; Miesner, C.; Brandt, M. S.; Stutzmann, M.

    2001-06-18T23:59:59.000Z

    Crystalline SiGe alloy sheet polymers were topotactically prepared from epitaxially grown calcium germanosilicide Ca(Si{sub 1{minus}x}Ge{sub x}){sub 2} precursor films in the whole composition range. These polygermanosilynes are found to be a well-defined mixture of the known siloxene and polygermyne sheet polymers with the OH groups exclusively bonded to silicon. The optical properties determined by photoluminescence and optical reflection measurements identify the mixed SiGe sheet polymers as direct semiconductors with efficient luminescence tunable in the energy range between 2.4 and 1.3 eV. {copyright} 2001 American Institute of Physics.

  19. Application Protocol Reference Architecture Application Protocol Reference Architecture

    E-Print Network [OSTI]

    van Sinderen, Marten

    Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

  20. 440 IEEE Transactions on Energy Conversion, Vol. 14, No. 3, September 1999 MultipleReferenceFrameAnalysis ofNon-sinusoidalBrushlessDCDrives

    E-Print Network [OSTI]

    Chapman, Patrick

    will be referredto asan ideal state modeland isread@obtainedinthe case of a sinusoidalPMSM using HereinaNLAMofanon-sinusoidalPMSM isdevelopedUsing multi le reference.frame (MRF) thmy. Firsf the machinevariable modef ofa non-sinwidal BEMF PMSM is presented followedby therotorreferencelimemodel. At that point

  1. The Jefferson Lab 12 GeV Upgrade

    E-Print Network [OSTI]

    McKeown, R D

    2010-01-01T23:59:59.000Z

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program.

  2. The Jefferson Lab 12 GeV Upgrade

    E-Print Network [OSTI]

    R. D. McKeown

    2010-09-22T23:59:59.000Z

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program.

  3. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesTheGAOHome >About

  4. GE and Quirky | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahoma City, USAGE BBQ Center isThe

  5. Serial and parallel Si, Ge, and SiGe direct-write with scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting...

  6. References | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2A en7/%2ANationalReferences

  7. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2006-07 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 Hum/SocSci Jr. GEOE 315 GEOE 475 Grp C Elec.# GE 348#CE 318 CE 319 ENG 11X# GEOL 463 or Grp B Elec.# GEOL 226 GE 300# CE 316

  8. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2005-2006 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 BusSci/HSS# GEOE 315 GEOE 475 Grp C Elec.# GE 348#CE 318 CE 319 ENG 11X# GEOL 463 or Grp B Elec.# GEOL 226 GE 300# CE 316 Grp

  9. Crowdsourcing Software Announcement | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-SectorDepartment ofGE, MIT

  10. Crowdsourcing Software Award | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-SectorDepartment ofGE,

  11. Low-voltage broad-band electroabsorption from thin Ge/SiGe

    E-Print Network [OSTI]

    Miller, David A. B.

    Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown than 5 dB over the entire telecommunication S- and C-bands with only 1V drive using a new Ge/SiGe QW epitaxy design approach; further, this is demonstrated with the thinnest Ge/SiGe epitaxy to date, using

  12. Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques

    E-Print Network [OSTI]

    Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques Gianni was arranged by Prof. C.K. Maiti Abstract Techniques for fabricating strained Si, SiGe, and Ge on is presented, with a detailed discussion of wafer bonding approaches for strained Si, SiGe, and Ge on

  13. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01T23:59:59.000Z

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  14. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect (OSTI)

    Guo, Yijun [Ames Laboratory; Rowland, Clare E [Argonne National Laboratory; Schaller, Richard D [Argonne National Laboratory; Vela, Javier [Ames Laboratory

    2014-08-26T23:59:59.000Z

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent IIVI, IIIV and IVVI semiconductor quantum dots. Here, we use relatively unexplored IV/IIVI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial IIVI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/IIVI nanocrystals are reproducibly 13 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/IIVI nanocrystals. We expect this synthetic IV/IIVI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  15. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  16. Value of Information References

    SciTech Connect (OSTI)

    Morency, Christina

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  17. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

    2000-02-22T23:59:59.000Z

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  18. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21T23:59:59.000Z

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  19. Cold Spray and GE Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    difference of the work done at GE Global Research is the development of cold spray for additive manufacturing, where we adapt this novel coating process to build 3D shapes....

