National Library of Energy BETA

Sample records for ge energy references

  1. Flexible Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Opens in new window) Flexible Fuel Solutions Offer Efficient, Reliable Energy The world of power generation is evolving at lightning speed. GE is focused on staying one step...

  2. GE Energy Management Ancillary Services

    E-Print Network [OSTI]

    GE Energy Management Ancillary Services Definitions and Capability Study Part 2, Tasks 3-4, Final Online Wind Plants & Frequency Responsive Load Reserves

  3. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Documents Reference Model DocumentsTara Camacho-Lopez2015-05-...

  4. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  5. GE Energy Management Ancillary Services

    E-Print Network [OSTI]

    GE Energy Management Ancillary Services Definitions and Capability Study Part 1, Tasks 1-2, FinalRose Michael O'Connor Sundar Venkataraman Revision 1 Date: 12/19/2012 #12;Ancillary Services Definitions.................................................................................................................... 7 3.1 Task 1: Identify and define ancillary services needed for integration of new generation

  6. Sandia Energy - Technical Reference for Hydrogen Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Reference for Hydrogen Compatibility of Materials Home Transportation Energy Hydrogen Materials & Components Compatibility Technical Reference for Hydrogen Compatibility...

  7. Ris Energy Report 5 References References for Chapter 3

    E-Print Network [OSTI]

    Risø Energy Report 5 References References for Chapter 3 1. UNEP. (2006). Background paper for the ministerial-level consultations on energy and environment for development. Ninth special session energy outlook 2005. Paris: IEA. 3. IEA. (2003). World energy investment outlook. Paris: IEA. 4. World

  8. Ris Energy Report 6 References Reference list for Chapter 3

    E-Print Network [OSTI]

    Risø Energy Report 6 References Reference list for Chapter 3 1. European Commission. (2007). Communication from the Commis- sion to the European Council and the European Parliament ­ An energy policy of the Brussels European Council 8/9 March 2007. Brussels. (7224/1/07 Rev. 1). 3. Danish Energy authority. (2007

  9. Z:\\Gerontology\\Program\\Application Packages\\PBD Application Package\\PBD package 2008\\Reference form.doc de partme nt of ge rontology

    E-Print Network [OSTI]

    .doc de partme nt of ge rontology gerontology research centre Letter of ReferenceLetter of Reference

  10. Z:\\Gerontology\\Program\\Application Packages\\MA Application Package\\Application Package 2008\\Reference Form.doc de partme nt of ge rontology

    E-Print Network [OSTI]

    \\Reference Form.doc de partme nt of ge rontology gerontology research centre LETTER OF REFERENCE MASTER

  11. Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab May 24, 2012 - 10:54am Addthis...

  12. Sandia Energy - Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (RMP) Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Project (RMP)Tara Camacho-Lopez2015-05-11T21:01:36+00:00...

  13. Energy Frontier Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include GE Global Research, Yale University-Crabtree Group, Yale University-Batista Group, Stanford University and Lawrence Berkeley National Laboratory. GE Global...

  14. Tips: References | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with ENERGY STAR." (2013). ENERGY STAR. Accessed October 2013. "Air Source Heat Pumps and Central Air Conditioners Key Product Criteria." (2013). ENERGY STAR. Accessed September...

  15. Tips: References | Department of Energy

    Energy Savers [EERE]

    September 2013. "Clothes Washers." (2013). ENERGY STAR. Accessed September 2013. "Computers." (2013). ENERGY STAR. Accessed September 2013. "Diesel Vehicles." (2013)....

  16. Measurement of the direct energy gap of coherently strained SnxGe1x Ge,,001... heterostructures

    E-Print Network [OSTI]

    Atwater, Harry

    Measurement of the direct energy gap of coherently strained SnxGe1Àx ÕGe,,001... heterostructures The direct energy gap has been measured for coherently strained SnxGe1 x alloys on Ge 001 substrates with 0 for coherently strained SnxGe1 x alloys indicates a large alloy contribution and a small strain contribution

  17. Reference Projections Energy and Emissions

    E-Print Network [OSTI]

    are decreasing. Oil and coal consumption increase, renewable energy grows rapidly but plays a modest role. Energy consumption continues to increase Compared to the last decade, the increase in energy consumption, energy consumption increases less rapidly The relatively mild winters of the last 15 years have led

  18. Desk Reference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC - U.S.TheMillon DOE-Flex

  19. Reference Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudgetFinancial Opportunities » PastamsReducing Waste

  20. GE Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOH Offshore JumpEnergy Jump

  1. Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1

    E-Print Network [OSTI]

    Li, Tim

    Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1 Tim Li,1,2 and Xiaqiong Zhou1] Tropical cyclone Rossby wave energy dispersion under easterly and westerly vertical shears is investigated, and X. Zhou (2007), Tropical cyclone energy dispersion under vertical shears, Geophys. Res. Lett., 34, L

  2. Commercial Reference Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomass EnergyCity,Commercial Reference

  3. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  4. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNatureThousand Cubic|New EmployeeEnergyEnergy

  5. Evidence for Dark Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan Racah 1517546Has Evidence of Dark Energy

  6. Green Energy Innovations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreen Energy Innovations

  7. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  8. Sandia Energy - Floating Oscillating Water Column Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The final reference model, an oscillating water column (OWC)...

  9. DOE Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (New Construction): Energy Use Intensities, May 5, 2009 2014-05-08 Issuance: Energy Efficiency Improvements in ANSIASHRAEIES Standard 90.1-2013; Preliminary Determination...

  10. 2014 Manufacturing Energy and Carbon Footprints: References

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wpfinal.pdf Giraldo, Luis, and Barry Hyman. "Energy End-Use Models for Pulp, Paper, and Paperboard Mills." Energy 20(10): 1005-19. Granade, Hannah Choi, Jon Creyts,...

  11. Department of Energy Construction Safety Reference Guide

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  12. Property:Reference material | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to:Programmable WavemakingPurchasersReference

  13. Sandia Energy - Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Economic Analysis of Marine Energy Conversion (MEC) Technologies, SAND2014-9040. Power Conversion Chain Design Mike J. Beam, Brian I. Kline, William Straka, Arnold A....

  14. Ris Energy Report 2 References chapter 3

    E-Print Network [OSTI]

    chapter 4 1. Lars Nikolaisen (2002). Quality characteristics of biofuel pellets. Eltra PSO/Energistyrelsen. 2. Wood for Energy Production. Technology, Environment, Economy. The Centre for Biomass Technology

  15. Crystal Lake - GE Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm Jump to: navigation, search NameGE

  16. Northern Colorado Wind Energy Center (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformationConsortium NAVC JumpGE) Jump to:

  17. Notrees 1B (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, IncUSA(TXR150000) |B (GE

  18. Wind Energy Learning Curves for Reference in Expert Elicitations

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Wind Energy Learning Curves for Reference in Expert Elicitations Sarah Mangels, Erin Baker. Abstract: This study presents future projections of wind energy capacity and cost based on historical data. The study will be used during wind- energy expert elicitations (formal interviews aimed to quantify

  19. Template:ReferenceHeader | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Opensource History View New PagesTemplate EditRRTrigger

  20. Template:ReferenceMaterial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Opensource History View New PagesTemplate

  1. Property:References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEA EISProject Jump

  2. Category:Buildings References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota:BonnBoulder, COBuildings

  3. Commercial Reference Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercial Grade Dedication (CGD) is to<overview ofin

  4. Sandia Energy - Marine Hydrokinetics Technology: Reference Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power

  5. Sandia Energy - Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNewPhotoionizationPowerRadar

  6. Energy (GeV) dN/dE(ergcm2

    E-Print Network [OSTI]

    Nishikawa, Ken-Ichi

    Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10 -11 10 -10 10 PSR J0007+7303 Full Band Fit (PLEC1) Energy Band Fits #12;Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10 PSR J0023+0923 Full Band Fit (PLEC1) Energy Band Fits #12;Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10

  7. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy WattStation AC Level 2 Charging System Testing Results AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

  8. Capricorn Ridge (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy Resources JumpCanbyCantuaProject

  9. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  10. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect (OSTI)

    Hudait, Mantu K.; Zhu Yan [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  11. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  12. Federal Employee Training Desk Reference | Department of Energy

    Energy Savers [EERE]

    College of Learning and Workforce Development Federal Employee Training Desk Reference Federal Employee Training Desk Reference The DOE Federal Employee Training Desk Reference...

  13. Consistent methodology for technology and policy impact assessment. [Reference energy system

    SciTech Connect (OSTI)

    Beller, M

    1980-10-01

    A Reference Energy System is a useful tool for providing a baseline for energy technology and policy analysis. The technique of developing a Reference Energy System is described, and its use in various analyses is outlined.

  14. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  15. Low-energy enhancement in the \\gamma-ray strength functions of $^{73,74}$Ge

    E-Print Network [OSTI]

    Renstrøm, T; Utsumoniya, H; Schwengner, R; Goriely, S; Larsen, A C; Filipescu, D M; Gheorghe, I; Bernstein, L A; Bleuel, D L; Glodariu, T; Görgen, A; Guttormsen, M; Hagen, T W; Kheswa, B V; Lui, Y -W; Negi, D; Ruud, I E; Shima, T; Siem, S; Takahisa, K; Tesileanu, O; Tornyi, T G; Tveten, G M; Wiedeking, M

    2015-01-01

    The $\\gamma$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$\\gamma$ coincidence data using the Oslo method. Moreover, the $\\gamma$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_\\gamma \\approx$ 1-13 MeV for $^{74}$Ge. The obtained data show that both $^{73,74}$Ge display an increase in strength at low $\\gamma$ energies. The experimental $\\gamma$-ray strength functions are compared with $M1$ strength functions deduced from average $B(M1)$ values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in $^{73,74}$Ge are adopted in the calculations of the $^{72,73}$Ge(n,$\\gamma$) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy ...

  16. Low-energy enhancement in the ?-ray strength functions of $^{73,74}$Ge

    E-Print Network [OSTI]

    T. Renstrøm; H. -T. Nyhus; H. Utsumoniya; R. Schwengner; S. Goriely; A. C. Larsen; D. M. Filipescu; I. Gheorghe; L. A. Bernstein; D. L. Bleuel; T. Glodariu; A. Görgen; M. Guttormsen; T. W. Hagen; B. V. Kheswa; Y. -W . Lui; D. Negi; I. E. Ruud; T. Shima; S. Siem; K. Takahisa; O. Tesileanu; T. G. Tornyi; G. M. Tveten; M. Wiedeking

    2015-10-18

    The $\\gamma$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$\\gamma$ coincidence data using the Oslo method. Moreover, the $\\gamma$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_\\gamma \\approx$ 1-13 MeV for $^{74}$Ge. The obtained data show that both $^{73,74}$Ge display an increase in strength at low $\\gamma$ energies. The experimental $\\gamma$-ray strength functions are compared with $M1$ strength functions deduced from average $B(M1)$ values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in $^{73,74}$Ge are adopted in the calculations of the $^{72,73}$Ge(n,$\\gamma$) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement.

  17. User:Nlangle/Reference Example | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNew York:CategoryLists <Nlangle/Reference

  18. Headquarters Security Quick Reference Book | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,Security Officer Program |quick reference book provides

  19. Photoproduction of eta mesons off protons for photon energies from 0.75 GeV to 3 GeV

    E-Print Network [OSTI]

    Volker Crede; Olivia Bartholomy; for the CB-ELSA Collaboration

    2004-10-20

    Total and differential cross sections for the reaction p(gamma, eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into p eta. At medium energies we find evidence for a new resonance N(2070)D15 with (mass, width) = (2068+-22, 295+-40) MeV. At photon energies above 1.5 GeV, a strong peak in forward direction develops, signalling the exchange of vector mesons in the t channel.

  20. SERA-IO: Integrating Energy Consciousness into Parallel I/O Middleware Rong Ge Xizhou Feng

    E-Print Network [OSTI]

    Sun, Xian-He

    .ge@marquette.edu xizhou.feng@marquette.edu Xian-He Sun Department of Computer Science Illinois Institute of Technology, Chicago, IL sun@iit.edu Abstract--Improving energy efficiency is a primary concern in high performance on modern processors to intelligently schedule the system's power-performance mode for energy savings. We

  1. Energy deposition of 24 GeV/c protons in gravity affected

    E-Print Network [OSTI]

    McDonald, Kirk

    Energy deposition of 24 GeV/c protons in gravity affected mercury jet Sergei Striganov Fermilab Data Analysis(latest update : 07Oct08), including dispersion term. · If there is vacuum only between +- 15 degree 75 +- 15 degree #12;Energy deposition density in round gravity affected jet at 5 Tesla, r=8

  2. Renewable Energy Business Development Terms of Reference | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent

  3. Renewable Energy Monitoring Evaluation Terms of Reference | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenter Jump to:RenewablePlc Jump

  4. GE Appliances: Order (2012-SE-1403) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FAR

  5. Sandia Energy - Northrop-Grumman, GE Partnerships Tap a Wide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Research & Capabilities Systems Analysis Biomass Energy Storage Materials Science Computational Modeling & Simulation Sensors & Optical Diagnostics Systems...

  6. 1 | Building America eere.energy.gov Evaluation of Ducted GE

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov Evaluation of Ducted GE Hybrid Heat Pump Water Heater in PNNL Lab Homes Sarah Widder Building America Program Review April 24-25, 2013 #12;2 | Building America eere Technologies Program ­ DOE, Office of Electricity Project Partners #12;3 | Building America eere

  7. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  8. Secretary Chu Speaks at GE Solar Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    240 billion was invested globally in clean energy. The worldwide market for solar photovoltaic systems alone is worth more than 80 billion. The solar market is going to explode...

  9. Developments in European Thermal Energy Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to share with you my observations on the ever-changing energy scene in Germany and Europe, and how that impacts technologies my team is developing. Germany550x300-500x272 In...

  10. Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration Augmented

    E-Print Network [OSTI]

    Computing Relative Free Energies of Solvation Using Single Reference Thermodynamic Integration relative transformation free energies in a series of molecules with respect to a single reference state of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series

  11. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    E-Print Network [OSTI]

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  12. Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector

    E-Print Network [OSTI]

    Morselli, Aldo

    Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

  13. Top of the World (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFR 1201EnergyInformationWind

  14. Inventors in Action: Energy Everywhere | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventors in Action: Energy

  15. AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the GE Energy Wattstation AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  16. Recovery Act Helps GE in-source Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery Act Helps GE

  17. Azimuthal correlations of transverse energy for Pb on Pb at 158 GeV/nucleon

    SciTech Connect (OSTI)

    Wienold, T. [Lawrence Berkeley National Lab., CA (United States); Huang, I. [California Univ., Davis, CA (United States); The NA49 Collaboration

    1996-02-03

    Azimuthal correlations have been studied in heavy ion reactions over a wide range of beam energies. At low incident energies up to 100 MeV/nucleon where collective effects like the directed sidewards flow are generally small, azimuthal correlations provide a useful tool to determine the reaction plane event by event. In the energy regime of the BEVALAC (up to 1 GeV/nucleon for heavy ions) particular emission patterns, i.e. azimuthal correlations of nucleons and light nuclei with respect to the reaction plane, have been associated with the so called squeeze out and sidesplash effects. These effects are of particular interest because of their sensitivity to the equation of state at the high baryon density which is build up during the collision process. Angular distributions similar to the squeeze out have been observed for pions at the SIS in Darmstadt as well as from the EOS - collaboration. Recently also the sideward flow was measured for pions and kaons. However, the origin of the signal in the case of produced mesons is thought to be of a different nature than that for the nucleon flow. At the AGS, azimuthally anisotropic event shapes have been reported from the E877 collaboration for the highest available heavy ion beam energy (11.4 GeV/nucleon). Using a Fourier analysis of the transverse energy distribution measured in calorimeters, it was concluded that sideward flow is still of significant magnitude. Here we will report a first analysis of azimuthal correlations found in the transverse energy distribution from Pb on Pb collisions at the CERN SPS (158 GeV/nucleon).

  18. FAQS Reference Guide - Technical Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeaponTraining FAQS Reference Guide -

  19. FAQS Reference Guide - Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeaponTraining FAQS Reference Guide

  20. FAQS Reference Guide - Weapon Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeaponTraining FAQS Reference

  1. FAQS Reference Guide -Radiation Protection | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeaponTraining FAQS ReferenceRadiation

  2. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition OfficereferenceReference Model

  3. Property:GreenButtonReference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website Jump to:Type JumpGreenButtonReference

  4. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; et al

    2012-05-31

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. Themore »polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.« less

  5. Questions & Solutions On Particle Physics Q1. A photon with an energy GeVE 09.2=

    E-Print Network [OSTI]

    Adler, Joan

    Questions & Solutions On Particle Physics Q1. A photon with an energy GeVE 09.2= creates a proton-antiproton pair in which the proton has a kinetic energy of MeV0.95 . What is the kinetic energy of the antiproton particles will have similar kinetic energies . The total energy of each particle is the sum of its rest

  6. Department of Energy's Hurricane Response Chronology, as Referred to by

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof Energy ElevenLG Refrigerator-Freezer

  7. Desk Reference on DOE-Flex | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC - U.S.TheMill

  8. FAQS Reference Guide - Aviation Manager | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673, proposedJanuaryPartEnergyThis

  9. FAQS Reference Guide - Aviation Safety Officer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673, proposedJanuaryPartEnergyThisOfficer

  10. FAQS Reference Guide - Quality Assurance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673, proposedJanuaryPartEnergyThisOfficer

  11. Renewable Energy Terms of Reference: Laws, Policies and Regulations | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtd RES Group Jump to:Energy

  12. Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  13. Renewable Energy Economic and Financial Analysis Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy Resources Jump

  14. New Construction - Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentratingInstitutionalEnergyNew Clean RenewableNew

  15. Neutron energy spectrum from 120 GeV protons on a thick copper target

    E-Print Network [OSTI]

    Nobuhiro Shigyo; Toshiya Sanami; Tsuyoshi Kajimoto; Yosuke Iwamoto; Masayuki Hagiwara; Kiwamu Saito; Kenji Ishibashi; Hiroshi Nakashima; Yukio Sakamoto; Hee-Seock Lee; Erik Ramberg; Aria A. Meyhoefer; Rick Coleman; Doug Jensen; Anthony F. Leveling; David J. Boehnlein; Nikolai V. Mokhov

    2012-02-07

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, proton-induced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30^{\\circ} and 5 m 90^{\\circ} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multi-particle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  16. Designing Renewable Energy Financing Mechanism Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesert QueenDesha County,Energy

  17. Renewable Energy Cross Sectoral Assessments Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenter Jump to: navigation,

  18. Attachment F - Bibliography and References | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt'sDOE Phasedare listed in Attachment F -

  19. 2010 Manufacturing Energy and Carbon Footprints: References | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n tAttachment:Assumptions | Department

  20. 2015 DOE Earth Day Reference Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8 3 ofRuleWe5 Earth Day's 45th

  1. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |SectorforOXFORD| EnergyAntenna Research

  2. Ris Energy Report 4 References 11. Blasio, R. de; Basso, T. (2004). Standardisation on DER (p. 236).

    E-Print Network [OSTI]

    2004-01-01

    energy, Solar 2004, ANZSES, Perth, Australia, December 2004. www.Risø.dk/vea/projects/ipsys 19. WAs Agency. (2004). World Energy Outlook 2004. 3. European Commission. (2003). World energy, technologyRisø Energy Report 4 References References 11. Blasio, R. de; Basso, T. (2004). Standardisation

  3. arXiv:hepex/0306028 Coherent pair production by photons in the 20-170 GeV energy range incident on

    E-Print Network [OSTI]

    arXiv:hep­ex/0306028 v2 24 Jun 2004 Coherent pair production by photons in the 20-170 GeV energy: June 24, 2004) The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germa

  4. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect (OSTI)

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  5. DELAYED GeVTeV PHOTONS FROM GAMMA-RAY BURSTS PRODUCING HIGH-ENERGY COSMIC RAYS

    E-Print Network [OSTI]

    Coppi, Paolo

    DELAYED GeV­TeV PHOTONS FROM GAMMA-RAY BURSTS PRODUCING HIGH-ENERGY COSMIC RAYS ELI WAXMAN A scenario in which cosmic rays (CRs) above 1020 eV are produced by cosmological gamma-ray bursts (GRBs provide information on the IGMF structure. Subject headings: cosmic rays -- gamma rays: bursts -- magnetic

  6. Energy peak: back to the Galactic Center GeV gamma-ray excess

    E-Print Network [OSTI]

    Kim, Doojin

    2015-01-01

    We propose a novel mechanism enabling us to have a continuum bump as a signature of gamma-ray excess in indirect detection experiments of dark matter (DM), postulating a generic dark sector having (at least) two DM candidates. With the assumption of non-zero mass gap between the two DM candidates, the heavier one directly communicates to the partner of the lighter one. Such a partner then decays into a lighter DM particle along with a dark "pion" or "axion-like" particle (ALP), which further decays into a pair of photons, via a more-than-one step cascade decay process. Since the cascade is initiated by the dark partner obtaining a non-trivial fixed boost factor, a continuum gamma-ray energy spectrum naturally arises. We apply the main idea to the energy spectrum of the GeV gamma-rays from around the Galactic Center (GC), and find that the relevant observational data is well-reproduced by the theory expectation predicted by the proposed mechanism. Remarkably, the relevant energy spectrum has a robust peak at h...

  7. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect (OSTI)

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  8. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  9. EPR investigation of defects in Bi12GeO20:Cr single crystal irradiated by high energy uranium ions

    E-Print Network [OSTI]

    Stefaniuk, I; Rogalska, I; Wróbel, D

    2013-01-01

    The results of investigations of EPR spectra of chromium doped $Bi_{12} GeO_{20} (BGO)$ single crystals are presented. The crystals were studied before and after irradiation by the $^{235}U$ ions with energy 9.47 MeV/u and fluency $5 \\cdot 10^{2} cm^{-2}$. The effect of heating irradiated samples in air on the EPR spectra is also studied.