  20. GE Researcher Explores Science Behind Movie Chappie | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  1. Joining GE Global Research Thermal Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alps. With more than 16 years working as an aerospace engineer in the development of gas turbine jet engines, I had GE on my radar screen right from the beginning when I was...

  2. Device Research Conference, June 2003 SiGe Single-Hole Transistor Fabricated by AFM Oxidation and Epitaxial Regrowth

    E-Print Network [OSTI]

    61st Device Research Conference, June 2003 129 SiGe Single-Hole Transistor Fabricated by AFM-energy patterning process based on AFM lithography (to avoid defects from e-beam and RIE) and Si/SiGe). Single-hole transistor, which is the first reported SiGe quantum device with heterojunction passivation

  3. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect (OSTI)

    Ponath, Patrick [University of Texas at Austin; Fredrickson, Kurt [University of Texas at Austin; Posadas, Agham B. [University of Texas at Austin; Ren, Yuan [University of Texas at Austin; Vasudevan, Rama K [ORNL; Okatan, Mahmut Baris [ORNL; Jesse, Stephen [ORNL; Aoki, Toshihiro [Arizona State University; McCartney, Martha [Arizona State University; Smith, David J [Arizona State University; Kalinin, Sergei V [ORNL; Lai, Keji [University of Texas at Austin; Demkov, Alexander A. [University of Texas at Austin

    2015-01-01T23:59:59.000Z

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  4. Connecting | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant to Clean Energy Technologies |For

  5. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0??? decay searches of 76Ge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2015-02-01T23:59:59.000Z

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of View the MathML source?86%Ge76 and View the MathML source?14%Ge74 used in the 0???0??? searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the View the MathML sourceH3(p,n)He3, View the MathML sourceH2(d,n)He3 and View the MathML sourceH3(d,n)He4 reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium andmoregold foils were irradiated simultaneously for neutron fluence determination. High-resolution ?-ray spectroscopy was used to determine the ?-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the View the MathML sourceGe74(n,?)Ge75 reaction, the present data are about a factor of two larger than predicted. It was found that the View the MathML sourceGe74(n,?)Ge75 yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the View the MathML sourceGe76(n,?)Ge77 yield due to the larger cross section of the former reaction.less

  6. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Magee, Joseph W.

    -Conditioning and Refrigeration Technology Institute and the U.S. Department of Energy. The development of the models on which#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 April, 2007 U

  7. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Technology Institute and the U.S. Department of Energy. Model development and measurements at NIST have been#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 November, 2010 U

  8. GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |science

  9. Invention | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOfviaInternsInvention Our

  10. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly

  11. 12GeV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with Well-Bore

  12. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture applications |

  13. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite MapContactPoliciesCuring We're

  14. PVWatts Version 1 Technical Reference

    SciTech Connect (OSTI)

    Dobos, A. P.

    2013-10-01T23:59:59.000Z

    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  15. Recommended GE Curriculum for the BSEE Majors

    E-Print Network [OSTI]

    Ravikumar, B.

    Recommended GE Curriculum for the BSEE Majors Area Subjects Suggested GE Courses Courses Actual units GE Units A. Communication and Critical Thinking (9) A.2. Fund. of Communication ENGL 101 4 4 A.3, Theatre, Dance and Music and Film Select from the GE C.1 list in the SSU Catalog 3 3 C.2. Literature

  16. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, L.; Vissers, D.R.

    1981-12-30T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  17. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16T23:59:59.000Z

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1988-01-01T23:59:59.000Z

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  19. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo (Lisle, IL); Vissers, Donald R. (Naperville, IL)

    1983-01-01T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  20. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 PhotomultiplierPhotonicHome

  1. REFERENCES AND RESOURCES SECTION A. REFERENCES

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ANSI Z136.1 Safe Use of Lasers ANSI Z244.1 Personnel Protection ­ Lockout/Tagout of Energy Sources #12 Sources (Lockout/Tagout) for Construction and Demolition #12;EM 385-1-1 XX Jul 13 S-5 ANSI/ASSE Z87

  2. Brazil Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolarAboutTaubmanBiofuels Research at GE's

  3. Economic regulation of electricity distribution utilities under high penetration of distributed energy resources : applying an incentive compatible menu of contracts, reference network model and uncertainty mechanisms

    E-Print Network [OSTI]

    Jenkins, Jesse D. (Jesse David)

    2014-01-01T23:59:59.000Z

    Ongoing changes in the use and management of electricity distribution systems - including the proliferation of distributed energy resources, smart grid technologies (i.e., advanced power electronics and information and ...