  10. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\\sqrt{s_{NN}}=7.7$ to 200 GeV

    E-Print Network [OSTI]

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Alexander, J; Alfred, M; Al-Jamel, A; Al-Ta'ani, H; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Armendariz, R; Aronson, S H; Asai, J; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Baksay, G; Baksay, L; Baldisseri, A; Bandara, N S; Bannier, B; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Bjorndal, M T; Black, D; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bryslawskyj, J; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chai, J -S; Chang, B S; Charvet, J -L; Chen, C -H; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; del Valle, Z Conesa; Connors, M; Constantin, P; Cronin, N; Crossette, N; Csanád, M; Csörg?, T; Dahms, T; Dairaku, S; Danchev, I; Danley, D; Das, K; Datta, A; Daugherity, M S; David, G; Dayananda, M K; Deaton, M B; DeBlasio, K; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; D'Orazio, L; Drachenberg, J L; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; Edwards, S; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S -Y; Fusayasu, T; Gadrat, S; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Gastineau, F; Ge, H; Germain, M; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Grim, G; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Guragain, H; Gustafsson, H -Å; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hahn, K I; Hamagaki, H; Hamblen, J; Hamilton, H F; Han, R; Han, S Y; Hanks, J; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Hasegawa, S; Haseler, T O S; Hashimoto, K; Haslum, E; Hasuko, K; Hayano, R; Hayashi, S; He, X; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Hollis, R S; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Hur, M G; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Inoue, Y; Iordanova, A; Isenhower, D; Isenhower, L; Ishihara, M; Isinhue, A; Isobe, T; Issah, M; Isupov, A; Ivanishchev, D; Iwanaga, Y; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Jin, J; Jinnouchi, O; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kanda, S; Kaneta, M; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kanou, H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawagishi, T; Kawall, D; Kawashima, M; Kazantsev, A V; Kelly, S; Kempel, T; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, G W; Kim, H J; Kim, K -B; Kim, M; Kim, Y -J; Kim, Y K; Kim, Y -S; Kimelman, B; Kinney, E; Kiss, Á; Kistenev, E; Kitamura, R; Kiyomichi, A; Klatsky, J; Klay, J; Klein-Boesing, C; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kochetkov, V; Kofarago, M; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Bornec, Y Le; Leckey, S; Lee, B; Lee, D M; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, M K; Lee, S; Lee, S H; Lee, S R; Lee, T; Leitch, M J; Leite, M A L; Leitgab, M; Lenzi, B; Lewis, B; Li, X; Li, X H; Lichtenwalner, P; Liebing, P; Lim, H; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Maruyama, T; Mašek, L; Masui, H; Masumoto, S; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Mikeš, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, D K; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M

    2015-01-01

    Measurements of midrapidity charged particle multiplicity distributions, $dN_{\\rm ch}/d\\eta$, and midrapidity transverse-energy distributions, $dE_T/d\\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\\rm part}$, and the number of constituent quark participants, $N_{q{\\rm p}}$. For all $A$$+$$A$ collisions down to $\\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\\rm p}}$ than scalin...

  11. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and it will become hotter. Move it away (demagnetization) and the food cools down. GE researchers predict the cooling refrigerators could reduce energy consumption by 20%, in...

  12. Measurement of the reaction $?p \\TO K^ + ?(1520)$ at photon energies up to 2.65 GeV

    E-Print Network [OSTI]

    F. W. Wieland; J. Barth; K. -H. Glander; J. Hannappel; N. Jöpen; F. Klein; E. Klempt; R. Lawall; D. Menze; M. Ostrick; E. Paul; I. Schulday; W. J. Schwille

    2010-11-03

    The reaction $\\gamma p \\TO K^+\\Lambda(1520)$ was measured in the energy range from threshold to 2.65 GeV with the SAPHIR detector at the electron stretcher facility ELSA in Bonn. The $\\Lambda(1520)$ production cross section was analyzed in the decay modes $pK^-$, $n \\bar{K}^0$, $\\Sigma^{\\pm}\\pi^{\\mp}$, and $\\Lambda\\pi^+\\pi^-$ as a function of the photon energy and the squared four-momentum transfer $t$. While the cross sections for the inclusive reactions rise steadily with energy, the cross section of the process $\\gamma p \\TO K^+\\Lambda(1520)$ peaks at a photon energy of about 2.0 GeV, falls off exponentially with $t$, and shows a slope flattening with increasing photon energy. The angular distributions in the $t$-channel helicity system indicate neither a $K$ nor a $K^\\star$ exchange dominance. The interpretation of the $\\Lambda(1520)$ as a $\\Sigma(1385)\\pi$ molecule is not supported.

  13. New parameterization of Skyrme's interaction for regularized multi-reference energy density functional calculations

    E-Print Network [OSTI]

    K. Washiyama; K. Bennaceur; B. Avez; M. Bender; P. -H. Heenen; V. Hellemans

    2012-09-24

    [Background] Symmetry restoration and configuration mixing in the spirit of the generator coordinate method based on energy density functionals have become widely used techniques in low-energy nuclear structure physics. Recently, it has been pointed out that these techniques are ill-defined for standard Skyrme functionals, and a regularization procedure has been proposed to remove the resulting spuriosities from such calculations. This procedure imposes an integer power of the density for the density dependent terms of the functional. At present, only dated parameterizations of the Skyrme interaction fulfill this condition. [Purpose] To construct a set of parameterizations of the Skyrme energy density functional for multi-reference energy density functional calculations with regularization using the state-of-the-art fitting protocols. [Method] The parameterizations were adjusted to reproduce ground state properties of a selected set of doubly magic nuclei and properties of nuclear matter. Subsequently, these parameter sets were validated against properties of spherical and deformed nuclei. [Results] Our parameter sets successfully reproduce the experimental binding energies and charge radii for a wide range of singly-magic nuclei. Compared to the widely used SLy5 and to the SIII parameterization that has integer powers of the density, a significant improvement of the reproduction of the data is observed. Similarly, a good description of the deformation properties at $A\\sim 80$ was obtained. [Conclusions] We have constructed new Skyrme parameterizations with integer powers of the density and validated them against a broad set of experimental data for spherical and deformed nuclei. These parameterizations are tailor-made for regularized multi-reference energy density functional calculations and can be used to study correlations beyond the mean-field in atomic nuclei.

  14. A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy

    SciTech Connect (OSTI)

    Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

    2014-01-01

    Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

  15. Course Description for Spring 2009 offering: GE 520/ME500: Analysis of Energy Conservation/Supply Alternatives: Boston University case study

    E-Print Network [OSTI]

    Lin, Xi

    /Supply Alternatives: Boston University case study This course will continue the analysis of energy use at BU with a goal of identifying, evaluating, and implementing specific conservation and energy alternativesCourse Description for Spring 2009 offering: GE 520/ME500: Analysis of Energy Conservation

  16. Technical reference book for the Energy Economic Data Base (EEDB) Program

    SciTech Connect (OSTI)

    Allen, R.E.; Benedict, R.G.; Hodson, J.S.

    1984-09-01

    The Energy Economic Data Base (EEDB) Program is sponsored by the US Department of Energy (DOE) for the purpose of developing current technical and cost information for nuclear and comparison electric power generating stations. The EEDB contains a variety of nuclear and coal-fired power plant technical data models. Each of these data models is a complete and detailed conceptual design for a single unit, commercial, steam electric, power generating station located on a standard hypothetical Middletown site. A major effort for the Sixth Update (1983) has been the updating of the system design descriptions and selected engineering drawings for the technical data models. This update took the form of revising and expanding the system design descriptions and engineering drawings contained in the Base Data Studies, to include the technical information developed and recorded in the first five EEDB updates. The results of the update effort are contained in this EEDB Program Technical Reference Book.

  17. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\\sqrt{s_{NN}}=7.7$ to 200 GeV

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; H. Al-Bataineh; J. Alexander; M. Alfred; A. Al-Jamel; H. Al-Ta'ani; A. Angerami; K. Aoki; N. Apadula; L. Aphecetche; Y. Aramaki; R. Armendariz; S. H. Aronson; J. Asai; H. Asano; E. C. Aschenauer; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; X. Bai; G. Baksay; L. Baksay; A. Baldisseri; N. S. Bandara; B. Bannier; K. N. Barish; P. D. Barnes; B. Bassalleck; A. T. Basye; S. Bathe; S. Batsouli; V. Baublis; F. Bauer; C. Baumann; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; J. H. Bhom; A. A. Bickley; M. T. Bjorndal; D. Black; D. S. Blau; J. G. Boissevain; J. S. Bok; H. Borel; K. Boyle; M. L. Brooks; D. S. Brown; J. Bryslawskyj; D. Bucher; H. Buesching; V. Bumazhnov; G. Bunce; J. M. Burward-Hoy; S. Butsyk; S. Campbell; A. Caringi; P. Castera; J. -S. Chai; B. S. Chang; J. -L. Charvet; C. -H. Chen; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; A. Churyn; O. Chvala; V. Cianciolo; Z. Citron; C. R. Cleven; Y. Cobigo; B. A. Cole; M. P. Comets; Z. Conesa del Valle; M. Connors; P. Constantin; N. Cronin; N. Crossette; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; D. Danley; K. Das; A. Datta; M. S. Daugherity; G. David; M. K. Dayananda; M. B. Deaton; K. DeBlasio; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; K. V. Dharmawardane; O. Dietzsch; L. Ding; A. Dion; P. B. Diss; J. H. Do; M. Donadelli; L. D'Orazio; J. L. Drachenberg; O. Drapier; A. Drees; K. A. Drees; A. K. Dubey; J. M. Durham; A. Durum; D. Dutta; V. Dzhordzhadze; S. Edwards; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; T. Engelmore; A. Enokizono; H. En'yo; B. Espagnon; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. Finger Jr.; F. Fleuret; S. L. Fokin; B. Forestier; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; S. -Y. Fung; T. Fusayasu; S. Gadrat; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; F. Gastineau; H. Ge; M. Germain; F. Giordano; A. Glenn; H. Gong; X. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; G. Grim; M. Grosse Perdekamp; Y. Gu; T. Gunji; L. Guo; H. Guragain; H. -Å. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; M. N. Hagiwara; K. I. Hahn; H. Hamagaki; J. Hamblen; H. F. Hamilton; R. Han; S. Y. Han; J. Hanks; H. Harada; E. P. Hartouni; K. Haruna; M. Harvey; S. Hasegawa; T. O. S. Haseler; K. Hashimoto; E. Haslum; K. Hasuko; R. Hayano; S. Hayashi; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. M. Heuser; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; R. S. Hollis; M. Holmes; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; Y. Hori; D. Hornback; T. Hoshino; N. Hotvedt; J. Huang; S. Huang; M. G. Hur; T. Ichihara; R. Ichimiya; H. Iinuma; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; Y. Inoue; A. Iordanova; D. Isenhower; L. Isenhower; M. Ishihara; A. Isinhue; T. Isobe; M. Issah; A. Isupov; D. Ivanishchev; Y. Iwanaga; B. V. Jacak; M. Javani; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; J. Jin; O. Jinnouchi; B. M. Johnson; T. Jones; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; S. Kanda; M. Kaneta; S. Kaneti; B. H. Kang; J. H. Kang; J. S. Kang; H. Kanou; J. Kapustinsky; K. Karatsu; M. Kasai; T. Kawagishi; D. Kawall; M. Kawashima; A. V. Kazantsev; S. Kelly; T. Kempel; J. A. Key; V. Khachatryan; P. K. Khandai; A. Khanzadeev; K. M. Kijima; J. Kikuchi; A. Kim; B. I. Kim; C. Kim; D. H. Kim; D. J. Kim; E. Kim; E. -J. Kim; G. W. Kim; H. J. Kim; K. -B. Kim; M. Kim; Y. -J. Kim; Y. K. Kim; Y. -S. Kim; B. Kimelman; E. Kinney; Á. Kiss; E. Kistenev; R. Kitamura; A. Kiyomichi; J. Klatsky; J. Klay; C. Klein-Boesing; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; V. Kochetkov; M. Kofarago; Y. Komatsu; B. Komkov; M. Konno; J. Koster; D. Kotchetkov; D. Kotov; A. Kozlov; A. Král; A. Kravitz; F. Krizek; P. J. Kroon; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. Kurosawa; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; Y. Le Bornec; S. Leckey; B. Lee; D. M. Lee; G. H. Lee; J. Lee; K. B. Lee; K. S. Lee; M. K. Lee; S Lee; S. H. Lee; S. R. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; M. Leitgab; B. Lenzi; B. Lewis; X. Li; X. H. Li; P. Lichtenwalner; P. Liebing; H. Lim; S. H. Lim; L. A. Linden Levy; T. Liška; A. Litvinenko; H. Liu; M. X. Liu; B. Love; D. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; M. D. Malik; A. Manion; V. I. Manko; E. Mannel; Y. Mao; T. Maruyama; L. Mašek; H. Masui; S. Masumoto; F. Matathias; M. C. McCain; M. McCumber; P. L. McGaughey; D. McGlinchey; C. McKinney; N. Means; A. Meles; M. Mendoza; B. Meredith; Y. Miake

    2015-09-22

    Measurements of midrapidity charged particle multiplicity distributions, $dN_{\\rm ch}/d\\eta$, and midrapidity transverse-energy distributions, $dE_T/d\\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\\rm part}$, and the number of constituent quark participants, $N_{q{\\rm p}}$. For all $A$$+$$A$ collisions down to $\\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\\rm p}}$ than scaling with $N_{\\rm part}$. Also presented are estimates of the Bjorken energy density, $\\varepsilon_{\\rm BJ}$, and the ratio of $dE_T/d\\eta$ to $dN_{\\rm ch}/d\\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

  18. A 125 GeV scalar improves the low-energy data support for the top-BESS model

    E-Print Network [OSTI]

    Mikulas Gintner; Josef Juran

    2013-09-26

    We investigate how adding a scalar resonance of a mass 125 GeV affects the low-energy data support for the top-BESS model as well as its low-energy free parameter limits. The top-BESS model is an effective Lagrangian, a modification of the well-known BESS model, with an ambition to describe phenomenology of the lowest bound states of strongly-interacting theories beyond the Standard model. In particular, the SU(2)_{L+R} vector resonance triplet of hypothetical bound states is a centerpiece of BESS-like effective models. The top-BESS model assumes that the triplet couples directly to the third quark generation only. This assumption reflects a possible special standing of the third quark generation, and the top quark in particular, in physics of electroweak symmetry breaking. Our findings suggest that the 125 GeV scalar extension of the top-BESS model results in a higher statistical support for the model. The best-fit values of the model's free parameters are consistent with the top quark having a higher degree of compositeness than the bottom quark.

  19. A 125 GeV scalar improves the low-energy data support for the top-BESS model

    E-Print Network [OSTI]

    Gintner, Mikulas

    2013-01-01

    We investigate how adding a scalar resonance of a mass 125 GeV affects the low-energy data support for the top-BESS model as well as its low-energy free parameter limits. The top-BESS model is an effective Lagrangian, a modification of the well-known BESS model, with an ambition to describe phenomenology of the lowest bound states of strongly-interacting theories beyond the Standard model. In particular, the SU(2)_{L+R} vector resonance triplet of hypothetical bound states is a centerpiece of BESS-like effective models. The top-BESS model assumes that the triplet couples directly to the third quark generation only. This assumption reflects a possible special standing of the third quark generation, and the top quark in particular, in physics of electroweak symmetry breaking. Our findings suggest that the 125 GeV scalar extension of the top-BESS model results in a higher statistical support for the model. The best-fit values of the model's free parameters are consistent with the top quark having a higher degree...

  20. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  1. Energy dependence of {phi} meson production in central Pb+Pb collisions at {radical}(s{sub NN})=6 to 17 GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Kollegger, T.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2008-10-15

    {phi} meson production is studied by the NA49 Collaboration in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV beam energy. The data are compared with measurements at lower and higher energies and with microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

  2. Centrality dependence of the thermal excitation-energy deposition in 8-15 GeV/c hadron-Au reactions

    E-Print Network [OSTI]

    R. A. Soltz; R. J. Newby; J. L. Klay; M. Heffner; L. Beaulieu; T. Lefort; K. Kwiatkowski; V. E. Viola

    2009-01-09

    The excitation energy per residue nucleon (E*/A) and fast and thermal light particle multiplicities are studied as a function of centrality defined as the number of grey tracks emitted N_grey and by the mean number of primary hadron-nucleon scatterings and mean impact parameter extracted from it. The value of E*/A and the multiplicities show an increase with centrality for all systems, 14.6 GeV p-Au and 8.0 GeV pi-Au and pbar-Au collisions, and the excitation energy per residue nucleon exhibits a uniform dependence on N_grey.

  3. Critical exponents and phase transition in gold nuclei fragmentation at energies 10.6 and 4.0 GeV/nucleon

    E-Print Network [OSTI]

    D. Kudzia; B. Wilczynska; H. Wilczynski

    2002-07-25

    An attempt to extract critical exponents gamma, beta and tau from data on gold nuclei fragmentation due to interactions with nuclear emulsion at energies 4.0 A GeV and 10.6 A GeV is presented. Based on analysis of Campi's 2nd charge moments, two subsets of data at each energy are selected from the inclusive data, corresponding to 'liquid' and 'gas' phases. The extracted values of critical exponents from the selected data sets are in agreement with predictions of 'liquid-gas' model of phase transition.

  4. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  5. Spin Density Matrix Elements in Exclusive rho^0 Electroproduction on 1H and 2H Targets at 27.5 GeV Beam Energy

    E-Print Network [OSTI]

    HERMES Collaboration; A. Airapetian

    2009-06-13

    Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive rho^0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related (unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region 1 GeV^2 < Q^2 < 7 GeV^2, 3.0 GeV < W < 6.3 GeV, and -t < 0.4 GeV^2. Within the given experimental uncertainties, a hierarchy of relative sizes of helicity amplitudes is observed. Kinematic dependences of all SDMEs on Q^2 and t are presented, as well as the longitudinal-to-transverse rho^0 electroproduction cross section ratio as a function of Q^2. A small but statistically significant deviation from the hypothesis of s-channel helicity conservation is observed. An indication is seen of a contribution of unnatural-parity-exchange amplitudes; these amplitudes are naturally generated with a quark-exchange mechanism.

  6. 70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    E-Print Network [OSTI]

    G. G. Kiss; Gy. Gyurky; Z. Elekes; Zs. Fulop; E. Somorjai; T. Rauscher; M. Wiescher

    2007-11-07

    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.

  7. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    E-Print Network [OSTI]

    The SciBooNE Collaboration; G. Cheng; C. Mariani; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; a J. J. Gomez-Cadenas; P. Guzowski; A. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. F. Loverre; L. Ludovici; K. B. M. Mahn; S. Masuike; K. Matsuoka; V. T. McGary; W. Metcalf; G. B. Mills; G. Mitsuka; Y. Miyachi; S. Mizugashira; C. D. Moore; Y. Nakajima; T. Nakaya; R. Napora; P. Nienaber; D. Orme; M. Otani; A. D. Russell; F. Sanchez; M. H. Shaevitz; T. -A. Shibata; M. Sorel; R. J. Stefanski; H. Takei; H. -K. Tanaka; M. Tanaka; R. Tayloe; I. J. Taylor; R. J. Tesarek; Y. Uchida; R. Van de Water; J. J. Walding; M. O. Wascko; H. B. White; M. Yokoyama; G. P. Zeller; E. D. Zimmerman

    2011-07-29

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\\sigma}/dpd{\\Omega} = (5.34 \\times 0.76) mb/(GeV/c \\times sr) for p + Be -> K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85\\times0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  8. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  9. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  10. Two source emission behaviour of alpha fragments of projectile having energy around 1 GeV per nucleon

    E-Print Network [OSTI]

    V. Singh; M. K. Singh; Ramji Pathak

    2010-09-17

    The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass number.

  11. DES J0454$-$4448: Discovery of the First Luminous z $\\ge$ 6 Quasar from the Dark Energy Survey

    E-Print Network [OSTI]

    Reed, S L; Banerji, M; Becker, G D; Gonzalez-Solares, E; Martini, P; Ostrovski, F; Rauch, M; Abbott, T; Abdalla, F B; Allam, S; Benoit-Levy, A; Bertin, E; Buckley-Geer, E; Burke, D; Rosell, A Carnero; da Costa, L N; ?Andrea, C; DePoy, D L; Desai, S; Diehl, H T; Doel, P; Cunha, C E; Estrada, J; Evrard, A E; Neto, A Fausti; Finley, D A; Fosalba, P; Frieman, J; Gruen, D; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J; Merritt, K; Miquel, R; Mohr, J; Nord, B; Ogando, R; Plazas, A; Romer, K; Roodman, A; Rykoff, E; Sako, M; Sanchez, E; Santiago, B; Schubnell, M; Sevilla, I; Smith, C; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Thomas, D; Tucker, D; Walker, A; Wechsler, R H

    2015-01-01

    We present the first results of a survey for high redshift, z $\\ge$ 6, quasars using izY multi-colour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the $\\rm z_{AB}, Y_{AB}$ = 20.2, 20.2 (M$_{1450}$ = $-$26.5) quasar DES J0454$-$4448 with an emission line redshift of z = 6.10$\\pm$0.03 and a HI near zone size of 4.6 $\\pm$ 1.7 Mpc.The quasar was selected as an i-band drop out with i$-$z = 2.46 and z$_{AB} $ 50-100 new quasars with z $>$ 6 including 3-10 with z $>$ 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies including determination of the neutral HI fraction of the intergalactic medium (IGM) during the epoch of Hydrogen reionization.

  12. Observation of e?e???J/? at center-of-mass energy ?s=4.009 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; et al

    2012-10-01

    Using a 478 pb?¹ data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s?=4.009 GeV, the production of e?e???J/? is observed for the first time with a statistical significance of greater than 10?. The Born cross section is measured to be (32.1±2.8±1.3) pb, where the first error is statistical and the second systematic. Assuming the ?J/? signal is from a hadronic transition of the ?(4040), the fractional transition rate is determined to be B(?(4040)??J/?)=(5.2±0.5±0.2±0.5)×10?³, where the first, second, and third errors are statistical, systematic, and the uncertainty frommore »the ?(4040) resonant parameters, respectively. The production of e?e???0J/? is searched for, but no significant signal is observed, and B(?(4040)???J/?)« less

  13. Energy and centrality dependence of p and p production and the {lambda}/p ratio in Pb+Pb collisions between 20A GeV and 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2006-04-15

    The transverse mass m{sub t} distributions for antiprotons are measured at midrapidity for minimum bias Pb+Pb collisions at 158A GeV and for central Pb+Pb collisions at 20A, 30A, 40A, and 80A GeV beam energies in the fixed target experiment NA49 at the CERN SPS. The rapidity density dn/dy, inverse slope parameter T, and mean transverse mass derived from the m{sub t} distributions are studied as a function of the incident energy and the collision centrality and compared to the relevant data on proton production. The shapes of the m{sub t} distributions of p and p are very similar. The ratios of the particle yields, p/p and {lambda}/p, are also analyzed. The p/p ratio exhibits an increase with decreasing centrality and a steep rise with increasing beam energy. The {lambda}/p ratio increases beyond unity with decreasing beam energy.

  14. Search for scalar leptons in e+e- collisions at centre-of-mass energies up to 209GeV

    E-Print Network [OSTI]

    ALEPH Collaboration

    2001-12-07

    A search for selectron, smuon and stau pair production is performed with the data collected by the ALEPH detector at LEP at centre-of-mass energies up to 209 GeV. The numbers of candidate events are consistent with the background predicted by the Standard Model. Final mass limits from ALEPH are reported.