  4. Degradation of a quantum reference frame

    E-Print Network [OSTI]

    Stephen D. Bartlett; Terry Rudolph; Robert W. Spekkens; Peter S. Turner

    2006-04-20T23:59:59.000Z

    We investigate the degradation of reference frames, treated as dynamical quantum systems, and quantify their longevity as a resource for performing tasks in quantum information processing. We adopt an operational measure of a reference frame's longevity, namely, the number of measurements that can be made against it with a certain error tolerance. We investigate two distinct types of reference frame: a reference direction, realized by a spin-j system, and a phase reference, realized by an oscillator mode with bounded energy. For both cases, we show that our measure of longevity increases quadratically with the size of the reference system and is therefore non-additive. For instance, the number of measurements that a directional reference frame consisting of N parallel spins can be put to use scales as N^2. Our results quantify the extent to which microscopic or mesoscopic reference frames may be used for repeated, high-precision measurements, without needing to be reset - a question that is important for some implementations of quantum computing. We illustrate our results using the proposed single-spin measurement scheme of magnetic resonance force microscopy.

  5. GeSi intermixing in Ge quantum dots on Si,,001... and Si,,111... F. Boscherinia)

    E-Print Network [OSTI]

    GeSi intermixing in Ge quantum dots on Si,,001... and Si,,111... F. Boscherinia) Laboratori December 1999 Exploiting Ge K-edge x-ray absorption spectroscopy we provide direct evidence of SiGe intermixing in self-organized strained and unstrained Ge quantum dots on Si, and provide a quantitative

  6. Nonlithographic epitaxial SnxGe1x dense nanowire arrays grown on Ge,,001...

    E-Print Network [OSTI]

    Atwater, Harry

    Nonlithographic epitaxial SnxGe1x dense nanowire arrays grown on Ge,,001... Regina Ragan-thick SnxGe1 x /Ge(001) epitaxial films with 0 x 0.085 by molecular-beam epitaxy. These films evolve during growth into a dense array of SnxGe1 x nanowires oriented along 001 , as confirmed by composition contrast

  7. Grant Reference Lead / Sole

    E-Print Network [OSTI]

    Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project of Birmingham Controls on Soil Carbon Export revealed by Novel Tracers on multiple timescales (SCENT) Standard Grant DEC12 8 8 NE/K011871/1 N Melanie Leng NERC British Geological Survey A 500,000-year environmental

  8. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  9. CONCRETE PAVEMENT Reference Manual

    E-Print Network [OSTI]

    CONCRETE PAVEMENT Reference Manual Prepared for Federal Highway Administration Office of Pavement by National Concrete Pavement Technology Center at Iowa State University 2711 South Loop Drive, Suite 4700 No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date February 2008 Concrete Pavement

  10. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  11. Cisco Reference Configurations for

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ............................................................................................. 10 EMC VNX5500 Storage Layout.0 with EMC VNX5500 Series Storage Systems White Paper November 2012 2012 Cisco and/or its affiliates. AllCisco Reference Configurations for Microsoft SQL Server 2012 Fast Track Data Warehouse 4.0 with EMC

  12. The Hydrogen Laboratory and The Brazilian Reference Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory & The Brazilian Reference Center for Hydrogen Energy December 09 th , 2009 Dr. Newton Pimenta Cristiano Pinto LH2 & CENEH The State University of Campinas UNICAMP...

  13. Sandia National Laboratories: blade NDI reference sample library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NDI reference sample library Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  14. 54 | P a g e Terms of Reference

    E-Print Network [OSTI]

    Brownstone, Rob

    in campus sustainability by: o Working together to reduce the amount of water, energy and products we use 54 | P a g e Terms of Reference DALHOUSIE UNIVERSITY OFFICE OF SUSTAINABILITY Rethink: Sustainability on Campus SUSTAINABILITY TEAMS Terms of Reference 1.0 Introduction These terms of reference

  15. Powering | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower49749/10Thermo-MagneticDepartment of

  16. Powering | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,PhysicsPowering Whether generating or

  17. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartment of EnergyCuring We're

  18. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHAREManufacturing |Building We're

  19. Timeline | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPointsThrust 1: Structure and

  20. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept of Energy,Moving Quarks Help