  15. Diffusion in SiGe and Ge

    E-Print Network [OSTI]

    Liao, Christopher Yuan Ting

    2010-01-01

    Claeys, et al. , "Si versus Ge for future microelectronics,"in Selectively Doped Si/Si x Ge 1-x Superlattices," PhysicalA. Fitzgerald, et al. , "Relaxed Ge x Si 1-x structures for

  16. Hadron Production Model Developments and Benchmarking in the 0.7 - 12 GeV Energy Region

    E-Print Network [OSTI]

    N. V. Mokhov; K. K. Gudima; S. I. Striganov

    2014-08-29

    Driven by the needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, and their experiments, the event generators of the MARS15 code have been recently improved. After thorough analysis and benchmarking against data, including the newest ones by the HARP collaboration, both the exclusive and inclusive particle production models were further developed in the crucial for the above projects - but difficult from a theoretical standpoint - projectile energy region of 0.7 to 12 GeV. At these energies, modelling of prompt particle production in nucleon-nucleon and pion-nucleon inelastic reactions is now based on a combination of phase-space and isobar models. Other reactions are still modeled in the framework of the Quark-Gluon String Model. Pion, kaon and strange particle production and propagation in nuclear media are improved. For the alternative inclusive mode, experimental data on large-angle (> 20 degrees) pion production in hadron-nucleus interactions are parameterized in a broad energy range using a two-source model. It is mixed-and-matched with the native MARS model that successfully describes low-angle pion production data. Predictions of both new models are - in most cases - in a good agreement with experimental data obtained at CERN, JINR, LANL, BNL and KEK.

  17. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  18. HIGH-ENERGY OBSERVATIONS OF PSR B1259–63/LS 2883 THROUGH THE 2014 PERIASTRON PASSAGE: CONNECTING X-RAYS TO THE GeV FLARE

    SciTech Connect (OSTI)

    Tam, P. H. T.; Li, K. L.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Takata, J. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Hui, C. Y., E-mail: phtam@phys.nthu.edu.tw [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-01

    The binary system PSR B1259–63/LS 2883 is well sampled in radio, X-rays, and TeV ?-rays, and shows orbital-phase-dependent variability in these frequencies. The first detection of GeV ?-rays from the system was made around the 2010 periastron passage. In this Letter, we present an analysis of X-ray and ?-ray data obtained by the Swift/XRT, NuSTAR/FPM, and Fermi/LAT, through the recent periastron passage which occurred on 2014 May 4. While PSR B1259–63/LS 2883 was not detected by the Large Area Telescope before and during this passage, we show that the GeV flares occurred at a similar orbital phase as in early 2011, thus establishing the repetitive nature of the post-periastron GeV flares. Multiple flares each lasting for a few days have been observed and short-term variability is seen as well. We also found X-ray flux variation contemporaneous with the GeV flare for the first time. Strong evidence of the keV-to-GeV connection came from the broadband high-energy spectra, which we interpret as synchrotron radiation from the shocked pulsar wind.

  19. An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook

    Reports and Publications (EIA)

    2009-01-01

    This report updates the Reference Case presented in the Annual Energy Outlook 2009 based on recently enacted legislation and the changing macroeconomic environment.

  20. Scaling Behavior of Transverse Kinetic Energy Distributions in Au+Au Collisions at $\\sqrt{s_{\\rm NN}}=200$ GeV

    E-Print Network [OSTI]

    L. L. Zhu; H. Zheng; C. B. Yang

    2008-01-15

    With the experimental data from STAR on the centrality dependence of transverse momentum $p_T$ spectra of pions and protons in Au+Au collisions at $\\sqrt{s_{NN}}=200 {\\rm GeV}$, we investigate the scaling properties of transverse energy $E_T$ distributions at different centralities. In the framework of cluster formation and decay mechanism for particle production, the universal transverse energy distributions for pion and proton can be described separately but not simultaneously.

  1. Energy dependence of multiplicity fluctuations in heavy ion collisions at 20A to 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Utvic, M.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.

    2008-09-15

    Multiplicity fluctuations of positively, negatively, and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV. The multiplicity distributions and their scaled variances {omega} are presented as functions of their dependence on collision energy as well as on rapidity and transverse momentum. The distributions have bell-like shapes and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic ultrarelativistic quantum molecular dynamics (UrQMD) model significantly overpredicts the mean, but it approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.

  2. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region E?=1.1 –2.3 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01

    The beam-spin asymmetry, ?, for the reaction ?d???pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, ?c.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at ?c.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than ?c.m.=90°. The angular and energy dependence of ? is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore »between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  3. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas; et. al.,

    2015-05-01

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore »between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  4. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_\\gamma=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Zachariou, Nicholas; Ivanov, Nikolay Ya; Sargsian, Misak M; Avakian, Robert; Feldman, Gerald; Nadel-Turonski, Pawel; Adhikari, K P; Adikaram, D; Anderson, M D; Pereira, S Anefalos; Avakian, H; Badui, R A; Baltzell, N A; Battaglieri, M; Baturin, V; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Brooks, W K; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glazier, D I; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Ho, D; Holtrop, M; Hughes, S M; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, F J; Kubarovsky, V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P T; McKinnon, B; Mineeva, T; Mirazita, M; Mokeeev, V I; Montgomery, R A; Moutarde, H; Camacho, C Munoz; Net, L A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Phelps, W; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Wood, M H; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-01-01

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  5. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Nicholas Zachariou; Yordanka Ilieva; Nikolay Ya. Ivanov; Misak M Sargsian; Robert Avakian; Gerald Feldman; Pawel Nadel-Turonski; K. P. Adhikari; D. Adikaram; M. D. Anderson; S. Anefalos Pereira; H. Avakian; R. A. Badui; N. A. Baltzell; M. Battaglieri; V. Baturin; I. Bedlinskiy; A. S. Biselli; W. J. Briscoe; W. K. Brooks; V. D. Burkert; T. Cao; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; N. Compton; M. Contalbrigo; O. Cortes; V. Crede; A. D'Angelo; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; A. Fradi; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; D. I. Glazier; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; K. Hafidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. Jiang; H. S. Jo; K. Joo; D. Keller; G. Khachatryan; M. Khandaker; A. Kim; W. Kim; F. J. Klein; V. Kubarovsky; P. Lenisa; K. Livingston; H. Y. Lu; I . J . D. MacGregor; N. Markov; P. T. Mattione; B. McKinnon; T. Mineeva; M. Mirazita; V. I. Mokeeev; R. A. Montgomery; H. Moutarde; C. Munoz Camacho; L. A. Net; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; W. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; Y. Prok; D. Protopopescu; A. J. R. Puckett; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; I. Senderovich; Y. G. Sharabian; Iu. Skorodumina; G. D. Smith; D. I. Sober; D. Sokhan; N. Sparveris; S. Stepanyan; S. Strauch; V. Sytnik; M. Taiuti; Ye Tian; M. Ungaro; H. Voskanyan; E. Voutier; N. K. Walford; D. Watts; X. Wei; M. H. Wood; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta; for the CLAS collaboration

    2015-03-18

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  6. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas [University of South Carolina; et. al.,

    2015-05-01

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  7. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Lassonde, P.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)] [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  8. ATOMIC ENERGY COMMISSION Refer to File No. AEGR-1 The CommandinS Officer '

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval Ordnance,:n5.5.8GE. aw''*>I

  9. TEE-0077 - In the Matter of GE Appliances & Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland|ofSessions |2Energy 71 - In37 -

  10. Evidences of high energy protons with energies beyond 0.4 GeV in the solar particle spectrum as responsible for the cosmic rays solar diurnal anisotropy

    E-Print Network [OSTI]

    C. E. Navia; C. R. A. Augusto; M. B. Robba; K. H. Tsui

    2007-06-26

    Analysis on the daily variations of cosmic ray muons with $E_{\\mu}\\geq 0.2 GeV$ based on the data of two directional muon telescopes at sea level and with a rigidity of response to cosmic proton spectrum above 0.4 GV is presented. The analysis covers two months of observations and in 60% of days, abrupt transitions between a low to a high muon intensity and vice-verse is observed, the period of high muon intensity is from $\\sim 8.0h$ up to $\\sim 19.0h$ (local time) and coincides with the period when the interplanetary magnetic field (IMF) lines overtake the Earth. This behavior strongly suggest that the high muon intensity is due to a contribution of solar protons (ions) on the muon intensity produced by the galactic cosmic rays, responsible for the low muon intensity. This implies that the solar particle spectrum extends to energies beyond 1 GeV. We show that this picture can explain the solar daily variation origin, and it is a most accurate scenario than the assumption of corotating galactic cosmic ray with the IMF lines, specially in the high rigidity region. Obtained results are consistent with the data reported in others papers. Some aspects on the sensitivity of our muon telescopes are also presented.

  11. GE-Prolec CCE Meeting October 19,2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | DepartmentJune 3,.PDF&#0;

  12. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to science informationArticle) |SciTech Connect Energy

  13. TEE-0074 - In the Matter of GE Appliances & Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland|ofSessions |2Energy 71 - In3 -4

  14. Sandia Energy - Northrop-Grumman, GE Partnerships Tap a Wide Range of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database ReceivesNewNewsSandia Labs

  15. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  16. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    SciTech Connect (OSTI)

    Talochkin, A. B., E-mail: tal@thermo.isp.nsc.ru; Chistokhin, I. B. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-07-15

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest 'quantum box' model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  17. Transport model study of nuclear stopping in heavy ion collisions over an energy range from 0.09A GeV to 160A GeV

    E-Print Network [OSTI]

    Ying Yuan; Qingfeng Li; Zhuxia Li; Fu-Hu Liu

    2010-02-26

    Nuclear stopping in the heavy ion collisions over a beam energy range from SIS, AGS up to SPS is studied in the framework of the modified UrQMD transport model, in which mean field potentials of both formed and "pre-formed" hadrons (from string fragmentation) and medium modified nucleon-nucleon elastic cross sections are considered. It is found that the nuclear stopping is influenced by both the stiffness of the equation of state and the medium modifications of nucleon-nucleon cross sections at SIS energies. At the high SPS energies, the two-bump structure is shown in the experimental rapidity distribution of free protons, which can be understood with the consideration of the "pre-formed" hadron potentials.

  18. Detection of Gamma-Ray Bursts in the 1 GeV - 1 TeV energy range by ground based experiments

    E-Print Network [OSTI]

    Silvia Vernetto

    1999-09-29

    Ground based extensive air showers arrays can observe GRBs in the 1-1000 GeV energy range using the "single particle" techique. The sensitivity to detect a GRB as a function of the burst parameters and the detector characteristics are discussed. The rate of possible observations is evaluated, making reasonable assumptions on the high energy emission, the absorbtion of gamma-rays in the intergalactic space, the distribution of the sources in the universe and the bursts luminosity function. We show that a large area detector located at high mountain altitude has good prospects for positive detections, providing useful informations on the high energy components of GRBs.

  19. U.S. Department of Energy Reference Model Program RM1: Experimental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science & Engineering University of Minnesota Minneapolis, MN Prepared for: Wind and Water Power Technologies Program Office of Energy Efficiency and Renewable Energy U.S....

  20. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  1. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  2. Event-by-event distribution of magnetic field energy over initial fluid energy density in $\\sqrt{s_{\\rm NN}}$= 200 GeV Au-Au collisions

    E-Print Network [OSTI]

    Roy, Victor

    2015-01-01

    We estimate the event-by-event (e-by-e) distribution of the ratio ($\\sigma$) of the magnetic field energy to the fluid energy density in the transverse plane of Au-Au collisions at $\\sqrt{s_{\\rm NN}}$ = 200 GeV. A Monte-Carlo (MC) Glauber model is used to calculate the $\\sigma$ in the transverse plane for impact parameter b=0, 12 fm at time $\\tau_i\\sim$0.5 fm. The fluid energy density is obtained by using Gaussian smoothing with two different smoothing parameter $\\sigma_g$=0.25 , 0.5 fm. For $b=0~\\rm fm$ collisions $\\sigma$ is found to be $\\ll$ 1 in the central region of the fireball and $\\sigma\\gtrsim$ 1 at the periphery. For b=12 fm collisions $\\sigma\\gtrsim$ 1. The e-by-e correlation between $\\sigma$ and the fluid energy density ($\\varepsilon$) is studied. We did not find strong correlation between $\\sigma$ and $\\varepsilon$ at the centre of the fireball, whereas they are mostly anti-correlated at the periphery of the fireball.

  3. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an open online space for companies to collaborate and transform how they design and manufacture their products in the future NISKAYUNA, NY, June 2, 2015 - GE (NYSE:GE), a leading...

  4. Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

    E-Print Network [OSTI]

    K. -H. Glander; J. Barth; W. Braun; J. Hannappel; N. Jöpen; F. Klein; E. Klempt; R. Lawall; J. Link; D. Menze; W. Neuerburg; M. Ostrick; E. Paul; I. Schulday; W. J. Schwille; H. v. Pee; F. W. Wieland; J. Wißkirchen; C. Wu

    2003-08-26

    The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.

  5. Modeling of GE Appliances: Final Presentation

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  6. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  7. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    SciTech Connect (OSTI)

    Shibayama, Shigehisa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan) [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-08-19

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

  8. References and Appendices: U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning FilterReference Model4

  9. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  10. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    SciTech Connect (OSTI)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  11. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Schmutz, Jeremy [HudsonAlpha Institute

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  12. Energy dependence of K?, p? and Kp fluctuations in Au+Au collisions from ?sNN=7.7 to 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical K?, p?, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies ?sNN=7.7 to 200 GeV are presented. The observable ?dyn was used to quantify the magnitude ofmore »the dynamical fluctuations in event-by-event measurements of the K?, p?, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less

  13. U.S.-India Coal Working Group Terms of Reference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergy Fuel Cell Council:EnergyU.S.-India Coal

  14. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    SciTech Connect (OSTI)

    Howard, C.D.

    1987-07-01

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and are usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.

  15. DOE O 205.1B Reference List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE FederalThe Department of Energy

  16. Coal-by-Rail Business-as-Usual Reference Case | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient education

  17. Production of isomeric states in the deuteron-induced reaction of gold at incident energy 4 GeV

    E-Print Network [OSTI]

    A. R. Balabekyan; N. A. Demekhina; G. S. Karapetyan; D. R. Drnoyan; V. I. Zhemenik; J. Adam; L. Zavorka; A. A. Solnyshkin; V. M. Tsoupko-Sitnikov

    2014-12-11

    The independent cross section ratio for production of nuclei from 197Au targets irradiated with 4 GeV deuterons have been measured by off-line gamma-spectroscopy. On the basis of the measured independent cross section ratio of 198m, gAu the average intrinsic angular momentum of the primary nucleus was estimated by means of a simple statistical-model analysis based on the formalism developed by Huizenga and Vandenbosch.

  18. GE Turbine Parts www.edisonmachine.com

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    GE Turbine Parts www.edisonmachine.com New authentic GE and Westinghouse Turbine Parts Muscle cars vehicle: Has the code for a hydrogen car been cracked? World-first working eukaryotic cell mad from's smallest windmills to power cell phones 1/17/2014http://www.gizmag.com/worlds-smallest-windmill-energy

  19. CHEM 114 GE 124 MATH 110 GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2006-07 CHEM 114 GE 124 MATH 110 GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GE 210 MATH 223CE 212 CMPT 116 Hum/SocSci Jr. GEOE 218 CE 225 MATH 224GE 213# GE 348# CE 295 English 11x# CE 315 CE 311

  20. Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBRZAP JumpLake Of VallesPlcJump

  1. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8)highlights ExperimentalExperimental Test

  2. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz booster simulations

    SciTech Connect (OSTI)

    Vay, J.-L.; Geddes, C.G.R.; Esarey, E.; Esarey, E.; Leemans, W.P.; Cormier-Michel, E.; Grote, D.P.

    2011-12-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98 130405 (2007)] allows direct and e#14;fficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  3. Measurement of a complete set of nuclides, cross-sections and kinetic energies in spallation of 238U 1A GeV with protons

    E-Print Network [OSTI]

    P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; E. Casarejos; S. Czajkowski; T. Enqvist; S. Leray; P. Napolitani; J. Pereira; F. Rejmund; M. -V. Ricciardi; K. -H. Schmidt; C. Stephan; J. Taieb; L. Tassan-Got; C. Volant

    2004-06-28

    Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the FRagment Separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and time-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analysed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross-sections covering 3 orders of magnitude with a mean accuracy of 15%, velocities in the U-rest frame and kinetic energies were determined. In the reaction all elements from uranium to nitrogen were found, each with a large number of isotopes.

  4. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.; Kolesnikov, V. I.; Malakhov, A. I.; Melkumov, G. L.; Barna, D.; Csato, P.; Fodor, Z.; Gal, J.; Hegyi, S.; Laszlo, A.; Levai, P.; Molnar, J.; Palla, G.; Sikler, F.; Szentpetery, I.; Sziklai, J.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  5. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    NA49 Collaboration; Anticic, T.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  6. Technical reference book for the Energy Economic Data Base Program (EEDB)

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    This distribution is the latest in a series published since 1978. The overall program purpose is to provide periodically updated, detailed base construction cost estimates for large nuclear electric operating plants. These data, which are representative of current US powerplant construction cost experience, are a useful contribution to program planning by the Office of the Assistant Secretary for Nuclear Energy. The eighth update incorporates the results of a comprehensive update of the technical and cost information for the pressurized water reactor (PWR), large scale prototype breeder reactor nuclear powerplant (LSPB), and 488 MWe high sulfur, coal-fired powerplant (HS5) data models. During the Phase VIII update, the LSPB, which was first incorporated into the previous update, was brought into full conformance with EEDB ground rules, and the level of detail of the data models was extended to the EEDB fully detailed level. We remind the user that the LSPB must still be considered a second-of-a-kind, pre-commercial unit, and any comparisons of it with other EEDB data models should be carefully made recognizing dissimilarity achievement of design and cost maturity, particularly for the nuclear steam supply system and other equipment.

  7. Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references

    SciTech Connect (OSTI)

    Not Available

    1980-02-25

    Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

  8. Energy dependence of particle ratio fluctuations in central Pb+Pb collisions from $\\sqrt{s_{_{NN}}} =$~6.3 to 17.3 GeV

    E-Print Network [OSTI]

    NA49 Collaboration

    2009-06-30

    We present measurements of the energy dependence of event-by-event fluctuations in the K/pi and (p + \\bar{p})/pi multiplicity ratios in heavy ion collisions at the CERN SPS. The particle ratio fluctuations were obtained for central Pb+Pb collisions at five collision energies, \\sqrt{s_{_{NN}}}, between 6.3 and 17.3 GeV. After accounting for the effects of finite-number statistics and detector resolution, we extract the strength of non-statistical fluctuations at each energy. For the K/pi ratio, larger fluctuations than expected for independent particle production are found at all collision energies. The fluctuations in the (p + \\bar{p})/pi ratio are smaller than expectations from independent particle production, indicating correlated pion and proton production from resonance decays. For both ratios, the deviation from purely statistical fluctuations shows an increase towards lower collision energies. The results are compared to transport model calculations, which fail to describe the energy dependence of the K/pi ratio fluctuations.

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials Reference

  10. Reference Shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference MaterialsReference Shelf

  11. GE Hosts Visit by DOE to Kick Off High-Efficiency GeneratorDevelopment Program

    E-Print Network [OSTI]

    history of working with the DOE on critical energy programs. Jon Ebacher, Vice President of GE PowerGE Hosts Visit by DOE to Kick Off High-Efficiency GeneratorDevelopment Program Technology Expected of Energy (DOE) recently met with representatives of GE Power Systems and the GE Global Research Center

  12. GE Appliances: Order (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with General Electric Appliances after finding GE Appliances had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  13. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    E-Print Network [OSTI]

    Anticic, T.

    2010-01-01

    at 20A, 30A, 40A, 80A, and 158A GeV. The analysis wascollisions at 20A, 30A, 40A, 80A, and 158A GeV. It extends awere recorded at 20A, 30A, 40A, 80A, and 158A GeV projectile

  14. Advanced Analytics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp & Reference Users AdvAncedGE

  15. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  16. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  17. CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 ME 227 GE 213# MATH 223 EE 201ME 214 CMPT 116 ME 215 GE 226 MATH 224 Hum/SocSci@# ME 251 ME 229 ME 318 ME 335 ME 313

  18. Measurement of the neutron-capture cross section of ??Ge and ??Ge below 15 MeV and its relevance to 0??? decay searches of ??Ge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of ??Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ~86% ??Ge and ~14% ??Ge used in the 0??? searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the ³H(p,n)³He, ²H(d,n)³He and ³H(d,n)?He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for ??Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution ?-ray spectroscopy wasmore »used to determine the ?-ray activity of the daughter nuclei of interest. For the ??Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the ??Ge(n,?)??Ge reaction, the present data are about a factor of two larger than predicted. It was found that the ??Ge(n,?)??Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the ??Ge(n,?)??Ge yield due to the larger cross section of the former reaction.« less

  19. Dissociation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon

    SciTech Connect (OSTI)

    Mamatkulov, K. Z.; Kattabekov, R. R. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Alikulov, S. S. [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan)] [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan); Artemenkov, D. A. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Bekmirzaev, R. N. [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan)] [A. Kodirii Jizzakh State Pedagogical Institute (Uzbekistan); Bradnova, V.; Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru; Zarubina, I. G.; Kondratieva, N. V.; Kornegrutsa, N. K.; Krivenkov, D. O.; Malakhov, A. I. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Olimov, K. [Uzbek Academy of Sciences, Institute for Physics and Technology (Uzbekistan)] [Uzbek Academy of Sciences, Institute for Physics and Technology (Uzbekistan); Peresadko, N. G.; Polukhina, N. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R. [Joint Institute for Nuclear Research (Russian Federation)] [Joint Institute for Nuclear Research (Russian Federation); Kharlamov, S. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-10-15

    The charge topology in the fragmentation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of {sup 10}C nuclei, about 82% of events are associated with the channel {sup 10}C {yields} 2{alpha}+ 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among {sup 10}C {yields} 2{alpha}+ 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable {sup 9}Be{sub g.s.} nucleus is followed by {sup 8}Be{sub g.s.} + p decays.

  20. A combined model for the pseudorapidity distributions in p-p collisions at center-of-mass energies from 23.6 to 7000 GeV

    E-Print Network [OSTI]

    Zhi-Jin Jiang; Yan Huang; Jie Wang

    2015-10-22

    In p-p collisions, the produced charge particles consist of two leading particles and those frozen out from the hot and dense matter created in collisions. The two leading particles are respectively in the projectile and target fragmentation region, which, in this paper, are conventionally supposed to have Gaussian rapidity distributions. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa-Bjorken model, and freeze out into charged particles from a space-like hypersurface with a fixed proper time of Tau_FO. The rapidity distribution of this part of charged particles can be derived out analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed in a wide now available center-of-mass energy region from 23.6 to 7000 GeV. The model predictions are in well consistent with experimental measurements.

  1. Titan propels GE wind turbine research into new territory | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titan propels GE wind turbine research into new territory January 17, 2014 The amount of global electricity supplied by wind, the world's fastest growing energy source, is expected...

  2. GE ?????????????????4G?????...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A die containing 400 ohmic MEMS switches, as viewed under a microscope, atop a U.S. dime. This device, made with GE's...

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecoveryWatertheReference

  4. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials

  5. Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; C. D. Anson; D. Arkhipkin; E. Aschenauer; G. S. Averichev; J. Balewski; A. Banerjee; Z. Barnovska; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; E. Bruna; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; P. Chung; J. Chwastowski; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; R. Derradi de Souza; S. Dhamija; L. Didenko; F. Ding; A. Dion; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; L. Eun; O. Evdokimov; R. Fatemi; S. Fazio; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; Y. Fisyak; E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; S. Gliske; Y. N. Gorbunov; O. G. Grebenyuk; D. Grosnick; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; C. Jena; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; D. P. Kikola; J. Kiryluk; I. Kisel; A. Kisiel; V. Kizka; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; L. M. Lima; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; Y. Lu; X. Luo; A. Luszczak; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; S. Mioduszewski; M. K. Mitrovski; Y. Mohammed; B. Mohanty; M. M. Mondal; B. Morozov; M. G. Munhoz; M. K. Mustafa; M. Naglis; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; L. V. Nogach; J. Novak; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; D. Olson; P. Ostrowski; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; J. Porter; C. B. Powell; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; L. Ruan; J. Rusnak; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; B. Schmidke; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; N. Shah; E. Shahaliev; M. Shao; B. Sharma; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; Y. Yang; P. Yepes; L. Yi; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; J. B. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-04-24

    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\\rm obs}_{2}$), where $\\Delta=(1.3\\pm1.4({\\rm stat})^{+4.0}_{-1.0}({\\rm syst}))\\times10^{-5}+(3.2\\pm0.2({\\rm stat})^{+0.4}_{-0.3}({\\rm syst}))\\times10^{-3}v^{\\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.

  6. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Feng, Xizhou

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads.e. cost in power usage over time) will vary by application. For example, it costs 535 joules of energy

  7. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Ge, Rong

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads to application characteristics. While machines require peak power at times, energy consumption (i.e. cost

  8. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 Hum/SocSci Jr. MATH 224 English 11x CHE 220CHE 210 CHE

  9. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 HSS@# MATH 224 English 11x CHE 220CHE 210 CHE 323 CHE

  10. Properties of excited states in {sup 77}Ge.

    SciTech Connect (OSTI)

    Kay, B. P.; Chiara, C. J.; Schiffer, J. P.; Kondev, F. G.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.; Univ. of Maryland; Horia-Hulubei National Inst. for Physics and Nuclear Engineering

    2009-07-01

    The nucleus {sup 77}Ge was studied through the {sup 76}Ge({sup 13}C,{sup 12}C){sup 77}Ge reaction at a sub-Coulomb energy. The angular distributions of rays depopulating excited states in {sup 77}Ge were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of {sup 76}Ge was recently explored using transfer reactions.

  11. Influence of $?$ mesons on negative kaons in Ni+Ni collisions at 1.91A GeV beam energy

    E-Print Network [OSTI]

    K. Piasecki; N. Herrmann; R. Averbeck; A. Andronic; V. Barret; Z. Basrak; N. Bastid; M. L. Benabderrahmane; M. Berger; P. Buehler; M. Cargnelli; R. ?aplar; P. Crochet; O. Czerwiakowa; I. Deppner; P. Dupieux; M. Dželalija; L. Fabbietti; Z. Fodor; P. Gasik; I. Gašpari?; Y. Grishkin; O. N. Hartmann; K. D. Hildenbrand; B. Hong; T. I. Kang; J. Kecskemeti; Y. J. Kim; M. Kirejczyk; M. Kiš; P. Koczon; R. Kotte; A. Lebedev; Y. Leifels; A. Le Fèvre; J. L. Liu; X. Lopez; V. Manko; J. Marton; T. Matulewicz; R. Münzer; M. Petrovici; F. Rami; A. Reischl; W. Reisdorf; M. S. Ryu; P. Schmidt; A. Schüttauf; Z. Seres; B. Sikora; K. S. Sim; V. Simion; K. Siwek-Wilczy?ska; V. Smolyankin; K. Suzuki; Z. Tymi?ski; P. Wagner; I. Weber; E. Widmann; K. Wi?niewski; Z. G. Xiao; I. Yushmanov; Y. Zhang; A. Zhilin; V. Zinyuk; J. Zmeskal

    2014-12-15

    $\\phi$ and K$^-$ mesons from Ni+Ni collisions at the beam energy of 1.91A GeV have been measured by the FOPI spectrometer, with a trigger selecting central and semi-central events amounting to 51% of the total cross section. The phase space distributions, and the total yield of K$^-$, as well as the kinetic energy distribution and the total yield of $\\phi$ mesons are presented. The $\\phi$\\K$^-$ ratio is found to be $0.44 \\pm 0.07(\\text{stat}) ^{+0.18}_{-0.12} (\\text{syst})$, meaning that about 22% of K$^-$ mesons originate from the decays of $\\phi$ mesons, occurring mostly in vacuum. The inverse slopes of direct kaons are up to about 15 MeV larger than the ones extracted within the one-source model, signalling that a considerable share of gap between the slopes of K$^+$ and K$^-$ could be explained by the contribution of $\\phi$ mesons to negative kaons.

  12. Production of K{sup +} and of K{sup -} mesons in heavy-ion collisions from 0.6A to 2.0A GeV incident energy

    SciTech Connect (OSTI)

    Foerster, A.; Oeschler, H. [Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Uhlig, F.; Lang, S.; Schmah, A. [Gesellschaft fuer Schwerionenforschung, D-64220 Darmstadt (Germany); Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Boettcher, I.; Kohlmeyer, B.; Menzel, M. [Phillips-Universitaet, D-35037 Marburg (Germany); Brill, D.; Koczon, P.; Laue, F.; Mang, M.; Schwab, E.; Senger, P.; Speer, J. [Gesellschaft fuer Schwerionenforschung, D-64220 Darmstadt (Germany); Debowski, M. [Uniwersytet Jagiellonski, PL-30059 Krakow (Poland); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Dohrmann, F.; Naumann, L.; Scheinast, W. [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Grosse, E. [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany)] (and others)

    2007-02-15

    This paper summarizes the yields and the emission patterns of K{sup +} and of K{sup -} mesons measured in inclusive C+C, Ni+Ni, and Au+Au collisions at incident energies from 0.6A to 2.0A GeV using the Kaon Spectrometer KaoS at GSI. For Ni+Ni collisions at 1.5A and at 1.93A GeV as well as for Au+Au at 1.5A GeV, detailed results are presented of the multiplicities, of the inverse slope parameters, and of the anisotropies in the angular emission patterns as a function of the collision centrality. When comparing transport-model calculations to the measured K{sup +} production yields, an agreement is only obtained for a soft nuclear equation of state (compression modulus K{sub N}{approx_equal}200 MeV). The production of K{sup -} mesons at energies around 1A to 2A GeV is dominated by the strangeness-exchange reaction K{sup -}N<-->{pi}Y (Y={lambda},{sigma}) which leads to a coupling between the K{sup -} and K{sup +} yields. However, both particle species show distinct differences in their emission patterns suggesting different freeze-out conditions for K{sup +} and K{sup -} mesons.

  13. EERE Program Management Quick Reference Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficiency and Renewable Energy (EERE) Program Management Reference Guide. It provides an overall description of the EERE program management structure, defines...

  14. The Very High Energy Sky from ~20 GeV to Hundreds of TeV - Selected Highlights

    E-Print Network [OSTI]

    de Naurois, M

    2015-01-01

    After nearly a decade of operation, the three major arrays of atmospheric Cherenkov telescopes have revolutionized our view of the Very High Energy Universe, unveiling more than 100 sources of various types. MAGIC, consisting of two 17 m diameter telescopes on the Canary island of La Palma, and VERITAS, with four 12 m telescopes installed in southern Arizona, USA, have primarily explored the extragalactic sky, where the majority of the sources are active galactic nuclei (AGN), with {\\gamma}-ray emission originating in their relativistic jets. ...... Highlights of these observations with H.E.S.S., MAGIC and VERITAS have been presented and discussed at the conference.

  15. SAM Photovoltaic Model Technical Reference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAM Photovoltaic Model Technical Reference P. Gilman National Renewable Energy Laboratory Technical Report NRELTP-6A20-64102 May 2015 NREL is a national laboratory of the U.S....

  16. Energy band alignment of atomic layer deposited HfO{sub 2} on epitaxial (110)Ge grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04

    The band alignment properties of atomic layer HfO{sub 2} film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO{sub 2} film. The measured valence band offset value of HfO{sub 2} relative to (110)Ge was 2.28 {+-} 0.05 eV. The extracted conduction band offset value was 2.66 {+-} 0.1 eV using the bandgaps of HfO{sub 2} of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO{sub 2}/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices.

  17. GE Research and Development | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE ButtonFSO HomefeatureGE

  18. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP)about aMunich, GermanyAbout GE

  19. GE Researcher Discusses Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP)aboutRio de Janeiro,theIsGE

  20. GeV electron beams from cm-scale channel guided laser wakefield accelerator

    E-Print Network [OSTI]

    2008-01-01

    GeV electron beams from cm-scale channel guided laser wake?the generation of GeV-class electron beams using an intenseranges and high-quality electron beams with energy up to 1

  1. GeV electron beams from a centimeter-scale laser-driven plasma accelerator

    E-Print Network [OSTI]

    2008-01-01

    GeV electron beams from cm-scale channel guided laser wake?the generation of GeV-class electron beams using an intenseranges and high-quality electron beams with energy up to 1

  2. Ge/SiGe quantum wells on Si(111): Growth, structural, and optical properties

    SciTech Connect (OSTI)

    Gatti, E., E-mail: eleonora.gatti@mater.unimib.it; Pezzoli, F.; Grilli, E. [L-NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via Cozzi 55, I-20125 Milano (Italy); Isa, F.; Chrastina, D.; Isella, G. [L-NESS and Dipartimento di Fisica, Politecnico di Milano, Polo di Como, via Anzani 42, I - 22100 Como (Italy); Müller Gubler, E. [Electron Microscopy Center of ETH Zürich (EMEZ), August-Piccard-Hof 1, CH-8093 Zürich (Switzerland)

    2014-07-28

    The epitaxial growth of Ge/Si{sub 0.15}Ge{sub 0.85} multiple quantum wells (MQWs) on Si(111) substrates is demonstrated. A 3??m thick reverse, double-step virtual substrate with a final composition of Si{sub 0.10}Ge{sub 0.90} has been employed. High resolution XRD, TEM, AFM and defect etching analysis has been used for the study of the structural properties of the buffer and of the QWs. The QW stack is characterized by a threading dislocation density of about 3?×?10{sup 7?}cm{sup ?2} and an interdiffusion layer at the well/barrier interface of 2.1?nm. The quantum confined energy levels of this system have been calculated using the k·p and effective mass approximation methods. The Ge/Si{sub 0.15}Ge{sub 0.85} MQWs have been characterized through absorption and photoluminescence measurements. The optical spectra have been compared with those of Ge/Si{sub 0.15}Ge{sub 0.85} QWs grown on Si(001) through a thick graded virtual substrate.

  3. Interface and nanostructure evolution of cobalt germanides on Ge(001)

    SciTech Connect (OSTI)

    Grzela, T., E-mail: grzela@ihp-microelectronics.com; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Koczorowski, W. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dipartimento di Scienze, Università degli Studi Roma Tre, I-00146 Roma (Italy); Czajka, R. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Radny, M. W. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308 (Australia); Curson, N.; Schofield, S. R. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany)

    2014-02-21

    Cobalt germanide (Co{sub x}Ge{sub y}) is a candidate system for low resistance contact modules in future Ge devices in Si-based micro and nanoelectronics. In this paper, we present a detailed structural, morphological, and compositional study on Co{sub x}Ge{sub y} formation on Ge(001) at room temperature metal deposition and subsequent annealing. Scanning tunneling microscopy and low energy electron diffraction clearly demonstrate that room temperature deposition of approximately four monolayers of Co on Ge(001) results in the Volmer Weber growth mode, while subsequent thermal annealing leads to the formation of a Co-germanide continuous wetting layer which evolves gradually towards the growth of elongated Co{sub x}Ge{sub y} nanostructures. Two types of Co{sub x}Ge{sub y} nanostructures, namely, flattop- and ridge-type, were observed and a systematic study on their evolution as a function of temperature is presented. Additional transmission electron microscopy and x-ray photoemission spectroscopy measurements allowed us to monitor the reaction between Co and Ge in the formation process of the Co{sub x}Ge{sub y} continuous wetting layer as well as the Co{sub x}Ge{sub y} nanostructures.

  4. GE Energy Formerly GE Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co Ltd Jump to:GIncLtdGDIGE

  5. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  6. Band-engineered Ge-on-Si lasers

    E-Print Network [OSTI]

    Liu, Jifeng

    We report optically-pumped Ge-on-Si lasers with direct gap emission near 1600 nm at room temperature. The Ge-on-Si material was band-engineered by tensile strain and n-type doping to compensate the energy difference between ...

  7. Measurement of the Cross Section Asymmetry of the Reaction gp-->pi0p in the Resonance Energy Region Eg = 0.5 - 1.1 GeV

    E-Print Network [OSTI]

    F. V. Adamian; A. Yu. Buniatian; G. S. Frangulian; P. I. Galumian; V. H. Grabski; A. V. Hairapetian; H. H. Hakopian; V. K. Hoktanian; J. V. Manukian; A. M. Sirunian; A. H. Vartapetian; H. H. Vartapetian; V. G. Volchinsky; R. A. Arndt; I. I. Strakovsky; R. L. Workman

    2000-11-08

    The cross section asymmetry Sigma has been measured for the photoproduction of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5 - 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which cover the second and third resonance regions, are compared with existing experimental data and recent phenomenological analyses. The influence of these measurements on such analyses is also considered.

  8. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

  9. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    Christakoglou, P; Vassiliou, Maria

    2006-01-01

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  10. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    NA49 Collaboration

    2005-10-25

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  11. Professional References Ready Reference E-11

    E-Print Network [OSTI]

    Professional References Ready Reference E-11 College of Engineering, Architecture & Technology College of Engineering, Architecture & Technology Career Services Office ATRC 109E Stillwater, OK 74078 requested to do so. Create a separate sheet entitled "References." Print it on the same high quality papers

  12. Thermoelectric properties of nanoporous Ge

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

  13. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  14. Safeguards and Security Program References

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes definitions for terms related to the Department of Energy Safeguards and Security (S&S) Program and includes lists of references and acronyms/abbreviations applicable to S&S Program directives. Cancels the Safeguards and Security Glossary of Terms, dated 12-18-95. Current Safeguards and Security Program References can also be found at Safeguards and Security Policy Information Resource (http://pir.pnl.gov/)

  15. GE Anna Heijbel / The Storm

    E-Print Network [OSTI]

    Tian, Weidong

    1 / GE Anna Heijbel / The Storm® Confocal Optics 50, 100, 200 µm 5 IQTL · ·DNA ·DNA Gels, blots, tissue sections (not in situ), radio-TLC & X-Ray diffraction #12;2 / GE Anna Heijbel / Phosphor µm 1010 43 x 35 cm43 x 35 cm Scanning Technology #12;3 / GE Anna Heijbel / Confocal Optics PMTPMT

  16. International linear collider reference design report

    SciTech Connect (OSTI)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  17. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect (OSTI)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K. [College of Engineering and Research Center of Ion Beam Technology, Hosei University Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Departments of Arts and Sciences, Osaka Kyoiku University Kashiwara, Osaka 582-8582 (Japan)

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ?10{sup 3} ?cm for un-implanted samples to ?10{sup ?2} ?cm for as-implanted ones are observed. The resistivity is further decreased to ?10{sup ?3} ?cm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  18. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    SciTech Connect (OSTI)

    McEwen, Malcolm; DeWerd, Larry; Ibbott, Geoffrey; Followill, David; Rogers, David W. O.; Seltzer, Stephen; Seuntjens, Jan

    2014-04-15

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected that the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.

  19. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  20. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  1. ORNL Partners with GE on New Hybrid | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric storage water heater, positioning GE to be the first company to meet the energy-saving standard. According to DOE, using devices that meet these criteria should save...

  2. Technology makes reds "pop" in LED displays | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveal and Energy Smart consumer brands, and Evolve(tm), GTx(tm), Immersion(tm), Infusion(tm), Lumination(tm), Albeo(tm) and Tetra commercial brands, all trademarks of GE....

  3. Energy dependence of Lambda and Xi production in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV measured at the CERN Super Proton Synchrotron

    E-Print Network [OSTI]

    NA49 Collaboration

    2008-10-16

    Results on $\\Lambda$, $\\bar{\\Lambda}}$, $\\Xi^{-}$, and $\\bar{\\Xi}^{+}$ production in central Pb+Pb reactions at 20A, 30A, 40A, 80A, and 158A GeV are presented. The energy dependence of transverse mass spectra, rapidity spectra, and multiplicities is discussed. Comparisons to string hadronic models (UrQMD and HSD) and statistical hadron gas models are shown. While the latter provide a reasonable description of all particle yields, the first class of models fails to match the $\\Xi^{-}$, and $\\bar{\\Xi}^{+}$ multiplicities.

  4. Energy dependence of $\\Lambda$ and $\\Xi$ production in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV measured at the CERN Super Proton

    E-Print Network [OSTI]

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gal, J; Gazdzicki, M; Genchev, V; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrwczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Sikler, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Utvi, M; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Wojtaszek, A; Yoo, I K; Zimányi, J

    2008-01-01

    Results on $\\Lambda$, $\\bar{\\Lambda}}$, $\\Xi^{-}$, and $\\bar{\\Xi}^{+}$ production in central Pb+Pb reactions at 20A, 30A, 40A, 80A, and 158A GeV are presented. The energy dependence of transverse mass spectra, rapidity spectra, and multiplicities is discussed. Comparisons to string hadronic models (UrQMD and HSD) and statistical hadron gas models are shown. While the latter provide a reasonable description of all particle yields, the first class of models fails to match the $\\Xi^{-}$, and $\\bar{\\Xi}^{+}$ multiplicities.

  5. Energy dependence of {lambda} and {xi} production in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV measured at the CERN Super Proton Synchrotron

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Meurer, C.; Mitrovski, M.; Renfordt, R.; Richard, A.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Utvic, M.; Wetzler, A.; Anticic, T.; Kadija, K.

    2008-09-15

    Results on {lambda},{lambda},{xi}{sup -}, and {xi}{sup +} production in central Pb+Pb reactions at 20A,30A,40A,80A, and 158A GeV are presented. The energy dependence of transverse mass spectra, rapidity spectra, and multiplicities is discussed. Comparisons to string hadronic models (UrQMD and HSD) and statistical hadron gas models are shown. Although the latter provide a reasonable description of all particle yields, the first class of models fails to match the {xi}{sup -} and {xi}{sup +} multiplicities.

  6. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    SciTech Connect (OSTI)

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J. [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Wang, Y. Q., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Ross, G. G.; Barba, D., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [INRS-Énergie, Matériaux et Télécommunications, 1650 boulevard Lionel-Boulet, Varennes Québec J3X 1S2 (Canada)

    2014-05-28

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150?°C for 1?h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301?kJ·mol{sup ?1}) are greater than that of Ge-Ge bonds (264?kJ·mol{sup ?1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  7. Threshold Reaction Rates and Energy Spectra of Neutrons in the 0.8-1.6 GeV Proton-Irradiated W, Na Targets

    E-Print Network [OSTI]

    Yury E. Titarenko; Vyacheslav F. Batyaev; Evgeny I. Karpikhin; Valery M. Zhivun; Svetlana V. Kvasova; Ruslan D. Mulambetov; Dmitry V. Fischenko; Aleksander B. Koldobsky; Yury V. Trebukhovsky; Vladimir A. Korolev; Gennady N. Smirnov; Andrey M. Voloshenko; Vladimir Yu. Belov; Nikolay I. Kachalin Stepan G. Mashnik; Richard E. Prael; Arnold J. Sierk; Hideshi Yasuda

    2002-08-30

    Considering the prospects of using the W-Na target assemblies in ADS facilities, the experiments were made to study the nuclear-physics characteristics of W and Na, and the composite structures thereof in their interactions with 0.8-GeV and 1.6-GeV protons. The neutron and proton-induced reaction rates were measured inside, and on the surface of, a cylinder-shaped heterogeneous W-Na assembly together with the double-differential spectra of secondary neutrons emitted from different-depth W and Na discs. The measurement results were simulated by the LAHET, CEM2k, and KASKAD-S codes in terms of the latest versions of nuclear databases.

  8. Direct observation of the effective bending moduli of a fluid membrane: Free-energy cost due to the reference-plane deformations

    E-Print Network [OSTI]

    Yoshihiro Nishiyama

    2003-07-10

    Effective bending moduli of a fluid membrane are investigated by means of the transfer-matrix method developed in our preceding paper. This method allows us to survey various statistical measures for the partition sum. The role of the statistical measures is arousing much attention, since Pinnow and Helfrich claimed that under a suitable statistical measure, that is, the local mean curvature, the fluid membranes are stiffened, rather than softened, by thermal undulations. In this paper, we propose an efficient method to observe the effective bending moduli directly: We subjected a fluid membrane to a curved reference plane, and from the free-energy cost due to the reference-plane deformations, we read off the effective bending moduli. Accepting the mean-curvature measure, we found that the effective bending rigidity gains even in the case of very flexible membrane (small bare rigidity); it has been rather controversial that for such non-perturbative regime, the analytical prediction does apply. We also incorporate the Gaussian-curvature modulus, and calculated its effective rigidity. Thereby, we found that the effective Gaussian-curvature modulus stays almost scale-invariant. All these features are contrasted with the results under the normal-displacement measure.

  9. 3 GeV Injector Design Handbook

    SciTech Connect (OSTI)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  10. Characteristics of Sn segregation in Ge/GeSn heterostructures

    SciTech Connect (OSTI)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  11. CTu2J.4.pdf CLEO Technical Digest OSA 2012 Selective-Area Growth of Ge and Ge/SiGe Quantum Wells

    E-Print Network [OSTI]

    Miller, David A. B.

    CTu2J.4.pdf CLEO Technical Digest © OSA 2012 Selective-Area Growth of Ge and Ge/SiGe Quantum Wells process for growing high-quality bulk Ge and Ge/SiGe quantum wells in selected areas of 3 µm thick silicon. Introduction and motivation Ge and especially Ge/SiGe quantum wells exhibit strong electroabsorption (Franz

  12. GE Partners on Microgrid Project | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control platform which can be used to host intelligent grid management software for microgrids. A typical GE control platform which can be used to host intelligent grid management...

  13. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane Technology Laboratory at GE's China Technology Center have successfully...

  14. Coherent bremsstrahlung, coherent pair production, birefringence, and polarimetry in the 20-170 GeV energy range using aligned crystals

    E-Print Network [OSTI]

    2008-01-01

    technologies for high energy photon beam optics includingIII. BEAM OPTIC ELEMENTS FOR VERY HIGH ENERGY PHOTON BEAMS

  15. GE Healthcare Product Guide 2007

    E-Print Network [OSTI]

    Lebendiker, Mario

    GE Healthcare BioProcess Product Guide 2007 #12;How to contact us Europe www.gehealthcare.com/bioprocess or by phone (T), fax (F), and Email Austria T: +43 1 57 606 1613 F: +43 1 57 606 1614 Email: cust.orderde@ge.com Belgium T: 0800 73890 F: 02 416 8206 Email: order.bnl@ge.com Central and East Europe (Austria) T: +43 1

  16. Emergency Information Desk Reference

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    Emergency Information Desk Reference ECU Police Department ECU Environmental Health & Safety Revised Feb 2012 #12;Emergency Information Desk Reference 2 INTRODUCTION Emergencies, accidents, and injuries can occur at any time and without warning. ECU has designed this emergency information desk

  17. Orange-green emission from porous Si coated with Ge films: The role of Ge-related defects

    E-Print Network [OSTI]

    Chen, Haydn H.

    Orange-green emission from porous Si coated with Ge films: The role of Ge-related defects X. L. Wua. A new orange-green PL band, centered at 2.25 eV, was observed with full-width at half-maximum of 0.1 e coated, the new PL band remains unchanged in peak energy but drops abruptly in intensity. Spectral

  18. Sandia Energy - Document & References

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNot Chemistry

  19. GE Hitachi Nuclear Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co Ltd Jump to:GIncLtdGDIGEGE

  20. GE Wind Energy Germany | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOH Offshore Jump

  1. Low-voltage broad-band electroabsorption from thin Ge/SiGe

    E-Print Network [OSTI]

    Miller, David A. B.

    Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown than 5 dB over the entire telecommunication S- and C-bands with only 1V drive using a new Ge/SiGe QW epitaxy design approach; further, this is demonstrated with the thinnest Ge/SiGe epitaxy to date, using

  2. Introduction to Superconductivity Energy gap Andreev Reflection Theory Procedure and Results Conclusion A study of Andreev Reflection in Nb/Ge/Al

    E-Print Network [OSTI]

    Petta, Jason

    by Cooper pairs flows without resistance #12;Introduction to Superconductivity Energy gap Andreev Reflection that there was a minimum energy 2(T) required to break a Cooper pair into two quasiparticles. This energy gap (T) should > will enter the superconductor as quasiparticles. Electrons with energy Cooper pairs

  3. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    GE 449# GE 110 Geological Engineering CE 271 GEOE 378 4TH YEAR 3RD YEAR 2ND YEAR 1ST YEAR or PHYS 128

  4. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect (OSTI)

    Guo, Yijun [Ames Laboratory; Rowland, Clare E [Argonne National Laboratory; Schaller, Richard D [Argonne National Laboratory; Vela, Javier [Ames Laboratory

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  5. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  6. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  7. Miniaturized Turbine Offers Desalination Solution | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    salt from ice New solution draws from the GE Store, integrating GE's experience with steam turbine, oil & gas compressors, 3D printing and water processing NISKAYUNA, NY,...

  8. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  9. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, Richard (Ammon, ID); Kotter, Dale (Bingham County, ID)

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  10. Edison Summit Brings GE Leaders Together | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We are ONE Edison Aisha Yousuf 2014.03.21 "We are ONE Edison" was the theme of the first GE Global Edison Summit held February 16-18, 2014 at Coronado Springs Resort in Orlando,...

  11. GE Researcher Explores Science Behind Movie Chappie | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  12. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect (OSTI)

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J; Kalinin, Sergei V; Lai, Keji; Demkov, Alexander A.

    2015-01-01

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  13. Application Protocol Reference Architecture Application Protocol Reference Architecture

    E-Print Network [OSTI]

    van Sinderen, Marten

    Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

  14. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2005-2006 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 BusSci/HSS# GEOE 315 GEOE

  15. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2006-07 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 Hum/SocSci Jr. GEOE 315

  16. Advanced Analytics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Predictivity(tm) Industrial Internet Solutions Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  17. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  18. Reference Hashed Frank Schilder

    E-Print Network [OSTI]

    provides the reader with an introduction to hashing lists and how they can be used for linguistic dam data structure for the representation of discourse referents. A so-called hashing list is employed instead a novel data structure for the representation of discourse referents. A/rushing list t

  19. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0??? decay searches of 76Ge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of View the MathML source?86%Ge76 and View the MathML source?14%Ge74 used in the 0???0??? searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the View the MathML sourceH3(p,n)He3, View the MathML sourceH2(d,n)He3 and View the MathML sourceH3(d,n)He4 reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium andmore »gold foils were irradiated simultaneously for neutron fluence determination. High-resolution ?-ray spectroscopy was used to determine the ?-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the View the MathML sourceGe74(n,?)Ge75 reaction, the present data are about a factor of two larger than predicted. It was found that the View the MathML sourceGe74(n,?)Ge75 yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the View the MathML sourceGe76(n,?)Ge77 yield due to the larger cross section of the former reaction.« less

  20. Contribution of the electron-phonon coupling to Lindhard partition at low energy in Ge and Si detectors for astroparticle physics

    E-Print Network [OSTI]

    Lazanu, Ionel

    2015-01-01

    The influence of the transient thermal effects on the partition of the energy of selfrecoils in germanium and silicon into energy eventually given to electrons and to atomic recoils respectively is studied. The transient effects are treated in the frame of the thermal spike model, which considers the electronic and atomic subsystems coupled through the electron-phonon interaction. For low energies of selfrecoils, we show that the corrections to the energy partition curves due to the energy exchange during the transient processes modify the Lindhard predictions. These effects depend on the initial temperature of the target material, as the energies exchanged between electronic and lattice subsystems have different signs for temperatures lower and higher than about 15 K. More of the experimental data reported in the literature support the model.

  1. Recommended GE Curriculum for the BSEE Majors

    E-Print Network [OSTI]

    Ravikumar, B.

    Recommended GE Curriculum for the BSEE Majors Area Subjects Suggested GE Courses Courses Actual units GE Units A. Communication and Critical Thinking (9) A.2. Fund. of Communication ENGL 101 4 4 A.3, Theatre, Dance and Music and Film Select from the GE C.1 list in the SSU Catalog 3 3 C.2. Literature

  2. HSE 1 HSE 2 HSE 3 GE 1 GE 2 GE 3 Residual effects of Large Vessels in GE BOLD Differential Mapping of Ocular Dominance Columns

    E-Print Network [OSTI]

    HSE 1 HSE 2 HSE 3 GE 1 GE 2 GE 3 Residual effects of Large Vessels in GE BOLD Differential Mapping the contamination of non-specific large vessel signals. Animal studies have used non- conventional functional minimizing the contributions of extravascular BOLD signals around large vessels due to the refocusing pulse

  3. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  4. Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques

    E-Print Network [OSTI]

    Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques Gianni was arranged by Prof. C.K. Maiti Abstract Techniques for fabricating strained Si, SiGe, and Ge on-insulator include SIMOX, Ge condensation and wafer bonding. In this paper, a brief introduction of each method

  5. GeSi intermixing in Ge quantum dots on Si,,001... and Si,,111... F. Boscherinia)

    E-Print Network [OSTI]

    Ge­Si intermixing in Ge quantum dots on Si,,001... and Si,,111... F. Boscherinia) Laboratori December 1999 Exploiting Ge K-edge x-ray absorption spectroscopy we provide direct evidence of Si­Ge intermixing in self-organized strained and unstrained Ge quantum dots on Si, and provide a quantitative

  6. Nonlithographic epitaxial SnxGe1x dense nanowire arrays grown on Ge,,001...

    E-Print Network [OSTI]

    Atwater, Harry

    Nonlithographic epitaxial SnxGe1Àx dense nanowire arrays grown on Ge,,001... Regina Ragan-thick SnxGe1 x /Ge(001) epitaxial films with 0 x 0.085 by molecular-beam epitaxy. These films evolve during growth into a dense array of SnxGe1 x nanowires oriented along 001 , as confirmed by composition contrast

  7. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  8. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  9. AstroPower Inc | Open Energy Information

    Open Energy Info (EERE)

    by GE in July 2004, now part of GE Energy. Makes photovoltaic cells based on crystalline silicon. Coordinates: 44.690435, -71.951685 Show Map Loading map......

  10. Generalized event shape and energy flow studies in e[superscript +]e[superscript ?] annihilation at ?s = 91.2?208.0 GeV

    E-Print Network [OSTI]

    Becker, Ulrich J.

    We present results from a study of hadronic event structure in high energy e[superscript +]e[superscript ?] interactions using the L3 detector at LEP. A new class of event shape distributions are measured at and above the ...

  11. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  12. Donor-vacancy pairs in irradiated n-Ge: A searching look at the problem

    SciTech Connect (OSTI)

    Emtsev, Vadim; Oganesyan, Gagik [IoffePhysicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ulitsa 26, 194021 St. Petersburg (Russian Federation)

    2014-02-21

    The present situation concerning the identification of vacancy-donor pairs in irradiated n-Ge is discussed. The challenging points are the energy states of these defects deduced from DLTS spectra. Hall effect data seem to be at variance with some important conclusions drawn from DLTS measurements. Critical points of the radiation-produced defect modeling in n-Ge are highlighted.

  13. GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora... K on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed from 10­40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy

  14. Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    studies. 1. INTRODUCTION One of the most important renewable energy storage technologies is lithium to silicon. Despite recent studies on Ge electrode reactions, there is still limited understanding elements, such as silicon (Si) and germanium (Ge), are very attractive candidates for high- capacity

  15. Charged-Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN)=62.4 GeV

    E-Print Network [OSTI]

    B. B. Back; PHOBOS Collaboration

    2005-09-28

    The charged-particle pseudorapidity density for Au+Au collisions at sqrt(s_NN)=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The mid-rapidity density is found to grow approximately logarithmically between AGS energies and the top RHIC energy. As a function of centrality, there is an approximate factorization of the centrality dependence of the mid-rapidity yields and the overall multiplicity scale. The new results at sqrt(s_NN)=62.4 GeV confirm the previously observed phenomenon of ``extended longitudinal scaling'' in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.

  16. PVWatts Version 1 Technical Reference

    SciTech Connect (OSTI)

    Dobos, A. P.

    2013-10-01

    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  17. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen PlasmaEnergy,RecognizingBuilding We're creating

  18. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GEUtilizingTotal Energy GlossaryMoving

  19. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Forward to Address Nuclear WasteMoving We're

  20. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  1. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  2. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  3. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  4. Shell model description of Ge isotopes

    E-Print Network [OSTI]

    J. G. Hirsch; P. C. Srivastava

    2012-04-12

    A shell model study of the low energy region of the spectra in Ge isotopes for $38\\leq N\\leq 50$ is presented, analyzing the excitation energies, quadrupole moments, $B(E2)$ values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces.We have used two effective shell model interactions, JUN45 and jj44b, for the valence space $f_{5/2} \\, p \\,g_{9/2}$ without truncation. To include the proton subshell $f_{7/2}$ in valence space we have employed the $fpg$ effective interaction due to Sorlin {\\it et al.}, with $^{48}$Ca as a core and a truncation in the number of excited particles.

  5. Results from SKM-200-GIBS on multiparticle azimuthal correlations in C-Ne and C-Cu collisions at energy of 3.7 GeV per nucleon

    E-Print Network [OSTI]

    L. Chkhaidze; T. Djobava; L. Kharkhelauri

    2000-08-03

    The transverse momentum technique is used to analyse charged-particle exclusive data in central C-Ne and C-Cu interactions at energy of 3.7 GeV per nucleon. Clear evidence of in-plane and out-of-plane (squeeze-out) flow effects for protons and pi^{-} mesons have been obtained. In C-Ne interactions in-plane flow of pi^{-} mesons is in the same direction as for the protons, while in C-Cu collisions pions show antuflow behaviour. From the transverse momentum and azimuthal distributions of protons and pi^{-} mesons with respect to the reaction plane, the flow (the measure of the amount of collective transverse momentum transfer in the reaction plane) and the parameter a_{2} (the measure of the anisotropic emission strength) have been extracted. The flow effects increase with the mass of the particle and the mass number of target A_{T}. The comparison of our in-plane flow results with flow data for various projectile/target configurations was made using the scaled flow F_{S}=F/(A_{P} ^{1/3}+A_{T}^{1/3}). F_{S} demonstrates a common scaling behaviour for flow values from different systems. The Quark Gluon String Model (QGSM) was used for the comparison with the experimental data. The QGSM yields a signature of in-plane and out-of-plane flow effects in C-ne and C-Cu collisions for protons.

  6. CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    ND YEAR 1ST YEAR 3RD YEAR # These courses can be taken in either term.*must meet specific Hum/SocSci@# Bus Sci/HSS#Design Elec.#* T.E.*# T.E.*#GE 449# ME 314 or PHYS 128 or GEOL 121 4TH YEAR 2

  7. NERSC/DOE FES Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from...

  8. Grant Reference Lead / Sole

    E-Print Network [OSTI]

    Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project of Birmingham Controls on Soil Carbon Export revealed by Novel Tracers on multiple timescales (SCENT) Standard Grant DEC12 8 8 NE/K011871/1 N Melanie Leng NERC British Geological Survey A 500,000-year environmental

  9. PROBABILITY OF CORRECT SELECTION OF GAMMA VERSUS GE OR WEIBULL VERSUS GE BASED ON

    E-Print Network [OSTI]

    Kundu, Debasis

    PROBABILITY OF CORRECT SELECTION OF GAMMA VERSUS GE OR WEIBULL VERSUS GE BASED ON LIKELIHOOD RATIO proposes the use of likelihood ratio statistic in choosing between gamma and GE models or between Weibull and GE models. Probability of correct selec- tions are obtained using Monte Carlo simulations for various

  10. Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV

    E-Print Network [OSTI]

    McDonald, Kirk

    Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV (Preliminary) Xm; · Production Collection: (1.2 m downstream, 40 MeV production threshold kinetic energy (Default:0.03 GeV); EMCHR: The threshold energy applied collectively

  11. Giant Piezoelectricity in Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe and GeS

    E-Print Network [OSTI]

    Fei, Ruixiang; Li, Ju; Yang, Li

    2015-01-01

    We predict enormous piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their characteristic piezoelectric coefficients are about two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique "puckered" D2h symmetry and weaker chemical bonds of monolayer group IV monochalcogenides. Given the achieved experimental advances in fabrication of monolayers, their flexible character and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications, such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  12. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    SciTech Connect (OSTI)

    Oka, Hiroshi, E-mail: oka@asf.mls.eng.osaka-u.ac.jp; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  13. Step and kink correlations on vicinal Ge,,100... surfaces investigated by electron diffraction C. Tegenkamp, J. Wollschlager, H. Pfnur,* F.-J. Meyer zu Heringdorf,

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    Step and kink correlations on vicinal Ge,,100... surfaces investigated by electron diffraction C in low-energy electron diffraction, we have investigated vicinal Ge 100 surfaces, which were miscut by 2 direction. In contrast to vicinal Si 100 surfaces with similar miscut angles, the Ge 100 surfaces still show

  14. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  15. The Capabilities of the Alpha Magnetic Spectrometer as GeV Gamma-rays Detector

    E-Print Network [OSTI]

    R. Battiston

    1999-11-13

    The modeled performance of the Alpha Magnetic Spectrometer (AMS) as a high-energy (0.3 to 100 GeV) gamma-ray detector is described, and its gamma-ray astrophysics objectives are discussed.

  16. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    Engineering * must meet specific requirements # These courses can be taken in either term. 2ND YEAR 3RD YEAR 4 431 Last editted Apr 4, 2006 ^offered in alternate years; take in either 3rd or 4th year CHEM 242TH YEAR 1ST YEAR CHE 422 CHE 232 HSS@# 2005-2006 or PHYS 128 or GEOL 121 or AB E 312 GE 300# CHE 332

  17. Nucleon Resonances Near 2 GeV

    E-Print Network [OSTI]

    He, Jun

    2015-01-01

    The nucleon resonances near 2 GeV are investigated through the $\\Sigma$(1385) and $\\Lambda(1520)$ photoproductions within a Regge-plus-resonance approach based on the new experimental data released by the CLAS Collaboration. The $\\Delta(2000)$ and the $N(2120)$ are found essential to reproduce the experimental data and should be assigned as second $[\\Delta 5/2^+]$ and third $[N3/2^-]$ in the constituent quark model, respectively. A calculation of the binding energy and decay pattern supports that the $N(1875)$, which is listed in the PDG as the third $N3/2^-$ nucleon resonance instead of the $N(2120)$, is from the $\\Sigma(1385)K$ interaction rather than a three quark state.

  18. FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR

    SciTech Connect (OSTI)

    Leung, Gene C. K.; Takata, J.; Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: gene930@connect.hku.hk, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    The first Fermi-Large Area Telescope (LAT) catalog of sources above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at >37 GeV energy bands. Using 62 months of Fermi-LAT data, we analyzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H test (p-value ?10{sup –77}), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the five observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with a p-value of =3 × 10{sup –5} (4.2?). The detection of pulsation is significant above 4? at >79 GeV and above 3? at >90 GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore the non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.

  19. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645 8244 Reference

  20. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645 8244 Reference6

  1. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645 8244 Reference64

  2. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645 82444 Reference

  3. Appendix A: Reference case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645 82444 Reference6

  4. ME 227 CE 212 MATH 223 GE 210 CMPT 116 ABE 211CHE 210 GE 213# MATH 224

    E-Print Network [OSTI]

    Saskatchewan, University of

    GE 120 ME 227 CE 212 MATH 223 GE 210 CMPT 116 ABE 211CHE 210 GE 213# MATH 224 ABE 295 ABE 212 can be taken in either term. GE 124 MATH 110 MATH 124CHEM 115 PHYS 155 3RD YEAR GE 125 GE 110 COMM 102

  5. Purdue, GE Collaborate On Advanced Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gasPurchase, Delivery,Purdue, GE to

  6. About GE Global Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARM OverviewAbout GE Global Research

  7. GE Scientists Experiment With Texas BBQ | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits ofofStackOn thePower ofGE

  8. The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator

    SciTech Connect (OSTI)

    Prakash, A. P. Gnana Praveen, K. C.; Pushpa, N.; Cressler, John D.

    2015-05-15

    The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to {sup 60}Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.

  9. Particle Production of Mercury Target with 15Tto2T5m Configuration at 6.75 GeV

    E-Print Network [OSTI]

    McDonald, Kirk

    Particle Production of Mercury Target with 15Tto2T5m Configuration at 6.75 GeV X. Ding, UCLA beam with waist at z= 0 m and emittance of 5 m; · Production Collection: (50 m downstream, 40 MeV : 0.0145 GeV); EPSTAM: The star production threshold kinetic energy (Default: 0.03 GeV); EMCHR

  10. Economic regulation of electricity distribution utilities under high penetration of distributed energy resources : applying an incentive compatible menu of contracts, reference network model and uncertainty mechanisms

    E-Print Network [OSTI]

    Jenkins, Jesse D. (Jesse David)

    2014-01-01

    Ongoing changes in the use and management of electricity distribution systems - including the proliferation of distributed energy resources, smart grid technologies (i.e., advanced power electronics and information and ...

  11. Nature Energie | Open Energy Information

    Open Energy Info (EERE)

    Nature Energie Jump to: navigation, search Name: Nature Energie Place: France Sector: Solar, Wind energy Product: French developer of wind and solar energy projects. References:...

  12. References R-3 Note: In this report we refer to a number of documents (e.g., plans, reports) that are intended for internal

    E-Print Network [OSTI]

    Pennycook, Steve

    References #12;#12;References R-3 References Note: In this report we refer to a number of documents function as a means of communication between governmental agencies and the tenant companies on the Oak, Appendix B: WAG 1 Groundwater, Surface Water, and Sediment. DOE/OR-1043/V4&D1. U.S. Department of Energy

  13. Tensile-strain and doping enhanced direct bandgap optical transition of n{sup +} doped Ge/GeSi quantum wells

    SciTech Connect (OSTI)

    Fan, W. J.

    2013-11-14

    Band structures of tensile strained and n{sup +} doped Ge/GeSi quantum wells (QWs) are calculated by multiple-band k·p method. The energy dispersion curves of the ? and L conduction subbands are obtained. The effects of tensile strain and n{sup +} doping in Ge on direct bandgap optical gain and spontaneous radiative recombination rate spectra are investigated including the electron leakage from ? to L conduction subbands. Our results show that the optical gain and spontaneous radiative recombination rate can be significantly increased with the tensile strain, n-type doping concentration, and injection carrier density in the Ge QW. The free carrier absorption is calculated and cannot be ignored because of the heavily doped Ge. The pure TM mode polarized net optical gain up to 1153?cm{sup ?1} can be achieved for the Ge/Ge{sub 0.986}Si{sub 0.014} QW with tensile strain of 1.61% and n-type doping concentration of 30?×?10{sup 18}?cm{sup ?3}.

  14. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattanChemistry ofNanChevron, GE form

  15. GE Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co Ltd Jump

  16. GE Shenhua JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd JumpLatinoEngineeringHangfaJV

  17. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNationalNevada Field

  18. Waste to Energy Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)Management Waste Management

  19. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications

  20. Tank characterization reference guide

    SciTech Connect (OSTI)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  1. GRB 131231A: IMPLICATIONS OF THE GeV EMISSION

    SciTech Connect (OSTI)

    Liu, Bin; Chen, Wei; Liang, Yun-Feng; Zhou, Bei; He, Hao-Ning; Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming [Key laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Tam, Pak-Hin Thomas [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Shao, Lang, E-mail: liangyf@pmo.ac.cn, E-mail: beizhou@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn, E-mail: phtam@phys.nthu.edu.tw [Department of Physics, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-05-20

    GRB 131231A was detected by the Large Area Telescope on board the Fermi Space Gamma-ray Telescope. The high-energy gamma-ray (>100 MeV) afterglow emission spectrum is F {sub ?}??{sup –0.54} {sup ±} {sup 0.15} in the first ?1300 s after the trigger and the most energetic photon has an energy of ?62 GeV, arriving at t ? 520 s. With reasonable parameters of the gamma-ray burst (GRB) outflow as well as the density of the circum-burst medium, the synchrotron radiation of electrons or protons accelerated at an external forward shock have difficulty accounting for the data. Rather, the synchrotron self-Compton radiation of the forward shock-accelerated electrons can account for both the spectrum and temporal behavior of the GeV afterglow emission. We also show that the prospect for detecting GRB 131231A-like GRBs with the Cherenkov Telescope Array is promising.

  2. GE Global Research in San Ramon, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Leadership Programs What's new in San Ramon Ars Technica: Analyzing the Internet of Things GE Unveils High-Speed Network Infrastructure to Connect Machines, Data...

  3. MOSFET Channel Engineering using Strained Si, SiGe, and Ge Channels

    E-Print Network [OSTI]

    Fitzgerald, Eugene A.

    Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with ...

  4. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    E-Print Network [OSTI]

    M. Agostini; C. A. Ur; D. Budjáš; E. Bellotti; R. Brugnera; C. M. Cattadori; A. di Vacri; A. Garfagnini; L. Pandola; S. Schönert

    2011-01-17

    The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of "Broad Energy Germanium" detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes Ge-68 and Co-60 and the neutrinoless double beta decay of Ge-76. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Qbb = 2.039 MeV are (86+-3)% for Ge-76 neutrinoless double beta decays, (4.5+-0.3)% for the Ge-68 daughter Ga-68, and (0.9+0.4-0.2)% for Co-60 decays.

  5. Band alignment at interfaces of amorphous Al{sub 2}O{sub 3} with Ge{sub 1?x}Sn{sub x}- and strained Ge-based channels

    SciTech Connect (OSTI)

    Chou, H.-Y.; Afanas'ev, V. V., E-mail: valeri.afanasiev@fys.kuleuven.be; Houssa, M.; Stesmans, A. [Department of Physics, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Vincent, B.; Gencarelli, F.; Shimura, Y.; Merckling, C.; Loo, R. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Nakatsuka, O.; Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-05-19

    Spectroscopy of internal photoemission of electrons from Ge and Ge{sub 1?x}Sn{sub x} (x???0.08) alloys into amorphous Al{sub 2}O{sub 3} is used to evaluate the energy of the semiconductor valence band top. It is found that in Ge and Ge{sub 1?x}Sn{sub x} the valence bands are aligned within the measurement accuracy (±0.05?eV) irrespective of the strain imposed on the semiconductor or by the kind of passivating inter-layer applied between the semiconductor and alumina. This indicates that the Ge{sub 1?x}Sn{sub x}-stressor approach may be useful for strain engineering in p-channel Ge metal-oxide-semiconductor transistors.

  6. Determination of the cross sections of (n,2n), (n,gamma) nuclear reactions on germanium isotopes at the energy of neutrons 13.96 MeV

    E-Print Network [OSTI]

    S. V. Begun; O. G. Druzheruchenko; O. O. Pupirina; V. K. Tarakanov

    2007-01-23

    The cross sections of 70Ge(n,2n)69Ge, 72Ge(n,2n)71Ge, 76Ge(n,gamma)77(g+0.21m)Ge, 76Ge(n,2n)75Ge nuclear reactions were measured at the energy of neutrons 13.96(6) MeV by activation method with gamma-ray and X-ray spectra studies.

  7. A quantized frequency reference in the short-ranged gravity potential and its application for dark matter and dark energy searches

    E-Print Network [OSTI]

    T. Jenke; G. Cronenberg; P. Geltenbort; A. N. Ivanov; T. Lauer; T. Lins; U. Schmidt; H. Saul; H. Abele

    2012-08-19

    The evidence for the observation of the Higgs spin-0-boson as a manifestation of a scalar field provides the missing corner stone for the standard model of particles (SM). However, the SM fails to explain the non-visible but gravitationally active part of the universe. Its nature is unknown but the confirmation of a scalar Higgs is giving a boost to scalar-field-theories. So far gravity experiments and observations performed at different distances find no deviation from Newton's gravity law. Therefore dark energy must possess a screening mechanism which suppresses the scalar-mediated fifth force. Our line of attack is a novel gravity experiment with neutrons based on a quantum interference technique. The spectroscopic measurement of quantum states on resonances with an external coupling makes this a powerful search for dark matter and dark energy contributions in the universe. Quantum states in the gravity potential are intimately related to other scalar field or spin-0-bosons if they exist. If the reason is that some undiscovered particle interact with a neutron, this results in a measurable energy shift of quantum states in the gravity potential, because for neutrons the screening effect is absent. We use Gravity Resonance Spectroscopy to measure the energy splitting at the highest level of precision, providing a constraint on any possible new interaction. We obtain a sensitivity of 10^-14 eV. We set an experimental limit on any fifth force, in particular on parameter \\beta<2x10^9 at n=3 for the scalar chameleon field, which is improved by a factor of 100 compared to our previous experiment and five orders of magnitude better than from precision tests of atomic spectra. The pseudoscalar axion coupling is constrained to gsgp/\\hbar c<3x10^-16 at 20\\mu m, which is an improvement by a factor of 30. These results indicate that gravity is understood at this improved level of precision.

  8. The First-cycle Electrochemical Lithiation of Crystalline Ge – Dopant and Orientation Dependence, and Comparison with Si

    SciTech Connect (OSTI)

    Chan, Maria K.Y.; Long, Brandon R.; Gewirth, Andrew A.; Greeley, Jeffrey P.

    2011-12-15

    We use first principles Density Functional Theory (DFT), cyclic voltammetry (CV), and Raman spectroscopy to investigate the first-cycle electrochemical lithiation of Ge in comparison with Si – both high-capacity anode materials for Li ion batteries. DFT shows a significant difference in the dilute solubility of Li in Si and Ge, despite similarities in their chemical and physical properties. We attribute this difference to electronic, as opposed to elastic, effects. CV and Raman data reveal little dopant dependence in the lithiation onset voltages in Ge, unlike in Si, due to a smaller energy difference between dilute Li insertion in p-type Ge and bulk germanide formation than the corresponding difference in Si. Finally, we show that there is no orientation dependence in lithiation onset voltages in Ge. We conclude that approaches other than microstructuring are needed to fabricate effective electrodes able to take advantage of the higher rate capability of Ge compared to that of Si.

  9. Electrical properties of diluted n- and p-Si{sub 1?x}Ge{sub x} at small x

    SciTech Connect (OSTI)

    Emtsev, V. V., E-mail: emtsev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Abrosimov, N. V. [Leibniz Institute for Crystal Growth (Germany); Kozlovskii, V. V. [St. Petersburg Polytechnical State University (Russian Federation); Oganesyan, G. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2014-12-15

    Hall effect and conductivity measurements are taken on Si{sub 1?x}Ge{sub x} of n- and p-type at x ? 0.05. Much attention is given to electrical measurements over a temperature interval of 25 to 40 K where the mobility of charged carriers is strongly affected by alloy scattering. The partial mobility of electrons and holes due to this scattering mechanism is estimated for n-Si{sub 1?x}Ge{sub x} and p-Si{sub 1?x}Ge{sub x} at small x. Together with this, an effect of the presence of Ge atoms upon the ionization energy of phosphorus and boron impurities is investigated. Some points related to an inhomogeneous distribution of Ge atoms in Si{sub 1?x}Ge{sub x} are discussed.

  10. Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge

    SciTech Connect (OSTI)

    Yates, B. R.; Darby, B. L.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Petersen, D. H. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Hansen, O. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); CINF, Center for Individual Nanoparticle Functionality, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Lin, R.; Nielsen, P. F. [CAPRES A/S, Scion-DTU, DK-2800 Kgs. Lyngby (Denmark); Romano, L. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Doyle, B. L. [Sandia National Laboratories, MS-1056, Albuquerque, New Mexico 87185 (United States); Kontos, A. [Applied Materials, Gloucester, Massachusetts 01930 (United States)

    2012-12-15

    The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Sign 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.

  11. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV electron beams from a centimetre-scale accelerator W. P. LEEMANS1 * , B. NAGLER1 , A. J-quality electron beam with 1 GeV energy by channelling a 40 TW peak-power laser pulse in a 3.3-cm-long gas-100 GV m-1 in laser-wakefield accelerators1,2 , until recently the electron beams (e-beams) from

  12. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS GeV electron beams from a centimetre-scale accelerator W. P. LEEMANS1 * , B. NAGLER1 , A. J be needed to reach GeV energies6,7 , here we demonstrate production of a high-quality electron beam with 1 in laser-wakefield accelerators1,2 , until recently the electron beams (e-beams) from such accelerators had

  13. Growth and characterization of isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals

    SciTech Connect (OSTI)

    Itoh, K.

    1992-10-01

    Isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm[sup 3] volume. To our knowledge, we have grown the first [sup 70]Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be [approximately]2 [times] cm[sup [minus]3] which is two order of magnitude better that of [sup 74]Ge crystals previously grown by two different groups. Isotopic enrichment of the [sup 70]Ge and the [sup 74]Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  14. Growth and characterization of isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals

    SciTech Connect (OSTI)

    Itoh, K.

    1992-10-01

    Isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm{sup 3} volume. To our knowledge, we have grown the first {sup 70}Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be {approximately}2 {times} cm{sup {minus}3} which is two order of magnitude better that of {sup 74}Ge crystals previously grown by two different groups. Isotopic enrichment of the {sup 70}Ge and the {sup 74}Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  15. Gamma-Ray Bursts Above 1 GeV

    E-Print Network [OSTI]

    Matthew G. Baring

    1997-11-21

    One of the principal results obtained by the Compton Gamma Ray Observatory relating to the study of gamma-ray bursts was the detection by the EGRET instrument of energetic ($>$100 MeV) photons from a handful of bright bursts. The most extreme of these was the single 18 GeV photon from the GRB940217 source. Given EGRET's sensitivity and limited field of view, the detection rate implies that such high energy emission may be ubiquitous in bursts. Hence expectations that bursts emit out to at least TeV energies are quite realistic, and the associated target-of-opportunity activity of the TeV gamma-ray community is well-founded. This review summarizes the observations and a handful of theoretical models for generating GeV--TeV emission in bursts sources, outlining possible ways that future positive detections could discriminate between different scenarios. The power of observations in the GeV--TeV range to distinguish between spectral structure intrinsic to bursts and that due to the intervening medium between source and observer is also discussed.

  16. GeV emission from Gamma-Ray Burst afterglows

    E-Print Network [OSTI]

    A. Panaitescu

    2008-01-10

    We calculate the GeV afterglow emission expected from a few mechanisms related to GRBs and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift/XRT, GLAST/LAT should detect the self-Compton emission from the forward-shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.

  17. Optical probe with reference fiber

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

    2006-03-14

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  18. Monolithic Ge-on-Si lasers for integrated photonics

    E-Print Network [OSTI]

    Liu, Jifeng

    We report room temperature Ge-on-Si lasers with direct gap emission at 1590-1610 nm. Modeling of Ge/Si double heterojunction structures, which is supported by experimental results of Ge/Si LEDs, indicates the feasibility ...

  19. Is there a risk from not using GE animals?

    E-Print Network [OSTI]

    Murray, James D.; Maga, Elizabeth A.

    2010-01-01

    Is there a risk from not using GE animals? James D. Murray •rst genetically engi- neered (GE) plants and animals forthe debate often focuses on GE as a technique that is used

  20. Xergy Ships First Breakthrough Water Heater Compressor to GE...

    Energy Savers [EERE]

    Xergy Ships First Breakthrough Water Heater Compressor to GE Xergy Ships First Breakthrough Water Heater Compressor to GE September 15, 2015 - 3:41pm Addthis Xergy Inc. and GE...

  1. Passionate Technologists Wanted at ASME Turbo Expo|GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who want to learn more about GE and its global Research Centers. For this purpose, the Aero & Thermal Systems groups of GE Global Research and representatives from several GE...

  2. Ge-on-Si laser for silicon photonics

    E-Print Network [OSTI]

    Camacho-Aguilera, Rodolfo Ernesto

    2013-01-01

    Ge-on-Si devices are explored for photonic integration. Importance of Ge in photonics has grown and through techniques developed in our group we demonstrated low density of dislocations (<1x109cm-2) and point defects Ge ...

  3. FAQS Reference Guide – Construction Management

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the March 2004 edition of DOE-STD-1180-2004, Construction Management Functional Area Qualification Standard.

  4. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  5. FAQS Reference Guide – Emergency Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the January 2004 edition of DOE-STD-1177-2004, Emergency Management Functional Area Qualification Standard.

  6. FAQS Reference Guide- Chemical Processing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  7. FAQS Reference Guide – Environmental Compliance

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the June 2011 edition of DOE-STD-1156-2011, Environmental Compliance Functional Area Qualification Standard.

  8. The cross-plane thermoelectric properties of p-Ge/Si{sub 0.5}Ge{sub 0.5} superlattices

    SciTech Connect (OSTI)

    Ferre Llin, L.; Samarelli, A.; Weaver, J. M. R.; Dobson, P. S.; Paul, D. J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)] [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Cecchi, S.; Chrastina, D.; Isella, G. [L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy)] [L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy); Etzelstorfer, T.; Stangl, J. [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universität, Linz (Austria)] [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universität, Linz (Austria); Müller Gubler, E. [Electron Microscopy ETH Zurich, ETH Zurich, Wolfgang-Pauli-Str. 16, CH-8093 Zurich (Switzerland)] [Electron Microscopy ETH Zurich, ETH Zurich, Wolfgang-Pauli-Str. 16, CH-8093 Zurich (Switzerland)

    2013-09-30

    The electrical conductivity, Seebeck coefficients, and thermal conductivities of a range of p-type Ge/Si{sub 0.5}Ge{sub 0.5} superlattices designed for thermoelectric generation and grown by low energy plasma enhanced chemical vapor deposition have been measured using a range of microfabricated test structures. For samples with barriers around 0.5 nm in thickness, the measured Seebeck coefficients were comparable to bulk p-SiGe at similar doping levels suggesting the holes see the material as a random bulk alloy rather than a superlattice. The Seebeck coefficients for Ge quantum wells of 2.85 ± 0.85 nm increased up to 533 ± 25 ?V/K as the doping was reduced. The thermal conductivities are between 4.5 to 6.0 Wm{sup ?1}K{sup ?1} which are lower than comparably doped bulk Si{sub 0.3}Ge{sub 0.7} but higher than undoped Si/Ge superlattices. The highest measured figure of merit ZT was 0.080 ± 0.011 obtained for the widest quantum well studied. Analysis suggests that interface roughness is presently limiting the performance and a reduction in the strain between the quantum wells and barriers has the potential to improve the thermoelectric performance.

  9. Structure and magnetism in strained Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy

    SciTech Connect (OSTI)

    Prestat, E. [INAC, SP2M, CEA and Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France); Karlsruher Institut fuer Technologie (KIT), Laboratorium fuer Elektronenmikroskopie, D-76128 Karlsruhe (Germany); Barski, A.; Bellet-Amalric, E.; Morel, R.; Tainoff, D.; Jain, A.; Porret, C.; Bayle-Guillemaud, P.; Jamet, M. [INAC, SP2M, CEA and Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France); Jacquot, J.-F. [INAC, SCIB, CEA and Universite Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble (France)

    2013-07-01

    In this letter, we study the structural and magnetic properties of Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy using X-ray diffraction, high resolution transmission electron microscopy, and superconducting quantum interference device. Like in Mn doped Ge films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich nanocolumns of a few nanometers in diameter. Transmission electron microscopy observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical nanocolumns lower than the detection limit of electron energy loss spectroscopy. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn nanocolumns. The magnetization in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} layers is higher than in Ge{sub 1-x}Mn{sub x} films. This magnetic moment enhancement in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} is probably related to the modification of the electronic structure of Mn atoms in the nanocolumns by the Sn-rich shell, which is formed around the nanocolumns.

  10. Reference Design? | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield CampusReedsville,Reference Design? Home

  11. Testimonials - Partnerships in Fuel Cells - GE Global Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells - GE Global Research Testimonials - Partnerships in Fuel Cells - GE Global Research Addthis An error occurred. Try watching this video on www.youtube.com, or enable...

  12. Work & Life at San Ramon | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new window) Click to share on Tumblr (Opens in new window) Employee Organizations GE Software Women's Network TBD Celebrations GE Software Technology Conference This event allows...

  13. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    says Juan Albeniz, Business Program Manager, Oil & Gas at GE Global Research Europe. Juan Albeniz, Business Program Manager, Oil & Gas at GE Global Research, Europe Juan...

  14. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  15. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  16. ME 227 CE 212 MATH 223 GE 210 CMPT 116 ABE 211CHE 210 GE 213# MATH 224

    E-Print Network [OSTI]

    Saskatchewan, University of

    GE 120 ME 227 CE 212 MATH 223 GE 210 CMPT 116 ABE 211CHE 210 GE 213# MATH 224 ABE 295 ABE 212Elective* Elective* AB E 311 ABE 313 ABE 312 GE 348#ABE 323 co-requisite ABE 327 HSS#@ HSS#@ ABE 324 GE 300# ABE 395 4TH YEAR ABE Elec* ABE Elec* ABE Elec*ABE 422 GE 449# Ag Elec* T.E.* T.E.* ABE Elec* Ag Elec

  17. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect (OSTI)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  18. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV m-1 ), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources

  19. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  20. Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments

    E-Print Network [OSTI]

    S. R. Elliott; V. M. Gehman; K. Kazkaz; D-M. Mei; A. R. Young

    2005-09-20

    The need to understand and reject backgrounds in Ge-diode detector double-beta decay experiments has given rise to the development of pulse shape analysis in such detectors to discern single-site energy deposits from multiple-site deposits. Here, we extend this analysis to segmented Ge detectors to study the effectiveness of combining segmentation with pulse shape analysis to identify the multiplicity of the energy deposits.

  1. Researching NDE, Additive Manufacturing |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I never thought I would get the incredible opportunity to become a summer intern at the GE Global Research Center, amongst such brilliant and tenacious individuals. I have been...

  2. GE's Christine Furstoss Named to NACIE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Niskayuna, NY, Christine is responsible for working with both R&D leaders at GE's industrial businesses and with strategic partners to set strategy for growth, and to...

  3. Exclusive processes at JLab at 6 GeV

    SciTech Connect (OSTI)

    Kim, Andrey

    2015-01-01

    Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for ?0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and ?t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS ?0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  4. GE Announces Vic Abate as New Chief Technology Officer | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Internet and Brilliant Factory. This transition marks another chapter in GE's transformation to become the world's premiere Digital Industrial company. Enabled by a...

  5. Impact ionization of excitons in Ge/Si structures with Ge quantum dots grown on the oxidized Si(100) surfaces

    SciTech Connect (OSTI)

    Shklyaev, A. A. [A. V. Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Shegai, O. A. [A. V. Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Nakamura, Y. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Ichikawa, M. [Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-05-28

    Photoconductivity (PC) of Si/Ge structures with Ge quantum dots (QDs) grown on the Si(100) surfaces covered with the ultrathin, about 0.3–0.5?nm thick, SiO{sub 2} films is studied as a function of the interband light intensity under various lateral voltages. The structures exhibit PC with steps and a step with a peak at the step edge for low- and high-temperature grown structures, respectively. These PC features are associated with the impact ionization of QD-related excitons. The PC at step edges increases by several orders of magnitude for a certain value which is governed by the balance between rates of photo-generation, recombination, and impact ionization of excitons. The electron localization deeper in Si from the Ge QD layer in conjunction with a narrow binding-energy distribution of excitons is suggested to be the main reason that provides the sharpness of PC steps. The PC appears to be very sensitive to the impact ionization and QD preparation conditions. This allows revealing the specific characteristics of QD structures, related to their electronic and structural properties.

  6. Home Energy Rating System Building Energy Simulation Test for Florida (Florida-HERS BESTEST): Tier 1 and Tier 2 Tests; Vol. 1 (User's Manual) and Vol. 2 (Reference Results)

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1997-08-01

    In 1991, the U.S. Department of Energy, in cooperation with the Department of Housing and Urban Development (HUD), initiated a collaborative process to define a residential energy efficiency rating program linked with energy-efficient mortgage (EEM) financing. During this process, the collaborative, consisting of a broad-based group representing stakeholder organizations, identified the need for quality control procedures to evaluate and verify the energy prediction methods used by Home Energy Rating System (HERS) providers. Such procedures were needed so a variety of locally developed rating systems would have equal opportunity to qualify under the umbrella of a national HERS/EEM system by meeting minimum technical requirements (National Renewable Energy Laboratory).

  7. Be a part of something bigger than yourself GE Healthcare

    E-Print Network [OSTI]

    Rimon, Elon

    Be a part of something bigger than yourself GE Healthcare Position: Mechanical Engineer as a contractor · Working at GE site at Tirat-Carmel. · Start: immediately · Duration 6-10 months, with optional elongation. ElgemsMoked@ge.com-CV www.gehealthcare.com We are GE Healthcare, a $17 billion division

  8. Emergency Preparedness Desk Reference Manual

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Emergency Preparedness Desk Reference Manual Important Phone Numbers Medical Emergencies / Hazardous Material Fire Emergencies Vehicle Accidents Evacuation Weather Emergencies Building/System Problem or Failure Threat of Violence Terrorism Interpersonal Emergencies Next Page >>> #12;Important Phone Numbers

  9. FAQS Reference Guide – Occupational Safety

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the July 2011 version of DOE-STD-1160-2011, Occupational Safety Functional Area Qualification Standard.

  10. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Innovative Offshore Vertical-Axis Wind Turbine Rotors Offshore Wind RD&D:...

  11. NPS Quick Reference Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name: NPIProgram Jump to:Quick

  12. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.

  13. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.: Electricity

  14. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.: ElectricityLiquid

  15. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:

  16. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:October 9, 2012 |

  17. Template:Reference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsource History View New Pages

  18. Subsurface Knowledge Reference Page | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before the CommitteeYears 2003 - 2008 U .SubscribeSubsurface

  19. Property:ReferenceGenre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to:Programmable

  20. Widget:ReferenceEdit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What IsLogoCloud JumpRRSectionFilter Jump

  1. Category:Geothermal References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation, searchGeophysicalCategory Edit History

  2. Category:Solar References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRockEurope Jump to:Soil Gassource

  3. Category:Utilities References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRockEuropeTelluricTracersource

  4. Category:Wind References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformation UtilityWind Farms Jump

  5. Form:Reference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to:45 -Financialsource History

  6. Category:Hydrogen References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:Geothermal Regulatory Roadmap SectionsGreensboro,

  7. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:GeothermalNEPA

  8. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:GeothermalNEPAReference Materials (Redirected from

  9. Category:References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:GeothermalNEPAReference Materials (Redirected

  10. Category:Water References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation,Category View

  11. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShaleOil

  12. Measurements of the Cosmic-Ray Positron Fraction From 1 to 50 GeV

    E-Print Network [OSTI]

    HEAT Collaboration; S. W. Barwick; E. Schneider; J. J. Beatty; G. A. de Nolfo; A. Bhattacharyya; C. R. Bower; J. A. Musser; C. J. Chaput; S. Coutu; S. McKee; G. Tarle; A. D. Tomasch; J. Knapp; D. M. Lowder; D. Muller; S. P. Swordy; E. Torbet; S. L. Nutter

    1997-03-28

    Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Ft. Sumner, New Mexico in 1994, and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight from Lynn Lake, Manitoba in 1995 permitted measurements over a larger energy interval, from 1 GeV to 50 GeV. In this letter we present results on the positron fraction based on data from the Lynn Lake flight, and compare these with the previously published results from the Ft. Sumner flight. The results confirm that the positron fraction does not increase with energy above ~10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960's. This effect could possibly be a consequence of charge dependence in the level of solar modulation.

  13. Microgravity and Vision in Astronauts | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatonsSubstancesproteinGE Researchers Study

  14. UC IRVINE GENERAL EDUCATION (GE) REQUIREMENT AND APPROVED GE COURSES, 201213 Includes course titles and Schedule of Classes designations

    E-Print Network [OSTI]

    Loudon, Catherine

    UC IRVINE GENERAL EDUCATION (GE) REQUIREMENT AND APPROVED GE COURSES, 2012­13 Includes course titles and Schedule of Classes designations GENERAL EDUCATION (GE) REQUIREMENT UCI is committed undergraduates complete a set of general education (GE) requirements. General education courses introduce

  15. 2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director of the National Institute for Advanced

    E-Print Network [OSTI]

    2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director, and emendation of all sorts of newly discovered texts (mostly found at archaeological sites). Professor Ge University, Professor Ge taught at Tsinghua University for a number of years. He is known for many important

  16. GE Advising & Registration Students FT Faculty PT Faculty Admin Unit 4 Other Staff Students have access to quality GE advising

    E-Print Network [OSTI]

    de Lijser, Peter

    GE Advising & Registration Students FT Faculty PT Faculty Admin Unit 4 Other Staff Students have access to quality GE advising 9% 13% 11% 13% 10% 8% Faculty can easily advise students on GE requirements 10% 18% 9% 24% 33% 11% Staff academic advisors can easily advise students on GE requirements 8% 11

  17. Interaction of Sn atoms with defects introduced by ion implantation in Ge substrate

    SciTech Connect (OSTI)

    Taoka, Noriyuki, E-mail: ntaoka@alice.xtal.nagoya-u.ac.jp; Fukudome, Motoshi; Takeuchi, Wakana; Arahira, Takamitsu; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-05-07

    The interaction of Sn atoms with defects induced by Sn implantation of Ge substrates with antimony (Sb) as an n-type dopant and the impact of H{sub 2} annealing on these defects were investigated by comparison with defects induced by Ge self-implantation. In the Ge samples implanted with either Sn or Ge, and annealed at temperatures of less than 200?°C, divacancies, Sb-vacancy complexes with single or double acceptor-like states, and defects related to Sb and interstitial Ge atoms were present. On the other hand, after annealing at 500?°C in an N{sub 2} or H{sub 2} atmosphere, defects with different structures were observed in the Sn-implanted samples by deep level transition spectroscopy. The energy levels of the defects were 0.33?eV from the conduction band minimum and 0.55?eV from the valence band maximum. From the capacitance-voltage (C-V) characteristics, interaction between Sn atoms and defects after annealing at 500?°C was observed. The effect of H{sub 2} annealing at around 200?°C was observed in the C-V characteristics, which can be attributed to hydrogen passivation, and this effect was observed in both the Ge- and Sn-implanted samples. These results suggest the presence of defects that interact with Sn or hydrogen atoms. This indicates the possibility of defect control in Ge substrates by Sn or hydrogen incorporation. Such defect control could yield high-performance Ge-based devices.

  18. Formation of 24Mg* in the Splitting of 28Si Nuclei by 1-GeV Protons

    E-Print Network [OSTI]

    A. A. Vasenko; N. D. Galanina; K. E. Gusev; V. S. Demidov; E. V. Demidova; I. V. Kirpichnikov; A. Yu. Sokolov; A. S. Starostin; N. A. Khaldeeva

    2006-09-01

    The 28Si(p, p' gamma)24Mg reaction has been studied at the ITEP accelerator by the hadron-gamma coincidence method for a proton energy of 1 GeV. Two reaction products are detected: a 1368.6-keV gamma-ray photon accompanying the transition of the 24Mg* nucleus from the first excited state to the ground state and a proton p' whose momentum is measured in a magnetic spectrometer. The measured distribution in the energy lost by the proton in interaction is attributed to five processes: the direct knockout of a nuclear alpha cluster, the knockout of four nucleons with a total charge number of 2, the formation of the DeltaSi isobaric nucleus, the formation of the Delta isobar in the interaction of the incident proton with a nuclear nucleon, and the production of a pi meson, which is at rest in the nuclear reference frame. The last process likely corresponds to the reaction of the formation of a deeply bound pion state in the 28P nucleus. Such states were previously observed only on heavy nuclei. The cross sections for the listed processes have been estimated.

  19. Medium energy ion implantation of Germanium into heated Silicon 

    E-Print Network [OSTI]

    McCoy, John Curtis

    1993-01-01

    Medium energy ion implantation of Ge into heated Si was investigated. legh fluence implants of Ge were made at energies of 40 or 60 keV into Si substrates at room temperature or heated to 300'C or higher. ...

  20. Relaxation and recombination processes in Ge/SiGe multiple quantum wells

    SciTech Connect (OSTI)

    Gatti, E., E-mail: gatti@mater.unimib.it; Giorgioni, A., E-mail: gatti@mater.unimib.it; Grilli, E., E-mail: gatti@mater.unimib.it; Guzzi, M., E-mail: gatti@mater.unimib.it [L-NESS and Università di Milano-Bicocca, Dip. di Scienza dei Materiali, via Cozzi 53, 20125 Milano (Italy); Chrastina, D.; Isella, G. [L-NESS and Politecnico di Milano, Dip. di Fisica, via Anzani 42, 22100 Como (Italy); Chernikov, A.; Kolata, K.; Bornwasser, V.; Köster, N. S.; Woscholski, R.; Chatterjee, S. [Faculty of Physics and Materials Sciences Center, Philipps-Universität, Renthof 5, 35032 Marburg (Germany)

    2013-12-04

    The carrier dynamics that occurs in Ge/SiGe QWs when electrons are excited to confined states at ? is studied by means of optical spectroscopy at different lattice temperatures. The typical times for the different relaxation and recombination processes are given and discussed.

  1. REFERENCES

    E-Print Network [OSTI]

    2008-08-23

    Mechanism of Fluid Displacement in Sands. Trans. Am. Inst. Min. Metall. Eng.,. 146: 107-116. Chaudhari, N.M., 1971. An Improved Numerical Technique for ...

  2. REFERENCES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 United States Code (U.S.C.) Section 552a. . b. P.L. 104-106, Division E, Clinger Cohen Act (CCA) (formerly Information Technology Management Reform Act of 1996. c. P.L....

  3. Electronic structural and magnetic properties of Mn{sub 5}Ge{sub 3} clusters

    SciTech Connect (OSTI)

    Yuan, H. K.; Chen, H. Kuang, A. L.; Tian, C. L.; Wang, J. Z.

    2013-11-28

    Theoretical understanding of the stability, ferromagnetism, and spin polarization of Mn{sub 5}Ge{sub 3} clusters has been performed by using the density functional theory with generalized gradient approximation for exchange and correlation. The magnetic moments and magnetic anisotropy energy (MAE) have been calculated for both bulk and clusters, and the enhanced magnetic moment as well as the enlarged MAE have been identified in clusters. The most attractive achievement is that Mn{sub 5}Ge{sub 3} clusters show a fine half-metallic character with large energy scales. The present results may have important implications for potential applications of small Mn{sub 5}Ge{sub 3} clusters as both emerging spintronics and next-generation data-storage technologies.

  4. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Maeda, Y; Masuda, T; Morii, H; Naito, D; Nakajima, Y; Nanjo, H; Nomura, T; Sasao, N; Seki, S; Shiomi, K; Sumida, T; Tajima, Y

    2014-01-01

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  5. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Y. Maeda; N. Kawasaki; T. Masuda; H. Morii; D. Naito; Y. Nakajima; H. Nanjo; T. Nomura; N. Sasao; S. Seki; K. Shiomi; T. Sumida; Y. Tajima

    2014-12-22

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  6. Reference worldwide model for antineutrinos from reactors

    E-Print Network [OSTI]

    Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

    2015-02-16

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  7. Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Back, B. B.; Nouicer, R.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A; Stienberg, P.; Ioradnova, A.; et al

    2015-09-23

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at ?sNN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence ofmore »the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less

  8. Fast Reference-Based MRI

    E-Print Network [OSTI]

    Weizman, Lior; Ben-Basaht, Dafna

    2015-01-01

    In many clinical MRI scenarios, existing imaging information can be used to significantly shorten acquisition time or to improve Signal to Noise Ratio (SNR). In some cases, a previously acquired image can serve as a reference image, that may exhibit similarity to the image being acquired. Examples include similarity between adjacent slices in high resolution MRI, similarity between various contrasts in the same scan and similarity between different scans of the same patient. In this paper we present a general framework for utilizing reference images for fast MRI. We take into account that the reference image may exhibit low similarity with the acquired image and develop an iterative weighted approach for reconstruction, which tunes the weights according to the degree of similarity. Experiments demonstrate the performance of the method in three different clinical MRI scenarios: SNR improvement in high resolution brain MRI, utilizing similarity between T2-weighted and fluid-attenuated inversion recovery (FLAIR)...

  9. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    refer to IEA (2007), World Energy Outlook 2007: China andIEA (2007), World Energy Outlook 2007: China and India

  10. Neutral pion photoproduction o protons in the energy range 0.3 GeV< E < 3 GeV O. Bartholomy 1 , V. Cred e 1 , H. van Pee 1 , A. V. Anisovich 1;2 , G. Anton 3 , R. Bantes 4 , Yu. Beloglazov 2 ,

    E-Print Network [OSTI]

    Krusche, Bernd

    of our knowledge on the excitation spectra of the nucleon and the #1;(1232)P 33 . Most excited states- tion o#11; the pion cloud or from production via t{channel exchange of pions are suppressed. Experimental information on #25; 0 photoproduction is sparse at high photon energies. Our existing knowledge

  11. Charged and strange hadron elliptic flow in Cu plus Cu collisions at root s(NN)=62.4 and 200 Ge

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Leyva, A. Davila; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Evdokimov, O.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hamed, A.; Han, L. -X; Harris, J. W.; Hays-Wehle, J. P.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Kopytine, M.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, N.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitrovski, M. K.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Rehberg, J. M.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sangaline, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.

    2010-01-01

    (NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii...

  12. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more »the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  13. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi [JLAB] (ORCID:0000000170267841)

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  14. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    E-Print Network [OSTI]

    SciBooNE Collaboration; Y. Nakajima; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; G. Cheng; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; J. J. Gomez-Cadenas; P. Guzowski; A. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. F. Loverre; L. Ludovici; K. B. M. Mahn; C. Mariani; S. Masuike; K. Matsuoka; V. T. McGary; W. Metcalf; G. B. Mills; G. Mitsuka; Y. Miyachi; S. Mizugashira; C. D. Moore; T. Nakaya; R. Napora; P. Nienaber; D. Orme; M. Otani; A. D. Russell; F. Sanchez; M. H. Shaevitz; T. -A. Shibata; M. Sorel; R. J. Stefanski; H. Takei; H. -K. Tanaka; M. Tanaka; R. Tayloe; I. J. Taylor; R. J. Tesarek; Y. Uchida; R. Van de Water; J. J. Walding; M. O. Wascko; H. B. White; M. Yokoyama; G. P. Zeller; E. D. Zimmerman

    2011-01-06

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  15. Optical Link on Silicon Employing Ge/SiGe Quantum Well Structures Onur Fidaner, Ali K. Okyay, Jonathan E. Roth, Rebecca K. Scheavitz, Yu-Hsuan Kuo*

    E-Print Network [OSTI]

    Miller, David A. B.

    Optical Link on Silicon Employing Ge/SiGe Quantum Well Structures Onur Fidaner, Ali K. Okyay University, Taipei, Taiwan Abstract: We demonstrate an optical link on silicon employing Ge/SiGe quantum well of the quantum-confined Stark effect (QCSE) on silicon using Ge/SiGe quantum wells opened up the possibility

  16. References R-3 ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society.

    E-Print Network [OSTI]

    Pennycook, Steve

    of Environment and Conservation, Department of Energy, Oversight Division Status Report to the Public, NashvilleReferences #12;References R-3 REFERENCES ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society. ANSI 1969. N13.1, Sampling Airborne Radioactive Materials in Nuclear

  17. Title: Information theory Reference: 13791

    E-Print Network [OSTI]

    Overill, Richard E.

    environment or communicates with others. One of the fundamental tenets of information theory a spate of publications appeared applying information theory to many aspects of music analysisTitle: Information theory Reference: 13791 Sort key: informationtheory Version: 3.0 Revision

  18. / R Reference May 25, 2010

    E-Print Network [OSTI]

    Loon, E. Emiel van

    of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly that the entire resulting derived work is distributed under the terms of a permission notice identical to this one, Matlab / R Reference 2 Contents 1 Help 3 2 Entering/building/indexing matrices 3 2.1 Cell arrays

  19. Reference Workbook: Pollution Prevention Plans

    E-Print Network [OSTI]

    #12;Reference Workbook: Pollution Prevention Plans DOE FRAP 1994-35 Prepared for: I Environment Canada Environmental Protection Fraser Pollution Abatement Office 224 West Esplanade North Vancouver, B Pollution Abatement Office. Environment Canada is not responsible for the content of this report but has

  20. References: Elmasri/Navathe:Fundamentals

    E-Print Network [OSTI]

    Brass, Stefan

    7. SQL I 7­1 Part 7: SQL I References: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' (Sect. 8.2, 8.3.3, part of 8. . Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley , 1997. . Date: A Guide

  1. EMERGENCY PROCEDURES QUICK REFERENCE GUIDE

    E-Print Network [OSTI]

    Frantz, Kyle J.

    1 EMERGENCY PROCEDURES QUICK REFERENCE GUIDE GSU EMERGENCY MANAGEMENT 404-413-0783 GSU POLICE: 404-413-3333 ATLANTA FIRE RESUCE: 911 #12;2 Emergency Response - Order of Priority In any emergency situation, Georgia infrastructure and facilities 3. Resume our research and educational programs Emergency Action Levels: A. Level 1

  2. OpenEI Community - GE

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaen The EnergyInvitationFOA aimedTeam!

  3. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- Energy Innovation PortalImpact >

  4. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- Energy Innovation PortalImpact

  5. A search for GeV-TeV emission from GRBs with the Milagro detector

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    in the three years since the launch of Swift. Keywords: gamma-ray sources; gamma-ray bursts; astronomical observations gamma-ray PACS: 98.70.Rz,95.85.Pw Gamma-ray bursts (GRBs) have been detected up to GeV energies. B. Yodh CPIOOO, Gamma-Ray Bursts 2007: Proceedings of the Santa Fe Conference, edited by M. Galassi

  6. 23 6 12 8:00 III-V/Ge CMOS

    E-Print Network [OSTI]

    Katsumoto, Shingo

    23 6 12 8:00 - 1 - 1. : III-V/Ge CMOS ~ 200%~ 2. : III-V (Ge) III-V/Ge CMOS (Si) 200% III-V/Ge CMOS 200% III-V/Ge CMOS () () () () III-V III-V/Ge CMOS (1) III-V Ge III-V/Ge CMOS (2) III-V-OI MOSFET (3) III-V/Ge CMOS "2011 Symposia on VLSI

  7. Centrality dependence of charged hadron transverse momentum spectra in Au+Au collisions from sqrt(s_NN) = 62.4 to 200 GeV

    E-Print Network [OSTI]

    B. B. Back; for the PHOBOS Collaboration

    2004-05-05

    We have measured transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 62.4 GeV. The spectra are presented for transverse momenta 0.25 2 GeV/c, R_AA is found to be significantly larger than in Au+Au collisions at sqrt(s_NN) =130 and 200 GeV. In contrast, we find that the evolution of the invariant yields per participant pair from peripheral to central collisions is approximately energy independent over this range of collision energies. This observation challenges models of high p_T hadron suppression in terms of parton energy loss.

  8. Milford Wind Corridor Phase I (GE Energy) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-HybridCredits LLC JumpClipper) Wind FarmI

  9. Medium energy heavy ion operations at RHIC

    SciTech Connect (OSTI)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  10. Phase transitions in Ge-Sb phase change materials

    SciTech Connect (OSTI)

    Raoux, Simone; Virwani, Kumar; Hitzbleck, Martina; Salinga, Martin; Madan, Anita; Pinto, Teresa L.

    2009-03-15

    Thin films of the phase change material Ge-Sb with Ge concentrations between 7.3 and 81.1 at. % were deposited by cosputtering from elemental targets. Their crystallization behavior was studied using time-resolved x-ray diffraction, Auger electron spectroscopy, differential scanning calorimetry, x-ray reflectivity, profilometry, optical reflectivity, and resistivity versus temperature measurements. It was found that the crystallization temperature increases with Ge content. Calculations of the glass transition temperature (which is a lower limit for the crystallization temperature T{sub x}) also show an increase with Ge concentration closely tracking the measured values of T{sub x}. For low Ge content samples, Sb x-ray diffraction peaks occurred during a heating ramp at lower temperature than Ge diffraction peaks. The appearance of Ge peaks is related to Ge precipitation and agglomeration. For Ge concentrations of 59.3 at. % and higher, Sb and Ge peaks occurred at the same temperature. Upon crystallization, film mass density and optical reflectivity increase as well as electrical contrast (ratio of resistivity in amorphous phase to crystalline phase) all showed a maximum for the eutectic alloy (14.5 at. % Ge). For the alloy with 59.3 at. % Ge there was very little change in any of these parameters, while the alloy with 81.1 at. % Ge behaved opposite to a typical phase change alloy and showed reduced mass density and reflectivity and increased resistivity.

  11. Updated 8/28/2014 New GE Requirements & Environmental Studies Advising

    E-Print Network [OSTI]

    Updated 8/28/2014 New GE Requirements & Environmental Studies Advising Course Concentration(s) Lower Division GE Upper Division GE Overlay(s) AIS 310

  12. GE Lighting Solutions: Order (2013-SE-4901)

    Broader source: Energy.gov [DOE]

    DOE ordered General Electric Lighting Solutions, LLC to pay a $5,360 civil penalty after finding GE Lighting Solutions had manufactured and distributed in commerce in the U.S. 30 units of basic model DR4-RTFB-23B and 177 units (of which 85 units remain in inventory) of basic model DR4-RTFB-77A-002, noncompliant traffic signal modules.

  13. Viscosity Measurement G.E. Leblanc

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    30 Viscosity Measurement G.E. Leblanc McMaster University R.A. Secco The University of Western and Non-Newtonian Fluids l Dimensions and Units of Viscosity l Viscometer Types l Capillary M. Kostic must be supplied (1) to create viscous flow units by breaking bonds between atoms and molecules, and (2

  14. Kinetics of visible light photo-oxidation of Ge nanocrystals:Theory and in situ measurement

    SciTech Connect (OSTI)

    Sharp, I.D.; Xu, Q.; Yuan, C.W.; Beeman, J.W.; Ager III, J.W.; Chrzan, D.C.; Haller, E.E.

    2006-11-14

    Photo-oxidation of Ge nanocrystals illuminated with visible laser light under ambient conditions was investigated. The photo-oxidation kinetics were monitored by in situ measurement of the crystalline Ge volume fraction by Raman spectroscopy. The effects of laser power and energy on the extent of oxidation were measured using both in situ and ex situ Raman scattering techniques. A mechanistic model in which the tunneling of photo-excited carriers to the oxide surface for electron activated molecular oxygen dissociation is proposed. This quantitative model successfully describes all experimental photo-oxidation observations using physical parameters.

  15. Electrical characteristics of Ni Ohmic contact on n-type GeSn

    SciTech Connect (OSTI)

    Li, H.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (China); Lee, L. C.; Lee, C. P. [Center for Nano Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan (China); Su, L. H.; Suen, Y. W. [Department of Physics and Institute of Nano Science, National Chung Hsing University, Taichung 402, Taiwan (China)

    2014-06-16

    We report an investigation of the electrical and material characteristics of Ni on an n-type GeSn film under thermal annealing. The current-voltage traces measured with the transmission line method are linear for a wide range of annealing temperatures. The specific contact resistivity was found to decrease with increasing annealing temperature, followed by an increase as the annealing temperature further increased, with a minimum value at an annealing temperature of 350?°C. The material characteristics at the interface layer were measured by energy-dispersive spectrometer, showing that an atomic ratio of (Ni)/(GeSn)?=?1:1 yields the lowest specific contact resistivity.

  16. Lattice study of an electroweak phase transition at m{sub h} ? 126 GeV

    SciTech Connect (OSTI)

    Laine, M.; Nardini, G.; Rummukainen, K. E-mail: germano@physik.uni-bielefeld.de

    2013-01-01

    We carry out lattice simulations of a cosmological electroweak phase transition for a Higgs mass m{sub h} ? 126 GeV. The analysis is based on a dimensionally reduced effective theory for an MSSM-like scenario including a relatively light coloured SU(2)-singlet scalar, referred to as a right-handed stop. The non-perturbative transition is stronger than in 2-loop perturbation theory, and may offer a window for electroweak baryogenesis. The main remaining uncertainties concern the physical value of the right-handed stop mass which according to our analysis could be as high as m{sub t-tilde{sub R}} ? 155 GeV; a more precise effective theory derivation and vacuum renormalization than available at present are needed for confirming this value.

  17. Effects of Ge replacement in GeTe by [Ag+Sb] on thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in GeTe by Ag+Sb on thermoelectric properties and NMR spectra Requirements for student: general physics and chemistry courses, and desire to work in experimental laboratory. This...

  18. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    SciTech Connect (OSTI)

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel, E-mail: daniel.chrastina@polimi.it; Mondiali, Valeria; Isella, Giovanni [L-NESS, Dipartimento di Fisica, Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Bollani, Monica [IFN-CNR, L-NESS, via Anzani 42, 22100 Como (Italy)

    2014-09-21

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  19. GE partners with 'Girls Who Code' for summer program | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offered 19 programs and counted 375 participants; this year, Girls Who Code will offer 60 programs reaching close to 1,200 girls in nine cities nationwide. GE joins other...

  20. Butterfly-Inspired Thermal Imaging | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Innovation and Manufacturing in Europe 2-4-13-v-3d-printing-medical-devices Additive Manufacturing Demonstration at GE Global Research 2-3-10-v Crowdsourcing...

  1. What Happens in Research-Based Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paths we have at GE Global Research ("GE Leaders are Researchers Too",). The field of gas turbine heat transfer is growing in importance, and as a result, we have a lot of job...

  2. ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Wang Xiangyu; Liu Ruoyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Lemoine, Martin [Institut d'Astrophysique de paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

    2013-07-10

    Fermi/LAT has detected long-lasting high-energy photons (>100 MeV) from gamma-ray bursts (GRBs), with the highest energy photons reaching about 100 GeV. One proposed scenario is that they are produced by high-energy electrons accelerated in GRB forward shocks via synchrotron radiation. We study the maximum synchrotron photon energy in this scenario, considering the properties of the microturbulence magnetic fields behind the shock, as revealed by recent particle-in-cell simulations and theoretical analyses of relativistic collisionless shocks. Due to the small-scale nature of the microturbulent magnetic field, the Bohm acceleration approximation, in which the scattering mean free path is equal to the particle Larmor radius, breaks down at such high energies. This effect leads to a typical maximum synchrotron photon of a few GeV at 100 s after the burst and this maximum synchrotron photon energy decreases quickly with time. We show that the fast decrease of the maximum synchrotron photon energy leads to a fast decay of the synchrotron flux. The 10-100 GeV photons detected after the prompt phase cannot be produced by the synchrotron mechanism. They could originate from the synchrotron self-Compton emission of the early afterglow if the circumburst density is sufficiently large, or from the external inverse Compton process in the presence of central X-ray emission, such as X-ray flares and prompt high-latitude X-ray emission.

  3. U.S. Energy Information Administration | State Energy Data 2013...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (GE) * conventional hydroelectric power (HY) * solar thermal direct use energy and photovoltaic electricity net generation (SO) * electricity produced by wind (WY) * wood and...

  4. Quasi-zero lattice mismatch and band alignment of BaTiO{sub 3} on epitaxial (110)Ge

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y.; Jain, N. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Zhou, Y.; Priya, S [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-07-14

    Growth, structural, and band alignment properties of pulsed laser deposited amorphous BaTiO{sub 3} on epitaxial molecular beam epitaxy grown (110)Ge layer, as well as their utilization in low power transistor are reported. High-resolution x-ray diffraction demonstrated quasi-zero lattice mismatch of BaTiO{sub 3} on (110)Ge. Cross-sectional transmission electron microscopy micrograph confirms the amorphous nature of BaTiO{sub 3} layer as well as shows a sharp heterointerface between BaTiO{sub 3} and Ge with no traceable interfacial layer. The valence band offset, {Delta}E{sub v}, of 1.99 {+-} 0.05 eV at the BaTiO{sub 3}/(110)Ge heterointerface is measured using x-ray photoelectron spectroscopy. The conduction band offset, {Delta}E{sub c}, of 1.14 {+-} 0.1 eV is calculated using the bandgap energies of BaTiO{sub 3} of 3.8 eV and Ge of 0.67 eV. These band offset parameters for carrier confinement and the interface chemical properties of the BaTiO{sub 3}/(110)Ge system are significant advancement towards designing Ge-based p-and n-channel metal-oxide semiconductor field-effect transistors for low-power application.

  5. First results on Cosmic Ray electron spectrum below 20 GeV from the Fermi LAT

    E-Print Network [OSTI]

    Pesce-Rollins, Melissa

    2009-01-01

    Designed to be a successor of the previous flown space based gamma ray detectors, the Fermi Large Area Telescope (LAT) is also an electron detector. Taking advantage of its capability to separate electromagnetic and hadronic signals it is possible to accurately measure the Cosmic Ray electron spectrum. The spectra of primary cosmic ray electrons below 20 GeV is influenced by many local effects such as solar modulation and the geomagnetic cutoff. For energies below a few GeV it is possible to observe the albedo population of electrons which are controlled by the local magnetic field. In this paper we present the LAT electron analysis in particular event selection and validation as well as the first results on the measurement of the electron spectrum below 20 GeV.

  6. 5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs

    E-Print Network [OSTI]

    John N. Bahcall; Peter Meszaros

    2000-06-23

    A gamma-ray burst fireball is likely to contain an admixture of neutrons, in addition to protons, in essentially all progenitor scenarios. Inelastic collisions between differentially streaming protons and neutrons in the fireball produce muon neutrinos (antineutrinos) of ~ 10 GeV as well as electron neutrinos (antineutrinos) of ~ 5 GeV, which could produce ~ 7 events/year in kilometer cube detectors, if the neutron abundance is comparable to that of protons. Photons of ~ 10 GeV from pi-zero decay and ~ 100 MeV electron antineutrinos from neutron decay are also produced, but will be difficult to detect. Photons with energies < 1 MeV from shocks following neutron decay produce a characteristic signal which may be distinguishable from the proton-related MeV photons.

  7. MaGe - a Geant4-based Monte Carlo framework for low-background experiments

    E-Print Network [OSTI]

    Yuen-Dat Chan; Jason A. Detwiler; Reyco Henning; Victor M. Gehman; Rob A. Johnson; David V. Jordan; Kareem Kazkaz; Markus Knapp; Kevin Kroninger; Daniel Lenz; Jing Liu; Xiang Liu; Michael G. Marino; Akbar Mokhtarani; Luciano Pandola; Alexis G. Schubert; Claudia Tomei

    2008-02-06

    A Monte Carlo framework, MaGe, has been developed based on the Geant4 simulation toolkit. Its purpose is to simulate physics processes in low-energy and low-background radiation detectors, specifically for the Majorana and Gerda $^{76}$Ge neutrinoless double-beta decay experiments. This jointly-developed tool is also used to verify the simulation of physics processes relevant to other low-background experiments in Geant4. The MaGe framework contains simulations of prototype experiments and test stands, and is easily extended to incorporate new geometries and configurations while still using the same verified physics processes, tunings, and code framework. This reduces duplication of efforts and improves the robustness of and confidence in the simulation output.

  8. The JLAB 3D program at 12 GeV (TMDs + GPDs)

    SciTech Connect (OSTI)

    Pisano, Silvia [Lab. Naz. Frascati, Frascati, Italy

    2015-01-01

    The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

  9. The MAGIC Telescope Project for Gamma Astronomy above 10 GeV

    E-Print Network [OSTI]

    N. Magnussen

    1998-05-14

    A project to construct a 17 m diameter imaging air Cherenkov telescope, called the MAGIC Telescope, is described. The aim of the project is to close the observation gap in the gamma-ray sky extending from 10 GeV as the highest energy measurable by space-borne experiments to 300 GeV, the lowest energy measurable by the current generation of ground-based Cherenkov telescopes. The MAGIC Telescope will incorporate several new features in order to reach the very low energy threshold. At the same time the new technology will yield an improvement in sensitivity in the energy region where current Cherenkov telescopes are measuring by about an order of magnitude.

  10. Elliptic flow of non-photonic electrons in Au+Au collisions at $\\sqrt{s_{\\rm NN}} = $ 200, 62.4 and 39 GeV

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; M. Simko; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-05-24

    We present the measurements of elliptic flow ($v_2$) of non-photonic electrons (NPE) by the STAR experiment using 2- and 4-particle correlations, $v_2${2} and $v_2${4}, and the event plane method in Au+Au collisions at $\\sqrt{s_{NN}} = 200$ GeV, and $v_2${2} at 62.4 and 39 GeV. $v_2${2} and $v_2${4} are non-zero at low and intermediate transverse momentum ($p_T$) at 200 GeV, and $v_2${2} is consistent with zero at low $p_T$ at other energies. For Au+Au collisions at $p_T<1$ GeV/c, there is a statistically significant difference between $v_2${2} at 200 GeV and $v_2${2} at the two lower beam energies.

  11. DEGREE-SCALE GeV 'JETS' FROM ACTIVE AND DEAD TeV BLAZARS

    SciTech Connect (OSTI)

    Neronov, A.; Semikoz, D.; Kachelriess, M.; Ostapchenko, S.; Elyiv, A.

    2010-08-20

    We show that images of TeV blazars in the GeV energy band should contain, along with point-like sources, degree-scale jet-like extensions. These GeV extensions are the result of electromagnetic cascades initiated by TeV {gamma}-rays interacting with extragalactic background light and the deflection of the cascade electrons/positrons in extragalactic magnetic fields (EGMFs). Using Monte Carlo simulations, we study the spectral and timing properties of the degree-scale extensions in simulated GeV band images of TeV blazars. We show that the brightness profile of such degree-scale extensions can be used to infer the light curve of the primary TeV {gamma}-ray source over the past 10{sup 7} yr, i.e., over a time scale comparable to the lifetime of the parent active galactic nucleus. This implies that the degree-scale jet-like GeV emission could be detected not only near known active TeV blazars, but also from 'TeV blazar remnants', whose central engines were switched off up to 10 million years ago. Since the brightness profile of the GeV 'jets' depends on the strength and the structure of the EGMF, their observation provides additional information about the EGMF.

  12. Microgrid cyber security reference architecture.

    SciTech Connect (OSTI)

    Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

    2013-07-01

    This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

  13. Similarity of Stranski-Krastanow growth of Ge/Si and SiGe/Si (001)

    SciTech Connect (OSTI)

    Norris, D. J.; Qiu, Y.; Walther, T. [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Dobbie, A.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7A (United Kingdom)

    2014-01-07

    This study investigates the onset of islanding (Stranski-Krastanow transition) in strained pure germanium (Ge) and dilute silicon-germanium (SiGe) alloy layers grown by chemical vapour deposition on Si(001) substrates. Integration of compositional profiles is compared to a novel method for quantification of X-ray maps acquired in cross-sectional scanning transmission electron microscopy, together with simulations of surface segregation of Ge. We show that Si{sub 1?x}Ge{sub x} alloys for germanium concentrations x???0.27 grow two-dimensionally and stay flat up to considerable layer thicknesses, while layers with concentrations in the range 0.28?Ge is ±(0.2–0.3) ML. Modelling shows that of the amount of germanium deposited, 0.7 ML segregate towards the free surface so that only ?2.3/x ML are directly incorporated in the layer within a few nanometres, in good agreement with our measurements. For pure Ge (x?=?1), this thickness is smaller than most values quoted in the literature, which we attribute to the high sensitivity of our method to fractional monolayer changes in the effective chemical width of such thin layers.

  14. Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ross, Frances M.; Stach, Eric A.; Wen, Cheng -Yen; Reuter, Mark C.; Su, Dong

    2015-02-05

    The abrupt heterointerfaces in the Si/Ge materials system presents useful possibilities for electronic device engineering because the band structure can be affected by strain induced by the lattice mismatch. In planar layers, heterointerfaces with abrupt composition changes are difficult to realize without introducing misfit dislocations. However, in catalytically grown nanowires, abrupt heterointerfaces can be fabricated by appropriate choice of the catalyst. Here we grow nanowires containing Si/Ge and Si/Ge/Si structures respectively with sub-1nm thick Ge "quantum wells" and we measure the interfacial strain fields using geometric phase analysis. Narrow Ge layers show radial strains of several percent, with a correspondingmore »dilation in the axial direction. Si/Ge interfaces show lattice rotation and curvature of the lattice planes. We conclude that high strains can be achieved, compared to what is possible in planar layers. In addition, we study the stability of these heterostructures under heating and electron beam irradiation. The strain and composition gradients are supposed to the cause of the instability for interdiffusion.« less

  15. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    SciTech Connect (OSTI)

    Cecchi, S., E-mail: stefano.cecchi@mdm.imm.cnr.it; Chrastina, D.; Frigerio, J.; Isella, G. [L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Gatti, E.; Guzzi, M. [L-NESS, Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via Cozzi 53, I-20126 Milano (Italy); Müller Gubler, E. [Electron Microscopy ETH Zurich, ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich (Switzerland); Paul, D. J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2014-03-07

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1??m thick Si{sub 1?x}Ge{sub x} buffers (with x?>?0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475?°C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si{sub 1?x}Ge{sub x} layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.

  16. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  17. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Shale Disposal Reference Case August 2014 Borehole activity: Oil and gas drilling targets for hydrocarbon resource

  18. SAM Photovoltaic Model Technical Reference

    SciTech Connect (OSTI)

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  19. Monolithic Ge/Si Avalanche Photodiodes Yimin Kanga*

    E-Print Network [OSTI]

    Bowers, John

    Monolithic Ge/Si Avalanche Photodiodes Yimin Kanga* , Mike Morsea , Mario J. Panicciaa , Moshe, Charlottesville, VA 22904, USA Abstract: We demonstrate mesa-type and waveguide-type Ge/Si avalanche photodiodes. Research on the Ge/Si photodiodes, one of the fundamental components needed for building integrated silicon

  20. MOTION OF ELECTRON-HOLE DROPS IN Ge

    E-Print Network [OSTI]

    Westervelt, R.M.

    2011-01-01

    MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson

  1. 12 GeV Upgrade Project - Cryomodule Production

    SciTech Connect (OSTI)

    J. Hogan, A. Burrill, G.K. Davis, M.A. Drury, M. Wiseman

    2012-07-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.

  2. Radiation microscope for SEE testing using GeV ions.

    SciTech Connect (OSTI)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo; Hattar, Khalid M.; Vizkelethy, Gyorgy; Brice, David Kenneth; Branson, Janelle V.

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  3. Conduction band discontinuity and electron confinement at the Si[subscript x]Ge[subscript 1?x]/Ge interface

    E-Print Network [OSTI]

    Mazzeo, G.

    Germanium rich heterostructures can constitute a valid alternative to Silicon for the confinement of single electron spins. The conduction band discontinuity in SiGe/Ge heterostructures grown on pure germanium substrate ...

  4. WECC Variable Generation Planning Reference Book: Appendices

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-13

    The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

  5. Role of fast sputtered particles during sputter deposition: Growth of epitaxial Ge0.99C0.01 Ge,,001... J. D'Arcy-Gall, D. Gall, P. Desjardins, I. Petrov, and J. E. Greene

    E-Print Network [OSTI]

    Gall, Daniel

    ,,001... J. D'Arcy-Gall, D. Gall, P. Desjardins, I. Petrov, and J. E. Greene Materials Science Ge neutrals in the high-energy tail of the ejected particle distribution increases the concentration on the effects of relatively high energy 100 eV inert and/or reactive ion irradiation, which often lead

  6. K*0 production in Cu+Cu and Au+Au collisions at \\sqrt{s_NN} = 62.4 GeV and 200 GeV

    E-Print Network [OSTI]

    M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; Daniel Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; B. E. Bonner; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderon; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; T. A. Trainor; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev

    2010-06-10

    We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \\sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \\to K+ pi- and \\bar{K*0} \\to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, , are presented. The measured N(K*0)/N(K) and N(\\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

  7. Bulk and surface half-metallicity: The case of D0{sub 3}-type Mn{sub 3}Ge

    SciTech Connect (OSTI)

    Liu, Hao; Gao, G. Y. Hu, Lei; Ni, Yun; Zu, Fengxia; Zhu, Sicong; Wang, Shuling; Yao, K. L.

    2014-01-21

    Motivated by the experimental realization of D0{sub 22}-type Mn{sub 3}Ge (001) films [Kurt et al. Appl. Phys. Lett. 101, 132410 (2012)] and the structural stability of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge [Zhang et al. J. Phys.: Condens. Matter 25, 206006 (2013)], we use the first-principles calculations based on the full potential linearized augmented plane-wave method to investigate the electronic and magnetic properties of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge and its (001) surface. We show that bulk D0{sub 3}-Mn{sub 3}Ge is a half-metallic ferromagnet with the minority-spin energy gap of 0.52?eV and the magnetic moment of 1.00??{sub B} per formula unit. The bulk half-metallicity is preserved at the pure Mn-terminated (001) surface due to the large exchange split, but the MnGe-terminated (001) surface destroys the bulk half-metallicity. We also reveal that the surface stabilities are comparable between the D0{sub 3}-Mn{sub 3}Ge (001) and the experimental D0{sub 22}-Mn{sub 3}Ge (001), which indicates the feasibility to grow the Mn{sub 3}Ge (001) films with D0{sub 3} phase other than D0{sub 22} one. The surface half-metallicity and stability make D0{sub 3}-Mn{sub 3}Ge a promising candidate for spintronic applications.

  8. Ratio of isolated photon cross sections in p(p)over-bar collisions at root s=630 and 1800 GeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

    2001-12-01

    The inclusive cross section for production of isolated photons has been measured in p (p) over bar collisions at roots = 630 GeV with the DO detector at the Fermilab Tevatron Collider. The photons span a transverse energy ...

  9. Charged hadron transverse momentum spectra in Au+Au and d+Au collisions at 200 GeV per nucleon pair

    E-Print Network [OSTI]

    Kane, Jay Lawrence

    2005-01-01

    The Relativistic Heavy Ion Collider (RHIC) collides Au ions at a center of mass energy of 200 GeV per nucleon pair, which produces the most energetic collisions yet seen in the laboratory. RHIC has also collided proton ...

  10. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    SciTech Connect (OSTI)

    Cao, Qing

    2012-07-26

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family (R = rare earths, 0 ? x ? 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R{sub 5(Si{sub x}Ge{sub 1-x}){sub 4} compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er{sub 5}Si{sub 4} compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd{sub 5}Si{sub 4}-type orthorhombic to Gd{sub 5}Si{sub 2}Ge{sub 2}-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 ?C. Successful future utilization of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family in novel devices depends on a fundamental understanding of the structure-property interplay on the nanoscale level, which makes a complete understanding of the microstructure of this family especially important. Past scanning electron microscopy (SEM) observation has shown that nanometer-thin plates exist in every R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} (“5:4”) phase studied, independent of initial parent crystal structure and composition. A comprehensive electron microscopy study including SEM, energy dispersive spectroscopy (EDS), selected area diffraction (SAD), and high resolution transmission electron microscopy (HRTEM) of a selected complex 5:4 compound based on Er rather than Gd, (Er{sub 0.9Lu{sub 0.1}){sub 5}Si{sub 4}, has produced data supporting the assumption that all the platelet-like features present in the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family are hexagonal R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 3} (“5:3”) phase and possess the same reported orientation relationship that exists for the Gd{sub 5}Ge{sub 4} and Gd{sub 5}Si{sub 2}Ge{sub 2} compounds, i.e. [010](102?){sub m} || [101?0](12?11){sub p}. Additionally, the phase identification in (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} carried out using X-ray powder diffraction (XRD) techniques revealed that the low amount of 5:3 phase is undetectable in a conventional laboratory Cu K? diffractometer due to detection limitations, but that extremely low amounts of the 5:3 phase can be detected using high resolution powder diffraction (HRPD) employing a synchrotron source. These results suggest that use of synchrotron radiation for the study of R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds should be favored over conventional XRD for future investigations. The phase stability of the thin 5:3 plates in a Gd{sub 5}Ge{sub 4} sample was examined by performing long-term annealing at very high temperature. The experimental results indicate the plates are thermally unstable above 1200?C. While phase transformation of 5:3 to 5:4 occurs during the annealing, the phase transition is still fairly sluggish, being incomplete even after 24 hours annealing at this elevated temperature. Additional experiments using laser surface melting performed on the surface of a Ho{sub 5}(Si{sub 0.8}Ge{sub 0.}2){sub 4} sample showed that rapid cooling will suppress the precipitation of 5:3 plates. Bulk microstructure studies of polycrystalline and monocrystalline Gd{sub 5}Ge{sub 3} compounds examined using optical microscopy, SEM and TEM also show a series of linear features present in the Gd{sub 5}Ge{sub 3} matrix, similar in appearance in many ways to the 5:3 plates observed in R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds. A systematic microscopy analysis of these linear features revealed they also are thin plates with a stoichiometric composition of Gd{sub 5}Ge{sub 4} with an orthorhombic structure. The orientation relationship between the 5:3 matrix and the precipitate 5:4 thin plates was determined as [101?0] (12?11){s

  11. Baryon Number Fluctuations from a Crossover Equation of State Compared to Heavy-Ion Collision Measurements in the Beam Energy Range $\\sqrt{s_{NN}}$ = 7.7 to 200 GeV

    E-Print Network [OSTI]

    M. Albright; J. Kapusta; C. Young

    2015-06-10

    Fluctuations of the proton number distribution in central Au-Au collisions have been measured by the STAR collaboration in a beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The motivation is a search for evidence of a critical point in the equation of state. It was found that the skewness and kurtosis display an interesting energy dependence. We compare these measurements to an equation of state which smoothly interpolates between an excluded volume hadron resonance gas at low energy density to a perturbative plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with the lattice QCD equation of state. The crossover equation of state can reproduce the data if the fluctuations are frozen at a temperature significantly lower than the average chemical freeze-out.

  12. Particle Production at 3 GeV X. Ding, UCLA

    E-Print Network [OSTI]

    McDonald, Kirk

    = 50m 0.02976 (neg: 0.01206, pos: 0.01770) Carbon 3 GeV, Z = 0m 0.03341 (neg: 0.01370, pos: 0.01971) Mercury 3 GeV, Z = 50 m 0.02096 (neg: 0.01070, pos: 0.01026) Mercury 3 GeV, Z = 0 m 0.02496 (neg: 0.01273, pos: 0.01223) Mercury 8 GeV, Z = 50 m 0.0263 (neg: 0.0136, pos: 0.0127) Mercury 8 GeV, Z = 0m 0

  13. Reference electrode for electrolytic cell

    DOE Patents [OSTI]

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  14. Electrolytic cell with reference electrode

    DOE Patents [OSTI]

    Kessie, Robert W. (Naperville, IL)

    1989-01-01

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane.

  15. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Energy Signature Heating and Cooling Efficiency Fundamental Methods References and Technical Resources Air-Conditioning,

  16. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    handbook/ Technical lighting reference that includes practical applications, and selected topics on controls, energy management, sustainability,

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.March 2009. Annual Energy Outlook (AEO). 2011. Annual Energy

  18. Role of nucleation sites on the formation of nanoporous Ge

    SciTech Connect (OSTI)

    Yates, B. R.; Darby, B. L.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400 (United States); Elliman, R. G. [Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2012-09-24

    The role of nucleation sites on the formation of nanoporous Ge was investigated. Three Ge films with different spherical or columnar pore morphologies to act as inherent nucleation sites were sputtered on (001) Ge. Samples were implanted 90 Degree-Sign from incidence at 300 keV with fluences ranging from 3.0 Multiplication-Sign 10{sup 15} to 3.0 Multiplication-Sign 10{sup 16} Ge{sup +}/cm{sup 2}. Electron microscopy investigations revealed varying thresholds for nanoporous Ge formation and exhibited a stark difference in the evolution of the Ge layers based on the microstructure of the initial film. The results suggest that the presence of inherent nucleation sites significantly alters the onset and evolution of nanoporous Ge.

  19. Measuring 10-1000 GeV Cosmic Ray Electrons with GLAST/LAT

    E-Print Network [OSTI]

    Alexander A. Moiseev; Jonathan F. Ormes; Igor V. Moskalenko

    2007-06-06

    We present here the capabilities of the GLAST Large Area Telescope to detect cosmic ray high-energy (HE) electrons in the energy range from 10 GeV to 1 TeV. We also discuss the science topics that can be investigated with HE electron data and quantify the results with LAT instrument simulations. The science topics include CR propagation, calibration of the IC gamma-ray model, testing hypotheses regarding the origin of HE energy cosmic-ray electrons, searching for any signature of Kaluza Klein Dark Matter annihilation, and measuring the HE electron anisotropy. We expect to detect ~ 107 electrons above 20 GeV per year of LAT operation.

  20. Monolayer Passivation of Ge(100) Surface via Nitridation and Oxidation Joon Sung Leea,b

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Monolayer Passivation of Ge(100) Surface via Nitridation and Oxidation Joon Sung Leea,b , Sarah R passivation of Ge(100) surface via formation of Ge-N and Ge-O surface species was studied using scanning cyclotron resonance (ECR) plasma source formed an ordered Ge-N structure on a Ge(100) surface at 500o C. DFT